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Object Recognition at Higher
Regions of the Ventral Visual Stream
via Dynamic Inference
Siamak K. Sorooshyari 1*, Huanjie Sheng 1† and H. Vincent Poor 2

1Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States, 2Department of Electrical

Engineering, Princeton University, Princeton, NJ, United States

The ventral visual stream (VVS) is a fundamental pathway involved in visual object

identification and recognition. In this work, we present a hypothesis of a sequence of

computations performed by the VVS during object recognition. The operations performed

by the inferior temporal (IT) cortex are represented as not being akin to a neural-network,

but rather in-line with a dynamic inference instantiation of the untangling notion. The

presentation draws upon a technique for dynamicmaximum a posteriori probability (MAP)

sequence estimation based on the Viterbi algorithm. Simulation results are presented

to show that the decoding portion of the architecture that is associated with the

IT can effectively untangle object identity when presented with synthetic data. More

importantly, we take a step forward in visual neuroscience by presenting a framework

for an inference-based approach that is biologically inspired via attributes implicated in

primate object recognition. The analysis will provide insight in explaining the exceptional

proficiency of the VVS.

Keywords: object recognition, sequence estimation, decoding, IT cortex, dynamic inference, Viterbi algorithm

1. INTRODUCTION

A prevalent hypothesis is that the identities of viewed objects are represented as patterns of activity
across populations of neurons with increasingly complicated computations occurring further along
the ventral visual stream (VVS). Presenting a biologically inspired algorithm where the stimulus
information is processed and exchanged among different populations of neurons is a challenge.
Since the higher visual areas such as inferior temporal (IT) cortex are selective to the more
complex stimuli characteristics than populations in lower levels such as V1 and V2, it has been
postulated that more complicated processing techniques are used by the IT (Riesenhuber and
Poggio, 1999). The term “encoding” has been applied extensively to the manner by which neurons
in the early visual stages respond to and represent stimuli. The presented analysis will treat the
object recognition process performed by the higher regions of the VVS as a decoding operation
and present a model that can commence to unify an understanding of the computations involved
during such a cognitive process. Topical overviews such as DiCarlo et al. (2012) advocate the first
step of unequivocally defining the question of how the brain solves the problem. It is sensible to
presume that as large amounts of data become available the object recognition question will be
asked in different ways. Computer vision algorithms have been lauded for efficacy in categorizing
objects after being trained on large sets of sample data. However, they are also known to suffer from
the invariance problem that has been studied by visual neuroscientists. This is especially true when

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00046
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00046&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:siamak_sorooshyari@berkeley.edu
https://doi.org/10.3389/fncom.2020.00046
https://www.frontiersin.org/articles/10.3389/fncom.2020.00046/full
http://loop.frontiersin.org/people/144813/overview
http://loop.frontiersin.org/people/688816/overview
http://loop.frontiersin.org/people/949109/overview


Sorooshyari et al. Communication-Theoretic Object Recognition (CTOR)

a large number of object categories are considered, and imparts
one to question whether computer vision models are the optimal
means for studying the computational operations performed by
the brain during real-time object recognition. The encoding-
decoding methodology discussed in this work will provide a
model that is a closer, biologically-plausible explanation of the
VVS operation.

Neurons at progressive stages of neuroanatomy receiving
weighted excitatory and inhibitory inputs prior to their state
being subject to a thresholding operation is not a new concept to
vision neuroscience. We consider somewhat more sophisticated
operations that will occur over several populations of neurons.
While the algorithmic operations may be deemed sophisticated,
it is noteworthy that such operations are being performed by
millions of neurons. Furthermore, the fact that primates are
extremely efficient in conducting object recognition vindicates
the use of algorithms to explain the seemingly effortless manner
by which the recognition is performed. The input to the model
will be the representation that the viewed object should evoke at
the IT. This representation is obviously associated with the visual
stimulus, and is immediately encoded by the retina and lateral
geniculate nucleus (LGN) circuitry in order for its meaning
to be communicated along the VVS in a reliable manner.
The model presented in this work provides an alternative to
neural network techniques employing max-pooling, and an
alternative to machine learning approaches that consider object
categorization rather than classification of object attributes
during the recognition process. The analysis additionally brings
forth the question of what metrics to consider in assessing
how well a model performs object recognition. Within the
encoding-decoding framework it is possible to distinguish
between different gradations of recognition. Specifically, one
would be able to quantify the error rate in recognizing objects,
the attributes of an object, and the object category.

Algorithmic operations will be suggested herein for various
stages of the VVS to mirror the functional operations implicated
by prior works in visual neuroscience. The algorithmic structure
in Figure 1 is novel within the context of visual neuroscience.
The biologically-inspired system will be referred to as the
communication-theoretic object recognition (CTOR) model
and will encompass high-level visual function processing
low-level sensory signals. A natural impetus for the derivation
of CTOR is the brain consisting of communication channels
with a task such as object recognition invoking the interchange
of signals between neural circuits as part of the interplay
between top-down and bottom-up processing. There are
several themes that subsist when considering statistical
inference on the output of a non-ideal channel in engineering
or biology: the time-sensitive nature of the information,
the presence of stochastic perturbations, and the possible
compression of the recovered information. Refinements of
CTOR that may spawn from this presentation will need
to include a decoding algorithm for inference. Indeed,
alternate decoding algorithms may be proposed and different
definitions for the elements that comprise the decoded sequence
may emerge.

2. ATTRIBUTES OF BIO-INSPIRED OBJECT
RECOGNITION MODELS

It has been reputed that neural connectivity dictates a hierarchical
organization at the VVS with visual information traversing the
retina to the LGN, and then through cortical area V1, V2,
and V4 before reaching the IT. Neurons in V1 have small
receptive fields and respond to simple features such as edge
orientation (Hubel and Wiesel, 1962). The receptive fields of
V4 neurons are on average four to seven times greater than
those in V1, but are smaller than the receptive fields of IT
neurons. Many V4 neurons are sensitive to stimulus features
of moderate complexity (Cadieu et al., 2007), whereas the IT
neurons are selective to much more complex stimuli such as
faces. The tuning properties of IT cells seem to be shaped by
task learning with their dendritic arbors being more expansive
than those of V1, V2, or V4 neurons (Elston, 2002; Luebke,
2017). The untangling notion advocated in DiCarlo et al. (2012)
serves as motivation for the decoding module in CTOR. As
the viewed object is processed beyond the retina and along the
successive stages of the VVS, it is believed that increasingly
sophisticated processing power is applied to untangle the object’s
identity.When considering the statistics of the input to the lowest
stage in the model, works such as Simoncelli and Olshausen
(2001) have provided a litany of studies that contain empirical
evidence for the non-Gaussianity of natural images. The authors
proceed to describe the neural coding/representation that occurs
in portions of the visual cortex. An array of works have discussed
attributes of the visual cortex that enable the system to be
exceptionally proficient at performing object recognition in a
rapid and effortless manner. The following are what we consider
the most crucial attributes that a biologically-inspired model for
object recognition should address.

• Selectivity: The ability to accurately discriminate between
different objects. Object recognition models typically do not
quantitatively distinguish between object identification and
categorization. The model herein will distinguish between the
two domains and focus on the identification of an object rather
than a rapid categorization.

• Invariance: The ability to recognize an object under
transformations such as scale or position alterations in
the field of view. Furthermore, inconsiderable alternations in
the object’s features should not preclude recognition.

• Robustness: Aspects of the viewed stimulus such as
illumination and clutter may decrease the signal-to-noise ratio
(SNR) of the neural signals communicated along the lower
visual stages. The VVS is frequently able to distinguish among
objects in light of perturbations to the viewed object that
reduce the SNR of the neural information progressing along
the pathway.

• Processing Speed: The recognition of an object within either a
strict or lax temporal constraint imposed by the task. From a
psychophysics perspective, the processing speed corresponds
to how rapidly the object recognition is performed by
the brain.
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FIGURE 1 | The communication-theoretic object recognition (CTOR) model. The structure of CTOR consists of feedforward processing with memory and attention

providing feedback to the decoder portion of the IT. (a) The communication of T, {αi}, and {Gi (t)} of equations (1) and (2) from the PFC, LIP, and FEF regions to V1, V2,

and V4. (b) Attention modulating the channel properties. (c,g) The communication of the transition probabilities {P[rk |bk+1,bk ]} and the priors {P[bk+1|bk ]} to the IT

from the attention and memory circuitry, respectively. (d) The conveying of the number of features F and the number of bits allocated to each feature {Mi} by attention

to the interleaver. (e) Conveyance of the degree of compression from attention. (f) Attention gating memory as far as the object features that are retained following

recognition. (h) The contribution of the retinal, LGN, and V1 stages to the neural noise process constituting the channel. The corresponding brain regions are marked

in the brain above the diagram. The units drawn with solid lines are modeled by algorithmic operations. Filled areas represent brain regions on the surface, while

shaded areas represent those embedded inside the brain. LGN, lateral geniculate nucleus; V1, primary visual cortex; IT, inferior temporal cortex; LIP, lateral

intraparietal area; FEF, frontal eye fields; HPC, hippocampus; AM, amygdala.

• Attentional Gating: The degree and implications of
attention allocated to recognizing an object. The
dynamics of the allocated attention will govern how
the brain parses object features and what is retained
following recognition.

• Dynamic Recurrence: The consideration of feedback as a
necessary complement to the feedforward processing. The
recurrence should be dynamic and involve interaction between
multiple brain areas.

The first two attributes have been discussed in works such as

Serre and Riesenhuber (2004), whereas robustness has been

considered in a multitude of studies (e.g., Cadieu et al.,
2007). The processing speed was elegantly discussed in Thorpe
and Van Rullen (2001), while attentional modulation during
object recognition has also been extensively investigated in the
literature. The processing speed and attentional gating attributes
will have analogues in CTOR. Dynamic recurrence in the VVS
during object recognition has been experimentally instantiated
by works such as Wyatte et al. (2012), O’Reilly et al. (2013),
and Poggio and Kreiman (2013). It seems natural for the brain
to take advantage of feedback pathways to coordinate between
top-down and bottom-up signals during more challenging
recognition tasks such as object completion or identification
in the presence of clutter. In fact, studies on neural circuit

specialization and connectivity have discussed areas V1 and V2
receiving connections from IT and parahippocampal regions
(Rockland, 1997). Consideration of the above attributes presents
an avenue to discuss how CTOR is a bio-inspired model for
object recognition at the VVS. Primate circuits such as the
cerebral cortex, hippocampus, and amygdala are associated
with advanced cognitive functions and have been shown to
contain pyramidal neurons whose architecture seem to be
specialized for the posited task of such neural circuits (Jacobs
and Scheibel, 2002; Elston, 2003). Interestingly, substantial
differences are noted in the number of spines on the basal
dendritic fields of neurons in V1, V2, and IT with the quantity
and density multiplicatively increasing when progressing from
V1 to IT. This is believed to lead to the increased capability
of pyramidal neurons in the latter stages of information
processing such as the IT and PFC to integrate a broader
range of synaptic inputs than neurons at the lower cortical
areas such as V1 and V2 (Elston et al., 1999). Thus, the
anatomy and connectivity of the cortical circuitry are crucial
in determining any prospective computation (Elston, 2003;
Spruston, 2008; Luebke, 2017). The intriguing discussion of
Biederman (1987) brought forth the recognition-by-components
(RBC) view of vision where it was suggested that the brain
parses viewed objects into parts. Partial matches among the
segments are then possible, and the proportion of the similarity
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in the components between the viewed object and a stored
representation is used to assess the fidelity of the match. Elements
of CTOR have been motivated by the valuable discussion in
(Biederman, 1987) and the presented model aims to further
concretize RBC.

3. MODELING OBJECT RECOGNITION AS
DYNAMIC INFERENCE

It is reputed that a study of how the neural populations of the
visual system process scenes so that the brain is capable of object
recognition leads to an overcomplete problem. In a nominal
example an information-rich scene is presented to a subject
with an object of interest embedded in the scene. Regardless
of the object’s salience, the subject has been provided with a
plethora of visual information for the prospective task. The
hierarchical and non-linear nature of the layers that govern
the computations among simple and cortical complex cells
implicate the difficulty of formulating optimization functions
that the visual system may be attempting to minimize/maximize
during such a nominal task. It has also been argued that the
difficulty in attempting to mimic functions of the visual cortex
is further complicated by its columnar organization and the
heterogeneity among the columns Roe (2019). In light of this,
works such as Serre et al. (2007) have motivated the approach
of studying each layer in the system separately. We believe that a
graceful unison should exist between the two disparate avenues
of viewing the system as a whole and dividing it into disjoint
units. Figure 1 depicts the architecture that will be motivated
as a sensible hypothesis for high-level computational processing
occurring in the VVS during object recognition. The conjecture
is unique since it is biologically inspired to reflect the VVS’s
operation while concomitantly being an ideology borrowed
from communication theory. From a communication-theoretic
perspective, the seminal work of Shannon (1948) has led to
countless developments in the design of structured redundancy
applied to information that is conveyed over a noisy channel to
a receiver with processing capability. The transmission of such
structured redundancy is often perturbed in a stochastic manner
by a channel prior to it being decoded, or more appropriately for
this presentation, “untangled” by the destination. The necessary
background on the encoder-channel-decoder structure within
a communication-theoretic setting has been provided in Fano
(1963) as well as classical texts such as Wozencraft and Jacobs
(1965).

It is evident that psychological processes such as attention and
memory are prerequisites for visual perception. There is a wealth
of literature on the computational capacity of cortical circuitry
and the quantitative differences among the population of neurons
associated with vision—see Elston, 2002; Jacobs and Scheibel,
2002; Spruston, 2008; Elston and Fujita, 2014; Luebke, 2017 for
reviews. The work of Mishkin has provided clear evidence for
the inclusion of the hippocampus and amygdala in the so-called
recognition memory circuitry. In fact, Mishkin (1982) concludes
that a model of object recognition would be incomplete
without considering recognition memory and the corresponding

feedback and feedforward projections to the hippocampus
and amygdala. Furthermore, the pyramidal neurons present in
the visual cortex are also seen in the hippocampus and the
amygdala (Feldman, 1984; DeFelipe and Farinas, 1992). The
notion of re-integration is also advocated by Mishkin; lending
credence to the presence of concatenated operations such as
the decoder in Figure 1 being followed by an interleaving
operation. The hierarchical nature of the visual system consists
of bi-directional information flow between the various levels
(Van Essen and Gallant, 1994). Studies such as O’Reilly et al.
(2013) and Lamme and Roelfsema (2000) have advocated
the interaction of feedforward and feedback processing in
delineating between the quick and detailed categorization of
an object. The architecture of Figure 2 considers feedforward
connections as well as feedback projections that are guided by
memory and the neural circuitry associated with attention. It
is noteworthy that neuroanatomical evidence for cell structure
influencing function in the visual system is provided in
studies such as Elston et al. (2005) and Jacobs et al. (2001),
and there are abundant discussions on the specialization of
feedforward and feedback connections along the VVS (Rockland,
1997).

The CTOR formulation is fundamentally different from prior
computational vision works such as Salinas and Abbott (1997) by
considering the operation of the IT neural circuitry along with
the functionality posited to be performed by the lower layers of
the visual system. The notion that visual objects are represented
by patterns of activity across populations of neurons has been
advocated in discussions such as Zhang et al. (2011) and Lee
and Mumford (2003). In accordance, the processing considered
in CTOR can incorporate the representation of the neural
activity via vectors that have dimensionality corresponding to
the considered neural population. The encoding and decoding
operations hypothesize that the neural activity has structure
and is affected by the external environment and a subject’s
memory. Attention is suggested as having an impact on all
operations of CTOR including the encoder, channel, decoder,
interleaver, compression, and memory (Figure 1). The work of
Lee and Mumford (2003) presented Bayesian inference as part
of a graphical model for the viewing of an object by the early
visual cortex. Their analysismakesmention of neural populations
from the IT and V4, but is primarily focused on V1 and V2.
The CTOR formulation will focus on the higher visual regions
by presentingmaximum a posteriori probability (MAP) inference
within the context of the IT’s role in object recognition. We shall
use a binary alphabet to present the signals at the various stages
of CTOR, however, the components should not be automatically
associated with spikes. It is logical to inquire if the elements of
the encoded and decoded CTOR signals are outputs of individual
neurons, the result of a principal component analysis applied
to output of populations of neurons, or perhaps the binary-
thresholded outputs of neural circuits. The dimensionality of
the signals in Figure 1 can be specified to encompass all of the
aforementioned scenarios. While such level of abstraction may
be deemed unnecessary, it is productive for a new model to allow
flexibility so that it can be fit to various data sets. As advocated
in works such as DiCarlo and Cox (2007), CTOR encourages a
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FIGURE 2 | The interaction of the input, encoder, channel, decoder, and interleaver in the CTOR model. The top row depicts the brain regions implicated for the

encoding, decoding, and interleaving operations. The middle row provides an illustration of CTOR operations with the viewed object being a brown bear. The bottom

row illustrates the progression of the dimensions of the neural signals that are subject to the CTOR operations.

shift in emphasis from single-unit spiking activity in favor of the
processing performed by neural circuits.

3.1. Model Input
A seemingly fundamental facet of a model is the input. Object
i will be denoted by a binary representation bi that encompasses
the object’s attributes. The stimulus index i = 1, 2, 3, . . .will serve
as the identity of the viewed object and the representation that
the object should evoke at the IT for correct recognition. The
representation b will be tangled by the retina, LGN, and V1 prior
to being untangled by the IT. In a nominal object recognition trial
the stimulus representation of a viewed object such as a brown
bear (Figure 2) will be faithfully recovered by the IT and then
compressed prior to being stored in memory. The tangling of the
object identity prior to its progression along the VVS has been
elegantly discussed in DiCarlo and Cox (2007) via the notion of
an intertwining of object manifolds. CTOR provides a concrete
means of representing such a tangling, namely the mapping of b
to a codeword as will be discussed below.

3.2. Object Tangling via the Encoder
The early stages of the visual systemwill tangle the representation
b that the viewed stimulus should evoke at the IT. The CTOR
example illustrated in Figure 2 considers the encoder as being
stimulus-driven. A rate coding operation has been advocated
as taking place in various visual areas (Van Essen and Gallant,
1994). The viewed object manifolds conveyed to area V1 by the

retinal and LGN processing are nearly as tangled as the pixel
representation (DiCarlo et al., 2012). This is largely attributed
to the receptive fields in the aforementioned two populations
being functionally akin to point-wise spatial filters (Olshausen
and Field, 2005). Interestingly, as the retinal- and LGN-processed
signals are processed by V1, the total dimensionality of the
representation is increased approximately 30-fold (Stevens,
2001). However, the V1-processed signal is still considered highly
tangled since its response is significantly inferior to human
performance for real-world recognition problems (DiCarlo et al.,
2012). Such biological characteristics are motivation for CTOR
to postulate the encoder as being comprised of the retina, LGN,
and V1 circuitry. Since the object representation is tangled by the
encoder, it is debatable whether LGN—rather than V1—should
be considered as the last stage of the encoder. This judgment is
based on the V1 output still being highly tangled, and that the
dimensionality increase that occurs following V1’s processing of
the LGN output is a trademark of the encoding operation. An
example is shown in Figure 2 where the representation b of a
viewed object, i.e., a brown bear, is encoded into the stream s as
the tangled version of the representation which should be evoked
at the IT when viewing this object. Two parameters are crucial
to the discussion. Assuming a binary alphabet, the integer M
will denote the number of input bits processed by the encoding
stage at a time. The integer K will denote the number of M-bit
units allocated for representing the viewed object. Thus, the IT
representation of a viewed object will consist of KM bits, and the
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IT may have 2KM distinct representations for a temporal window
of duration K. The CTOR model considers a continuous stream
of input bits being processed by the VVS. The continuous stream
of information has been segmented into KM bits at different
object boundaries. In effect, a larger K will correspond to an
increase in the complexity of the viewed object.

Anatomically, the output of the encoder circuitry will be a
length KN codeword s that comprises the neuronal response that
the IT must decode (Figure 2). Although exceptionally large, we
shall consider the number of possible representations as being
finite. From a communication-theoretic perspective, encoding
is an operation where a M-component input is mapped to a
message consisting of N ≥ M components. From a reliability
perspective it is advantageous to haveN≫M because it behooves
the decoder to have access to as many information-bearing
signals as possible in its decision of which message to declare
as the untangled representation. The ratio M/N ≤ 1 is dubbed
the code rate and the N = M scenario is the somewhat
anomalous case referred to as rateless coding because it provides
no redundancy. An important parameter stems from the non-
restrictive assumption that the encoder generates the codewords
via a shift-register structure (Lin and Costello, 1983). The
maximal memory order of the shift register will be designated
by L. For ease in presentation, we shall assume a simple shift-
register structure where the total memory is equal to the maximal
memory (L). In communication theory, this quantity is referred
to as the encoder constraint length and the same name will
be used henceforth. It shall be assumed that only one bit is
fed into the encoder at each time instant (i.e., M = 1)—this
is also a non-restrictive assumption that is made for ease of
presentation. At each time instant there will be 2L possible states
{S0, S1, . . . , S2L−1}, that the encoder can take, and we shall denote
the encoder state at time k by Sk,i : i = 0, 1, . . . , 2L − 1. The time
index k = 1, 2, 3, . . . will be suppressed unless when necessary.
When in state Sk,i an encoder can produce only one of two
possible codewords at time k+1. Similarly, a generated codeword
could have only been preceded by two possible codewords at
time k − 1. The length-N codeword s1, s2, . . . , sN at time k will
be denoted by the vector sk. The N components of the output
codeword sk will be dependent on bi

k
as well as the L prior

inputs to the encoder: bi
k−1

, bi
k−2

, . . . , bi
k−L

. The codewords
s1, s2, . . . , sK for duration K are concatenated as the encoder
output vector s (Figure 2). In evaluating the CTOR operation and
performance in the ensuing sections we shall consider bi

k
as being

comprised of a small number of bits of synthetic data. The use
of such synthetic data is a logical first step for introducing and
motivating the model. In subsequent works an image stimuli can
be considered by devising the sequences bi

k−1
, bi

k−2
, . . . , bi

k−L
to be binary representations of the pixels in the object that is
viewed by a subject. Expanding CTOR functionality to operate on
input consisting of pixel intensities is a future consideration. As a
summary, the biological implication of the encoder is relatively
simple - a viewed object should elicit a representation at the
IT; the representation is tangled via the encoding operation
performed by the lower layers of the visual system. Assuming a
binary alphabet, the neural signal corresponding to the encoded
object will be represented by KN bits.

It is believed that the spiking of visual neurons is greater
when attention is allocated to a stimulus than when attention
has not been allocated to the same stimulus. The spiking rate of
the retinal and V1 populations of neurons will be represented via
the relation

si(t) = Gi(t)si,rest(t) for i = 1, 2, . . . N. (1)

The above reflects attention, modeled by a positive and time-
varying quantity Gi(t) that has a multiplicative effect on the
firing rate of the neurons. The process si,rest(t) denotes the
unmodulated firing rate of the ith V1 neuron. Works such as
McAdams and Maunsell (1999) and Salinas and Abbott (1997)
have provided evidence for Gi(t) being a Gaussian function with
parameters dependent on the attended location and the preferred
attentional locus of the ith neuron. A codeword of length N
denoted by a stream s1, s2, . . . , sN will designate the activity of
the V1 population of neurons, with the ith codeword component
being “1” if the ith neuron has fired more than αi > 0 times
during an interval (e.g., 50 ms as noted in DiCarlo et al., 2012),
and “0” otherwise. In other words, it is conceivable to consider
an assignment

si =

{
1 if

∫ T
0 si(t)dt > αi

0 otherwise
(2)

as the rate coding rule for each of the N units over a time epoch
of T seconds. More elaborate scenarios can be concocted where
sub-populations of the lower-visual level neurons each form
codewords that are multiplexed to form a larger codeword that is
signaled to the IT. The CTOR model will specify the codeword
s1, s2, . . . , sN constructed by an encoder with a state-machine
structure such as that shown in Figure 3A. The state diagram in
Figure 3B illustrates the input-output dynamics of this encoder,
where it is evident from Figure 3A that the encoder output will
depend on the prior inputs to the encoder. Biologically, this
implies that the output of the retina, LGN, and V1 stage is
not a memoryless sequence, but rather follows a pattern that is
modulated by various processes.

3.3. The Channel
Visual recognition is affected by dynamic perturbations that can
have impeding effects such as obfuscating the object identity,
delaying the recognition, and possibly leading to an erroneous
identification of the object or its characteristics. The hindrances
might stem from the properties of the viewed object (e.g., the
novelty, or the object being obscured in the scene), or a subject’s
attentional state. Since neurons are inherently noisy, it is also
possible for the encoder to be imperfect during its encoding of
the stimulus. The CTOR model will subsume such impediments
within a channel that separates the encoding and decoding
operations (Figure 2). The output of the channel will be denoted
by the vector r and shall constitute the input to the IT. For
clarity in presentation, and in cadence with the communication
and information theory literature, we separate the encoder and
channel in Figure 2 despite the fact that they are compound
entities within a VVS. Although the channel separates the early
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FIGURE 3 | The structure and state diagram of a simple encoder. (A) The

so-called simple-encoder considered as performing the tangling operation at

the retina and LGN in Figure 1. The “D” elements denote a unit delay inherent

in the encoder’s processing. The above is a definite simplification of encoding

performed by the neural circuitry, but will serve to illustrate an instance of

CTOR’s encoding operation when the early visual stages are presented with an

object. (B) A state diagram representation depicting the dynamics of the

encoder in (A). The grouping 100, 1 above the state transition S1 → S2

indicates that when the neural circuits representing the retinal and V1 stages

(i.e., the encoder) are in a state of S1, a stimulus value of 1 would result in a

transition to state S2 as well as the encoder output of 100. The contents of the

“D” elements in (A) representing the corresponding state are given between

parentheses in (B).

visual stages from the IT, the early stages’ operations will resonate
in shaping the stochastic perturbations that are modeled via
the channel.

The instantiation of a channel plays a role in studying
the robustness attribute that we have discussed for object
recognition. A channel provides a source of dispersion (Figure 2)
by distorting the codeword and will be represented via a
conditional distribution P[r|s] where r is a perturbed version
of the signal and s is the encoder output. The channel may
perturb the encoder output in either a continuous or discrete (i.e.,
quantized) fashion, accordingly, P[r|s] will be represented either
by a probability density function (pdf) or a probability mass
function (pmf), respectively. The simplest linear, continuous
channel consists of a noise process n being added to the encoder
output via

r = s+ n. (3)

A prevalent channel quality metric (CQM) for a continuous
channel is the SNR. For (3) the SNR of neural signals conveyed to
the IT will be expressed as

SNRi =
max(si)−min(si)

E[n2i ]
=

1

E[n2i ]
for i = 1, 2, . . . ,N (4)

with the denominator representing the neuronal noise power.
The SNR of single neurons has been considered in numerous
studies. In the spirit of works such as Mar et al. (1999), we
consider an aggregate, population-wide CQM for the collective
effect of the units comprising the retina, LGN, V1, V2, and V4.
An insightful CQM for a discrete channel will quantify the
uncertainty in the probabilistic mapping of the channel inputs
to the channel outputs. The conditional entropy

H(ri|si = n) = −

|r|∑

m=1

P[ri = m|si = n] log (P[ri = m|si = n])

(5)

for n = 0, 1 and i = 1, 2, . . . ,N

is viewed as the equivocation between a discrete channel’s input
and output, with |r| denoting the cardinality of the set of possible
channel outputs. From a biological perspective it is sensible to
assume that over a short time-scale associated with a task, a
continuous channel will maintain a probability distribution, but
the parameters that characterize the distribution (e.g., mean and
variance) will vary. Similarly, for a discrete channel it would be
expected that during the viewing of an object the components
of P[r|s] change but the values {H(ri|si)} do not drastically vary.
Over longer time-scales that span the viewing of different scenes
it is expected that the channel’s distribution will vary due to
different stimuli and changes in attention.

3.4. The Decoder
There is evidence that in the visual cortex, neurons such
as pyramidal cells become increasingly large, more branched,
and more spinous as one progresses along the VVS (Elston,
2002). From the perspective of information transmission, the
identity of a viewed object propagates along the VVS until
reaching the IT. Works such as Karklin and Lewicki (2009) have
suggested that sensory signals from early visual areas convey
information that allows the higher visual areas to construct more
complex representations of the sensory input. With CTOR, it
is the objective of the decoder to determine the object identity
and classify its characteristics. In effect, the decoded message
will represent the object that the IT has identified from the
representation propagated to the IT by the lower visual stages.
After K time instances the sequence of vectors r1, r2, . . . , rK
will be available to the decoder with rk representing a length-
N perturbed codeword that is to be untangled into a length-
M message. Accordingly, the decoder will continuously process
the channel output at every time instant, with its output
being a length-KM binary vector denoted by b̂. The selectivity
attribute discussed in section 2 is accounted for by the fact that
the objective of decoding is discriminating between different
patterns. A good decoder operating over a channel that is not
inordinately dispersive will be capable of discriminating among
various object representations with high likelihood. In effect, at
each discrete time instant the decoder transforms a N-length
sequence that may take on a number of possibilities to a M-
length binary sequence. A decoding operation is conceived
by considering various metrics, for example, a MAP decoder
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would select b̂ = bi for the bi that maximizes the probability
P[bi|r] where i ∈ {1, 2, . . . , 2KM}. Dynamic programming is
often used to solve large-scale inference problems when it is
desired to recover a sequence that has the highest possibility
of having occurred. The Viterbi algorithm provides the most
probable sequence of states when the environment is described
by a hidden Markov model (HMM) (Eddy, 2004) with the
similarities between the principle and dynamic programming
discussed in the seminal work of Forney (1973). A description
of the Viterbi algorithm is provided in Appendix A and the
terminology there will be incorporated henceforth. The CTOR
proposal for the VVS proficiency at object recognition lies in
the IT implementing the untangling notion via a MAP decoding
algorithm in order to infer the object identity and attributes. The
untangling notion can be equated to seeking the most likely path
in a state transition diagram with 2L states at time k. The length
of prospective transitions between two states bk+1 and bk at time
k is quantified via

λ(bk+1, bk) = − ln(P[bk+1|bk])− ln(P[rk|bk+1, bk]) (6)

where P[bk+1|bk] is the a priori probability of state bk+1

given the observance of state bk, and the transition probability
P[rk|bk+1, bk] denotes the probability between a given pair
of successive states and the sequence rk. The process is
illustrated in the decoder portion of the example in Figure 2

with the IT performing dynamic sequence estimation of the
tangled representation.

An appeasing feature of the CTOR proposal is that the
invariance, robustness, and selectivity attributes discussed in
section 2 may be considered in unison. This is because when
decoding r the MAP sequence estimation technique attempts to
recover the correct message, or one that is as “close” as possible
to the correct message despite disparity in certain attributes.
The disparity is noted by the bit streams disagreeing at various
positions, and the degree of closeness is quantified by the
Hamming distance between the sequence decoded by the IT and
the representation that the viewed object should have evoked at
the IT. We define the deviation by

d(̂b, bi) , ||̂b⊕ bi||0 (7)

where ⊕ denotes the component-wise XOR operation and ||x||0
denotes the number of non-zero elements in the vector x.
Invariance has been considered since correct decoding and object
recognition are possible despite transformations induced to the
sequence bi (via the channel) prior to its entering the decoder.
Works such as (Usher and Niebur, 1996) have advocated the IT
exhibiting a larger overlap in its representations of similar objects
than in its representation of dissimilar objects. The overlap of the
similar objects is conveniently modeled in CTOR by such objects
having decoded sequences that are relatively close in Hamming
distance. Conversely, the decoding of dissimilar objects will result
in sequences that have a larger discrepancy in Hamming distance.
For instance, the representation of an object such as b1 =brown
bear is expected to be closer in Hamming distance to b2 =baby

elephant than to b3 =green hat. Inspection of a simple, synthetic
example such as

brown bear : b1 = 110010111001001

baby elephant : b2 = 110010111001100

green hat : b3 = 101100101100101 (8)

indicates that d(b1, b2) < d(b1, b3), and d(b1, b2) < d(b2, b3).
In other words, the first two decoded sequences are closer to
each other than either sequence is to the third. We note that
the decoding accuracy is dependent not only on the decoder,
but also the encoder and the channel properties. For instance,
the robustness attribute can not be realized by the encoder and
decoder alone because a channel with a very poor CQM would
perturb the encoded representation to a degree that the decoder
would be incapable of correctly untangling the object’s identity.

Visual processing works such as Reynolds and Chelazzi (2004)
and Usher and Niebur (1996) have discussed the so-called
competition among the neural representation of objects along
the VVS. The competition occurs between a target object and
distractors that are concomitantly present during the viewing.
We posit that there is also competition among the objects stored
in memory that are vying to be declared the viewed object. Such
competition is incorporated in CTOR as the closeness among
the decoded codewords. For example, in (8) there will be more
competition among the representations b1 and b2 than among
b2 and b3. Figure 4 depicts this notion with the closest messages
competing within a decision space to be the representation
associated with the viewed object. Models such as Usher and
Niebur (1996) consider a suppression of the neural activity for
a competing stimuli following a decision as to which object
is present. With CTOR, the suppression of competitive stimuli
occurs by the decoding operation discarding all prospective
messages except for the selected b̂. A comparative mechanism
is inherent during the decoding operation since the codeword
that is closest to the represented formulation is selected by the
decoder as the decoded message. It was reported in Rust and
DiCarlo (2010) that performance on visual discrimination tasks
depend considerably on the number of neurons included in the
analysis and the number of images included in the stimulus set.
The decoding framework incorporates analogues for these two
dimensions via the codeword length N, and the cardinality of the
set of possible representations (i.e., |{bi}| = 2KM), respectively.

3.5. The Interleaver
As the IT processes the representation from V4, the neural
response is reformatted to be more selective for feature
conjunctions (Rust and DiCarlo, 2010). In CTOR such
processing is modeled via an interleaving operation. Interleavers
are discussed in communication theoretic works such as Ramsey
(1970), and have found application in computer science as well
(Andrews et al., 1997). The biological motivation behind the
interleaver lies in the necessity for the information output by the
decoder to be parsed into a set representing the attributes and also
the importance of the attributes for recognition. The interleaver
shall arrange the decoder output into a sequence where the
ordering has neurological significance for the efferent circuitry
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FIGURE 4 | An example of the decision regions at the IT’s decoder at a

specific time instant. Suppose KM = 15 with 2KM = 32, 768 possible

representations that the decoder can declare as having been the viewed

object. The circle denotes the possible space of received r sequences with

r ∈ R
KN. The red dots denote the representation of such objects in a decision

space. The closed region that surrounds a dot represents the region where the

VVS would declare b̂ = bi if r were to lie in that region. The sequences b1, b2,

and b3 are three prototypical objects.

(Brady et al., 2009; Nassar et al., 2018). Since there is a need
for considering the notion of feature grouping within the visual
system (Olshausen, 2013), the interleaving operation in CTOR is
a functional equivalent to the IT deciding the order of importance
given to the features by consciousness and attention. In the
example of the viewed object being a brown bear, the identity,
size, color, and shape are ranked according to their importance.
More important features such as identity appear before the less
important features such as color (Figure 2). Figure 5 provides an
example of the interleaving with the decoded message b̂ being
partitioned into smaller groups that correspond to the object’s
features. The ordering of the bits that comprise the interleaver
output via the vector b̃ signify the order-of-importance of the
features. This parsing and segmentation into components has
been motivated by Biederman (1987). In Figure 5, the KM bits
in the decoded message have been partitioned into F features
with the variables M1,M2, . . . ,MF denoting the number of bits
attributed to each feature. There is an obvious constraint that∑F

i=1Mi = KM. The F features that we allude to correspond
to the stimulus dimensions introduced by the feature-integration
theory of attention (Treisman and Gelade, 1980) that has been
further elaborated upon in works such as Van Essen and Gallant
(1994). Since the plasticity of the IT is responsible for refining the
basic vocabulary of features (Serre et al., 2007; Rust and DiCarlo,
2010) it is expected that the interleaver is vastly distinct among
different brains. It is also logical to posit that the interleaving
operation is a highly dynamic process within a subject. With
respect to neurophysiology, works such as Poggio and Kreiman
(2013) and Meyers et al. (2008) have discussed the prefrontal
cortex (PFC) guiding the IT (via a top-down signal) in the
activation of subgroups of neurons to specific object features.
It has been shown that PFC neurons also exhibit an increase in
dendritic and spine complexity that is seen in the latter stages of
visual cortical processing (Jacobs et al., 2001; Jacobs and Scheibel,
2002; Elston et al., 2011), and that the complexity is amenable to
the progressive increase in sophistication of the computational
operations. This was a motivation for the PFC-IT interaction
considered in Figure 1 as the mechanism driving the interleaving

operation. The interleaving operation constitutes a computation
that is performed by populations of neurons acting collectively.
Thus, the M-to-M component mapping of b̂ → b̃ entails the
coordinated firing among a population of neurons rather than the
autonomous firing of neurons that may occur in populations at
the lower visual layers. The output of the interleaver is comprised
of F clusters with each cluster distinguishing a feature of the
viewed object. In effect, the sequence b̃ is the information that the
VVS has extracted (i.e., untangled) from the scene during object
recognition via the decoding and interleaving operations.

3.6. Declaration of the Object Category
Despite the advancements in the study of primate vision, it
has not been ascertained at what specific juncture in the VVS
a viewed object can be said to have been recognized. The
authors in (Neri and Heeger, 2002) advocate the presence of
two stages in the VVS with the first performing object detection
∼ 100ms prior to the second stage performing identification
of the object’s features. Figure 6 is a more detailed depiction of
the operations associated with declaring the object category that
was alluded to in Figure 1. In Figure 6, a classifier deciphers the
object category by processing the decoded output. The CTOR
model considers the progression of the decoder output into a
classifier and an interleaver. Such parallel processing reflects
the VVS’s capability to classify the object category concomitant
to discerning its features. A computationally simple model for
object categorization is the inner product of the decoder output
with a weight vector w via

f (̂b) = wT b̂. (9)

This is essentially the linear classifier readout advocated in
(Rust and DiCarlo, 2010) although it is expected that the
dimensionality dim(w) = dim(̂b) = KM for CTOR will be
significantly larger than what has been previously considered.
It is important to note that the output of f (·) is not sensitive
to the order of the elements in the column vector b̂ since w

can be adjusted accordingly. Works such as Rust and DiCarlo
(2010) and Pagan et al. (2013) have determined a realization
of the vector w for every presented image in a set. While the
selection of a classification technique for determining w is not
the objective of this work, we remark on a crucial point. The
assignment wT = [1, 1, . . . , 1] would lead to the discernment of
the object identity being solely a function of the Hamming weight
of the decoded message. The above consideration for f (·) also
instantiates CTOR as exhibiting the invariance attribute since
the components in b̂ can be re-arranged without a change in
a declaration of the identified object’s category. The distinction
between an object’s category and identity should be apparent. In
the presented example, “brown bear” is the identity of the input
object while “bear” is a declared category.

4. THE NECESSITY OF ATTENTION,
COMPRESSION, AND MEMORY

Seminal works such as Biederman (1987) and Treisman
and Gelade (1980) have motivated the importance of
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FIGURE 5 | Depiction of the signal structure as it evolves along the VVS model presented in Figure 1. The KN-component vector r with ri ∈ R has been decoded into

a message b̂ with KM components, where b̂i ∈ {0, 1} and N≫M. At the output of the interleaver the KM components are partitioned into a message b̃ with F

features—or feature dimensions as denoted in works such as Kanwisher and Wojciulik (2000)—of variable bit lengths. In the above example, F = 4 feature groupings

are presented.

considering memory, attention, and object recognition within
a unified model. The patent biological interplay between the
aforementioned processes leads one to believe that an incomplete
analysis would result by not considering such processes as
interacting either via feedforward or feedback connections. The
authors of Usher and Niebur (1996) have also advocated the
concurrent consideration of attention and memory with the
neural activity associated with the early visual stages. The model
presented in the aforementioned work considers the necessity
of a top-down feedback projection when a subject is searching
for an expected target in a scene. This section will discuss how
CTOR accounts for the interaction of attention and memory to
provide a unified model for object recognition.

4.1. Attention as a Top-Down Modulatory
Signal
The incorporation of attention as the modulator of the neural
processes associated with object recognition is crucial. A review
of the neural circuitry in the visual cortex that is actively
modulated by attentional feedback has been presented in
Reynolds and Chelazzi (2004). From analysis in monkeys it is

natural to suggest that the attentionmodule in Figures 1, 6would
contain the lateral intraparietal area (LIP) and frontal eye fields
(FEF). CTOR posits attention as modulating components such as
the encoder, channel, decoder, and compression via a top-down
regulatory mechanism (Figure 6). Attention affects the encoder
via the multiplicative factors {Gi(t)} in (1) that drive the spiking
rates of the retinal and V1 neurons. This reflects a role associated
with the projection from the attentional circuitry to the encoder.
A subject’s attentional state will also influence the channel by
affecting the conditional distribution P[r|s]. In the case of a
continuous channel the effect may be seen on the SNR values
{SNRi} which are a function of a subject’s vigilance as well as the
inherent neural noise along the VVS. It is sensible to assume that
the SNR values increase with greater levels of attention. In the
case of a discrete channel a similar modulation is expected with
the conditional entropy values being affected by attention. The
decoder is immanently influenced by a subject’s attentional state
through the vector r that the decoder must process during each
epoch. This is seen by noticing that the transition metrics, path
metrics, and survivor paths computed at the decoder en-route
to declaring a message b̂ are determined by the channel and the
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FIGURE 6 | The interaction of attention and the declaration of object category. The top row depicts PFC, LIP, and FEF regions as they govern attention which is

affected by the declared object category. The middle and bottom row provide an example of the CTOR operations and the dimensionality of the associated signals

during the declaration of a viewed object’s category. The scrolls denote different categories that viewed objects may be classified into prior to affecting attention.

Attending to a categorized object is believed to modulate the firing rates of V1 neurons as discussed in Equation (1) and depicted via the projection (a) of Figure 1.

encoder. We have mentioned that with CTOR the number of bits
attributed to each feature by the interleaver is a dynamic process
modulated by attention. Works such as Cukura et al. (2013) and
Huth et al. (2012) provide experiments that illustrate attention
driving the degree of compression applied to what constitutes the
F interleaved features in CTOR.

Attention also modulates the goals of object recognition.
Consider the general scenario of a subject knowing that he/she
must espy a scene before making a critical decision on an object
in the scene. A nominal example of this is a driver checking
a blind-spot immediately before changing lanes on a highway.
The brain will have a snapshot view of the scene and, due
to the heightened level of attention necessary for this task,
perform object recognition much more quickly than during
typical visual tasks. In such a pedestrian example the IT’s decoder
would recognize a car but the brain would allocate significantly

more importance to the location and proximity of the car
than its color or luminance. Brain imaging neuropsychological
studies conducted in works such as Kanwisher and Wojciulik
(2000) and Turk-Browne et al. (2013) have explored attentional
modulation of visual encoding, memory formation, and the
brain’s capability to prioritize the sensory information that is
most relevant for a task. It is necessary that a computational
vision model also incorporate such notions. The CTOR model
currently considers attentional selection by the increased firing
of V1 neurons, while not accounting for the more sophisticated
scenario of overlapping objects as described in works such
as Baldauf and Desimone (2014). The incorporation of the
biological functions associated with the capability of the VVS
to separate attended and unattended objects is an avenue for
the advancement of CTOR as its constituent portions are
expanded upon. For instance, it can not be claimed that the entire
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VVS would consist of a single realization of Figure 1. Rather,
it is more likely that there would be multitudes of such an
architecture acting in parallel prior to a convergence. In Kersten
et al. (2004), the parallel implementation of Bayesian models
is mentioned and the authors advocate decomposing a scene
or concurrently viewed objects into m features. Figures 1, 2,
which have been a thrust of this work, will need to be cascaded
into parallel streams to form a more comprehensive scheme
that accounts for the case of overlapping objects competing
for attention.

4.2. A Compressed Representation of
Recognized Objects
It is infeasible to conceive that the brain will commit every
feature of each identified object to memory. The CTOR model
allows for the incorporation of a compressive operation to
proceed the interleaving process. The degree of compression
will be a dynamic process modulated by attention and will
shorten the representation of each object based on its most
important features. This may be achieved by prioritizing the
features that have been highly ranked by the interleaver while
summarizing or even discarding the less-important features of
a viewed object. Figure 7 depicts compression taking place in
the hippocampus and amygdala where all objects’ features such
as identity, size, and color are subject to compression prior to
being committed to memory. In CTOR, this process is achieved
by combining multiple occurrences of similar objects into a
single representation in memory as a sequence b̃c. The memory
circuitry is also driven by attention and will be presumed to
have a fundamental role of providing the IT with the top-
down a priori probabilities necessary for the IT to perform
inference. The hippocampus’s storage and rapid consolidation
of object representations has been considered for decades with
works such as O’Reilly andMcClelland (1994) suggesting that the
hippocampus is constructed to perform such a function. From a
reverse engineering perspective, it is highly efficient that an object
viewed at the highest frequency be allocated the smallest number
of bits in memory. Different from the compression technique in
CTOR, this alternative strategy would minimize storage and be
akin to compression in the sense of Huffman coding or more
recent proposals that suggest the hippocampus is performing
even more sophisticated compression techniques (Petrantonakis
and Poirazi, 2014).

4.3. The Consideration of Memory
For an object to be accurately recognized, a representation of
the object must have been previously compressed and stored
at an acceptable fidelity. There has been substantial evidence
that memory-associated brain regions such as the hippocampus
and amygdala are crucial for the neural processing underlying
object recognition. Classical studies have referred to the area
TE as containing “neural traces” associated with previously
viewed stimuli (Mishkin et al., 1983). Such traces serve as stored
representations against which subsequently viewed stimuli are
compared. CTOR subsumes the comparisons into the decoding
operation performed at the IT. The formation and storage

of the traces are deemed as occurring at the hippocampus-
amygdala circuitry that Figure 7 portrays communicating with
the IT via feedforward and feedback connections. This is also
illustrated in Figure 1 as the feedback connection from memory
to decoder. The prevalence of the signaling from the memory
circuitry to the IT and the neural circuits governing attention
has also been justified in works such as Chelazzi et al. (1998)
where the authors considered feedback provided by memory as
a top-down signal for modulating the attention allocated to the
object’s attributes. The CTOR model considers two interactions
between the memory and decoding circuitry that will propagate
the transition probabilities {P[rk|bk+1, bk]} and the a-priori
probabilities {P[bk+1|bk]} between the two entities. Firstly, the
feedforward signal from the decoder that enters the hippocampus
reflects memory formation following the recognition of an
object and its associated features. Conversely, when a subject
is processing a scene and attempting to recognize an object
within the scene, the brain vests attention and draws upon
stored memories to perform the recognition. It is expected that
memory provides the a priori probabilities {P[bk+1|bk]} to the
decoder during decoding (Figure 7). Works such as Olshausen
(2013) have discussed the importance of feedback in the visual
system as a potential means of communicating, via a top-
down signal, the a priori probabilities that the brain uses when
performing inference in stimulus space. The feedback connection
considered by CTOR from memory is a means of enabling
the decoder portion of the IT to operate in Bayesian fashion
by providing the decoder with updated a priori probabilities.
Secondly, object recognition can not occur without the IT having
access to an itemized list of objects and attributes. We posit
that such a dictionary exists and is continuously updated via
the feedforward and feedback signaling discussed herein. The
components of the dictionary are compressed versions of the
previously viewed representations. The work of Mishkin has
provided analytical motivation and experimental results on the
notion of recognition memory. The interaction of the PFC
in guiding working memory and visual search has also been
considered in a model presented in Usher and Niebur (1996)
that was further advocated in Poggio and Kreiman (2013). For
a decoder at the IT to implement the Viterbi algorithm it must
have knowledge of the encoder and the channel statistics. We
can explain this as synaptic plasticity that occurs between neural
populations of various brain regions that share connection.
That is how an upstream population in IT could learn about
some properties of the V4 and V1 neurons that constitutes
the transition probabilities. In other words, the transition
probabilities {P[rk|bk+1, bk]} must be conveyed to the decoder
from the memory circuitry. The hippocampus and amygdala will
continuously update their account of the transition probabilities
by repeated interaction with the decoder in the IT. It is
conceivable that during a developmental or training phase—that
a subject may be agnostic to—the memory circuitry extensively
communicates with the IT in order to update its estimates
of the transition probabilities. Works such as Van Essen and
Gallant (1994) and Miyashita (1993) have also cited IT neuron
responses in primates as being markedly changed through
repeated exposure to a limited set of stimuli. Accordingly, with
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FIGURE 7 | The operation of compression, memory and feedback in CTOR. The top row illustrates the brain regions (HPC, AM) involved in the memory and the

compression operation while the middle row provides an illustrative example of the CTOR operations with brown bear being the viewed object. The bottom row

depicts the dimensions of the neural signals during the aforementioned operations. The a priori probability P[bk+1|bk ] that is fed back to IT is estimated as P[̃bck+1 |̃b
c
k ]

from the compressed sequence b̃c.

CTOR the IT-hippocampus interaction will be an iterative
process—if the decoded output is such that b̂ ≈ b, then the VVS
may maintain the transition probabilities as legitimate estimates
for ensuing epochs until b̂ deviates sufficiently from b (Kersten
et al., 2004). In statistical communication theory the above
procedure is referred to as the decoder learning the channel and
is implemented via means such as the Baum–Welch algorithm
(Hastie et al., 2009).

5. THE OPERATION OF CTOR

It is insightful to consider an example of CTOR operation that
commences with the tangling of the stimulus representation
and concludes with a decoding, interleaving, and commitment
to memory of the untangled object identity. We consider an
example where at each time instant the early visual stages
will tangle M = 1 bits of the object identity into a
N = 3 bit sequence. We also consider K = 4 and thus
the identity of the viewed objects will lie in a space with
a cardinality of 16. As part of this toy example, suppose
that the viewed object has the representation b = 1100

at the IT. Of course this constitutes a highly synthetic
stimulus signal with M, N, and K values small enough
for the analysis to be tractable while still elucidating the
computations advocated by CTOR. We caution that although
computational intractability is avoided in this example, it is by
no means reflective of the VVS avoiding such intractabilities—
obviously the VVS’s prospective implementation of the encoding
and decoding would encompass significantly larger K and
N values. The interleaving, categorization, and compression
operations will also be instantiated in the toy example of
this section.

5.1. Object Tangling and Manifestation of
the Channel
From a biologically-inspired perspective, an encoder of rate
1/3 signifies that every bit from the representation that the
viewed object should evoke at the IT has been tangled by
the retina, LGN, and V1 into three bits. We shall consider
the encoder in Figure 3A since it has already been discussed
in section 3.2. Communication theorists would describe this
encoder via a so-called algebraic generator sequence G(D) =
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[
1+ D, 1+ D2, 1+ D+ D2

]
and recognize that the encoder has

a maximal memory of L = 2 that allows the encoder to take 2L =

4 possible states at each time instant. The encoder in Figure 3A

has been extensively discussed in Lin and Costello (1983) and
will be dubbed “simple-encoder” for the remainder of the paper.
For clarity, the four states shall be referenced via {S0, S1, S2, S3}
as shown in the state diagram in Figure 3B. The number of
possible transitions in the encoder state diagram is 2N = 8. For
instance, S0 → S2 : 111, 1 and S0 → S0 : 000, 0 denote two of
the transitions. The N = 3 bits written above each transition is
the encoder output that is generated due to the combination of
that transition and the M = 1 bit input to the encoder (e.g., “1”
and “0” for the S0 → S2 and S0 → S0 transitions, respectively).
The encoding operation has structure that is modeled via a state-
machine - this reflects that the tangled signals converging at the
IT via afferent projections are not completely random patterns.
For instance, regardless of the nature of the viewed object, it is
obvious that the encoder in Figure 3 would prohibit an encoded
sequence of 111 to be followed by an encoded sequence of 001. It
can be verified that the considered sequence b = 1100 would
be encoded into s = 111 010 110 011 according to the state
diagram of simple-encoder.

During the encoding or tangling operation the neural
representation that a viewed object should evoke at the IT is
perturbed by a channel that encompasses the visual impairments
inherent to the scene as well as neural noise inherent to the
VVS. We model this via each element in s being stochastically
transformed into one of four values denoted by A, B, C, and D.
The four values reflect different intervals for the neural activity
produced by the circuitry that projects to the IT. Consider
the discrete memoryless channel quantified by the following
conditional probabilities:

P[ri = A|si = 0] = 0.4

P[ri = B|si = 0] = 0.3

P[ri = C|si = 0] = 0.2

P[ri = D|si = 0] = 0.1

P[ri = A|si = 1] = 0.1

P[ri = B|si = 1] = 0.2

P[ri = C|si = 1] = 0.3

P[ri = D|si = 1] = 0.4. (10)

The above is one of the channels considered in Lin and Costello
(1983) and it is used in this illustrative example for its relative
simplicity—it is easy to verify that H(ri|si = 0) = H(ri|si = 1) =
1.846 bits. The channel output is presumed to be the sequence

r = (DCA, DDB, DDA, DDD). (11)

The decoder considered in the following section will process the
sequence r via the Viterbi algorithm in order to attain a MAP
estimate of the viewed object’s representation. The accuracy of
the recovery process will quantify the fidelity at which the object
identity b has been untangled at the IT.

FIGURE 8 | An example from Lin and Costello (1983) to illustrate the

dynamics of Viterbi decoding. The path marked with “O” denotes the final

survivor path selected based on the smallest path length which corresponds

to the MAP estimate of the sequence that the encoder desired to convey to

the decoder. The transitions marked with “X” denote non-survivor transitions,

while the unlabeled transitions denote survivors that were not part of the final

survivor path.

5.2. Decoding Dynamics
Neural activity at the IT is believed to correspond to the
untangled identity of the object that has been communicated
to the IT (in tangled form) by the lower layers of the VVS.
Cortical computation presentations such as Rao and Ballard
(1999), Olshausen (2013), Lee and Mumford (2003), and Kersten
et al. (2004) have advocated a hierarchical Bayesian model
with top-down and bottom-up information flow. Such dynamics
are at the heart of proposed decoding operation for the IT.
The decoder uses bottom-up information from the encoder
in conjunction with top-down information from memory to
recover the object identity. The top-down information quantified
by the a priori probabilities {P[bk+1|bk]} will be assumed as
uniform (i.e., equally-probable) among the different competing
stimuli representations, and thus will not affect the transition
lengths in (6). The decoding procedure applied to the sequence in
(11) is shown via the trellis diagram of Figure 8with the decoder’s
initial condition given by b0 = S0. At time k = 1 the decoder
computes the transition lengths via (6) as

λ(b1 = S0, b0 = S0) = − ln(P[DCA|b1 = S0, b0 = S0])

= − ln(P[r1 = D|input = 0])

− ln(P[r1 = C|input = 0])

− ln(P[r1 = A|input = 0]) = 4.82

λ(b1 = S2, b0 = S0) = − ln(P[DCA|b1 = S2, b0 = S0])

= − ln(P[r1 = D|input = 1])

− ln(P[r1 = C|input = 1])

− ln(P[r1 = A|input = 1]) = 4.42.(12)

The two possible transitions above are considered by the Viterbi
algorithm because of the encoder’s state diagram in Figure 3B.
It should be noted that at k = 1 there are two rather than
2L = 4 survivors because the decoding has just commenced.
Subsequently, the decoder computes

Ŵ(b1 = S0, b0 = S0) = Ŵ(b0 = S0)+ λ(b1 = S0, b0 = S0) = 0+ 4.82

Ŵ(b1 = S2, b0 = S0) = Ŵ(b0 = S0)+ λ(b1 = S2, b0 = S0) = 0+ 4.42.

(13)
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This process is repeated for time k = 1, 2, ... K (see the steps
in Appendix B). At k = K the Viterbi algorithm proceeds
backwards in the trellis of Figure 8 to arrive at (b1 = S2, b0 =

S0), (b2 = S3, b1 = S2), (b3 = S1, b2 = S3), (b4 = S0, b3 = S1) as
the final survivor path because it has the smallest metric among
all of the candidates. The decoded sequence corresponding to this
survivor path is

ŝ = 111 010 110 011 (14)

which corresponds to the decoder’s estimate of the encoded
message being

b̂ = 1100. (15)

By decoding, the stream r in the above example into the sequence
b̂, the IT has untangled the object’s representation that was
propagated along the VVS. In the above example b̂ = b which
indicates perfect object recognition at the IT.

The assignment of uniform priors to the metric in (6) has
the biological ramification of the IT having no prior memory,
or synonymously, an unbiased account of what object to expect.
If the VVS were to have identified an object in the prior K =

4 discrete time instances, then it would be sensible for the IT
to have non-uniform priors with the first term in (6) biasing
the transition metrics toward a particular representation. In
organizing the CTOR model to emulate VVS operation, an
updating rule should be presented to adjust the priors based
on the object that was decoded in previous epochs, or is
expected during the current viewing interval. As discussed in
section 4.3, the a priori probabilities will be communicated from
memory to the decoder (via the feedback signal in Figure 1) to
be used in the ensuing decoding. Formulation of an updating
rule for the priors that are stored in memory is an important
future avenue because it would further substantiate the model’s
biological feasibility.

Properties such as poor visibility and a subject’s inattention are
factors that can adversely affect the decoding process by bringing
about a channel with a low CQM. This will affect the decoding
process in a conspicuous manner regardless of the decoder’s
proficiency. For instance, consider a case where (10) is replaced
with the following channel

P[ri = j|si = 0] = 0.25

P[ri = j|si = 1] = 0.25 for j = A,B,C,D (16)

that has a conditional entropy of H(ri|si = 0) = H(ri|si =

1) = 2 bits. Assuming uniform priors, it can be confirmed
from (6) that the above channel would yield transition metrics
of equal value at each time instant in the decoding process.
The consequence of this is that the IT will have no choice but
to arbitrarily select one of the possible 1/2KM sequences. The
preceding is an example of how recognition can be obscured by a
catastrophically bad channel. The properties associated with the
stimulus, environment, and neural circuitry that may bring about
such a channel are not immediately obvious, but this is a question
that warrants scrutiny. Following the decoding operation it is
possible that the IT is indecisive as to the stimulus identity. In

such a case the VVS may declare an erasure (Forney, 1968) as a
means of requiring additional time to decide upon the identity or
attributes of the viewed object. From a psychophysics perspective
it is expected that the erasure is reflected by a higher reaction
time and degraded processing speed for recognizing the object.
The dynamics and threshold associated with the declaration of
an erasure by the IT after decoding is an avenue for future
consideration. It is interesting to note that an erasure may not
be a complete waste of time and resources by the VVS since
information may be gained and used about the viewed object
at subsequent time epochs. This is expected of an adaptive
system that has been optimized through continuous training
and evolution.

5.3. Declaration of Object Category
In this example, we assume wT = [1, 1, 1, 1] which would result
in f (̂b) = wT b̂ = 2 via (9). This operation is perhaps too
elementary in this toy example because we except more than
four object categories to exist during the viewing of a stimulus.
It is more insightful to examine the scenario given by (8). The
assignment of w as a 15-dimensional vector of 1’s yields f (̂b) = 8
for the three decoded sequences of (8), and hence the three
stimuli would be categorized into the same category. There are
three important points that follow with respect to this dubious
outcome. First, although the three objects would be classified
under the same category, their differing features can be still
discerned by the IT assuming a sufficient degree of redundancy
at the encoder, a channel that is not too dispersive, and adequate
processing at the decoder. Second, the choice of w has not been
determined via an SVM or even a correlation-based classifier as
considered in works such as Rust and DiCarlo (2010) andMeyers
et al. (2008), respectively. Both techniques would provide a w

that has been acquired via a training process on already-viewed
stimuli. For instance, it is easy to confirm that the (non-unique)
choice wT = [1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1] would yield
perfect classification of category for this example. Third, a more
biologically realistic scenario would have a significantly larger N
value. This would lead to greater granularity among the object
categories and significantly better classification capability.

5.4. Interleaver Operation, Message
Compression, and Memory
The interleaving operation is considered as a means for
identifying the important features in the decoded sequence. In
this example we consider two features via F = 2 with M1 = 2
and M2 = 2. The static interleaving operation given by I =

[[1, 3], [2, 4]] will be assumed where [1, 3] signifies the bit indices
corresponding to themore important featureM1, and [2, 4] refers
to the bit indices of a less important feature M2. Thus, the
interleaving will lead to the following grouping

b̂ = 1100 → b̃ = [1̂b1,
2̂b2,

1̂b3,
2̂b4] =

11211020

where the left superscript of each bit indicates its importance level
as dictated by the interleaver. The operation I is equivalent to
a mapping that ranks the importance of the bits in the decoded
stream via the features that they correspond to. In the present
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example, the more important feature, M1, represents the object
identity while M2 will correspond to the object’s size. As shown
in Figure 1, the interleaving operation is dynamically guided
by attention in the prioritization of sensory information that is
necessary for a task. To consider an instance of compression,
suppose that the same object is presented to a subject
during the next three viewing intervals with the corresponding
representation given by b̂ = 1100 1100 1110 1101. The third
representation has a different object identity than the other
three while the fourth representation differs from the first two
due to the object’s size varying as a result of a change in
viewing distance. The 16-bit decoded version of this sequence
b̂ would be interleaved to b̃. With the hippocampus performing
a compressive operation, the most important features of the
representation b̃ = 11211020 11211020 11211120 11211021
are committed to memory with less compression than the less-
important features. More specifically, the features with a left
superscript of “1” are 10 and 11 while the less important features
have been labeled via a superscript of “2,” i.e., 10 and 11. A
compression mechanism may entail the less important features
being compressed among viewed objects that share the same
important features. In the present example, the first and second
representations 1100, and the fourth representation 1101 share
the same value of important feature 10. These three objects can be
compressed in memory as 1100 since it appears more frequently
than 1101. The other value for the important feature (i.e., 11)
occurs only in the third viewing of the object via 1110 which is
stored in memory as well. Thus, for the considered compression,
the 16-bit input b̂ = 1100 1100 1110 1101 is compressed into
the 8-bit representation b̃c = 1100 1110.

Having attained a compressed representation of the viewed
object, it is possible for the a priori probabilities {P[bk+1|bk]}
to be computed at the hippocampus and amygdala. The neural
circuitry can estimate P(bk+1 = S1|bk = S3) from the
sequence b̃c = 1100 1110 by counting the occurrences of
S1 = 10 after S3 = 11 and normalizing that value by the
occurrences of S3 = 11. In the present example, S3 = 11
occurs three times with two occurrences followed by S1 =

10, therefore P(bk+1 = S1|bk = S3) = 2/3. A more
descriptive analysis of how the VVS may perform such a
calculation for the remaining a priori probabilities is provided in
Appendix C.

6. THE PERFORMANCE OF CTOR, AND
USE OF PRIOR KNOWLEDGE IN OBJECT
RECOGNITION

The previous section provided an instantiation of CTOR
operation. It is also necessary to have an idea of the performance
that is possible with this model. Accordingly, a more realistic

scenario must be considered than the toy example of the previous
section; clearly a larger stream is present as the input to the

primate VVS. Since CTOR is not based on a neural network or a

SVM, the metrics used to assess the performance of models based
on the aforementioned methods are by-in-large not applicable

here. To assess the performance of CTOR, several metrics must
be discussed within the object recognition paradigm.

• Bit Correct Rate (BCR): According to (7) the Hamming
distance d(̂b, bi) was derived between the decoded sequence
at the IT and the representation that the object should induce
at the IT. The expression

BCR = 1−
1

T

T∑

t=1

[
d(̂b, bi)

KM

]

t

(17)

provides a measure of the deviation between the expected
and decoded representations over T viewed sequences. In the
above expression [X]t denotes the value of the argument X at
the t-th iteration. It is not difficult to observe that at chance
BCR= 1/2.

• Symbol Correct Rate (SCR): A more stringent measure of
correct object recognition is given by

SCR =
1

T

T∑

t=1

[
1(d(̂b, bi) = 0)

]
t
. (18)

In the above expression 1(·) denotes the indicator function
and the condition inside the indicator function is only satisfied
for perfect recovery of the object identity. It can be verified that
at chance SCR= 1/2KM .

• Category Correct Rate (CCR): A distinction between object
recognition and categorization has been made in the
presentation of CTOR. Accordingly, we consider ameasure for
the correct identification of object category via

CCR =
1

T

T∑

t=1

[
1(wT b̂ = wTbi)

]
t
. (19)

It should be apparent that the classification vector w used in
(19) is derived based on a classifier cost function rather than
the CCR metric, otherwise the trivial solution w = 0 would
result. At chance this metric will equal the reciprocal of the
number of categories considered i.e., CCR= 1/KM.

• Approximate Category Correct Rate (ACCR): A less stringent
measure of categorization accuracy follows from considering
the metric

ACCR =
1

T

T∑

t=1

[
1(|wT b̂− wTbi| ≤ c1)

]
t
. (20)

The constant c1 > 0 is the maximum tolerable difference
between the expected and recovered representation for the
category to be determined at an acceptable fidelity. By its
definition it can be noted that AACR ≥ CCR.

The performance of the CTOR model for the VVS will be
analyzed for all of the aforementioned metrics. We are, in
effect, attempting to justify the utility of the BCR, SCR,
CCR, and ACCR within the object recognition paradigm. It is
interesting that the presented dialogue has provided a means to
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quantitatively decipher between categorization performance and
object recognition performance. To the best of our knowledge
prior works have not made such a quantitative distinction and
this may be viewed as a void in object recognition models.

The performance of CTOR with the simple-encoder in
Figure 3A and its corresponding decoder implementing the
Viterbi algorithm will be analyzed via simulation. The object
representation b will be comprised of K = 6, 12, 24, 36, 48, or 60
bits meaning that the encoder will entangle such representations
into a sequence s consisting of 3K bits. Without loss of generality,
we specify the viewed stimulus as having a representation at
the IT given by an alternating sequence of 1 and 0, e.g., for
K = 6, b = 101010. For each object T = 106 iterations
will be considered in a Monte-Carlo (MC) simulation. Each
iteration entails the components of the encoded sequence being
probabilistically perturbed by the channel (10). The dispersive
nature of (10) will be shown by examining object recognition in a
less-dispersive discrete memoryless channel where the transition
probabilities are given by

P[ri = A|si = 0] = 0.65

P[ri = B|si = 0] = 0.2

P[ri = C|si = 0] = 0.1

P[ri = D|si = 0] = 0.05

P[ri = A|si = 1] = 0.05

P[ri = B|si = 1] = 0.1

P[ri = C|si = 1] = 0.2

P[ri = D|si = 1] = 0.65 (21)

and lead to H(ri|si = 0) = H(ri|si = 1) = 1.416 bits.
Figures 9A,B contain simulation results of the object recognition
metrics for CTOR with simple-encoder and the channels given
by (10) and (21). A value of c1 = 1 was used when computing
the ACCR metric, in other words, a disagreement in Hamming
distance of one between b̂ and bi was deemed tolerable in the
recovery of the object category. The representation of more
complicated stimuli would require a larger number of bits and
may result in a degradation in the VVS’s capability to accurately
perform object recognition and classification. It is also expected
that the more complex stimuli will require increased amounts
of neural processing leading to longer message lengths (i.e.,
larger K values). The more convoluted an object, the worse a
subject’s performance in recognizing, categorizing, and parsing
the attributes of the object. The CTOR model is capable of
reflecting this aspect that seems fundamental to the working of
the VVS. Indeed, the BCR, SCR, CCR, and ACCR metrics in
Figures 9A,B show a degradation with increasing K values. It is
interesting that the SCR shows the most precipitous degradation
with increasing object complexity. This is attributed to the correct
decoding of the entire object representation being more difficult,
and hence more sensitive to the viewed object complexity, than
a partial or a category-only recovery. A comparison of the four
metrics shown in Figures 9A,B confirm an improvement in
recognition and categorization performance when the channel
is represented by (21) instead of (10). Thus, the impact of a

degradation in CQM on object recognition is patent since the
recognition and classification accuracies are lower for the more
dispersive channel. The consideration of the retina, LGN, and
V1 stage via a more sophisticated encoder shall be referred to
as “complex-encoder.” The rate of the encoder is maintained at
1/3, but a maximal memory order of L = 8 is considered via the
following generator sequence

G(D) =
[
1+ D2 + D3 + D5 + D6 + D7 + D8, 1+ D+ D3 + D4

+D7 + D8, 1+ D+ D2 + D5 + D8
]
.

The above encoder has been studied in Lin and Costello (1983);
its shift-register structure and state diagram are not shown
because of their involved nature in comparison to simple-
encoder. For instance, the decoding would consist of a trellis
with 28 = 256 states at time k and two prospective transitions
out of each state. Via a higher constraint length (L), there
are a larger number of paths to compare at each stage of the
trellis and this leads to an increase in resolution when making
a decision on every encoded bit. Thus, a decoder that would
accommodate complex-encoder will generally be more accurate
in recovering representations than the decoder accommodating
simple-encoder. The performance of CTOR with complex-
encoder shall now be assessed. Due to the increased complexity
and run time, rather than using the complete Viterbi algorithm
that was used for simple-encoder, MATLAB’s vitdec(·) function
with soft-decision decoding and 4 levels (i.e., nsdec = 2) were
used in the simulations with complex-encoder. It shall still be
assumed that the viewed object has a representation at the IT
given by an alternating sequence of 1 and 0. The evaluation of the
BCR, SCR, CCR, and ACCR in Figures 9C,D show that similar
conclusions can be drawn for CTOR with complex-encoder as
with simple-encoder. With the exception of the BCR for the
channel of (21), the metrics in Figure 9 exhibit a degradation
with increasing K values.

There are findings to discuss in light of the simulation results
shown in Figure 9. The BCR appears to be the most robust of the
metrics with respect to increasing degrees of stimulus complexity.
By definition the BCR is restricted to the interval [0.5, 1], and the
observed limited range in comparison to the other metrics in the
simulations indicates that the BCR may not be as insightful of a
metric. A comparison of the performance of simple- vs. complex-
encoder shows that the latter exhibits a clear improvement across
all of the metrics for the less-dispersive channel. Interestingly,
the affect of the channel is more pronounced on the metrics
for complex-encoder than for simple-encoder. In the case of the
highly dispersive channel, however, the two systems yield similar
performance. This is attributed to the increased processing not
being able to overcome the detriments brought forth by the high
dispersion. For an engineered system, so long as the channel is
not overly dispersive, a higher L is desirable because it yieldsmore
reliable communication (i.e., higher BCR and SCR), the tradeoff
is that an increase in constraint length leads to an increase in
complexity and processing. Of course the VVS is not subject
to the same tradeoffs that exist in engineered systems, thus it
may be presumed that a CTOR implementation of the VVS will
entail a large L value and accommodate the decoder (i.e., IT
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FIGURE 9 | The performance of CTOR with the encoding, channel, and decoding structures discussed in this work. (A) The performance attained with simple

encoder and the more-dispersive channel in (10), and (B) with the less-dispersive channel in (21). The decoding for the simple encoder was implemented with custom

code in MATLAB. (C) The performance attained for complex encoder with the more-dispersive channel, and (D) with the less-dispersive channel. The decoding for the

complex decoder was implemented using MATLAB’s vitdec(·) function with 4 levels specified in the Viterbi soft-decision decoding algorithm.

circuitry) being able to process an immense number of states in
the prospective trellis.

The operation of the CTOR model has been studied with the
view of uniform a priori probabilities for the state transitions
that are used at the IT for untangling the representation of the
viewed object. While this has been done for ease in presentation,
such an assumption reduces maximum a posteriori probability
(MAP) decoding to maximum likelihood estimation (MLE).
We shall now consider the scenario of non-uniform a priori
probabilities for the state transitions. The simple encoder, more
dispersive channel in (10), and an input sequence of K = 60 bits
shall be assumed in considering the Viterbi algorithm operation
with MLE (Figure 10A) and MAP (Figure 10B) decoding. The
simulations were performed in the same manner as in Figure 9

except T = 103 iterations were considered for each object.
With MAP decoding, the a priori probabilities are estimated
from the previous iteration using the technique described in
section 5.4. The BCR attained with MLE fluctuates between
0.4 and 0.8 and has a mean of 0.581, while the mean BCR
attained with MAP is 0.695 with the BCR equating to 1 at
several iterations (Figure 10C). The SCR results show a similar
trend as the MLE does not correctly recover the entire object
at any iteration (i.e., mean SCR = 0) whereas MAP is able to
do so (mean SCR = 0.032) (Figure 10D). A kymograph of the

decoded bits across each iteration illustrates that the correctly
recovered bits are more clustered for MAP decoding than with
MLE (Figure 10E). This is because knowledge of the a priori
probabilities guides the fidelity with which consecutive bits are
decoded. It is observed that the a priori probabilities computed
at the decoder during MAP decoding are rather constant across
the 103 iterations (Figure 10F). This is expected because the
same input sequence was used for each iteration. Furthermore,
we note that the state transitions S2 → S1 and S3 → S1
are assigned the highest a priori probabilities. This is also
expected since it can be verified that the transitions 11 → 10
and 01 → 10 will be the most frequent transitions for the
considered input stream. In summary, the CTOR formulation
with MAP decoding surpasses the performance noted with MLE
(Figures 10C,D), thus confirming the value of the feedforward-
feedback interaction between the IT and hippocampus during
object recognition.

CONCLUSION

Three communities are concurrently involved in the
comprehension of visual object recognition: neuroscientists,
computer vision scientists, and visual psychophysicists. The
presented CTOR model has drawn upon elements advocated
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FIGURE 10 | A comparison of MLE and MAP with a simple encoder, the dispersive channel of (10) and K = 60 bit object identity. (A,B) Algorithmic depictions of the

MLE and MAP decoding schemes. The transition length λ(·, ·) is computed for both schemes, and for MAP decoding, includes the a priori probability P[bk+1|bk ] in

addition to the transition probability P[rk |bk+1,bk ]. (C) The progression of the BCR at each iteration of CTOR when considering MLE and MAP for the same viewed

object. (D) The progression of the SCR at each iteration of CTOR when considering MLE and MAP for the same viewed object. It should be noted that the SCR can

only take on values of {0, 1} at any iteration. (E) A kymograph of the decoded sequence over different viewing intervals (i.e., iterations). Red represents a bit correctly

identified by the decoder and blue indicates that the bit was erroneously identified. (F) A kymograph of the a priori probabilities calculated by the attention and

memory circuitry over the duration of each viewing interval.

from the three realms. Previously considered for lower visual
areas, dynamic inference via an on-line algorithm for MAP
sequence estimation has been proposed for the higher visual
areas implicated during object recognition. Although the
primary motivation for CTOR is to provide an account for the
proficiency of the IT, the formulation is also a starting point for a

more comprehensive scrutiny of the computations performed by
the VVS during real-time object recognition. The performance
of the model was evaluated by presenting several metrics to
assess categorization accuracy and object identity recognition.
The simulation results provide insight into the dynamics
and capabilities of CTOR. The role of attention and memory
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have been incorporated via top-down signaling that guides
the inference, and is also affected by the cognition. Empirical
corroboration of CTOR would entail presentation of data to
support or verify the algorithmic notions discussed in this work.
In order to test or affirm aspects of CTOR in the framework of
current knowledge, it is crucial to consider primate neuroscience
studies that have already amassed high-dimensional recordings
from multiple brain regions and pursued computational
questions. The study in Shinomoto et al. (2009) considers neural
spike data from 15 cortical areas in awake, behaving monkeys
that were collected at different labs. The authors used this data
to make statements about the functional category of the cortical
area. A similar methodology can be used to assess aspects
of CTOR. For instance, an experiment could entail showing
the same objects to subjects, recording V1, V4, and IT neural
responses, and amassing the collected data among different
labs into one dataset to evaluate the encoding and decoding
operations. Initially, the IT neural population responses would
be compared to the V1 responses in order to determine the
encoder. In effect, a code rate, constraint length, and encoder
structure would be assumed, evaluated, and altered in iterative
fashion until a candidate has been deemed as fitting the data
appropriately. Such iterative searches are routinely performed by
coding theorists—e.g., for convolutional codes see Conan, 1984;
Chang et al., 1997; Katsiotis et al., 2010—to discover encoders
that satisfy a criterion. The considered scenario is unique in
selecting the code that best fits the data in connecting the IT
response to the V1 response. Subsequently, parameters associated
with the decoder and the channel can be evaluated or fit to the
V4 neural population responses from the same viewed objects.
Such analysis would also require initial assumptions about the
channel (e.g., continuous vs. discrete) and the decoder prior to
performing the iterative searches over their associated parameter
spaces. In a different study, Lehky et al. (2011) recorded responses
of 674 IT neurons across two monkeys as they were shown 806
objects. The authors analyzed the data in holistic fashion to
determine that the heavy tails of the population responses are
suggestive of different neurons being tuned to different features.
More recently, Dong et al. (2017) incorporated the 806 × 674
data matrix of the aforementioned work to develop simulations

for a large number of neuronal responses with various settings
for neuron number, stimulus number and identity, and noise
level. Through their simulations, the authors justify the findings
in Lehky et al. (2011) and also provide an instance of how
information can be extracted from a dataset to test additional
hypotheses with different assumptions for the underlying
processes. Similar to the analysis of Dong et al. (2017), the
CTOR hypotheses can be scrutinized by simulating the neuronal
responses of the populations in Figures 1, 2 with the variables
listed in Appendix D. Although CTOR is a proposition; it is
biologically inspired, motivated by prior empirical discussions,
and mirrors the tangling-untangling notion that has been
accredited within the primate vision community.
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