
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Flexible Framework for Co-Optimizing Dynamic Traffic Signal Control: Foundation for 
Adaptive Optimization Strategies

Permalink
https://escholarship.org/uc/item/63213362

Author
Oswald, Roland David Edger

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63213362
https://escholarship.org
http://www.cdlib.org/


 
 

 

 

UNIVERSITY OF CALIFORNIA 

RIVERSIDE 

 

 

 

 

Flexible Framework for Co-Optimizing Dynamic Traffic Signal Control: Foundation for Adaptive 

Optimization Strategies 

 

 

 

A Dissertation submitted in partial satisfaction 

of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

in 

 

Electrical Engineering 

 

by 

 

Roland David Edger Oswald 

 

 

September 2023 

 

 

 

 

 

 

 

Dissertation Committee: 

Dr. Matthew J. Barth, Chairperson 

Dr. Peng Hao 

Dr. Hyoseung Kim  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Copyright by 

Roland David Edger Oswald 

2023  



 
 

 

The Dissertation of Roland David Edger Oswald is approved: 

 

 

            

 

 

            

         

 

            

           Committee Chairperson 

 

 

 

 

University of California, Riverside 

 

 

 



iv 
 

Acknowledgment 
 

I would like to express my deepest gratitude and appreciation to all those who have 

supported and guided me throughout the journey of completing this dissertation. This work would 

not have been possible without the encouragement, assistance, and contributions of numerous 

individuals and institutions. Therefore, I would like to take this opportunity to acknowledge their 

invaluable support. 

First and foremost, I extend my heartfelt thanks to my advisor, Dr. Matthew Barth, for his 

unwavering guidance, patience, and encouragement throughout the entire research process. His 

expertise, constructive feedback, and constant availability have been instrumental in shaping this 

dissertation into its final form. 

I am also grateful to the members of my dissertation committee, Dr. Peng Hao, for his 

valuable insights, thoughtful suggestions, and critical reviews that have significantly enhanced the 

quality of this research; and Dr. Hyoseung Kim, it was because of his class that I first worked with 

some of the equipment mentioned in this dissertation, marking the initial and crucial step in 

embarking on this research journey. 

I would also like to specifically thank Dr. George Scora, Dr. Guoyuan Wu, and Mr. 

Alexander Vu. The three of you were, and Dr. Peng Hao, were crucial in the research I completed 

at UCR and I really would not have made it without your help and guidance. 

My sincere appreciation goes to the faculty members and researchers at UCR, whose 

lectures, seminars, and discussions have provided me with a strong academic foundation and 

inspired my passion for this field of study.  

I am indebted to my friends and fellow colleagues who supported me during challenging 

times, providing encouragement and understanding throughout this demanding academic journey. 



v 

Specifically, I would like to mention my TSR group members, including Mike Todd, Dr. Kanok 

Boriboonsomsin, Dr. Zhouqiao Zhao, Zhensong Wei, Zhengwei Bai, Dr. Ziran Wang, Dr. Chao 

Wang, Saswat Priyadarshi Nayak, Jacqueline Garrido Escobar, Dr. Xishun Liao, Xuanpen Zhao, 

Dylan Brown, Pingbo Ruan, and many more. I truly appreciate my friend Dr. Nigel Williams; you 

were my first friend at CE-CERT and I hope we will continue to be friends for years to come. 

I am deeply thankful to my parents and family for their unwavering love, encouragement, 

and belief in my abilities. Their constant support and sacrifice have been the driving force behind 

my pursuit of academic excellence. 

Finally, I would like to express my gratitude to all the participants who willingly 

contributed their time, effort, and insights to this research. Without their cooperation, this study 

would not have been possible. 

The successful completion of this dissertation is the result of the collective efforts of many 

individuals, and I am sincerely grateful to each and every one of them for their support and 

encouragement. Their contributions have been invaluable, and I am humbled by their generosity. 

Thank you all. 

The major contents in this dissertation have been published in IEEE Intelligent 

Transportation Systems Conference, Transportation Research Board Annual Meeting, IEEE 

Transactions on Intelligent Vehicles, and the National Center for Sustainable Transportation. 

 

 

  



vi 

ABSTRACT OF THE DISSERTATION 
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As urban traffic congestion and environmental concerns continue to escalate, there is a 

growing need for innovative approaches to optimize the performance of signalized intersections. 

This dissertation presents a comprehensive investigation into the co-optimization of vehicle 

trajectories and traffic signal timing at isolated signalized intersections. The primary objective is 

to propose a novel co-optimization framework that integrates eco-trajectory planning and traffic 

signal timing optimization to improve transportation efficiency and reduce environmental 

impacts, which we call Eco-friendly Cooperative Traffic Optimization (ECoTOp). 

Central to this research are the functional building blocks, including the creation of an 

Innovation Corridor testbed in Riverside, CA, a Speed Advisory Tablet App, Lane-level GNSS 

Applications, and the integration of a refined MOVES emission model. These innovative 

components enable accurate and efficient data collection, advanced traffic control, and precise 

emission estimation, elevating the ECoTOp approach to new levels of effectiveness and 

sustainability. Building upon this foundation, the methodology is established, encompassing the 

development of hybrid co-optimization algorithms and the utilization of a simulation platform, 

SUMO, for evaluating various experimental scenarios. 
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The case studies are pivotal in this dissertation, investigating the ECoTOp approach 

across diverse scenarios with varying traffic volumes, connected and automated vehicle (CAV) 

penetration rates, and mixed vehicle types. Comparative analyses between ECoTOp and 

individual strategies are conducted to lay the groundwork for future development of an adaptive 

optimization strategy. Moreover, the ECoTOp approach is extended to incorporate electric 

vehicles (EVs), with energy estimated using MATLAB's EV model. 

Furthermore, the dissertation explores the concept of an adaptive optimization strategy 

capable of dynamically selecting the most suitable optimization approach based on real-time 

traffic conditions and environmental considerations.  

The findings of this dissertation demonstrate the potential of the proposed co-

optimization approach in enhancing traffic flow and reducing emissions. By comparing the 

ECoTOp with the individual optimization strategies, this research serves as a precursor for an 

innovative adaptive optimization strategy that can pave the way for more efficient and sustainable 

transportation systems in the future. The dissertation contributes valuable insights into the field of 

traffic signal optimization and vehicle trajectory optimization, encouraging further research and 

applications in intelligent transportation systems. 
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Chapter 1  

Introduction 

1.1 Motivation 

Traffic congestion continues to get worse every year in the United States. The 2019 Urban 

Mobility Report [1] produced by the Texas A&M Transportation Institute (TTI) predicts that by 

2025 the average commuter will waste 62 hours and 23 gallons of fuel because of delay in traffic 

congestion. Traffic congestion is not only a problem for commuters, but can become a drain on 

economic growth, because it is predicted that by 2025 the national congestion cost will be $237 

billion.   

In the field of transportation engineering, the optimization of vehicle trajectories and traffic 

signal timing at signalized intersections is of paramount importance to improve transportation 

efficiency and mitigate environmental impacts. Traditionally, two distinct approaches have been 

explored: vehicle trajectory optimization alone and traffic signal timing optimization alone. 

However, with the advent of connected and automated vehicle (CAV) technologies and 

advancements in data-driven methodologies, there is a growing interest in developing integrated 

co-optimization strategies that can harness the strengths of both approaches. The integration of 

traffic signal optimization and vehicle trajectory optimization can be a complex task, as these two 

components can exhibit both synergistic behaviors, enhancing overall traffic efficiency, and 

conflicting interests, potentially leading to suboptimal outcomes. Striking a balance between these 

factors is critical to achieving a comprehensive and efficient co-optimization approach. 

Transportation accounts for a large percentage of greenhouse gas emissions in the United 

States. According to the United States Environmental Protection Agency (EPA), mobile sources, 

such as cars, buses, planes, trucks, and trains, account for 29% of greenhouse gases (GHG) and 
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over half of all air pollution in the United States [2][3]. Some studies showing as high as 38% [4]. 

Figure 1.1 shows the GHG emissions by economic sector for 2021. Electricity caused 25% of the 

GHG emissions in the United States in 2021, but Figure 1.2a shows the power generation by energy 

source from 2006 to 2022. Electricity produced by coal has been going down, and energy produced 

by natural gas and renewable energy has been going up causing power (electricity) to produce less 

GHG since 2005 and transportation actually producing more than 28% of GHG in the coming years, 

as shown in Figure 1.2b [5]. 

 

Figure 1.1. Greenhouse gas emissions by sector for 2021, epa.gov, 2023. 

 

 

Figure 1.2. (a) Greenhouse Gas Emissions by Sector Since 2006. (b) Power Generation by Energy Source, rhg.com, 

2023. 
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One solution to help cut down air pollution from vehicles is to utilize connected vehicle 

(CV) technology to perform eco-driving techniques. Eco-driving is a combination of different 

driving techniques to minimize fuel consumption [6]. 

A connected vehicle (CV) is a vehicle that transmits and receives data through wireless 

communication. There are four common ways a vehicle can be connected to and communicate with 

its surroundings: vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), vehicle-to-cloud 

(V2C), and vehicle-to-pedestrian (V2P). Together, V2I, V2V, V2C, and V2P make up the concept 

of vehicle-to-everything (V2X) communications, shown in Figure 1.4 [7]. 

When vehicles on the road can communicate with one another (V2V), it allows vehicles to 

travel faster and closer to one another in a much safer way. When vehicles can travel closer to each 

other in a safe manner the vehicles can travel in a platoon formation. Traveling in a platoon 

formation would help reduce traffic congestion which in turn would reduce fuel consumption and 

tailpipe emissions [8]. 

When a vehicle can communicate with the infrastructure (V2I), the vehicle can receive the 

signal phase and timing (SPaT) from traffic signals, and use the SPaT data to approach the 

intersection in an eco-manor. Vehicle communication with the cloud, V2C, would allow the vehicle 

to know upstream traffic and allow for more complex computations. V2P communication would 

allow for safer travel for walking pedestrians, or pedestrians on bicycles. 

1.2 Problem Statement 

The primary objective of this research is to propose a novel co-optimization approach for 

vehicle trajectories and traffic signal timing at isolated signalized intersections. We call this Eco-

friendly Cooperative Traffic Optimization (ECoTOp). This approach seeks to strike a balance 

between intersection efficiency, emissions, and other performance measures, considering the trade-

offs inherent in the individual trajectory optimization and signal optimization strategies. Moreover, 



4 

this research serves as a precursor to the development of an adaptive optimization strategy that can 

dynamically select the most appropriate optimization approach based on real-time traffic conditions 

and environmental impacts. 

The development of the adaptive optimization strategy holds significant promise for future 

transportation systems. By continually monitoring and analyzing traffic data, environmental 

factors, and relevant parameters, the adaptive strategy can automatically adjust the optimization 

approach to maximize transportation efficiency while minimizing environmental impacts. This 

dynamic adaptation ensures that the transportation system remains responsive to changing traffic 

patterns, varying demand levels, and evolving environmental considerations. 

Several studies have investigated aspects of vehicle trajectory optimization ([9][11][12]) 

and signal optimization ([13][14]) individually. However, limited research has explored the 

dynamic integration of these optimization strategies, which is critical for adapting to the evolving 

traffic and environmental conditions. By establishing a foundation for dynamically changing 

between vehicle trajectory optimization alone, signal optimization alone, and the integrated co-

optimization, this research aims to contribute to the development of intelligent transportation 

systems capable of adapting to real-time traffic conditions. 

To achieve the research objectives, a hybrid approach combining model-based and data-

driven methodologies is employed. The model-based component incorporates established traffic 

flow models and optimization algorithms to optimize vehicle trajectories and traffic signal timing. 

The data-driven component leverages real-time traffic data, CAV technologies, and machine 

learning techniques to enhance the accuracy and efficiency of the optimization process. 

To evaluate the effectiveness and performance of the proposed ECoTOp approach, 

extensive simulation-based experiments are conducted using the SUMO traffic simulation platform 

[15]. These experiments encompass various traffic scenarios, including different traffic volumes, 
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vehicle types, and environmental conditions. Performance metrics such as CO2 emissions, traffic 

flow characteristics, and other relevant indicators are meticulously analyzed to assess the benefits 

and trade-offs of the ECoTOp approach compared to the eco-trajectory planning and signal 

optimization strategies. 

1.3 Contributions 

The key contributions of this research are multiple. First, we propose a novel co-

optimization approach that integrates vehicle eco-trajectory planning and traffic signal timing 

optimization, addressing the challenges of balancing traffic flow, emissions, and other performance 

measures. Second, this research serves as a foundational step towards the future development of an 

adaptive optimization strategy capable of dynamically selecting the most suitable optimization 

approach based on real-time traffic conditions and environmental considerations. 

To lay the foundation for the ECoTOp approach and the subsequent adaptive optimization 

strategy, this research also embarked on the development of several functional building blocks that 

set the stage for innovative advancements in transportation engineering. These building blocks 

aimed to address critical aspects of transportation efficiency, environmental sustainability, and data-

driven decision-making. 

One of the key building blocks involved the establishment of an Innovation Corridor, a 

real-world testbed located in Riverside, CA. This testbed served as a unique platform for validating 

and assessing the proposed co-optimization approach in a practical setting. By leveraging state-of-

the-art infrastructure, intelligent transportation systems, and data collection mechanisms, the 

Innovation Corridor facilitated comprehensive evaluations and analyses, providing valuable 

insights into the performance and potential of the co-optimization approach. 

Another important building block focused on the development of a speed advisory tablet 

app designed for in-vehicle use. This application provided drivers with real-time speed 
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recommendations based on traffic conditions, signal timings, and other relevant factors. By 

utilizing connected vehicle technologies and leveraging real-time data, the app aimed to optimize 

traffic flow, alleviate congestion, and enhance overall transportation efficiency. The insights gained 

from this building block were crucial in the formulation of an adaptive optimization strategy that 

dynamically adjusts vehicle trajectories and signal timings based on real-time conditions and 

environmental impacts. 

Furthermore, the utilization of lane-level Global Navigation Satellite System (GNSS) 

applications constituted another building block. These applications enabled precise positioning and 

trajectory tracking, facilitating accurate assessments of the U.S. Department of Transportation's 

(DOT) MAP message creator tool. The integration of GNSS technology in the co-optimization 

approach and the subsequent adaptive optimization strategy allowed for fine-grained control and 

optimization at the intersection level, taking into account the specific conditions and characteristics 

of each lane. 

Additionally, a simple queue estimation application was developed as part of the building 

blocks. This application employed advanced algorithms and data processing techniques to estimate 

queue lengths and delays at signalized intersections. Accurate queue estimations played a vital role 

in optimizing vehicle trajectories and traffic signal timings, leading to enhanced transportation 

efficiency. The incorporation of queue estimations in the adaptive optimization strategy allowed 

for responsive and dynamic adjustments to traffic signal timings based on real-time congestion 

levels and queue lengths. 

Finally, an improved Motor Vehicle Emission Simulator (MOVES) model [16] was 

developed as a key building block. This enhanced model incorporated sub-binning techniques to 

provide more precise estimates of vehicle emissions. By considering emissions as a crucial 

performance measure, the co-optimization approach and the subsequent adaptive optimization 
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strategy aimed to minimize environmental impacts and promote sustainable transportation 

practices. 

Through the establishment of these functional building blocks, this research laid the 

groundwork for the development of the ECoTOp approach, with the ultimate goal of formulating 

an adaptive optimization strategy. The subsequent chapters of this dissertation will delve into 

detailed descriptions of these building blocks, their implementation, and their implications for 

transportation efficiency and environmental sustainability. 

1.4 Organization 

The ensuing chapters of this dissertation are organized as follows: Chapter 2 provides an 

extensive literature review on vehicle trajectory optimization, traffic signal timing optimization, 

and co-optimization approaches in the context of transportation engineering. Chapter 3 focuses on 

the establishment of the Innovation Corridor and the development of the functional building blocks. 

Chapter 4 presents various eco-trajectory planning experiments done in preparation for the eco-

trajectory planning algorithm used, as well as the formulation of the eco-trajectory planning 

optimization objectives. Chapter 5 presents the formulation of the traffic signal optimization 

objectives. Chapter 6 showcases the methodology adopted in this research, encompassing the 

formulation of optimization objectives for the ECoTOp approach, as well as preliminary 

comparison of results. Chapter 7 exhibits a case study for the electric vehicles in this adaptive 

optimization strategy. Chapter 8 discusses additional case studies conducted to evaluate the 

performance of the proposed co-optimization approach. Finally, Chapter 9 summarizes the findings 

of this research, highlights the implications, and outlines potential avenues for future research. 
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Chapter 2  

Background and Literature Review 

2.1 Traffic Signal Optimization  

The optimization of traffic signal timing has long been recognized as a critical component 

in improving transportation efficiency and mitigating congestion at signalized intersections [17]. 

Traffic signal timing optimization aims to determine the ideal allocation of green, yellow, and red 

signal phases to minimize delays, reduce travel times, enhance traffic flow, and maximize 

intersection capacity [18]. This section provides a comprehensive literature review on traffic signal 

timing optimization, highlighting key methodologies, algorithms, and advancements that have 

contributed to the field of transportation engineering. By examining the existing body of 

knowledge, this review aims to provide a solid foundation for understanding the state-of-the-art 

techniques and identifying gaps that can be addressed by the proposed co-optimization approach. 

The earliest form of traffic signal optimization can be traced back to the use of manually 

operated traffic control devices. One such early system was introduced in London, England in 1868, 

known as the "gas-lit semaphore" [19]. It was developed by John Peake Knight, an engineer and 

inventor. The semaphore system used movable arms or "semaphores" that were manually operated 

by police officers stationed at intersections. While this early form of traffic control was an important 

step in regulating traffic flow, it was limited by the fact that it relied on human operators. The 

system was prone to errors and inconsistencies due to factors such as human reaction time and 

subjective judgment. 

Further advancements in traffic signal optimization came with the introduction of 

electrically operated traffic signals in the early 20th century. Over time, traffic signal optimization 

has evolved significantly, incorporating advanced technologies such as computerized control 
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systems [20], traffic sensors, and algorithms that analyze real-time traffic data to adjust signal 

timings dynamically [18]. 

Traffic-adaptive signal controllers take in real-time detector data to measure traffic flow 

[13]. This real-time measurement of traffic flow data can then be used to optimize flow. In a 

connected vehicle environment, CVs can communicate with the infrastructure and the data obtained 

can be used for signal control [14]. 

The Multi-Modal Intelligent Traffic Signal System (MMITSS) seeks to provide a 

comprehensive traffic information framework to service all modes of transportation, including 

general vehicles, transit, emergency vehicles, freight fleets, and pedestrians and bicyclists in a 

connected vehicle environment [21]. MMITSS was developed by the University of Arizona in 

collaboration with Econolite Group, Inc., Savari, Inc., and the University of California, Berkeley 

PATH program in 2014. An early version of MMITSS was introduced in 1992 called, RHODES, 

which was a real-time traffic-adaptive signal control system [13].  

In 2014 at the World Congress on ITS Technology Showcase, the first demonstration of 

MMITSS was given, where participants witnessed how connected vehicles enabled a signalized 

intersection to prioritize and simultaneously accommodate a transit vehicle and two emergency 

vehicles as they approached the intersection. Then the participants witnessed the pedestrian 

crossing signal request from a mobile device [22].  

In 2015, Feng et al. [14] developed a real-time adaptive signal phase allocation algorithm. 

The algorithm utilizes vehicle location and speed data to optimize phase sequence and duration. In 

order to estimate the vehicle states of non-connected vehicles, an algorithm that uses connected 

vehicle data was developed. A real-world intersection was modeled in VISSIM with CAV 

penetration rates of 100%, 75%, 50% and 25%. With 100% CAV penetration rate, total delay was 
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decreased by up to 14.67% when minimizing total vehicle delay, and 16.33% when minimizing 

queue length. 

In 2015, Sun et al. [23] developed a quasi-optimal decentralized QUEUE-based feedback 

control strategy for a system of oversaturated intersections. This strategy is applied cycle-by-cycle 

based on measurement of current queue sizes, but its overall result is able to approximate the 

optimal one derived from off-line studies. Also, this strategy was numerically tested in MATLAB. 

The vast majority of the existing studies concerning real-time phase and timing signal 

optimization attempt to minimize queue length or minimize total delay. This research proposes 

maximizing throughput at an intersection.  

2.2 Eco-Trajectory Planning Optimization 

Vehicle trajectory optimization plays a crucial role in enhancing traffic efficiency, safety, 

and environmental sustainability. By carefully designing vehicle trajectories, it becomes possible 

to improve the overall performance of transportation systems, enhance fuel efficiency, and mitigate 

emissions. Over the years, extensive research has been conducted on vehicle trajectory 

optimization, resulting in the development of various models, algorithms, and optimization 

techniques. This section provides a comprehensive literature review on vehicle trajectory 

optimization, exploring the key methodologies and advancements in this field. By examining the 

existing body of knowledge, this review aims to establish a foundation for understanding the state-

of-the-art techniques and identifying areas where further research is needed. The insights gained 

from this review will contribute to the development of an effective co-optimization approach for 

vehicle trajectories and traffic signal timing, ultimately leading to more efficient and sustainable 

transportation systems. 

Barth and Boriboonsomsin [9] developed a freeway-based eco-driving system where 

advice is gen to drivers in real-time based on changing traffic conditions around the vehicle. The 
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system takes advantage of road sensors to provide real-time traffic conditions, and tests showed up 

to 20% reduction in fuel consumption and CO2 emissions. 

Mandava et al. [10] suggested a piecewise linear-trigonometric function-based vehicle 

trajectory planning algorithm. Simulations showed this method reduced emissions by 12-14%. 

Asadi and Vahidi [11] developed an algorithm that uses SPaT information and short-range 

radar to reduce idling times at signalized intersections and fuel consumption. The authors tested the 

algorithm in three simulated scenarios, two different scenarios with a single vehicle using the 

algorithm, and one scenario with a fleet of vehicles using the algorithm. The best results for this 

algorithm showed a 47% reduction in fuel consumption. 

Rakha and Kamalanathsharma [12] developed a framework to reduce fuel consumption 

when approaching a signalized intersection using SPaT information. The algorithm developed used 

an objective function to minimize the total fuel consumed in passing an intersection safely. The 

algorithm was tested by running different speed profiles in a microscopic fuel consumption model.  

He et al. [24] proposed an optimization for speed trajectory on signalized arterials that 

considers the impacts of surrounding traffic. The work relied on numerical tests for verification. 

The tests showed fuel consumption reduced by 29% but increased travel time by 9%, and a 24% 

reduction in fuel consumption with no sacrifice in travel time. 

Huang and Peng [25] developed an algorithm to optimize vehicle speed trajectory over 

multiple signalized intersections using SPaT to minimize fuel consumption and travel time. The 

authors in [25] also studied the effects of vehicle motion during turning to show its significant effect 

on fuel consumption and travel time. The algorithm showed an average fuel consumption reduction 

of 12.1% and time reduction of 7.5% for single intersection cases. If turning motion is not 

considered, the resultant fuel consumption is lower by 0.77% and the traveling time is lower by 

6.00%. 
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Xia et al. [26] conducted simulation and field experiments testing the benefits of eco-

approach and departure (EAD). In the experiments V2C communication was used to receive SPaT 

information.  The traffic signal controller sent the SPaT information to a cloud-based server and 

the test vehicle was setup with an LTE interface enabling it to receive the SPaT information from 

the server.  The field tests were conducted on a closed fixed-time intersection. The simulation tests 

were performed on an intersection identical to the field experiment.  Both field and simulation tests 

showed fuel consumption improved by approximately 14%, and the field tests showed an improved 

travel time as well. 

Altan et al. [27] ran field experiments testing the benefits of EAD using a partially 

automated vehicle.  The test vehicle was equipped with a mechanism that allowed full-range 

longitudinal speed control. For this experiment, V2I communication was used where the traffic 

signal controller sent the SPaT information to an RSU that then broadcast the SPaT data via DSRC.  

The test vehicle was equipped with a DSRC OBU and a computer that used the SPaT information 

to calculate a new trajectory. The tests were conducted on a closed, fixed-time intersection, and 

measured the fuel consumption and CO2 emissions for manual driving with a driver-interface 

suggesting the calculated speed, and for partially automated driving where the calculated trajectory 

is given directly to the longitudinal speed control mechanism.  The experiments showed an average 

fuel consumption improvement of 17%, and 5% when only considering manual driving with 

suggested speed. 

In 2015, Hao et al. [28] developed and tested an EAD application for actuated traffic 

signals, where the traffic signal changes based on traffic rather than a predetermined fixed time. 

The experiments were run on a closed intersection using DSRC-based V2I communication. The 

tests concluded that at high speed the energy savings were between 5%-10%, and at lower speed 

the energy savings were between 6%-26%. 
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Then in 2018, Hao et al. [29] were able to test the EAD application for actuated traffic 

signals from 2015 in real-world traffic. The tests were run on a corridor with eight traffic controllers 

equipped with DSRC-based RSUs. The experiment had two vehicles driving at the same time on 

the corridor where one vehicle was implementing the EAD application and the other vehicle was 

not. The EAD application proved to save 2% energy for the entire trip, and saved 6% energy on the 

DSRC equipped segments of the corridor. 

Hao et al. [30] developed a graph-based trajectory planning algorithm (GBTPA) for eco-

approach and departure applications. The algorithm computes the speed trajectory with the lowest 

fuel consumption rate for a vehicle to cross the upcoming intersection. Numerical experiments 

showed average energy savings of 11% for level terrain. 

In 2021, Esaid et al. [31] developed a machine learning trajectory planning algorithm 

(MLTPA), which trained a machine learning model to approximate the solution from the GBTPA 

[Peng SAE]. The GBTPA required tens of seconds for computation, the MLTPA reduced that to a 

few milliseconds. Simulations showed median 5%-6.2% energy savings. It is this algorithm that is 

used for the eco-trajectory planning module in the ECoTOp system. 

2.3 Vehicle Trajectory and Traffic Signal Timing Co-optimization 

In recent years, there has been growing interest in developing methods for the co-

optimization of traffic signals and vehicle trajectories at isolated signalized intersections. This is 

because traditional traffic signal control methods, which focus solely on optimizing the traffic 

signal timings [18], can lead to inefficient vehicle movements and increased fuel consumption 

[32][33][34][35]. In this literature review, we discuss existing methods for co-optimization of 

traffic signals and vehicle trajectories, which can improve intersection performance and reduce the 

environmental impact of transportation. 
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One of the early methods proposed for combining vehicle trajectory optimization with 

traffic signal timing was with the use of Cooperative Adaptive Cruise Control (CACC) integrated 

with an intelligent traffic signal [36]. This controller can dynamically switch between serving a 

major street and minor street. Vehicle trajectories are determined in order to reduce idling, 

acceleration, and deceleration. The method significantly reduced vehicle stops, queues, and fuel 

use. However, the testing was done on a four-legged, single lane through approach intersection, 

which is unrealistic. 

Yu et al., [37] proposed a unified framework for optimizing traffic signals and vehicle 

trajectories using mixed integer linear programming (MILP). The model optimizes the phase 

sequence, green start and duration, cycle length, vehicle lane-changing behavior, and arrival times 

to minimize delays. The proposed model splits vehicles into platoons to ensure they pass through 

the intersection without stopping, maintaining desired speeds. The study showed that the proposed 

approach led to a decrease of up to 40% in vehicle delays under low traffic demand and up to 80% 

under high demand. Additionally, the approach led to a reduction of CO2 emissions by 

approximately 7.5% for low demand and 50% for high demand. 

In 2019, Xu et al. [38] developed a cooperative method to optimize traffic signal timing 

and vehicle control simultaneously. The method assumes that all vehicles are equipped with CAV 

technology and strictly follow the optimized speed profile. The traffic optimization is implemented 

at the signal controller, where the optimal traffic signal timing and vehicles' arrival times are 

calculated based on the speed and position of vehicles. Meanwhile, vehicles use the arrival times 

to compute the optimal speed trajectory. Simulation results demonstrated a reduction in fuel 

consumption, travel time, and vehicle stops. 

Also in 2019, Guo et al. [39] developed a combined dynamic programming and shooting 

heuristic approach for the joint optimization of vehicle trajectories and intersection controllers. The 
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approach considered both CAVs and human-driven vehicles. Using numerical experiments, the 

approach reduced travel time by up to 37% and fuel consumption by up to 31%.  

Du et al. [40] offered a method to optimized traffic signal timing and vehicle trajectories 

simultaneously that implements the GlidePath [27] method for generating eco-driving trajectories. 

The signal timing optimization method tries to minimize the delay time for all delayed vehicles, 

and minimize the difference among all phases. Simulation results showed a 13% improvement in 

intersection efficiency, and a 14% reduction in fuel consumption. 

More recently in 2022, Sun et al. [41] presented an eco-driving algorithm based on vehicle 

to infrastructure (V2I) communications at signalized intersections. The algorithm uses basic 

kinematic wave and car-following models. The algorithm considers CAVs and human-driven 

vehicles, and showed an increase in throughput, travel speed, and fuel savings at signalized 

intersections. However, the algorithm does not consider turning movements, and assumes human-

driven vehicles are connected.  

The co-optimization of traffic signals and vehicle trajectories at isolated signalized 

intersections is an important research area with significant potential for improving intersection 

performance and reducing environmental impact. In the landscape of existing literature, it's notable 

that various studies have primarily focused on scenarios involving either entirely connected 

vehicles, platooning strategies, or have omitted the consideration of turning movements. In 

contrast, my research endeavors to encompass a broader spectrum by adopting a more 

comprehensive approach that accounts for mixed traffic conditions, including conventional 

vehicles and diverse turning movements. The intricacies of my investigation have brought to light 

that these distinct strategies can yield promising outcomes when individually applied. Hence, while 

recognizing the merits of prior work, the distinctive nature of my study's focus on co-optimization 

prompts a nuanced evaluation of their results within the context of a holistic framework. 
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Chapter 3  

Functional Building Blocks 

Before introducing the ECoTOp approach, it is important to establish functional building 

blocks that provide essential groundwork for its development and pave the way for future 

advancements, including the exploration of an adaptive optimization strategy. The development 

and implementation of functional building blocks are critical steps in advancing transportation 

systems towards improved efficiency, sustainability, and safety. These building blocks encompass 

a range of innovative technologies and methodologies that address key challenges in transportation, 

energy, and air quality. By establishing these functional building blocks, researchers and 

practitioners can create a solid foundation for the deployment and evaluation of novel strategies 

and approaches. This section provides an overview of the functional building blocks employed in 

this study, which include the establishment of an Innovation Corridor as a real-world testbed, the 

development of a speed advisory tablet app for in-vehicle use, the utilization of lane-level GNSS 

applications for assessing U.S. DOT MAP message creator tool, the implementation of a simple 

queue estimation application, and the refinement of the MOVES emission model through sub-

binning. These building blocks serve as essential components in the broader research framework, 

paving the way for the subsequent development and evaluation of an adaptive optimization strategy 

for vehicle trajectories and traffic signal timing. 

3.1 Development of an Innovation Corridor Testbed for Shared Electric 

Connected and Automated Transportation 

The field of Intelligent Transportation Systems (ITS) is rapidly expanding and is at the 

forefront of four significant ongoing revolutions in transportation: shared mobility, vehicle 
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electrification, vehicle connectivity, and vehicle automation. While ITS has traditionally focused 

on enhancing safety and improving mobility, it also holds immense potential for increasing energy 

efficiency and reducing emissions. Recognizing the importance of these environmentally-focused 

benefits, particularly in California, we need to effectively manage the impact of shared mobility, 

vehicle electrification, vehicle connectivity, and vehicle automation on transportation. If these 

revolutions evolve independently, there is a risk of increased vehicle miles traveled, leading to 

higher emissions and greater fuel consumption. To explore how shared, electric, connected, and 

automated vehicle technologies can be harmoniously integrated to favor the environment, we 

propose the establishment of a comprehensive "testbed" in both simulated and real-world settings. 

The City of Riverside has made significant strides towards becoming a "smart city," 

integrating new technologies for transportation, energy, and city management. As part of this 

initiative, UC Riverside and the City of Riverside are developing an "Innovation Corridor" along a 

six-mile stretch of University Avenue, connecting the UCR campus with downtown (refer to Figure 

3.1). This corridor has been chosen due to its proximity to expanding transit and alternative 

transportation networks, research institutions affiliated with UC Riverside, and the growing 

entertainment hubs in downtown Riverside. Our plan involves updating all traffic signal controllers 

along the corridor to adhere to SAE connectivity standards. Dedicated Short-Range 

Communication (DSRC) roadside units will be installed at each traffic signal, facilitating the direct 

transmission of Signal Phase and Time (SPaT) messages to DSRC-equipped vehicles. Additionally, 

DSRC devices will broadcast Radio Technical Commission for Maritime Services (RTCM) and 

Map messages, supporting geofencing and precise positioning capabilities. 

This proposed Innovation Corridor will serve as a vital testbed in Southern California for 

exploring Connected and Automated Vehicle (CAV) applications, including connected eco-

approach and departure (EAD), eco-transit operations, smart intersection management, and other 
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applications aimed at improving safety, mobility, and environmental sustainability. Simultaneously, 

a "virtual" testbed was developed, simulating the same University Avenue corridor using the high-

fidelity microscopic traffic simulation model, VISSIM. This simulation platform will enable us to 

vary traffic volumes and simulate different penetration rates of connected vehicles. 

 

Figure 3.1. Innovation Corridor in Riverside, CA, Google Maps, 2018. 

3.1.1 Simulation Setup 

A microscopic simulation model of the traffic network at the real-world corridor was set 

up, and created using PTV VISSIM. The simulation will allow for the testing of different traffic 

scenarios and different traffic signalization algorithms. Traffic signalization in the simulation is 

actuated, as it is along the real-world corridor. Also, vehicle behavior in the simulation is calibrated 

to match real-world conditions there. Data such as traffic signal timing and vehicle position/speed 

is shared among vehicles and the infrastructure in the simulation, to represent the wireless exchange 

of Basic Safety Message (BSM) and Signal Phase and Timing (SPaT) information in the real world. 

3.1.2 Innovation Corridor 

This six-mile corridor has three consecutive intersections (Iowa Street, Cranford Avenue, 

and Chicago Avenue) where DSRC road-side units (RSU) that can transmit SPaT and MAP 

information were installed for this project, but will remain installed for future experiments. This 

corridor is located between the University of California, Riverside and downtown Riverside. The 



19 

corridor has proximity to expanding transit and alternative transportation network, research 

institutions associated with UCR, and the ever-expanding entertainment destinations in the 

downtown region, as shown in Figure 3.1. Along the corridor, all traffic signal controllers have 

been updated to be compatible with SAE connectivity standards. DSRC roadside-units are mounted 

along with each traffic signal. SPaT messages are directly transmitted to the DSRC units and 

forwarded to the vehicles equipped with onboard units. Meanwhile, RTCM and MAP messages are 

broadcasted via DSRC devices to support geofencing and accurate positioning.  This Innovation 

Corridor serves as a critical testbed in southern California for Connected and Automated Vehicles 

(CAVs) applications, such as connected eco-approach and departure, eco-transit operation, smart 

Intersection management, and other applications to improve safety, mobility and environmental 

sustainability. 

There are many state-of-the-art elements to the Innovation Corridor that address not only 

transportation but also energy and air quality. New generation air quality sensors are planned to be 

deployed at buses stops intersections and downwind/upwind of the freeways to evaluate the air 

quality and health impact of the traffic. A variety of other futuristic elements will also be integrated 

into the corridor, such as user-focused shared zero-emissions mobility services, renewable energy 

generation, and vehicle-to-grid interaction. More information on this project can be found in [42]. 

3.2 Speed Advisory Tablet App 

The development of the speed advisory tablet app has revolutionized the way drivers 

receive real-time information and guidance during their travel. This innovative application 

harnesses the power of connected vehicle technologies and advanced data analytics to provide 

drivers with personalized speed recommendations. By leveraging information from GNSS sensors 

and vehicle-to-cloud communication, the app delivers dynamic and context-aware speed advisories 

to drivers, enabling them to optimize their driving behavior. 
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The successful implementation of the speed advisory tablet app has paved the way for the 

realization of cooperative ramp merging field experiments. By integrating the app's functionality 

with advanced vehicle-to-cloud communication systems, researchers have been able to establish a 

cooperative environment where merging vehicles receive real-time speed advisories based on the 

prevailing traffic conditions and the behavior of other vehicles. This cooperative ramp merging 

approach enhances the merging process by facilitating smoother and more efficient maneuvers, 

reducing delays and improving overall traffic flow. Figure 3.2 shows an image of the speed advisory 

tablet app [43]. 

The cooperative ramp merging field experiments made possible by the speed advisory 

tablet app have provided valuable insights into the potential benefits of cooperative driving 

strategies. Through rigorous data collection and analysis, researchers have been able to assess the 

impacts of the app's speed recommendations on traffic performance, safety, and driver behavior. 

The findings from these experiments have demonstrated the effectiveness of the cooperative ramp 

merging approach in reducing congestion, improving travel times, and enhancing the overall 

efficiency of highway operations. 

The successful combination of the speed advisory tablet app and cooperative ramp merging 

field experiments marks a significant advancement in intelligent transportation systems. The 

integration of real-time guidance and cooperative driving principles holds immense potential for 

enhancing the safety, efficiency, and sustainability of our transportation networks. The insights 

gained from these experiments can inform the development of future mobility solutions, such as 

adaptive traffic control systems, connected vehicle technologies, and cooperative vehicle-

infrastructure systems, with the aim of improving overall traffic operations and delivering a 

seamless and enjoyable travel experience. 
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Figure 3.2. Speed advisory tablet app user interface. 

In addition to its significant impact on traffic operations and cooperative ramp merging, 

the speed advisory tablet app has also played a crucial role in driver behavior modeling and 

understanding the dynamics of human-vehicle interaction. By collecting and analyzing data on 

driver responses to the speed recommendations provided by the app, researchers have gained 

valuable insights into driver decision-making processes, behavioral patterns, and adaptation 

mechanisms. 

The app's integration with driver behavior modeling studies has enabled researchers to 

examine the influence of real-time information and guidance on driver behavior. Through data 

analysis techniques such as trajectory analysis, driving simulation experiments, and statistical 

modeling, researchers have been able to characterize the effects of the app's speed 
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recommendations on various aspects of driver behavior, including speed selection, lane changing, 

and merging patterns. These findings contribute to a deeper understanding of how drivers perceive 

and respond to real-time guidance, and they provide valuable inputs for the design and refinement 

of future advanced driver assistance systems (ADAS) and connected vehicle applications. 

Moreover, the availability of comprehensive data collected through the speed advisory 

tablet app has facilitated the development and validation of driver behavior models. By leveraging 

advanced modeling techniques such as agent-based modeling, machine learning, and statistical 

analysis, researchers have been able to capture the complex interactions between drivers, vehicles, 

and the environment. These models serve as valuable tools for predicting driver responses, 

simulating traffic scenarios, and evaluating the potential impacts of new technologies and 

interventions on driver behavior and traffic performance. 

More information about the cooperative ramp merging field experiments can be found in 

[43]. More information about the driver behavior modeling can be found in [44]. 

3.3 Lane-Level Localization and Map Matching for Advanced Connected and 

Automated Vehicle (CAV) Applications 

The utilization of lane-level Global Navigation Satellite System (GNSS) applications has 

revolutionized the way we assess and evaluate transportation systems, particularly in terms of their 

efficiency, safety, and overall performance. This section focuses on two key applications: the 

assessment of the U.S. Department of Transportation (DOT) MAP message creator tool and the 

implementation of a simple queue estimation application. 
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3.3.1 Assessment of U.S. Department of Transportation Lane-Level Map for 

Connected Vehicle Applications 

Lane-level GNSS applications have provided an invaluable tool for assessing the U.S. DOT 

MAP message creator tool, which is designed to facilitate the exchange of dynamic roadway 

information between vehicles and infrastructure. By leveraging the precise positioning capabilities 

of GNSS technology, researchers have been able to collect highly accurate and detailed data on 

vehicle trajectories, lane occupancy, and other relevant parameters. These data have enabled a 

comprehensive evaluation of the effectiveness and performance of the MAP message creator tool 

in terms of its ability to provide accurate and timely information to connected vehicles, support 

situational awareness, and enhance overall traffic management. 

3.3.1.1 USDOT Connected Vehicles Tool 

The USDOT J2735 MAP tool provides a web application user interface that uses satellite 

imagery to enable users to manually select and map lanes and features to create J2735 MAP 

messages. J2735 MAP messages describe an intersection’s physical layout, such as lanes, stop bars, 

allowed maneuvers, etc., in a digital form standardized by the Society of Automotive Engineers 

(SAE) [45]. The USDOT MAP tool can generate binary output as specified for Dedicated Short-

Range Communications (DSRC) roadside units or usable through cellular Infrastructure-to-Vehicle 

(I2V) communications. At present, the literature does not include any assessment of the accuracy 

of the maps produced by the USDOT map tool. In addition, the establishment of MAP or SPaT 

message in this map tool requires a verified point for each intersection. The assessment of the 

effective range of one verified point is conducive to decrease the demand of the number of verified 

points for dense MAP messages. 

The USDOT Connected Vehicles Tool offers free on-line access at 

https://webapp2.connectedvcs.com/. It offers tools for creating maps to support various Connected 



24 

and Automated Vehicle (CAV) message types. The ISD Message Creator constructs lane-level 

intersection maps to support MAP and SPaT messages. The detailed instructions under the “Help” 

button make the site self-explanatory. Our interest herein is assessing the position accuracy of the 

J2735 MapData message, which is one output type provided by the tool. 

3.3.1.2 Accuracy Assessment Method 

Accuracy will be assessed by comparing the coordinates of feature points determined by 

two different methods: the USDOT Map Tool and GNSS Real-time Kinematic Positioning (RTK) 

survey. These feature points are selected to satisfy the following specifications: 

• Each point should be easily and uniquely identifiable both to the surveyor and within the 

US-DOT tool. This is typically achieved by defining the points to be at the intersection of 

two nearly orthogonal lines. 

• Each point should have a clear view of the sky. 

• Each point should be near, but not on the road. This constraint is added to ensure the 

safety of the person performing the survey without needing to interrupt normal traffic 

operation. 

• The features in the US DOT imagery and the real environment should be at the same 

locations. The US DOT imagery is based on georectification of historic photos that may 

have been taken months in the past; therefore, recent changes in the real environment 

may not be accurately represented in that imagery. 

Figures 3.3 and 3.4 use imagery from the US-DOT tool to show the geographic 

distribution of the feature points. Each orange dot in Figure 3.3 shows the location of each of 

𝑁1 = 39 feature points near University of California-Riverside (UCR) College of Engineering 

Center for Environmental Research and Technology (CE-CERT). One of these points is defined 
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as the verified point (denoted Ρ𝑣
𝑒) for the US-DOT tool. The feature points in Figure. 3.3 are each 

within about 200 meters of the verified point. The solid red box displays the region within the 

dashed red line at the maximum zoom level allowed by the tool. Figure 3.4 uses orange dots to 

indicate the location of 11 survey areas. Each survey area, labeled from 𝑆1 to 𝑆11, includes 5 

feature points. These 𝑁2 = 55 feature points allow accuracy to be assessed over longer distances 

from the verified point. The red box in Figure 3.4 indicates the region portrayed in Figure 3.3. 

To assess accuracy, we compare GNSS survey and USDOT mapping tool locations for 

each feature point. The symbol 𝚸𝑒 denotes the feature position determined by GNSS survey. The 

symbol �̂�𝑒 denotes the position of the feature point determined by the US DOT mapping tool. 

The superscript on the vector 𝚸 denotes the frame-of-reference, such as 𝑒 for Earth-Centered 

Earth-Fixed (ECEF) and 𝑔 for the North, East and Down (NED) frame. The NED frame feature 

location of a point 𝚸𝑔 is computed by 

𝚸𝑔 = 𝑹𝑒
𝑔(𝚸𝑒 − 𝚸𝑣

𝑒) (3.1) 

Where Ρ𝑣
𝑒 is the origin of the NED frame and 𝑅𝑒

𝑔
 is the rotation matrix from the ECEF 

frame to the NED frame [45]. Eqn. (3.1) is valid both for GNSS survey and USDOT mapping 

tool locations.  

 

Figure 3.3. USDOT map accuracy test points near UCR CE-CERT. 
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Figure 3.4. Expanded test area for accuracy analysis. 

Section 3.3.1.3 discusses the GNSS survey and assesses its sources of error when 

determining the coordinates of each point. Section 3.3.1.4 discusses the US-DOT tool and 

assesses its sources of error when determining the coordinates of each point. Section 3.3.2 

combines the US-DOT and GNSS data to assess the overall map accuracy. 

3.3.1.3 Data Acquisition: GNSS Survey 

This section presents the procedure for determining the real-world position of the verified 

point and of each feature point (denoted 𝚸𝑘
𝑒 for 𝑘 =  1, . . . , 𝑁) by use of GNSS RTK survey, using 

a dual-frequency u-blox ZED-F9P receiver connected to a dual-band u-blox antenna. The antenna 
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is placed on the ground above the corresponding feature point. The receiver communicates with 

the UCR base station to obtain Radio Technical Commission for Maritime Services (RTCM) 

corrections and reports RTK fixed position solution in WGS84 ECEF frame. 

During the survey process for each point, the ZED-F9P in RTK fixed mode was used to 

record the position for at least 20 seconds. The mean of these measurements is used in Sec. 3.3.2 

as the surveyed position. The standard deviation of each coordinate in each surveyed position is 

less than 0.005m. The RTK GNSS surveyed position Mean Square Error (MSE), denoted herein 

as 𝜎𝐺 at the centimeter level (see e.g., Table 21.7 in [46]). 

In addition to the RTK GNSS survey position error characterized by 𝜎𝐺, there is also 

antenna placement error due to the fact that the human operator cannot perfectly place the 

antenna over the feature and account for the antenna phase offset. This error is accounted for by 

the symbol 𝜎𝑆 with MSE 𝜎𝑆  =  0.01𝑚. 

3.3.1.4 Data Acquisition: USDOT Map Tool 

The goal of this section is two-fold: (1) to describe the process by which this tool was 

used to obtain the geodetic coordinates for the selected locations; and (2) to define and assess the 

related sources of error. 

Process. Starting from the URL for the US-DOT tool given in Section II, the steps are as 

follows: 

1) In the ISD Message Creator, 

a) Click ‘View Tool’, then under ‘File’ button click ‘New Parent Map’. 

b) Center the map imagery over the region of interest at the ‘Zoom Level 21’, which 

is the highest resolution, as shown in the inset of Figure 3.3. 

c) Click ‘Builder’ from the left bottom corner. 



28 

d) Drag the ‘Verified Point Marker’ to the feature point defined in Section III and 

shown in Figure 3.3. A ‘Verified Point Configuration’ window will automatically 

open. Input the GNSS survey coordinates for the verified 

Latitude/Longitude/Elevation. 

e) Drag the ‘Reference Point Marker’ near the verified point in the map. The 

reference point is required for the tool. It determines the relative position of all 

feature locations in the J2735 map message, but does not affect the results of the 

experiments. 

2) Under the ‘File’ button from the top menu, select ‘New Child Map’. Click ‘Cancel’ for 

the popup questions. Use the pencil in the ‘Lanes’ button located near the left bottom 

corner. Double-click each desired feature location. An orange dot will be displayed as 

shown Figure 3.3. 

3) Click the pencil in the ‘Lanes’ button to turn it off. Then, select (i.e., mouse click) each 

feature point in the tool imagery (e.g., orange points in Figure 3.3) and note their 

coordinates as �̂�𝑘
𝑒. 

Note that all positions acquired from the US-DOT tool are WGS84 ECEF geodetic 

coordinates. 

Error Sources. The above process allows measurement error to occur in at least two 

ways. First, the user will have error in the clicking of points. For example, Steps 1d and 2 involve 

mouse clicks to select points. At best, the accuracy of such mouse clicks will be the size of the 

pixel in meters; however, the screen resolution may result in lower accuracy. The click error will 

be denoted by 𝜎𝐶. Second, the geodetic coordinates assigned to the clicked points will be 

imperfect due to georectification errors. This mapping error will be denoted by 𝜎𝑀. 
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Error Assessment. The goal of this subsection is to characterize the click accuracy 𝜎𝐶 in 

meters. Point-click experiments are performed for two feature points, which are marked as ‘Click 

test’ in Figure 3.3. For each experiment, using ‘Zoom level 21’, the targeted feature point is 

manually clicked 15 times (moving the cursor away and returning it between clicks) and their 

position �̂�𝐶𝑖

𝑔
 is recorded for 𝑖 =  1, . . . , 15. 

The accuracy analysis is performed in a locally-level NED tangent frame with its origin 

point at the verified position �̂�𝑣
𝑒. The NED feature location �̂�𝐶𝑖

𝑔
 is computed from �̂�𝐶𝑖

𝑔
 using Eqn. 

(1). 

Herein, click test error is characterized by the Standard Deviation (STD) of each 

component of �̂�𝐶𝑖

𝑔
=  [𝑃𝑁𝑖

𝑔
 , 𝑃𝐸𝑖

𝑔
 , 𝑃𝐷𝑖

𝑔
 ]

𝑇
 . The STD of North 𝜎𝑁 and East 𝜎𝐸 are listed in Table 1. 

The vertical STD 𝜎𝑉 is 0 since there are no changes in the Down coordinates in each click of each 

experiment. The horizontal STD, which defines the click accuracy 𝜎𝐶, is calculated by 

𝜎𝐶 = √𝜎𝑁
2 + 𝜎𝐸

2. (3.2) 

The values of 𝜎𝐶 summarized in Table 1, will be used in section 3.3.2 to estimate a value 

for 𝜎𝑀. 

Table 3.1. Standard deviation for click test. 

 𝜎𝑁 𝜎𝐸 𝜎𝐶 𝜎𝑉 

Click test 1 0.053 m 0.028 m 0.060 m 0.0 m 

Click test 2 0.042 m 0.032 m 0.053 m 0.0 m 

 

3.3.2 Accuracy Assessment 

This section uses the USDOT data in comparison with the GNSS survey data to assess 

the accuracy of the feature locations provided by the USDOT mapping tool. 
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3.3.2.1 Bias Analysis on USDOT Tool: Verified Point 

Figure 3.5 displays the north and east components of the error between the USDOT 

feature points from each click test �̂�𝐶𝑖

𝑔
 and the GNSS surveyed positions 𝚸𝐶

𝑔
 for the same features. 

For each click test, the NED frame positions �̂�𝐶𝑖

𝑔
 and  Ρ𝐶

𝑔
 are computed using Eqn. (3.1). The 

position error is calculated by 

𝛿Ρ𝐶𝑖

𝑔
= Ρ𝐶𝑖

𝑔
− Ρ𝐶

𝑔
 (3.3) 

Where 𝛿𝚸𝐶𝑖

𝑔
= [𝛿𝑃𝑁𝑖

𝑔
, 𝛿𝑃𝐸𝑖

𝑔
, 𝛿𝑃𝐷𝑖

𝑔
]

𝑇
 are the NED components of mapping error for click 

test 𝐶𝑖. 

Note that both the north and east components of the position error vector are biased by -

0.13 m and 0.21 m, respectively. Due to the fact that the bias is statistically the same for both 

feature points (i.e., click tests) and all clicks, this bias is attributed to the error in the placement on 

the verified point within the USDOT tool. See also the discussion of Figures 3.6b and 3.75b. 

 

Figure 3.5. North and east errors between USDOT tool and GNSS survey using the two feature points for the click test. 
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3.3.2.2 Feature Mapping Accuracy Analysis 

The USDOT map tool provides geographic coordinates (i.e., Longitude, Latitude, and 

Altitude) for feature points. The geographic coordinates are transferred to ECEF coordinates 

using the method described in Eqns. (2.9-2.11) of [47], then to local tangent plane using Eqn. 

(3.1). The USDOT location of feature k is denoted as �̂�𝑘
𝑒 and �̂�𝑘

𝑔
. The GNSS surveyed location of 

feature 𝑘 is denoted as 𝚸𝑘
𝑒 and 𝚸𝑘

𝑔
. The position error for feature 𝑘 is computed as 

𝛿𝚸𝑘
𝑔

= �̂�𝑘
𝑔

− 𝚸𝑘
𝑔

= 𝑹𝑒
𝑔

(�̂�𝑘
𝑒 − 𝚸𝑘

𝑒) (3.4) 

Where 𝛿𝚸𝑘
𝑔

= [𝛿𝑃𝑁𝑘

𝑔
, 𝛿𝑃𝐸𝑘

𝑔
, 𝛿𝑃𝐷𝑘

𝑔
]

𝑇
 defines the north, east, and down components of the 

error vector. The metrics for analyzing the accuracy of the 𝑘-th feature are the horizontal error 

norm:  

𝛿𝑃𝐻𝑘

𝑔
= √𝛿𝑃𝑁𝑘

𝑔 2
+ (𝛿𝑃𝐸𝑘

𝑔
)

2
; (3.5) 

And, the vertical error: 𝛿𝑃𝐷𝑘

𝑔
. The Horizontal Distance (HD) between the 𝑘-th test point 

and verified point (𝚸𝑣
𝑔

= 𝟎) is  

𝐷𝐻𝑘
= √(Ρ𝑁𝑘

𝑔
)

2
+ (Ρ𝐸𝑘

𝑔
)

2
. (3.6) 

Figure 3.6 displays data for assessing accuracy for the features shown in Figure 3.2 that 

are near CE-CERT. Figure 3.6a displays the horizontal error norm and vertical error for the 

feature points near the UCR CE-CERT. Figure 3.7a presents data for the expanded area shown in 

Figure 3.3. The expanded area includes 11 clusters. Data for each cluster is depicted in a different 

color in Figure 3.7. In each figure the x-axis is the horizontal distance 𝐷𝐻𝑘
 from the verified 

point. Figure 3.6a shows 0.17 m mean and 0.30 m maximum horizontal error. Figure 3.7a shows 

the horizontal error norm and vertical errors over longer horizontal distances from the verified 
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point. Figure 3.7a shows 0.18 m mean and 0.31 m maximum horizontal error. There are no 

discernible trends in the horizontal error as a function of the distance from the verified point. 

 

Figure 3.6. USDOT map accuracy assessment near UCR CE-CERT. 

 

 

Figure 3.7. Graphs of USDOT map accuracy assessment for expanded area. 
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Figure 3.7a also shows that the vertical error does change as a function of the distance 

from the verified point. The tool geo-rectifies remote sensing satellite imagery to achieve its 

accuracy in the horizontal directions. Satellite imagery does not provide depth information; 

therefore, the underlying vertical accuracy is limited. In Figure 3.7, In Figure 3.7, S1 in green 

with HD near 5.7 km, S2 in dark purple with HD near 6 km, S3 in amber with HD near 4.4 km, S4 

in light blue with HD near 2.9 km, S5 in orange with HD near 2.4 km, S6 in blue with HD near 

0.3 km, S7 in black with HD near 4 km, S8 in red with HD near 3 km, S9 in green with HD near 

4.2 km, S10 in deep blue with HD near 8.2 km, and S11 in magenta with HD near 9.7 km. 

Figures 3.6b and 3.7b show the individual components of the horizontal error. In Figure 

3.6b the mean north and east errors are -0.08 m and 0.12 m, respectively. In Figure 3.7b the mean 

north and east errors are -0.08 m and 0.15 m, respectively. These biases are consistent with each 

other and with those in Figure 3.5. This verifies the conclusion that the verified point selected 

within the USDOT tool is biased by this amount relative to the desired feature point, due to the 

limited resolution of the imagery in that tool. 

The symbol 𝜎𝐻 represents the MSE of the experimental horizontal position error 𝛿𝑃𝐻𝑘

𝑔
. 

The MSE of 𝛿𝑃𝐻𝑘

𝑔
 is 0.18 m for N1 points and 0.20 m for N2 points. The MSE 𝜎𝐻 over all 94 

feature points is 0.19 m. 

Figure 3.8 plots the horizontal and vertical errors versus vertical difference relative to the 

verified point. The horizontal accuracy remains constant as elevation changes. The vertical error 

is an order of magnitude larger than the horizontal error and does change with both the horizontal 

and vertical separation from the reference point. 
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Figure 3.8. Horizontal error norms and Vertical error of expanded area. 

3.3.3 Map Accuracy Assessment 

The experimental horizontal position error 𝜎𝐻 is the result of the four specific errors 

discussed in Sections 3.3.1.3 and 3.3.1.4, specifically: 

𝜎𝐻
2 = 2𝜎𝐶

2 + 𝜎𝑀
2 + 𝜎𝐺

2 + 𝜎𝑆
2. (3.7) 

The US-DOT click accuracy 𝜎𝐶 is multiplied by 2 since it is applied to the clicks for both 

the feature point and the verified point. Since we have experimentally determined values for 

𝜎𝐻 , 𝜎𝐶 , 𝜎𝐺 , and 𝜎𝑆, we can compute 𝜎𝑀 = √𝜎𝐻
2 − (2𝜎𝐶

2  + 𝜎𝐶
2 + 𝜎𝑆

2) . Using either value of 𝜎𝐶 

from the two click tests, the resulting value of 𝜎𝑀 is 0.17 m. 

3.3.4 Conclusions 

Hi-Def digital maps are an indispensable automated driving technology for CAV 

applications. The USDOT map tool allows users to create MAP and SPaT messages with free 

access, but an assessment of its accuracy does not exist in the current literature. This document 

assessed the accuracy of the US-DOT map tool using a set of 94 feature points with a 10 km area. 

The assessed accuracy is 17 centimeters. The assessment also demonstrated that this horizontal 

map accuracy was maintained within the 10 km distance of the USDOT map tool verified point 

that was used in this study. 
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3.4 Lane-Queue Estimation 

In addition to assessing the MAP message creator tool, the implementation of a simple 

queue estimation application has further demonstrated the power of lane-level GNSS applications 

in capturing and quantifying traffic congestion and queue dynamics. By combining GNSS data with 

advanced algorithms and mathematical models, researchers have been able to estimate queue 

lengths, queue speeds, and other critical queue-related metrics with a high degree of accuracy. This 

information is vital for traffic management agencies and transportation planners to effectively 

identify congestion hotspots, optimize traffic signal timing, and implement proactive measures to 

mitigate congestion and improve overall traffic flow. 

The lane-level queue estimation study conducted in simulation using VISSIM has been 

instrumental in advancing our understanding of traffic congestion and providing valuable insights 

for traffic management and control strategies. To accomplish this study, three key modules were 

developed: a GNSS error model, a lane-level map-matching module, and a lane-level queue length 

estimation module. 

The first module, the GNSS error model, aimed to replicate the inherent inaccuracies and 

limitations associated with GNSS measurements. By incorporating realistic error distributions and 

considering factors such as satellite geometry, signal obstructions, and atmospheric conditions, the 

model introduced a level of uncertainty into the simulated GNSS data, mirroring the real-world 

variability of GPS measurements. This enabled a more accurate representation of the GNSS 

positioning data, closely resembling the error-prone nature of GNSS measurements in actual field 

conditions. 

The second module, the lane-level map-matching module, played a critical role in linking 

the simulated vehicle trajectories with the underlying road network. By leveraging high-resolution 

lane-level maps and advanced map-matching algorithms, this module accurately associated each 
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vehicle's simulated position with the corresponding lane on the road network. This precise lane-

level information was vital for subsequent analysis, as it enabled the estimation of queue lengths 

on a lane-by-lane basis, providing a more detailed and accurate representation of traffic congestion 

within the simulation environment. 

The third module, the lane-level queue length estimation module, was the centerpiece of 

the study. Building upon the GNSS error model and the lane-level map-matching module, this 

module employed advanced algorithms and techniques to estimate the queue lengths in each lane 

of the simulated network. By analyzing vehicle trajectories, speeds, and spatial distributions, the 

module could identify stationary or slow-moving vehicles and accurately determine the extent and 

magnitude of queues in real-time. This lane-level queue length estimation provided valuable 

insights into congestion patterns, bottlenecks, and the overall performance of the simulated 

transportation system. 

The combination of these three key modules facilitated a comprehensive analysis of traffic 

congestion and queue dynamics at a lane-level resolution. The lane-level queue estimation study 

not only enhanced our understanding of traffic flow characteristics but also provided valuable 

inputs for developing efficient traffic management strategies, optimizing traffic signal timings, and 

evaluating the impact of various interventions and control measures. The results obtained from this 

study offer valuable guidance for transportation practitioners and decision-makers in their efforts 

to alleviate congestion, enhance traffic operations, and improve overall mobility in urban 

environments. 

3.4.1 Simulation Study 

This simulation study focuses on the accuracy of lane-level intersection queue estimation 

as a function of two variables: probe vehicle penetration density and GNSS position accuracy. 
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3.4.2 Simulation Network 

The simulations are done using the PTV VISSIM [48] microscopic traffic simulation 

software. The network in VISSIM is modelled after the Innovation Corridor in Riverside, California 

[42]. The simulated network is about 1.3 km of the Riverside Innovation Corridor and includes 3 

intersections along University Ave.: Chicago Ave., Cranford Ave., and Iowa Ave. The majority of 

this corridor consists of 2 lanes in the Westbound direction and 2 lanes in the Eastbound direction, 

and a speed limit of 50 km/h. Fixed-time signal control is coded for all three intersections. 

According to the signal timing tables provided by the City of Riverside, the cycle lengths of the 

Chicago, Cranford and Iowa avenue intersections are 96, 78 and 96 seconds, respectively.  Green 

and yellow intervals of all three intersections’ East-West through phase are 30 and 5 seconds. Traffic 

demands have been calibrated based on the turning movement count survey on June 2nd, 2016 by 

the City. Figure 3.9 shows the study corridor in both Google Map and VISSIM. 

 

 

Figure 3.9. Portion of the Innovation Corridor in Riverside, CA that is studied in the simulation and demonstration. (a) 

Top – Google map view. (b) Bottom – VISSIM view. 
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3.4.3 Simulation Scenario 

The simulation time is 1 hour, representing a typical morning peak hour (8 am – 9 am) 

traffic conditions along the corridor. There are 30 different scenarios simulated with each being run 

10 times. These scenarios cover 5 different penetration rates of 20%, 40%, 60%, 80% and 100%; 

and, 6 different GNSS error levels with position error standard deviations of 0, 0.5, 1, 1.5, 2, and 

2.5 m. 

3.4.3.1 Key Modules 

At signalized intersections, lane-level queue length is a critical traffic state that is 

monitored for efficient traffic signal control. To evaluate the impact of GNSS errors and probe 

vehicles density on real-time lane-level queue length estimation accuracy, we develop three key 

modules: GNSS error model, lane-level map-matching, and lane-level queue length estimation. All 

three are implemented in the simulation environment via application programming inter-faces 

(APIs).  

PTV VISSIM allows for an external dynamic link library (DLL) to interface with its vehicle 

models. The DLL is written in C/C++, and is called for each vehicle at each time step of the 

simulation run. VISSIM passes the current state of the target vehicle to the DLL. The standard VIS-

SIM computation engine provides the perfect location (i.e., the ground truth location) of the target 

vehicle. The simulation structure is shown in Figure 3.10. Using the API, the GNSS error model 

outputs a measured position by perturbing the ground truth position with a time-correlated random 

error process computed based on a user-specified position error standard deviation. The measured 

position is then fed into the lane-level map-matching algorithm to determine which lanes on which 

the target vehicles are traveling. 
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Figure 3.10. Key modules and flow diagram for the VISSIM lane-level queue length estimation. 

Based on the lane indices and other state information (e.g., velocity), the queue length 

along each approaching lane of each intersection can be estimated online and compared with 

ground truth to determine the queue estimation error. The statistics of lane index errors and lane-

level queue length errors are output and processed to evaluate the system performance. 

3.4.3.1.1 GNSS Error Module 

The standard PTV VISSIM implementation supplies user algorithms with the ground truth 

vehicle location at each time step.  To study the effects of GNSS position estimation error on lane 

queue estimation accuracy, this project required a module that would additively corrupt the ground 

truth location with measurement error to produce a measured position.  

This project designed, implemented, and used a GNSS error module. The theory underlying 

the implementation is described in Appendix B of [49]. That appendix also points to the GitHub 

URL for the software that implements the approach. 

3.4.3.1.2 Lane-level Map-matching Module 

Before incorporating the lane-level queue length estimation algorithm, a lane-level map-

matching algorithm is required to determine the lane index (i.e., lane ID) of each probe vehicle at 

each simulation time step.  
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This lane determination algorithm used herein is a point-to-curve algorithm discussed 

under Task 3. Note that the default driver behavior in VISSIM moves vehicles along the centerline 

of its lane. The GNSS measurement of the vehicle position will not be on the lane center. 

The lane determination accuracy 𝐴 will be quantified as  

𝑃𝑐 =
𝑆𝑐

𝑆𝑇
, 𝐴 = 100 ∗ 𝑃𝑐 , and 𝑃𝑒 = 1 − 𝑃𝑐  (3.8) 

where 𝑆𝑐 is the number of correct samples, 𝑆𝑇 is the total number of samples, 𝑃𝑐 is the 

probability of a correct determination, 𝐴 is the percentage of determinations, and 𝑃𝑒is the 

probability of an incorrect determination.  

3.4.3.1.3 Lane-level Queue Length Estimation Module 

The lane-level queue length estimation method is presented in the Appendix C of [49]. 

Within the VISSIM evaluation code, the values of the algorithm parameters were: Ld = 100 

(meters), Vf = 13.89 (meters/second); λ_0= 0.05555 for Westbound traffic (average number of 

arriving vehicles/ second), λ_0= 0.076389 for Eastbound traffic (average number of arriving 

vehicles/ second), h = 0.4 (seconds/vehicle), and k = 0.1429 (vehicles/ meter). 

This algorithm aims to predict the maximum queue length in a cycle when some vehicles 

are still on their ways to approach the intersection. The algorithm was written by Dr. Peng Hao, Dr. 

Guoyuan Wu, and Dr. J.A. Farrell, from University of California, Riverside. Algorithm 

implemented in VISSIM by the author of this dissertation, David Oswald, University of California, 

Riverside. 

Definitions: 

The following is a list of parameters and variables used in this document. Various of the 

parameters and variables are illustrated in Figure 3.11. 
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• Length of the detection zone (Ld): The distance between an upstream location (defined as 

the boundary of the detection zone) and the stop-bar along an ingress approach. 

• The set of vehicles in the intersection detection zone has two subsets, those that are detected 

and those that are not detected. 

• The detected vehicles are also referred to as probe vehicles or probes. Probe 

vehicles have an estimate of their position and velocity, which they communicate 

to the infrastructure and to other vehicles. All CVs are assumed to be detected. 

• Undetected vehicles do not communicate with the infrastructure or with other 

vehicles. 

• The set of vehicles will be divided into the following three categories. 

• Queued Vehicles: Detected or not detected vehicles that are stopped in front of the 

last detected queued vehicle at the current time. The last detected queued vehicle 

is included. 

• Arrival Flow Vehicles: Vehicles that have arrived in the detection zone following 

the last detected queued vehicle and before the current time t. 

• Future Flow Vehicles: Vehicles that may arrive after the current time. Arrival and 

future flow vehicles are currently in free flow, but may transition to queued in the 

future. 

• Future Deceleration rate (a): rate at which detected vehicles decelerate in the detection 

zone. 

• Average departure headway (h): The time gap between each vehicle passing the stop line 

(seconds per vehicle). 

• Jam density (k): The average number of vehicles per unit of distance per lane in the queue. 

• Penetration Rate (p): Expected ratio of probe vehicles to the total number of vehicles. 
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• Stop location (𝐿𝑠): The stop position relative to the stop-bar for the last detected vehicle in 

the queue. This is positive for vehicles approaching the stop-bar and negative for vehicles 

that have passed the stop-bar. 

• M: The maximum number of vehicles that can fit in a lane of length Ld at the assumed jam 

density k (i.e., M = Ld k). 

• Free-flow speed (Vf): Assumed velocity of vehicles that are not decelerating. 

• Current time (t): The time at which the queue length is computed. 

• T’ is the time at which the free flow line of the last detected queued vehicle would intersect 

the stop line. The free flow line is extended from before the time that the vehicle became 

queued (see Vehicle A in Figure 3.11). If there is no detected arriving or queued vehicle, 

then T’ is the time that the signal becomes red TR. 

• Time at which a free-flow vehicle will pass the stop bar if it enters the detection zone at 

time t (𝑇=t+Ld/Vf) 

• Estimated discharge time of the last queued vehicle (𝑇𝑄1). 

• Time the lane signal turns green (𝑇𝐺). 

• Time the lane signal turns red (𝑇𝑅). 

• Vehicle arrival rate (𝜆0): The average number of arriving vehicles per unit of time per lane. 

• Queue index: The queue position (in number) of a queued vehicle of a specific lane 

• 𝑄1: Total number of queued vehicles at time t, i.e., the index of the last queued vehicle (see 

Part 1). 

• 𝐸[𝑄2]: The expected number of arrival flow vehicles that will become queued vehicles (see 

Part 2). 

• 𝐸[𝑄3]: The expected number of vehicles outside Part 1 and Part 2 that will be queued 

within the current cycle. 
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The parameters that affect the performance of the algorithm are: h, p, k, and 𝜆0. The 

variables 𝑄1, 𝐸[𝑄2], and 𝐸[𝑄3] are computed by the algorithm. 

 

 

Figure 3.11. Illustration of variables and parameters for one lane of an intersection approach. 

For Figure 3.11, Vehicle A is stopped at time t. Vehicles B, C, D are detected, but not queued and 

not decelerating. Q1 is computed only using the position of A and is at least 1. For the value of x 

this figure, n(x) = 2. 

Assumptions: 

This algorithm uses the following assumptions: 

1. All lanes in an intersection approach have the same value of Ld. 

2. All vehicles have the same type, size and shape, which is known. 

3. Vehicle position means the center of the vehicle. 

4. The position of the GNSS antenna from the vehicle center is known, so that the vehicle 

position can be computed from the GNSS position and heading. 
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5. The average headway (h), jam density (k), penetration rate (p), free-flow speed (Vf), and 

deceleration (a) are known and the same for all vehicles. 

6. Vehicle arrivals at the boundary of the detection zone are described by a Poisson process 

with average rate 𝜆0 (# of vehicles per unit time). The arrival rate parameter (𝜆0) is known. 

7. No lane changes occur within the observation zone. 

Later these assumptions can be relaxed. 

Part 1: Queued Detected Vehicles Flow 

This section focuses on detected vehicles that are either already stopped or that are 

decelerating with the expectation that they will be stopped. In Figure 3.11, vehicle A is the last 

detected vehicle in the lane queue. 

In Figure 3.11, the black solid line shows the stop location as a function of time for the last 

detected vehicle (vehicle A). 

The goal of this section is to compute 𝑄1(𝑡). The formula is 

𝑄1(𝑡) = ⌊𝑘 ∙ 𝐿𝑠⌋ + 1, (3.9) 

where 𝑘 is the jam density, 𝐿𝑠 is the stop position relative to the stop bar for the last detected 

vehicle in the queue, and ⌊∙⌋ represents the floor function. Note that 𝑄1 is an integer. The 

computation needs to consider two possible situations. 

Stopped Vehicles (Vehicle A at time t in Figure): This case only applies if there are no 

detected decelerating probe vehicles and there is at least one queued probe (i.e., stopped). In this 

case, the calculation applies only to the last detected vehicle. (i.e., vehicle A in Figure 3.11). From 

the stop location of the last detected vehicle, 𝑄1(𝑡) can be directly computed: 

𝐿𝑠 = 𝐿𝑐 , (3.10) 

where 𝐿𝑐 is the current distance of the last stopped vehicle in the lane queue to the stop-

bar. Therefore, 𝑄1 can be computed using eqn. (3.9). 
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Decelerated vehicles: If there is at least one Decelerating Probe vehicle (a<0), then the 

one with the most positive value of 𝐿𝑠 will be the last one (i.e., furthest from the stop bar), coming 

to a stop behind vehicle A. The predicted stop location 𝐿𝑠 of the decelerating vehicle is 

𝐿𝑠 = 𝐿𝑐 −
𝑣2

2𝑎
, (3.11) 

which can be used in eqn. (3.9). In this equation, 𝐿𝑐 is the current location, 𝑣 is the current 

speed, and 𝑎 is the deceleration rate. 

Part 2: Arriving Flow 

This section accounts for the contribution to the queue from arrival flow vehicles, whether 

detected or undetected. In Figure 3.11, at the current time 𝑡 vehicles A, B, C, D are detected, and 

B, C, D are in the arrival flow. There may be additional undetected arrival flow vehicles. 

The additional queue length, denoted as 𝐸[𝑄2], that is computed in this section is the 

number of vehicles expected to arrive at the stop line between max(𝑇′, 𝑇𝑅)  and min(𝑇𝑄1
, 𝑇). All 

symbols are defined in the Definitions section. This includes detected free flow vehicles and 

undetected vehicles. 

If 𝑄1(𝑡) = 0 (there is no Decelerating/Queued Probe), then 𝑇’(𝑡) = 𝑇𝑅 and 𝑇𝑄1
(𝑡) = 𝑇𝐺. 

If 𝑄1(𝑡) is greater than zero, then 𝑇′ is as defined in the Definitions Section. The last 

detected queued vehicle’s departure time (i.e., the time to clear the known queue) is predicted as 

𝑇𝑄1
(𝑡) = 𝑇𝐺 + ℎ𝑄1(𝑡), (3.12) 

where the queue discharges at the stop line, h is the average headway, and 𝑇𝐺 is the time of 

the start of the green. 

If the penetration rate was 100%, then all vehicles would be detected. When the penetration 

rate is less than 100%, then there may be undetected vehicles in the queue and additional undetected 

vehicles may arrive. The theory to accommodate vehicles that are expected to arrive is as follows. 
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Let 𝑥 denote the number of undetected vehicles in the queue after the last detected vehicle in the 

queue (i.e., vehicle A). The time to clear the queue is 

𝑇(𝑥)′′ = min(𝑇𝐺 = ℎ(𝑄1 + 𝑥), 𝑇) , (3.13) 

In this expression, 𝑇𝐺 + ℎ(𝑄1 + 𝑥) is the expected departure time of the last queued vehicle 

in the Arrival Flow, and 𝑇 is defined in the Definitions Section. 

For each value of x from 0, …, M: 

1. Compute T(x)’’ using eqn. (3.13). 

2. Compute the number of known probe vehicles (e.g., B, C, D) predicted to pass the stop bar 

between T’ and T’’. This number is n for this x (i.e., n(x)). 

The probability mass function for 𝑄2 = 𝑥 is 

𝑃(𝑄2 = 𝑥) = 𝛽𝑃𝑃0
(𝑥; 𝜆)𝑃𝐵(𝑛|𝑥; 𝑝), (3.14) 

Where 𝛽 is a normalization factor, 𝑃𝑃0
(𝑥; 𝜆) is the Poisson distribution for x given rate 𝜆 =

𝜆0(𝑇′′ − 𝑇′). 

𝑃𝑃0
(𝑥, 𝜆) =

𝜆𝑥𝑒−𝜆

𝑘!
; (3.15) 

𝑃𝐵(𝑥, 𝑛) is the probability of n probes out of x given penetration rate 𝑝 (Binomial 

distribution), 

𝑃𝐵(𝑛|𝑥; 𝑝) = {
(

𝑥

𝑛
) 𝑝𝑛(1 − 𝑝)𝑥−𝑛, 𝑓𝑜𝑟 𝑥 ≥ 𝑛 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (3.16) 

Therefore, the expectation of 𝑄2 is 

𝐸[𝑄2] =
∑ 𝑥𝑃(𝑄2 = 𝑥)𝑀

𝑥=0

∑ 𝑃(𝑄2 = 𝑥)𝑀
𝑥=0

. (3.17) 

In this expression, M is the maximum number of vehicles that can fit in the lane of length 

Ld at the assumed jam density k (i.e., M = Ld k). 
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Part 3: Future Flow 

Based on the results from Part 2, if 𝑇𝐺 + ℎ(𝑄1 + 𝑄2) is later than the 𝑇 defined in the 

Definitions Section, then traffic may arrive after the current time and may also contribute to the 

queue. As there is no detected vehicle information here from which to infer the queue length, the 

algorithm uses the expected value of the vehicles in this time interval to approximate the additional 

expected queue length 𝑄3 in this part: 

𝐸[𝑄3] = max(0, 𝜆0[𝑇𝐺 + ℎ(𝑄1 + 𝑄2) − 𝑇]). (3.18) 

The complete answer 

The queue length is then 𝑄1 + 𝐸[𝑄2] + 𝐸[𝑄3]. 

 

3.4.3.2 Lane-level Queue Length Estimation Simulation Results 

This section assesses the impact of GNSS position error and CAV penetration rate on the 

accuracy of queue length estimation.  

The queue length estimation error is defined as 

𝐸 =  𝑄𝑎 − 𝑄𝑒, (3.19) 

where 𝑄𝑎 represents the actual queue length computed by VISSIM using ground truth and 

𝑄𝑒 represents the queue length estimated by the intersection controller using the measured position 

data from the CAV’s. 

Figure 3.12 shows one of the normalized grouped histograms of lane-level queue length 

estimation errors for each penetration rate as a function of the GNSS error standard deviation in 

meters. In each figure, the GNSS error standard deviations take the values: 0 m, 0.5m, 1m, 1.5m, 

2m, and 2.5m. Figure 3.12 shows the error statistics for a CAV penetration rate of 100%; figures 

for other CAV penetration rates can be found in [49]. The penetration rate for each figure is stated 

in the figure title. The horizontal axis in each figure represents the number of vehicles by which 
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the estimated queue length differs from the actual queue length. For instance, “0” means that the 

queue estimation is correct; an error of “1” means that the queue estimation is under-estimated by 

1 vehicle; an error of “-1” means that the queue estimation is over-estimated by 1.  

Figure 3.13 shows one of the normalized grouped histograms of lane-level queue length 

estimation error for each GNSS error level as a function of penetration rate. Figure 3.13 shows the 

queue estimation error statistics for a GNSS error of 0 for each CAV penetration rate, i.e., 20%, 

40%, 60%, 80% and 100%, respectively. Figures for more GNSS errors can be found in [49]. 

Figures 3.12 and 3.13 (and further figures in [49]) show that queue length estimation errors 

increase as the GNSS error increases and as the penetration rate decreases from 100%. This decline 

in performance is especially strong with respect to the decreasing penetration rate. This is because 

the algorithms performance is heavily dependent on the probability that a CAV is sufficiently near 

the end of the queue. 

 

Figure 3.12. Grouped histograms of lane-level queue length estimation error for different GNSS error levels at 100% 

CAV penetration rate. 
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Figure 3.13. Grouped histogram of lane-level queue length estimation error for different penetration rates of technology. 

It is clear that the lane-level queue estimation accuracy using only the position 

measurements from the CAV’s is strongly affected by the penetration rate. CAV’s do have 

additional information from the safety sensors that can be useful, such as distance to adjacent 

vehicles in front, behind, and in adjacent lanes. New queue determination methods that include this 

additional information could significantly improve performance at lower penetration rates. 

3.5 MOVES Emission Model Refinement 

The refinement of the MOVES emission model through sub-binning has been a significant 

endeavor in improving the accuracy and reliability of emission estimates in transportation systems. 

This section focuses on the advancements made in refining the MOVES emission model and its 

application in two field studies: one comparing a binning-style emission model to the 

Comprehensive Modal Emissions Model (CMEM) using data from EAD (Eco-approach and 

Departure) field experiments, and the other analyzing data from a project with Honda testing a 

Reactive Force Pedal (RFP) to compare MOVES against the refined MOVES model and actual 

CO2 measurements. 
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The refinement of the MOVES emission model involved the development and 

implementation of sub-binning techniques, which allowed for a more granular representation of 

vehicle characteristics and driving patterns. By dividing vehicle operations into finer subcategories, 

such as specific vehicle types, engine sizes, driving conditions, and operating modes, the refined 

MOVES model was able to capture the subtle variations in emissions that were previously not 

adequately accounted for in the original model. 

In the first field study, the comparison between a binning-style emission model and CMEM 

using data from EAD field experiments provided valuable insights into the performance and 

accuracy of the refined MOVES model. By analyzing emissions data collected from real-world 

driving scenarios, the study evaluated the ability of the refined MOVES model to better predict 

emission levels and capture the variations across different driving conditions and vehicle 

characteristics. More information can be found in [50]. 

The second field study focused on analyzing data from a project with Honda, specifically 

testing a Reactive Force Pedal (RFP) that aimed to promote more fuel-efficient driving behavior. 

In this study, the MOVES emission model was compared to the refined MOVES model and actual 

CO2 measurements obtained from the RFP-equipped vehicles. The goal was to assess the 

effectiveness of the refined MOVES model in accurately estimating CO2 emissions and its 

compatibility with real-world measurements. More information can be found in [51]. 

By conducting these field studies and comparing the refined MOVES model with 

alternative models and actual measurements, valuable insights were gained regarding the 

performance, accuracy, and applicability of the refined MOVES model. These findings provide a 

solid foundation for further refinement and improvement of emission estimation models, paving 

the way for more accurate assessments of transportation-related emissions and the development of 

effective emission reduction strategies. 
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3.5.1 Evaluating the Environmental Impacts of Connected and Automated Vehicles: 

Potential Shortcomings of a Binned-Based Emissions Model 

The primary goal of this study is to compare different energy and emissions modeling 

approaches for analyzing connected and automated vehicles. Actual energy and emissions are 

measured on a set of vehicles, which are then later compared to the U.S. Environmental Protection 

Agency’s MOVES model and also to the Comprehensive Modal Emissions Model (CMEM). These 

measurements and model predictions are shown for the Eco-Approach and Departure (EAD) 

application, where two vehicles are compared: one that has the EAD technology and one that does 

not. In this study, we first provide a brief background on the two energy and emission models, as 

well as the EAD application. The experimental methodology is then described, followed by the 

results and conclusions. 

3.5.1.1 Background 

3.5.1.1.1 Motor Vehicles Emission Simulator 

The EPA developed the Motor Vehicles Emission Simulator (MOVES) energy and 

emissions model originally in the year 2000 and has periodically updated it ever since. MOVES is 

used for a variety of applications, including a number of regulatory processes (see 

https://www.epa.gov/moves for details). MOVES can operate as either a macroscopic or 

microscopic model, depending on how it is used. MOVES is very data intensive, requiring 

estimates of vehicle activity, energy and emissions rates, and a number of other inputs. MOVES 

can assess the emissions of all vehicles on a road segment, based on aggregated data. The model 

represents the relationship between vehicle characteristics, operating conditions and the 

emission/fuel consumption rates from large datasets collected in both the laboratory and on the road 

using on-board portable emissions measurement systems. [52]. 
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MOVES categorizes all vehicles into source types and estimates the emission rates of the 

vehicles in one source type under specific operation mode (opmode). Consequently, when an 

individual vehicle is evaluated with MOVES, the average behavior of all vehicles of the same 

source type is given. Therefore, when evaluating the emission and fuel consumption of one specific 

vehicle, MOVES is not able to distinguish this vehicle from the average vehicle of the same source 

type [52].  It also uses a binning technique for its operation modes, using bins that generated for 

different levels of vehicle specific power (VSP) and average speed. 

For MOVES, the user defines vehicle types, speed data, traffic activities, geographical 

areas, pollutants, vehicle operating attributes, and meteorology parameters as the inputs of the 

model; then the model provides estimates of total emission inventories or emission factors [52][53]. 

3.5.1.1.2 Comprehensive Modal Emissions Model 

The Comprehensive Modal Emission Model (CMEM) is a microscopic, physical emissions 

model that estimates the emissions of individual vehicles [54].  CMEM was developed to capture 

the physical relationships between vehicle characteristics, operating conditions, and the 

emission/fuel consumption rates [52].  One prominent advantage of this approach is that it is 

possible tailor many of the physical parameters to fit a very specific type of vehicle (i.e., down to 

make and model) [54]. 

Both MOVES and CMEM takes the attributes of an individual vehicle, and its second-by-

second speed profile as input, and predicts second-by-second fuel consumption and tailpipe 

emissions of carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), and oxides of 

nitrogen (NOx).  Like MOVES, CMEM can predict energy and emissions from individual vehicles 

and an entire fleet of vehicles [54]. 



53 

3.5.1.1.3 Relevant Work 

In 2002, Cappiello et al. [55] presented a statistical emissions model called EMIT 

(EMIssions from Traffic), where CMEM and EMIT were compared to measured data. For fuel 

consumption rate, CMEM had a -2.2% error, while EMIT had a 5.3% error.  However, the data 

used by Cappiello et al. came from the same database that was used to develop CMEM, so the 

results are somewhat biased. 

In 2003, Rakha et al. [56] compared CMEM, MOBILE5a, and MOBILE6, which are the 

EPA’s predecessors to MOVES, and VT-Micro.  In this comparison, VT-Micro and MOBILE6 were 

shown to be more accurate than CMEM, but the database used in the study was the same database 

used to develop VT-Micro and MOBILE6.  

Chamberlin et al. [57] developed a microsimulation of a 3-leg intersection and used 

MOVES and CMEM to evaluate the different intersection control strategies.  In the study, only 

NOx and CO were considered; MOVES and CMEM showed similar results for NOx but had 

disparities for CO outputs. 

Zhang et al. [52] used MOVES and CMEM to evaluate the fuel consumption and emissions 

for a variable speed limit.  In the study, the I-710 freeway in California was built in VISSIM and 

used historical data from the California Department of Transportation.  The study showed that 

CMEM and MOVES were qualitatively similar, but there were discrepancies in the actual values 

output from the two models. 

Many CAV applications use MOVES to evaluate simulations or estimate emission outputs. 

Abou-Senna et al. [58] used MOVES to estimate emissions for a limited access highway simulation 

built in VISSIM.  Liu et al. [59] used smoothing techniques on EPA eco-autonomous driving cycles. 

The emission results were estimated using MOVES. Xu et al. [60] simulated transit eco-driving 
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methods using an algorithm that limits vehicle specific power while preserving the average speed, 

and the MOVES was used for the analysis. 

3.5.1.2 Results 

The methodology and experiment for this study will be presented and analyzed in Chapter 

4. Briefly, the experiments were conducted on the Innovation Corridor, implementing a modified 

version of the Eco-driving strategy for actuated signals described in [29]. The evaluation focused 

on the Eco-Approach and Departure (EAD) application, involving simultaneous testing of two 

light-duty vehicles. One vehicle utilized the EAD application for actuated signals, while the other 

vehicle followed regular driving patterns in traffic. The tests were conducted during weekdays 

between 10:00 am to 12:00 pm and 1:30 pm to 3:30 pm.  

MOVES uses vehicle specific power (VSP) and vehicle speed data to select emission 

values from an operation mode (opmode) bin.  The MOVES-based binning model utilized in this 

experiment uses the same approach as MOVES, but the data the values are chosen from were 

calibrated specifically for the test vehicle. 

For CMEM, the model was calibrated specifically for the test vehicle. This means that the 

readily available parameters, such as mass, engine displacement, the idle speed of the engine, were 

obtained, and the calibration parameters were derived, as described in [60]. 

The fuel consumption estimates given from the emission models CMEM and MOVES 

were compared to the measured fuel consumption.  The measured fuel consumption (FC), in grams, 

is obtained from using the mass airflow (MAF) and air/fuel ratio (AFR), which are read from the 

vehicle via the OBD-II cable.  

As an example, Figure 3.14 shows the comparison of CO2 outputs from the binning model 

and CMEM, to the measured value along with the velocity profile for a portion of the test data. In 

Figure 3.14, the overestimation of emission output from the binning model can be observed. 
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Figure 3.14. Emissions model comparison with velocity for an example experimental run. 

Table 3.2 summarizes the results of the MOVES-based binning model and CMEM 

compared to the measured data. It can be seen that the MOVES-based binning model overestimates 

the fuel consumption and CO2 emissions. This is most likely due to the fact that the MOVES-based 

binning approach does not take into account the vehicle’s fuel shutoff effects during decelerations. 

In this case, CMEM also over predicts emissions, but to a lesser extent than the MOVES-based 

binning approach. 

Table 3.2. Emissions model comparison 

Method 
Fuel Consumption 

Avg. g/mile 

CO2 

Avg. g/mile 

Measured 144.66 457.84 

CMEM 

152.29 481.99 

+5.27% +5.27% 

MOVES-based 
Binning Model 

163.58 517.72 

+13.08% +13.08% 

 

One of the reasons why the binning model misrepresents emission savings is presented in 

Figure 3.15.  Figure 3.15 shows how the MOVES opmode bins are defined by several VSP ranges 

and three vehicle speed ranges.  One opmode bin can be used for a wide range of VSP or vehicle 

speeds, and each data point will generate the emissions rate associated with the bin in which the 
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data point falls.  If a CAV application, such as EAD, is implemented and the VSP goes down 

slightly, but the data point is in the same bin, the benefit of the CAV application will not be captured. 

Table 3.3 shows the results of the EAD application with the CMEM and the binning model 

estimates compared to the measured values.  As previously mentioned, the measured values were 

recorded at the same time with two vehicles, one implementing EAD technology and one driving 

normally.  Each time the corridor was entered, both vehicles entered at the same time and stayed in 

different lanes to not influence the other driver.  The CO2 and fuel consumption used in Table 3.3 

are the average grams per mile where the total grams from the measured values and the outputs 

from both models are individually summed, and then divided by the total miles travelled.  The 

improvement column from Table 3.3 is the percentage decrease from no EAD to EAD.  The 

MOVES-based binning model underestimated the benefits of EAD by about half, whereas the 

CMEM estimate was closer to the actual measured improvement. 

 

 

Figure 3.15. MOVES binning method showing MOVES opmode bins with measured test data presented in red. 

 

 



57 

Table 3.3. Eco-Approach and departure evaluation 

 
No 

EAD 
EAD Improvement 

Actual 

CO2 
(g/mi) 

430.7 402.3 6.6% 

Fuel 
(g/mi) 

137.63 128.5 6.63% 

CMEM 

CO2 

(g/mi) 
439.9 419.83 4.5% 

Fuel 
(g/mi) 

138.97 132.5 4.65% 

MOVES-
based 

binning 

CO2 
(g/mi) 

475.4 462.69 2.67% 

Fuel 

(g/mi) 
151.87 147.8 2.7% 

 

3.5.1.3 Conclusion 

In this study, the fuel consumption and emissions of a light-duty vehicle recorded during 

real-world tests are compared to the fuel consumption estimates given from the Comprehensive 

Modal Emissions Model (CMEM) and a binning model based on the binning method of the Motor 

Vehicles Emission Simulator (MOVES) emission model. 

CMEM overestimated fuel consumption by 5.3%, and the binning model overestimated it 

by 13.1%. Therefore, this experiment suggests that CMEM is a more accurate emissions model.  

MOVES is a data-driven model and is less sensitive to transient processes because it describes the 

average behavior of a general vehicle type (e.g., passenger car, pickup truck) [54]. 

To demonstrate binning models’ underestimation of the fuel saving from CAV applications, 

an Eco-Approach and Departure application was performed on the Innovation Corridor with real-

world traffic. When comparing two vehicles with and without the technology, the CMEM-based 

method gave a more accurate estimate of the energy and emissions differences than the MOVES-

based model. The results of these tests demonstrate the importance of using a physical model for 

connected vehicle applications. 
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3.5.2 Real-world Efficacy of a Haptic Accelerator Pedal-based Eco-driving System 

It is well known that vehicle acceleration is one component of driver behavior that can have 

a major impact on fuel consumption and GHG emissions. Vehicle acceleration requires a certain 

amount of energy based on vehicle weight, vehicle speed, and road grade. Acceleration events 

requires more energy than cruising at a steady-state speed, resulting in increased fuel consumption. 

Over a fixed distance of travel, aggressive acceleration events result in higher fuel consumption 

and GHG emissions, and smoother driving (consisting of mild acceleration events) result in lower 

overall emissions [61]. Therefore, there have been a number of eco-driving technologies that have 

been developed, with the intent of reducing hard accelerations down to mild accelerations. 

One of these technologies is an accelerator pedal-based eco-driving tool that provides a 

reactive force to the driver to encourage gentle acceleration events. This Reactive Force Pedal 

(RFP) provides force feedback through the accelerator pedal, and can be in one of three modes: 

OFF, LOW, or HIGH. Each mode refers to the amount of force feedback from the pedal to the 

driver.  

In this study, 40 drivers were recruited to evaluate the RFP technology following a 

predetermined route, use all of the different RFP modes. Each driver followed the route three times, 

each time using a different mode, and the sequence of modes was randomized. For example, one 

driver would have the RFP OFF for the first trip, then on LOW for the second trip, and HIGH for 

the final trip. Then the next driver might have the RFP LOW for the first trip, OFF for the second, 

and HIGH for the final trip. The sequence would not always be the same in case there was an impact 

on driving. The velocity trajectories for each trip were used as input to the U.S. EPA’s emission 

model Motor Vehicle Emission Simulator (MOVES, see [16]) to estimate fuel consumption. The 

MOVES fuel consumption estimates are also compared to an “Acceleration Energy Equivalent 

(AEE)” method, described later in section 3.4.5 (change to correct section). 
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3.5.2.1 Background 

Over the years, there have been several eco-driving systems that have been developed that 

provide feedback to the drivers through the accelerator pedal. For example, in 2006, Nissan Motor 

Corporation began developing a driver support system that included accelerator pedal reaction 

force control [62], which later became the Nissan “ECO-Pedal” system [63]. Initially the support 

system was being designed to improve drivers’ awareness of a changing situation ahead in hopes 

of reducing rear-end collisions. The reactive force on the accelerator pedal would increase as the 

vehicle approaches another vehicle ahead. The system works in an anticipatory fashion, with a 

pedal pushback when the driver exerts excessive pressure on the accelerator pedal. According to 

Nissan’s internal research data, the ECO-Pedal improves fuel efficiency by 5-10% in most driving 

conditions [64]. 

In 2007, Ford Motor Company developed a real-time advisory system for hybrid electric 

vehicles (HEV) [65]. The advisory system used force feedback on the accelerator pedal, using two 

fuzzy logic controllers to determine the maximal driver demand corresponding to the desired fuel 

economy level, engine operating conditions, and vehicle speed. Testing was done on isolated test 

tracks, resulting in HEV fuel economy improvements by up to 3.5%. By 2009 the system was 

improved and achieved a 22% energy consumption savings for aggressive drivers in an HEV [66]. 

In Sweden, an acceleration advisory tool was installed in four postal delivery vehicles [67]. 

The advice was supplied to the drivers through resistance in the accelerator pedal. Data were 

collected for six weeks without the advisory tool and six weeks with the advisory tool. The study 

found that heavy acceleration was significantly reduced; however, no significant reduction in fuel 

consumption or emissions was recorded. 

In 2010, an experiment was conducted at Renault’s Technical Centre for Simulation using 

the CARDS driving simulator [68]. The simulator has a modular cockpit that is completely 
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instrumented to resemble a real car. The study was done to evaluate the efficiency of basic eco-

driving instructions, and to compare visual, haptic and coupled visual-haptic eco-driving 

assistances. Visual assistance was given on a 7-inch display on the mid-console, and the haptic 

assistance was given using a force feedback system on the accelerator pedal. The study showed no 

significant difference between assistance feedback type, meaning the visual feedback provided the 

same eco-performance as a haptic pedal. But drivers relied on the haptic pedal more when using 

both visual and haptic assistance. It was found that tailpipe emissions were decreased by 5 to 7% 

in the experiments [68]. 

In 2015, a comparison of twelve eco-driving interfaces was carried out using a high-fidelity 

driving simulator [69]. This study was done specifically for feedback on accelerator pedal usage. 

The twelve interfaces included six haptic, three visual, and three visual-auditory systems. Each eco-

driving interface advised the driver on the most fuel-efficient accelerator pedal angle in real-time. 

The haptic systems tested were force feedback, stiffness feedback, and adaptive stiffness feedback. 

Each haptic system consisted of two profiles: one to advise of the 7% angle at constant speed, and 

one to advise of the 23% angle during acceleration. Of the six haptic systems, a strong force 

feedback system was the most preferred by an array of drivers. 

Finally, in 2014, Honda Motor Company developed and produced a reactive force pedal 

for their Acura RLX vehicle, and in 2019 Honda teamed with UC Riverside for evaluating this 

technology. This research addresses the efficacy of this reactive force pedal. 

3.5.2.2 Methodology 

3.5.2.2.1 Experiment 

The purpose of these experiments was to assess the impact the force feedback pedal would 

have on an average driver in the United States. In total, 40 drivers were recruited to drive an Acura 

RLX equipped with the RFP technology. This vehicle was outfitted with a datalogger which logged 
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speed and other data from the engine control unit (ECU), as well as front and rear cameras for 

recording the driving scene. The force feedback pedal was capable of three modes: ‘Off’, ‘Low’, 

and ‘High’. In the ‘Off’ mode there is no pedal force, so the driving behavior reflects baseline 

driving conditions. In the ‘Low’ mode, the driver feels some mild pedal feedback with sustained 

resistance. In the ‘High’ mode, the driver feels an instantaneous burst of reactive pedal force at 

certain pedal stroke positions and a similar sustained resistance as the ‘Low’ mode. 

The 40 drivers were all required to be at least 21 years of age, hold a valid driver’s license, 

and have no prior experience driving an Acura RLX. For the participant pool to match the U.S. 

driving population closely, a target was set for different age/gender groups (see Table 3.4). These 

targets are based on the 2017 count of licensed drivers in the U.S. from the Federal Highway 

Administration [70]. 

The driving route is the blue loop in the Riverside California, shown in Figure 3.16 (the 

driving direction is clockwise). The route is roughly equally split between highway and arterial 

roadway driving, and takes approximately 40 minutes to complete a single loop. A human navigator 

sat with the driver to ensure that the driver remained on the route. Each driver drove the route three 

times, using a different setting for the pedal force each time. However, the drivers were not told the 

pedal force setting at the time of driving. Since drivers would become more familiar with the car 

as they continued to drive it, the order of pedal force settings was randomized for each driver. For 

example, for one driver it could be {OFF, LOW, HIGH} and for the next it could be {LOW, OFF, 

HIGH}. The entire test sequence was usually completed within a three-hour period. 
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Figure 3.16. Driving route for experiment in Southern California, Google Maps, 2019. 

 

Table 3.4. Number of driver participants in different age-gender groups. 

Age Group 
Male Female 

Target Actual Target Actual 

under 30 5 7 4 4 

30-44 5 5 5 5 

45-64 7 7 7 7 

65+ 4 3 3 2 

Total 21 22 19 18 

 

3.5.2.2.2 Data Analysis 

The velocity trajectories for each trip were used as input to the US EPA’s MOVES model 

to estimate fuel consumption. MOVES relies on Vehicle Specific Power (VSP) and velocity to 

estimate emission rates, including fuel consumption. It takes in second-by-second velocity 

trajectories, then calculates VSP (3.20) and uses this data to determine from which operation mode 

(OpMode) to assign an emission factor. For our data analysis, we have calculated VSP distributions 

for each driver, along with their acceleration-vs.-speed profiles, as shown in Figure 3.17. 

 

𝑉𝑆𝑃 = 𝑣 ∗ (𝑎 ∗ (1 + 𝜖) + 𝐺 ∗ 𝜃 + 4.448222 ∗
𝐴 + 𝐵 ∗ 𝑣2 + 𝐶 ∗ 𝑣2

2

𝑀
) (3.20) 

𝐴 = 36.39, 𝐵 = 0.3156, 𝐶 = 0.01918 
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𝑉𝑆𝑃 = vehicle specific power (
𝑘𝑊

𝑇𝑜𝑛
=

𝑚2

𝑠3 ) 

𝑣 = velocity (
𝑚

𝑠
) 

𝑎 = acceleration (
𝑚

𝑠2) 

𝜖 =Mass factor (0.1 in this case) 

𝐺 = acceleration of gravity (
𝑚

𝑠2) 

𝜃 = road grade (0 in this case) 

𝑣2 = velocity (MPH) 

𝑀 = vehicle test weight (kg) 

A is rolling resistance (
𝐾𝑊

𝑚𝑝𝑠
), B is friction term (

𝐾𝑊

𝑚𝑝𝑠2), C is aerodynamic drag (
𝐾𝑊

𝑚𝑝𝑠3) 

 

 

Figure 3.17. VSP distribution and acceleration profile generation methodology. 

This methodology was applied to all of the drivers, and the resulting VSP distributions and 

acceleration profiles allow us to best understand how the RFP technology changes the driving 

micro-behaviors. In addition, we were able to calculate the OpMode bins in the MOVES model 

(Figure 3.15) for each second of driving. 
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The procedure for the MOVES model is as follows: First, the second-by-second velocity 

profile is used to calculate a VSP profile. The instantaneous VSP and speed values are then used to 

determine which OpMode bin the activity falls in to. In our first method, we calculate an emissions 

and energy value using the default MOVES emission factors for a 2017 generic light-duty vehicle. 

As a second method, we used energy and emission factors that was calibrated for the specific test 

vehicle (2018 Acura RLX). 

The three versions of MOVES analysis were also compared to an Acceleration Energy 

Equivalent (AEE) methodology. The AEE method calculates positive energy utilization as shown 

in (3.22) [71]. 

𝐴𝐸𝐸 =  ∑ 𝜎𝑘(𝑣𝑘
2 − 𝑣𝑘−1

2 )
𝐾

𝑘=1
, (3.22) 

AEE units are (
𝑚𝑖𝑙𝑒2

𝑠2 ). 

𝑣 is velocity (
𝑚𝑖𝑙𝑒

𝑠
). 

𝜎𝑘 = 1 if 𝑣𝑘 > 𝑣𝑘−1 otherwise 𝜎𝑘 = 0.  

3.5.2.3 Results 

3.5.2.3.1 Overall Comparison 

For this analysis, we compared several different methodologies for determining 

the fuel consumption impacts from the RFP technology. Specifically, we compared: 

• Measured Fuel Consumption (baseline) 

• Honda AEE method 

• MOVES Generic Vehicle Methodology 

• MOVES Calibrated for target vehicle 

• MOVES Calibrated for target vehicle, with enhanced sub-binning 
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Measured Fuel Consumption: The test vehicle was equipped with a Honda’s 

proprietary data logger that is able to very accurately measure fuel consumption at 10Hz. 

These data were subsampling to 1 Hz. so that they are compatible with the MOVES 

model. 

Acceleration Energy Equivalent method: This method is a specific energy-based 

calculation that focuses on cumulative positive acceleration events. 

MOVES Generic Vehicle Methodology: The fuel consumption is predicted from 

MOVES for a generic 2019 Light Duty Vehicle (LDV), using MOVES default OpMode 

energy and emission rates. These fuel consumption rates are shown in Figure 3.18. 

MOVES Calibrated for Target Vehicle: The measured fuel consumption data for the target 

vehicle was used to calibrate the specific values of the MOVES OpMode bins. A similar model to 

that used in [50]. These fuel consumption rates are shown in Figure 3.19. 

MOVES Calibrated for target vehicle with enhanced sub-binning: The default range of 

the MOVES OpMode bins were selected to cover a large number of vehicle types over a wide range 

of activity patterns. Simultaneously, the number of bins were selected so that the overall 

calculations were computationally tractable. However, because of the bin size, MOVES is 

sometimes insensitive to small changes in VSP and speed, because many activity points fall within 

the same bin. As a result, we have enhanced the MOVES model by splitting the bins that have wide 

VSP ranges into sub-bins, providing a more accurate estimation method. The method of creating 

sub-bins is shown in Figure 3.20. The fuel consumption rate for these new sub-bins is shown in 

Figure 3.21. 
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Figure 3.18. EPA MOVES OpMode fuel consumption values for a 2019 default light-duty vehicle. 

 

 

Figure 3.19. MOVES OpMode fuel consumption values calibrated for the Acura test vehicle. 



67 

 

Figure 3.20. MOVES OpMode sub-binning methodology. 

 

Figure 3.21. MOVES OpMode sub-bin fuel consumption values calibrated for the Acura test vehicle. 

Each run had slightly different distance so fuel consumption calculations are normalized 

by distance traveled in order to be fairly compared. When considering the average response of the 

methodologies, we can compare the results as illustrated in Figures 3.22. Figure 3.22 illustrates the 

average savings with error bars when RFP setting is on LOW and HIGH compared to when the 

RFP is set to OFF during acceleration events. It can be seen that all four methods were able to 

estimate fuel consumption close to the measured value when RFP setting is on LOW. 
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Figure 3.22. RFP average fuel consumption savings. 

 

Figure 3.23. RFP average fuel consumption savings after normalization. 

The average savings during acceleration events given the measured fuel consumption 

turned out to be 1.8% for the RFP on the LOW setting, and 3.5% for the RFP on the HIGH setting. 

The uncalibrated MOVES using the generic 2019 LDV fuel consumption seems to follow the trend 

of the measured fuel consumption. For individual drivers, the uncalibrated MOVES results could 

be off by a significant margin. Table 3.5 shows a select group of drivers and MOVES is notably 

different from the measured results; however, when data from all drivers is taken into account, the 

MOVES results are comparable to the measured results. Lastly, the MOVES sub-binning method 

results are closer to the measured than the MOVES original bin as expected since it provided more 

sensitivity to the change in vehicle specific power. 

Next, we normalized the modeling results due to the differences in traffic conditions during 

the driving experiments without and with the RFP technology in order to reduce potential biases 
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due to those differences. Figure 3.23 shows the results after this normalization process. In Figure 

3.23, “Normalized” means that the calibrated MOVES results were corrected for unnecessarily long 

idling.  “Normalized & Adjusted” means that the calibrated MOVES was corrected based on the 

effect of change in the amount of speeding beyond the speed limit on top of the unnecessary idling. 

Figure 3.23 also shows normalizing for the AEE method. The “Normalized AEE (avg)” means that 

the AEE was adjusted by distance rate to average. The “Normalized AEE (5cycle)” means that AEE 

was adjusted based on the accumulated distance per total driven distance of combined 5-cycle 

City/Highway cycle; based on EPA’s 5-cycle driving pattern. After this normalization process, the 

results are more similar to the measured fuel consumption savings. 

Table 3.5. Selected drivers’ data fuel estimation method comparison. 

SubjectID Measured 
MOVES 

Uncalibrated 
Honda AEE MOVES Calibrated MOVES Sub-bins 

  

RFP low 

% 

savings 

RFP high 

% savings 

RFP low 

% 

savings 

RFP high 

% savings 
RFP low 

% savings 
RFP high 

% savings 
RFP low % 

savings 
RFP high 

% savings 
RFP low 

% savings 
RFP high 

% savings 

1 -7.58 0.63 4.10 2.47 0.50 -0.84 0.39 -1.94 0.10 -2.33 

8 -4.33 -5.41 3.96 2.83 4.91 9.36 -1.30 -1.96 -1.57 -2.63 

10 -7.38 -0.73 -11.69 -6.15 -16.86 -3.30 -7.61 -2.75 -7.65 -1.20 

16 3.55 0.32 0.46 2.26 9.04 4.19 3.59 -1.22 3.16 -1.81 

24 1.76 -1.48 7.03 1.20 8.22 3.54 1.85 1.02 1.81 1.85 

33 -4.15 -0.13 -1.64 2.44 -6.61 -5.42 -4.24 -1.14 -3.97 -1.07 

 



70 

3.5.2.3.2 Specific Driver Examples 

The results for all 40 drivers were processed (see appendix), but for this report we have 

selected drivers 6, 12, and 39 as examples to highlight the insights of the different methodologies. 

These three driver results are good representations out of the full data set. In these examples, the 

acceleration and VSP distributions are first shown. Next, the MOVES OpMode distributions for 

the three drivers are shown. Then, a comparison of the MOVES estimated fuel consumption and 

the measured fuel consumption is discussed. 

Figures 3.24, 3.28, and 3.32 show the acceleration and deceleration profile graphs of each 

example driver. The acceleration graphs illustrate that the RFP technology reduces the acceleration 

rates for all drivers. The acceleration rate (by speed) is an important indicator since it plays a large 

role in the VSP calculation.  

Since VSP is the main component for the MOVES model, we illustrate the VSP 

distributions for each driver in Figures 3.25, 3.29, and 3.33. The VSP distribution plots are useful 

in observing how we can perform sub-binning to provide greater model sensitivity.  

Figures 3.26, 3.30, and 3.34 illustrate the data for each driver plotted on top of the MOVES 

OpMode bins, while Figures 3.27, 3.31, and 3.35 “OpMode bin distribution” charts show a bar 

graph distribution of the actual numbers for each OpMode bin (normal MOVES on right, MOVES 

sub-bins on left). Figures 3.26, 3.30, 3.34, and the “OpMode bin distribution” charts show the same 

information but illustrate the data in a different insightful way.  

Figures 3.27, 3.31, and 3.35 “OpMode bin distribution” charts show that the higher VSP 

valued bins have less data points than the lower VSP valued bins, however the “Fuel used” charts 

show the fuel consumption by OpMode bin. The bins for higher VSP values actually account for a 

big portion of fuel consumption. 
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Figure 3.24. Acceleration and deceleration profiles for Driver 6. 

 

 

Figure 3.25. VSP distribution chart for Driver 6. 

 

Figure 3.26. Driver 6 data plotted onto MOVES OpMode bins. 
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Figure 3.27. Driver 6 data separated into MOVES OpMode bins. 

 

 

Figure 3.28. Acceleration and deceleration profiles for Driver 12. 

 

Figure 3.29. VSP distribution chart for Driver 12. 
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Figure 3.30. Driver 12 data plotted onto MOVES OpMode bins. 

 

Figure 3.31. Driver 12 data separated into MOVES OpMode bins. 

 

Figure 3.32. Acceleration and deceleration profiles for Driver 39. 
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Figure 3.33. VSP distribution chart for Driver 39. 

 

Figure 3.34. Driver 39 data plotted onto MOVES OpMode bins. 

 

Figure 3.35. Driver 39 data separated into MOVES OpMode bins. 
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3.5.2.4 Conclusions and Future Work 

By comparing several methodologies, we can gain a number of insights not only on the 

performance of the RFP technology, but also on the strengths and weaknesses of the estimation 

methodologies.  

The RFP technology was designed to encourage drivers to accelerate in a gentler fashion. 

Section (show correct section) shows the acceleration profile for three drivers, but all drivers had 

similar results. On average, the drivers’ accelerations were reduced when using the RFP technology, 

resulting in a fuel savings and GHG emissions reduction in the range of 1.5% - 3% 

Three estimation methodologies were analyzed in this research: Uncalibrated MOVES, 

Calibrated MOVES, Calibrated MOVES with Sub-binning, and the AEE method. The direct 

comparison of the AEE method to the original MOVES results was not fair because the AEE 

method only considers positive acceleration. In order to make a fair comparison, only acceleration 

events were considered for both of the MOVES-based methods. During acceleration events, the 

RFP technology saved fuel consumption by 1.8% for LOW setting and 3.5% for HIGH setting. 

On average, MOVES provides results that are similar to the actual fuel savings; however, 

Table 3.5 shows that for individual drivers MOVES can be off by a significant margin. Using the 

MOVES model with the default OpMode bins typically under-estimates high power events because 

OpMode bins can represent a vast range of VSP values, but have the same emission factor for all 

data points in that bin. Also, the MOVES default bins can under-estimate traffic smoothing effects, 

see Figure 3.36. A traffic smoothing effect can cause a large amount of data points to shift slightly, 

but in the MOVES model those data points would remain in the same OpMode bin. In reality, 

shifting enough data points could change the fuel consumption dramatically, but the MOVES model 

would not show any change. 
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Based on what we have seen to date, we have the follow conclusions: 

• On average, the MOVES model provides average results that are similar to actual 

measured fuel savings; however, it is clear that MOVES performance greatly improves 

when the model is specifically calibrated for the test vehicle. 

• It is unclear what is going on with Honda AEE method, particularly with the results of 

the RFP HIGH mode. We are having further discussions with Honda about their method. 

• When the specific vehicle activity patterns are analyzed in detail (for example drivers 6, 

12, and 39), we see that the MOVES predictions are sometimes quite a bit off, for a 

variety of reasons. The potential problems with the MOVES method include: 

• The bin sizes are too large for OpModes within the high emission rates; 

• MOVES typically underestimates energy and emissions of high VSP values, 

particularly at low speed.  

• To address the bin size problem, we have developed a sub-binning method, which tends 

to increase the sensitivity of the model predictions. 

For future work, we will explore further developing the sub-binning version of MOVES to 

make it more sensitive to small changes in VSP and speed. 

 
Figure 3.36. Traffic smoothing effect in MOVES OpMode bins. 
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Chapter 4  

Eco-trajectory Planning 

This chapter focuses on the eco-trajectory planning optimization component of the 

ECoTOp system, which plays a crucial role in achieving efficient and safe transportation 

operations. It encompasses the description and analysis of two field experiments conducted to 

gather real-world data and insights, followed by a detailed exploration of the eco-trajectory 

planning optimization methods used within the ECoTOp framework. 

The first field experiment aimed to capture and analyze real-world vehicle trajectories and 

using the data to compare to a binning-based emission estimation model similar to the U.S. 

Environmental Protection Agency’s MOVES model and also to the Comprehensive Modal 

Emissions Model (CMEM) described in section 3.5.1. Through the deployment of advanced 

sensing technologies, such as GPS devices and onboard data recorders, a wealth of trajectory data 

was collected from a set of vehicles in real-world traffic. This section will describe the experiment 

and eco-trajectory planning algorithm used for the study in section 3.4.3 (put correct section). 

The second field experiment focused on comparing the performance of Dedicated Short-

Range Communications (DSRC)-based and cellular-based Eco-Approach and Departure (EAD) 

systems along signalized corridors. The study was conducted in a real-world setting with a variety 

of vehicles and traffic conditions. The data obtained from this experiment provides valuable 

insights into the potential benefits and challenges associated with different eco-trajectory planning 

strategies and control approaches. 

Building upon the knowledge gained from the field experiments, the chapter then delves 

into the eco-trajectory planning optimization methods employed within the ECoTOp algorithm. 

These methods incorporate a combination of mathematical modeling, optimization algorithms, and 
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data-driven approaches to determine the optimal vehicle trajectories in response to changing traffic 

conditions and signal timings.  

The chapter concludes by discussing the integration of the vehicle trajectory optimization 

component within the broader co-optimization framework. It highlights the interactions and 

coordination between vehicle trajectories and traffic signal timings, emphasizing the need for a 

holistic approach that simultaneously considers both elements to achieve optimal system-wide 

performance. The findings and insights gained from this chapter contribute to the development of 

a comprehensive and effective co-optimization strategy, enabling improved transportation 

efficiency, reduced congestion, and enhanced mobility in urban environments. 

 

4.1 Field Study for Emission Model Comparison 

4.1.1 Experiment Setup 

In our experiments, we utilized a test vehicle (2008 Nissan Altima with a 4-cylinder, 2.5-

liter engine) that is equipped with EAD enabling hardware.  The vehicle has a radar system in front 

to detect preceding vehicles; it is also equipped with a Savari MobiWAVE MW1000 as a DSRC 

on-board unit (OBU), a laptop computer with Linux operating system, and a built-in driver-vehicle 

display.  The operating system used on this OBU is Linux. 

Figure 4.1 shows the on-board devices and the interaction between them.  In Figure 4.1, 

the radar sends information to the laptop through Kvaser CAN (Controller Area Network) Interface, 

the OBU receives the SPaT message from the RSU and then sends those to the laptop, and an 

ELM327 OBD-II to USB cable sends the vehicle operational data to the laptop, including fuel 

consumption. 
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Figure 4.1. Experiment vehicle with on-board devices. 

4.1.2 Eco-Approach and Departure for Actuated Signals 

The aim of the EAD algorithm used for testing is to reduce the idling time at intersections, 

and avoid unnecessary accelerations, while also allowing for safe driving. 

The signal controllers along the innovation corridor transmit SPaT information, providing 

a timestamp for the minimum time remaining and maximum time remaining. The traffic signals 

along the innovation corridor are actuated signals, making it difficult at times to predict the 

remaining time.  For these reasons a variant of the Eco-driving strategy for actuated signals in [29] 

was employed. Note that in [29], due to the limited field of variables, only minimum time-to-change 

was provided for the green phase by the RSU, while maximum time-to-change was provided for 

the red phase. In our experiments, both maximum and minimum time-to-change are utilized.  

 

Figure 4.2. Flowchart for eco-approach to intersection. 
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The flowchart for this EAD algorithm is shown in Figure 4.2.  Like other EAD algorithms, 

the objective is to provide a recommended trajectory that will have the vehicle pass the intersection 

as the signal turns green.  The major difference of this EAD algorithm is that for the red-light case, 

the maximum time is used in order to check safety and determine if the vehicle needs to accelerate.  

For the other cases, the minimum time is used as the pivotal measure for planning. 

4.1.3 Experiment 

The experimental tests were performed along a section of the Innovation Corridor spanning 

three traffic intersections, indicated by the red box in Figure 3.1.  Each test run started 100m east 

of Iowa Ave. to 100m west of Chicago Ave., then a U-turn was made and then return to 100m east 

of Iowa Ave.  The entire length of each run was 1.38 miles. 

For the EAD application, two light-duty vehicles were tested at the same time.  One vehicle 

was employing the EAD application for actuated signals while the other driving normally with 

traffic. Tests were done between 10:00 am to 12:00 pm and 1:30 pm to 3:30 pm on weekdays. 

MOVES uses vehicle specific power (VSP) and vehicle speed data to select emission 

values from an operation mode (opmode) bin.  The MOVES-based binning model utilized in this 

experiment uses the same approach as MOVES, but the data the values are chosen from were 

calibrated specifically for the test vehicle. 

For CMEM, the model was calibrated specifically for the test vehicle. This means that the 

readily available parameters, such as mass, engine displacement, the idle speed of the engine, were 

obtained, and the calibration parameters were derived, as described in [60]. 
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4.2 Comparison of DSRC-based and Cellular-based Eco-Approach and 

Departure along Signalized Corridors: A Field Study 

As part of a collaboration between the City of Riverside and University of California, 

Riverside, the traffic signal controllers along the Innovation Corridor were upgraded to adhere to 

SAE connectivity standards, in order to address the infrastructure connectivity issues. As part of 

this project, intersections were upgraded to support both dedicated short-range communications 

(DSRC) and cellular-based communications. The research team used resources already available, 

such as an equipped connected vehicle and their extensive knowledge of the development and 

deployment of CAV applications, and selected Connected Eco-Approach and Departure for 

Actuated Signalized Intersections [29] as the target application for a comparative (i.e., before and 

after) study in order to assess the potential benefits in terms of mobility and environmental 

sustainability. Environmental sustainability refers to the responsible use and management of natural 

resources in a way that meets the needs of the present generation without compromising the ability 

of future generations to meet their own needs. 

In this study, field operational tests of various EAD ([72][73]) methods to evaluate the 

advantages of the infrastructure upgrades on the Riverside Innovation Corridor were conducted. 

By leveraging Signal Phase and Time (SPaT) data, EAD can optimize vehicle speed and trajectory 

to minimize stops and reduce travel time, while also improving safety by avoiding last-minute 

maneuvers.  

Signal Phase and Time (SPaT) data [74] is a type of traffic signal information that provides 

details about the current and upcoming signal phases at an intersection. This data includes 

information such as the current signal phase (e.g., green, yellow, or red), the time remaining in the 

current phase, and the timing of the next phase transition. SPaT data is transmitted by connected 

infrastructure through Dedicated Short-Range Communication (DSRC) or cellular networks, and 
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can be used by CAVs to anticipate changes in traffic flow and adjust their driving behavior 

accordingly. 

Dedicated Short-Range Communication (DSRC) [75] is a wireless communication 

technology that enables short-range communication between devices. DSRC is designed 

specifically for vehicular communication and is commonly used in Intelligent Transportation 

Systems (ITS). DSRC allows vehicles to communicate with each other and with the infrastructure 

around them, such as traffic lights, signs, and road sensors. This technology enables the exchange 

of important information, such as traffic conditions, road hazards, weather, and Signal Phase and 

Timing (SPaT), which can help drivers make more informed decisions and improve overall road 

safety. DSRC operates on a frequency band reserved for its use, and its short-range capabilities 

make it ideal for use in urban environments where there are high levels of congestion and frequent 

stops. Eco-Approach and Departure (EAD) uses the SPaT received through DSRC to optimize 

vehicle speeds through the intersection. 

Cellular networks can play a crucial role in the deployment of connected and autonomous 

vehicles (CAVs). With their high bandwidth and low latency, cellular networks can provide the 

reliable and real-time communication required for CAV applications. CAVs generate massive 

amounts of data, which must be transmitted and processed quickly to enable safe and efficient 

driving. Cellular networks offer the capacity and speed needed to transmit this data, as well as the 

ability to support multiple connections simultaneously [76]. Additionally, cellular networks can 

enable CAVs to communicate with other vehicles [77], roadside infrastructure [77], and cloud-

based services [78], providing greater situational awareness and coordination. As CAV technology 

continues to evolve, the use of cellular networks is likely to become increasingly important in 

supporting safe and efficient transportation systems. Cellular networks, like DSRC, can be used to 

send and receive SPaT data [79]. 
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Connected Eco-Approach and Departure (EAD) application utilizes: 1) the SPaT data, 

either from DSRC or cellular communication, from the upcoming traffic signals; 2) map and route 

information (e.g., stop-bar location, road grade, road speed limit, turning movement); and 3) the 

states and powertrain limitations of the ego-vehicle (e.g., position via GNSS, instantaneous speed, 

acceleration/deceleration limit), to determine the optimal recommended speed profile that can 

minimize the target vehicle’s energy consumption and tailpipe emissions when approaching to and 

departing from signalized intersections, without compromising the mobility performance [29]. The 

EAD program used in this project, in contrast to the majority of other EAD applications now in 

use, is capable of using the SPaT data from all downstream actuated signalized crossings to 

calculate the ideal vehicle trajectory for each corridor. 

The remainder of this section is organized as follows: a short background of comparisons 

of DSRC and Cellular technologies. Next a description of the EAD methods tested in this research, 

including intersection-by-intersection and corridor-wise EAD. Then a description of the field test 

experiments conducted. Finally, the results are presented followed by a discussion of the results. 

4.2.1 Background 

DSRC (Dedicated Short-Range Communication) and 4G/LTE (Long-Term Evolution) are 

two wireless communication technologies that are commonly used for vehicular communication in 

Intelligent Transportation Systems (ITS). DSRC is a short-range wireless communication protocol 

that operates in the 5.9 GHz frequency band and is specifically designed for vehicular 

communication. On the other hand, 4G/LTE is a cellular-based communication technology that 

operates in the licensed frequency bands, typically in the 700 MHz to 2.6 GHz range. 

In recent years, there have been numerous studies comparing the performance of direct 

I2V-based and cellular-based CAV applications [80],[81],[82]. These studies have investigated the 

reliability, latency, and throughput of the two technologies in various conditions and have provided 
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insights into the benefits and limitations of each technology. Understanding the strengths and 

weaknesses of DSRC and 4G/LTE technologies is crucial for designing effective EAD systems that 

can improve traffic efficiency and reduce emissions. The performance comparison between 

Dedicated Short-Range Communication (DSRC)-based and Cellular-based CAV applications has 

been studied extensively in the literature. 

In a study by Xu et al. [80], a field experiment was conducted to compare the performance 

of DSRC and cellular-based CAV applications, which included Collision Avoidance, Traffic Text 

Message Broadcast, and Multimedia File Download. The experiment was conducted under 

different conditions. The results showed that the DSRC-based system had lower communication 

delay and higher packet delivery ratio, within communication range, compared to the cellular-based 

system. The authors concluded that a combination of DSRC and cellular-based systems depending 

on CAV application would work best. 

Vinel [81] conducted a study in which analytical frameworks were developed to assess the 

performance of DSRC and cellular-based on the probability of delivering safety beacons before the 

deadline. The numerical results of the study indicate that when 50 vehicles are present, the 

probability of cellular communication is lower than that of DSRC. Specifically, the probability of 

DSRC was 83%, while the probability of cellular was even lower, which falls below the 

requirements for typical safety applications.  

Similarly, a study by Rayamajhi et al. [82] conducted a field experiment to compare the 

performance of DSRC and cellular-based communication while driving. The study found that the 

DSRC-based system had larger average packet loss length and a larger mean burst length, which is 

the average length of burst packet loss, compared to the cellular-based system. Burst packet loss is 

when pack loss with more than one packet loss in the sequence occurs. With good line of sight 

(LOS) reliability for both technologies were similar. 
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Overall, the literature suggests that DSRC-based CV systems and cellular-based CV 

systems both have their upsides and downsides. The choice of communication technology may 

depend on factors such as data latency, packet loses, cost, infrastructure availability, and regulatory 

requirements. 

4.2.2 Methodology 

This study aims to evaluate and compare the effectiveness of corridor-wise Eco-Approach 

and Departure (EAD) and intersection-by-intersection EAD systems in reducing fuel consumption 

and emissions while improving traffic flow. Fuel consumption and emissions are the metrics being 

used to evaluate the impact on environmental sustainability. The study was conducted on the 

Riverside Innovation Corridor with multiple intersections equipped with DSRC and cellular 

communication. 

4.2.2.1 Study Area and Data Collection 

The infrastructure on the Riverside Innovation Corridor is continuously being instrumented 

with different emerging elements to facilitate research in Shared, Electric, Connected and 

Automated (SECA) transportation systems. In addition to the firmware upgrades of traffic signal 

controllers that are compatible with the latest version of SAE J2735 standard, three intersections 

along the Innovation Corridor are capable of broadcasting Signal Phase and Timing (SPaT), and 

Geographic Intersection Description (GID) or MAP messages via both direct I2V and cellular 

network communications. These three intersections include (from West to East) Chicago Avenue 

& University Avenue, Cranford Avenue & University Avenue, and Iowa Avenue & University 

Avenue, as indicated by red box in Figure 3.1. 
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4.2.2.2 Eco-Approach and Departure Deployment and Configuration 

The EAD systems used in this study were deployed and configured based on their 

respective communication technologies, namely DSRC and cellular. The DSRC-based EAD system 

was installed using the V2I communication infrastructure, which included RSUs deployed at the 

signalized intersections along the study corridor. The cellular-based EAD system used a cellular 

Wi-Fi hotspot, which communicated with the cloud-based server for signal phase and timing 

information. 

Both EAD systems were configured to provide the recommended speed to approaching 

vehicles, based on the signal timing and the position of the vehicle. The DSRC-based EAD system 

was configured to communicate with the on-board DSRC unit installed in the participating vehicles, 

which enabled vehicle-to-infrastructure (V2I) communication. The cellular-based EAD system was 

configured to use the cellular data communication for providing the recommended speed to the 

driver. 

The DSRC-based EAD system was configured to operate in the 5.9 GHz frequency band, 

which is reserved for Intelligent Transportation Systems (ITS) applications. The cellular-based 

EAD system used the cellular network for communication, and thus had no frequency restrictions. 

Both systems were configured to operate in compliance with the applicable communication 

standards and protocols. The configuration parameters of the EAD systems, such as the 

recommended speed threshold and the distance to the stop bar, were kept consistent across both 

systems to ensure a fair comparison. 

In this section, EAD methods using edge-computing were based on the EAD algorithm as 

in (3). EAD methods using cloud-computing were based on Hao et al. (12), in which a graph-based 

trajectory planning algorithm was developed to solve the optimal solution to EAD. In that work, 

the 3-D input states time-distance-speed (t-D-V) collected by the host vehicle and the vehicle 
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energy consumption dynamics are fed into the graph model. Using the derived energy model of the 

vehicle, the optimal speed could be derived using the Dijkstra's algorithm, i.e., 𝑣(𝑡+1) =

 𝐺(𝑡, 𝐷𝑡 , 𝑣𝑡). The input-output pairs are collected and used as input to train the random forest model, 

and the trained model is used as part of the on-line model for real-time computation. In the on-line 

system, once the vehicle enters the communication zone of the connected signalized intersection. 

Real-time vehicle states (t-D-V) are collected and fed into the system. First, the CV equipped radar 

will detect the front vehicle and check whether it is safe to start eco-driving. Then the kinematic 

equations are used to calculate whether the distance and time are enough to pass the intersection. 

If any of the two mentioned cases is not satisfied, the system will stop eco-driving and release 

control to human drivers. Finally, the vehicle states will be fed into the trained random forest model, 

the optimal speed at time t is calculated and the system will loop into the next timestamp t+1. 

4.2.3 Experimental Design 

With the infrastructure upgrades mentioned above, multiple EAD algorithms were able to 

be tested: 1.) DSRC-based communication EAD; and 2.) Cellular-based communication EAD. 

Compared with DSRC-based communication, the cellular-based communication allows for long 

communication range with a small sacrifice in communication delay, this would enable corridor-

wise EAD algorithms which require long distance communication between the host vehicle and 

downstream intersection miles away. Then the EAD algorithms can be further classified in this 

case: 1.) intersection-by-intersection; and 2.) corridor-wise. 

DSRC-based communication has to use edge-computing (i.e., EAD algorithms are running 

on-board) for EAD calculations whereas the cellular-based communication can either use cloud 

computing (i.e., EAD algorithms are running on the UCR server) or edge-computing by utilizing 

existing algorithms for DSRCs. 
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Figure 4.3. Upgraded Intersections along Riverside Innovation Corridor. 

To evaluate the system performance under various algorithm/technology combinations, we 

focused on both mobility in terms of average travel time across the test area as shown in Figure 4.3, 

and environmental impacts including fuel consumption and emissions of CO2, CO, HC and NOx 

which were estimated by the Comprehensive Modal Emission Model (CMEM) (25) previously 

developed by the research team.  

CMEM (Comprehensive Modal Emissions Model) is an emissions and fuel consumption 

model that estimates the emissions and fuel consumption of vehicles based on their activity (speed 

and acceleration). The equations used in CMEM are complex and depend on various parameters 

such as vehicle weight, engine size, fuel type, and driving cycle. The model uses a series of sub-

models to estimate the emissions and fuel consumption of different pollutants (such as CO2, CO, 

NOx, and particulate matter) and fuel types (such as gasoline and diesel). 

CMEM uses the following equations to estimate fuel consumption and emissions for a 

given vehicle: 

𝐹𝑅 ≈ (𝑘 ∙ 𝑁 ∙ 𝑉 +
𝑃

𝜂
)

1

43.5
∙ (1 + 𝑏1 ∙ (𝑁 − 𝑁0)2) (4.1) 

𝐾 = 𝐾0 ∙ (1 + 𝐶 ∙ (𝑁 − 𝑁0)) (4.2) 

𝑁0 ≈ 30 ∙ √
3.0

𝑉
(4.3) 

𝐹𝑅𝑜𝑓𝑓 = 𝐹𝑅 ∙ (1 − 𝑓𝑅𝑒𝑑) (4.4) 
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𝐸𝐶𝑂 = 𝑎𝐶𝑂 ∙ 𝐹𝑅 + 𝑟𝐶𝑂 (4.5) 

𝐸𝐻𝐶 = 𝑎𝐻𝐶 ∙ 𝐹𝑅 + 𝑟𝐻𝐶 (4.6) 

𝑁𝑂𝑥 = 𝑎𝑁𝑂 ∙ 𝐹𝑅 + 𝑟𝑁𝑂 (4.7) 

 

Where:  

𝐹𝑅 = fuel rate in grams/second; 

𝑃 = engine power output in kW; 

𝐾 = engine friction factor; 

𝑁 = engine speed in revolutions per second; 

𝑉 = engine displacement in liters; 

𝜂 = measure of indicated efficiency for engine; 

 𝑏1 and 𝐶 = coefficients; 

𝑓ℎ = lower heating value of fuel; 

𝐹𝑅𝑜𝑓𝑓 = off cycle fuel rate in grams/second; 

𝑓𝑅𝑒𝑑 = fuel use reduction factor associated with off cycle fuel injection timing strategies; 

𝐸𝐶𝑂 = engine-out emission rate for Carbon Monoxide (CO) in grams/second; 

𝑎𝐶𝑂 and 𝑟𝐶𝑂 = CO emission index coefficients; 

𝐸𝐻𝐶 = engine-out emission rate for Hydrocarbons (HC) in grams/second; 

𝑎𝐻𝐶 and 𝑟𝐻𝐶 = HC emission index coefficients; 

𝑁𝑂𝑥 = engine-out emission rate for Oxides of Nitrogen (𝑁𝑂𝑥) in grams/second; 

𝑎𝑁𝑂 and 𝑟𝑁𝑂 = 𝑁𝑂𝑥 emission index coefficients; 
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4.2.4 Experiments 

4.2.4.1 Eco-Approach and Departure Algorithm Comparison 

Field tests were performed using a CAV test vehicle – a Nissan Altima equipped with 

different EAD algorithms, and a Toyota Corolla serving as the baseline vehicle. Testing was 

performed eastbound along University Avenue in Riverside, California. Figure 4.3 shows the route 

taken along University Avenue, mainly covering two intersections: Cranford Avenue & University 

Avenue, and Iowa Avenue & University Avenue, from 320 meters upstream of Cranford Avenue to 

50 meters downstream Iowa Avenue. Two test vehicles enter the corridor at the same time, follow 

the dashed red line, and drive side-by-side, as shown in the figure. The system architecture for field 

operational tests is presented in Figure 4.4, where the blue vehicle represents Nissan Altima (i.e., 

connected vehicle) while the white vehicle represents Toyota Corolla (i.e., legacy vehicle).  

 

 

 

Figure 4.4. System architecture for EAD field operational tests. 
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Regarding test scenarios, to account for error introduced by the test drivers, two student 

drivers alternately drove two test vehicles along the inner through lane and outer through lane. The 

Nissan Altima was equipped with different communication technologies (i.e., DSRC on-board unit 

or cellular Wi-Fi hotspot) and enabled with different EAD algorithms (i.e., intersection-by-

intersection or corridor-wise). In addition, to account for the communication latency, we further 

differentiated between edge computing and cloud computing. 

4.2.4.2 Latency Comparison 

In addition to the evaluation of system performance (in terms of mobility and 

environmental sustainability) of different EAD algorithms, and since the intersections are equipped 

with both DSRC and cellular communication, the research team was able to perform an experiment 

to estimate the disparity in communication latencies between DSRC and cellular communications. 

For the latency test, the test vehicle was driven along the testbed and ran the routine in the same 

on-board computer to simultaneously record the durations for both DSRC (one-way 

communication by listening the SPaT messages broadcast from RSUs) and cellular communication 

(two-way communication by requesting the SPaT messages and reckoning back from the UCR 

server). 

4.2.5 Results 

In summary, we tested four combinations of EAD algorithms and technologies: 

• Combo 1: DSRC-based, intersection by intersection, edge computing; 

• Combo 2: cellular-based, intersection by intersection, edge computing; 

• Combo 3: cellular-based, intersection by intersection, cloud computing, but SPaT of the 

following intersection is masked; 

• Combo 4: cellular-based, corridor-wise, cloud computing. 
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Therefore, the number of scenarios (considering drivers, lanes, and algorithm/technology 

combinations) are 2 (drivers) × 2 (through lanes) × 4 (combos) = 16 (scenarios). To mitigate the 

random effects, each scenario is repeated with 5 runs (both vehicles are driving in parallel). So, 

there are totally 80 runs in the field. 

4.2.5.1 Mobility Performance 

The mobility performance of the direct I2V and cellular-based EAD systems were 

evaluated in terms of travel time savings and speed variation.  

The results show that both direct I2V and cellular-based EAD systems provided significant 

travel time savings and queue length reductions compared to the control scenario. However, the 

cellular-based EAD system outperformed the direct I2V-based EAD system in terms of mobility 

performance. 

The travel time savings achieved by the cellular-based EAD system ranged from -12.8% 

to 10.7%, while the direct I2V-based EAD system achieved travel time savings ranging from -14% 

to 6.9%. A negative percentage would be an increase in travel time. The full summary of the 

statistics for the field tests are shown in Table 4.1. 

Overall, the results demonstrate that both direct I2V and cellular-based EAD systems have 

the potential to significantly improve mobility performance at signalized intersections. However, 

the cellular-based EAD system outperformed the direct I2V-based EAD system in terms of travel 

time savings, particularly the corridor-wise EAD system (Combo 4). 

4.2.5.2 Environment 

The Eco-Approach and Departure (EAD) system aims to improve the environment by 

reducing fuel consumption and emissions. In this study, we evaluated the environmental impacts 

of DSRC-based and cellular-based EAD systems along signalized corridors. 
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Table 4.1. Summary of Key Statistics on Improvement for Field Operational Tests Using Different Combinations of 

Algorithm/Communication Technology 

Combo Lane Statistics Travel 

Time 

Fuel CO2 CO HC NOx 

1 

Inner Mean 6.9% 15.6% 15.5% 32.1% -7.3% 29.0% 

 STD 0.19 0.17 0.17 0.16 0.26 0.15 

Outer Mean -14.0% 9.5% 9.4% 26.7% -33.6% 27.3% 

 STD 0.27 0.25 0.25 0.41 0.29 0.30 

Overall Mean -3.5% 12.5% 12.5% 29.4% -20.5% 28.1% 

 STD 0.23 0.21 0.21 0.29 0.28 0.23 

2 

Inner Mean -4.6% 15.3% 15.2% 27.4% -13.3% 23.8% 

 STD 0.05 0.09 0.09 0.18 0.10 0.19 

Outer Mean -12.8% 13.0% 12.9% 24.6% -12.9% 25.3% 

 STD 0.33 0.22 0.22 0.46 0.30 0.36 

Overall Mean -8.7% 14.1% 14.1% 26.0% -13.1% 24.5% 

 STD 0.19 0.15 0.15 0.32 0.20 0.27 

3 

Inner Mean -5.4% 8.8% 8.8% 17.2% -22.5% 17.2% 

 STD 0.05 0.08 0.08 0.19 0.14 0.17 

Outer Mean 2.4% 22.1% 22.0% 44.1% -10.1% 40.2% 

 STD 0.06 0.07 0.07 0.12 0.16 0.11 

Overall Mean -1.5% 15.5% 15.4% 30.6% -16.3% 28.7% 

 STD 0.06 0.07 0.07 0.15 0.15 0.14 

4 

Inner Mean 10.7% 19.6% 19.6% 22.5% 4.0% 21.2% 

 STD 0.29 0.19 0.19 0.18 0.34 0.15 

Outer Mean 2.0% 11.6% 11.6% 16.0% -7.8% 16.2% 

 STD 0.03 0.10 0.10 0.25 0.11 0.21 

Overall Mean 6.3% 15.6% 15.6% 19.3% -1.9% 18.7% 

 STD 0.16 0.15 0.14 0.22 0.23 0.18 

 

The results showed that the cellular-based EAD system had lower fuel consumption and 

emissions compared to the DSRC-based EAD system. The average fuel consumption reduction was 

12.5% for DSRC-based EAD compared to the baseline case without EAD, while it was 15.6% for 

cellular-based EAD. Similarly, the average reduction in CO2, CO, HC, and NOx, emissions were 

12.5%, 29.4%, -20.5%, and 28.1% for DSRC-based EAD, and up to 15.6%, 30.6%, -1.9%, and 

28.7% for cellular-based EAD, respectively. 

Table 4.1 summarizes the major results in terms of percentage improvement of different 

“Combos” over the baseline scenarios. As can be observed from the table, the developed EAD 
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algorithms for actuated signals can provide significant environmental benefits, with either DSRC 

or cellular networks. The corridor-wise EAD algorithm (i.e., “Combo 4”) outperforms other 

combos in terms of mobility (travel time savings), fuel consumption, as well as CO2 and HC 

emissions. The experiment results shows that the SPaT information from the downstream 

intersections along the corridor would provide additional travel speed and fuel consumption benefit 

as the vehicle can forecast the potential SPaT change from farside signals and make response 

according ahead of time. Especially for the intersections that are closely spaced, the SPaT 

information for the corridor is helpful in developing the optimal strategy. 

These results suggest that Cellular-based EAD systems have a slightly better environmental 

performance than DSRC-based EAD systems. However, further research is needed to confirm these 

findings and to explore the potential of these technologies to reduce emissions and fuel 

consumption in different driving conditions and traffic scenarios. 

4.2.5.3 Latency Comparison 

In this study, we also evaluated the latency and communication range of the DSRC and 

cellular-based communication technologies. The latency of the communication system was 

measured as the time difference between the moment when the traffic signal controller sends the 

signal phase and timing information and the moment when the equipped vehicle receives this 

information. 

Table 4.2 summarizes the key statistics of communication latencies for both DSRC and 

cellular communications. As can be observed from the table, the average latency of DSRC-enabled 

scenarios may well keep under 0.1 second while that of cellular-based communications may vary 

from 0.13 to 0.26 second on average. The standard deviation of communication latency for DSRC 

is much smaller (reduced by the range of 74.7% – 85.6%) than that of cellular network. However, 

based on the field operation test results, shown in Table 4.1, the latency of cellular network does 
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not result in negative effects on the target connected EAD application. A hypothesis is that the 

tested connected vehicle application (i.e., connected Eco-Approach and Departure) is intended for 

safety-critical scenarios (in the optimization), and a human driver may well tolerate such latency 

when following the driving guidance. 

Table 4.2. Summary of key statistics on latency tests. 

Test Run Index 

 

No. of Samples DSRC (µ seca) Cellularb (µ sec) 

Mean STDc Mean STD 

1 6 36,457 5,701 131,933 23,628 

2 92 51,717 27,247 184,059 107,857 

3 15 72,749 25,633 259,401 178,378 

4 80 49,442 22,918 175,802 128,575 

 

4.2.6 Conclusions and Future Work 

The field study comparison of direct I2V-based and cellular-based Eco-Approach and 

Departure along signalized corridors contributed to the understanding of the effectiveness of each 

communication technology in terms of mobility, environment, and communication performance. 

The study demonstrated that both direct I2V and cellular-based technologies are capable of 

supporting Eco-Approach and Departure applications. direct I2V-based Eco-Approach and 

Departure demonstrated superior performance in terms of latency, while cellular-based Eco-

Approach and Departure demonstrated superior performance in terms of mobility and fuel 

consumption. 

The study also highlighted the importance of considering the trade-offs between 

communication range, latency, mobility, and environmental performance when selecting a 

communication technology for Eco-Approach and Departure applications. This research can help 

transportation agencies and researchers to make informed decisions about the selection of 

communication technologies for future Eco-Approach and Departure applications. 
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Further analysis demonstrates that from an environmental standpoint, cellular-based EAD 

applications perform better than the direct I2V-based method (e.g., Combo 2 vs. Combo 1). The 

direct I2V short communication range and the non-line-of-sight (NLOS) problem, caused by 

structures and trees that may affect the direct I2V wireless channel by causing radio signal 

reflections and diffraction, are some possible causes for direct I2V poor results. Another finding is 

that runs on the inner through lane tend to be more fluid than runs on the outside through lane. This 

discrepancy might be caused by the congestion level at the lane-level, where the outer lane is 

connected to the on-ramp of the I-215 South freeway and encounters significantly more frequent 

interruptions throughout the test duration 

Regarding future work, the direct I2V and cellular-based communication technologies have 

their own advantages and limitations, and the study only compared their performances in a specific 

context. More research is needed to explore their performance in different traffic scenarios and road 

networks. 

Secondly, the study did not consider the impact of weather conditions, road surface 

conditions, and vehicle speed on the performance of the Eco-Approach and Departure system. 

Future studies could investigate these factors to provide a more comprehensive understanding of 

the system's performance. 

Lastly, the study only focused on the performance of the Eco-Approach and Departure 

system in terms of mobility, environmental impact, and communication latency. Future research 

could investigate other aspects such as the user experience, safety, and cost-effectiveness of the 

system. 
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4.3 ECoTOp: Eco-Trajectory Planning Module 

The proposed ECoTOp system comprises of two major modules: the traffic signal 

optimization module and the eco-trajectory planning module. This section presents the 

mathematical formulations the eco-trajectory planning module. 

4.3.1 Problem Formulation 

The eco-trajectory planning module in our proposed system builds upon previous work on 

connected eco-driving strategies ([30],[31]). Specifically, time is discretized into fixed time steps 

(∆𝑡) and denote 𝑇 as the total number of time steps. The goal of the connected eco-trajectory 

planning problem is to minimize the total energy consumption of the vehicle across all time steps. 

By minimizing energy consumption while complying with various constraints, our proposed eco-

trajectory planning module helps reduce fuel consumption and emissions, while improving overall 

vehicle efficiency. 

We formulate the problem as: 

min
𝑎0,𝑎1,…𝑎𝑇

∑ 𝑃(𝑣𝑡 , 𝑎𝑡)

𝑇

𝑡=0

∆𝑡 (4.8) 

 

Subject to: 

∑ 𝑣𝑡 = 𝑋

𝑇

𝑡=0

(4.9) 

𝑣𝑡 = 𝑣𝑡−1 + 𝑎𝑡−1, ∀ 𝑡 ∈ [1, 𝑇] (4.10) 

𝑎𝑚𝑖𝑛 ≤ 𝑎𝑡 ≤ 𝑎𝑚𝑎𝑥 (4.11) 

0 ≤ 𝑣𝑡 ≤ 𝑣𝑙 (4.12) 

𝑣0 = 𝑣𝑠, 𝑣𝑇 = 𝑣𝑑 (4.13) 
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Where: 

𝑣𝑡 denotes the speed of the vehicle at time step t. 

𝑎𝑡 denotes the acceleration rate of the vehicle at time step t. 

𝑃(𝑣𝑡 , 𝑎𝑡) represents the energy cost associated with the vehicle’s state at a given time step. 

𝑣𝑙 denotes the speed limit. 

𝑋 denotes the total travel distance. 

𝑣𝑑 denotes the target speed. 

 

We can transform the model presented in (4.8) into a graph-based model, where each node 

is represented by a unique 3-D coordinate (𝑡, 𝑥, 𝑣) that describes the dynamic state of the vehicle. 

Solving this model for each time step provides the optimal speed (or acceleration) for the driver or 

vehicle controller to follow. By transforming the model into a graph-based representation, we can 

effectively capture the dynamic behavior of the vehicle and make informed decisions that optimize 

speed and energy efficiency, while adhering to various constraints. A machine learning-based 

trajectory planning algorithm (MLTPA) ([31]) then uses the graph-based model to create a pool of 

optimal trajectories and predicts the next target state of the vehicle. 

4.3.2 Solution Algorithm 

The eco-trajectory optimization problem is solved using dynamic programming approach, 

which is commonly used for solving optimal control problems. The dynamic programming 

algorithm generates an optimal control sequence by recursively solving a sequence of smaller sub-

problems. The approach used in this research is based on the work of Hao et al. ([30]) and is known 

as a machine learning trajectory planning algorithm (MLTPA).  Following offline training, MLTPA 

is implemented online to ensure optimal energy and computation efficiency. 
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The algorithm works as follows: 

Offline: 

1. Data Generation: Prior to starting simulations, MLTPA utilizes a graph-based trajectory 

planning algorithm (GBTPA) for EAD application to generate training data on a 

representative dataset of unique inputs. 

2.  Training: The training data is then used to train MLTPA to predict the next target state of 

the vehicle. 

Online 

3. Initialization: The algorithm is initialized at the start of each simulation episode. At the 

beginning of each time step, the algorithm generates a set of candidate control inputs for 

each vehicle, based on the vehicle's current state and the state of the traffic signal. 

4. Target: A target state is set, which consists of the expected time, location (e.g., stop line), 

and speed so that the vehicle will safely pass the stop line. 

5. Control Policy Determination: The algorithm generates the optimal control policy, which 

is the control input that corresponds to the minimum expected total cost at each time step.  

The dynamic programming approach is well suited for vehicle trajectory optimization, as 

it allows for the consideration of complex driving scenarios, such as merging and lane changing, 

while still ensuring that the resulting trajectory is optimal ([39][83][84]). 

4.3.3 Solution Method 

The solution method for the eco-trajectory optimization problem is a key component of the 

ECoTOp framework. In this section, we present a description of the solution method used for 

solving the eco-trajectory optimization problem. 



100 

The input variables are scaled using the MinMaxScaler function, and the optimal vehicle 

acceleration is predicted using a Regressor function that employs the random forest algorithm, both 

created using MATLAB. These functions are then compiled into content-obscured, executable P-

code files for use in the Python programming environment. Python is the programming language 

of choice for the simulation experiments conducted in the SUMO traffic simulation platform. 

A Min-Max Scaler is a type of data preprocessing technique commonly used in machine 

learning to scale and normalize the input features in a dataset. The goal of normalization is to ensure 

that all input features are on the same scale, so that no feature dominates or biases the model 

training. This is important because many machine learning algorithms use distance measures 

between data points to identify patterns, and when features are on different scales, the distance 

measures may be dominated by features with larger values [85]. 

The Min-Max Scaler scales the features to a specified range, typically between 0 and 1, 

based on the minimum and maximum values of each feature in the dataset. This ensures that all 

features have the same range and preserves the shape of the original distribution. 

Min-Max Scaler is preferred over other normalization techniques, such as StandardScaler, 

when the input features have a bounded minimum and maximum values or when there are outliers 

in the data that need to be preserved [86]. 

Random forest is an ensemble learning method that combines multiple decision trees to 

make predictions. In a regression context, a random forest model predicts a continuous dependent 

variable based on a set of input features [87]. 

During training, each decision tree in the random forest is constructed using a subset of the 

training data and a random subset of the input features. During prediction, the random forest 

algorithm aggregates the predictions of all the decision trees in the ensemble to produce the final 

prediction for a given input. 
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Overall, the MLTPA algorithm provides an efficient and effective solution method for the 

vehicle eco-trajectory planning optimization problem in the ECoTOp framework, which results in 

improved traffic efficiency and reduced travel time for vehicles in the network. 
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Chapter 5  

Traffic Signal Optimization Module 

This chapter focuses on the crucial aspect of traffic signal optimization within the ECoTOp 

framework for enhanced transportation efficiency. Traffic signal optimization plays a vital role in 

improving traffic flow, reducing congestion, and enhancing overall transportation performance. By 

strategically adjusting signal timings and coordination at signalized intersections, it aims to 

maximize throughput and optimize the progression of vehicles through the road network. By 

leveraging the findings and methodologies from the literature, we lay the groundwork for the 

seamless integration of traffic signal optimization with vehicle eco-trajectory planning, creating a 

synergistic approach that maximizes transportation efficiency and minimizes emission output. 

5.1 Problem Formulation 

The signal optimization module of the ECoTOp system is based on three basic assumptions 

that ensure a reliable level of trajectory planning for connected autonomous vehicles (CAVs) and 

align with common driving practices of human drivers. These assumptions include a constant cycle 

length (C), identical phase orders in every cycle, and equal phase durations for corresponding 

phases in the upper and lower rings of the phase diagram. Additionally, signal optimization is 

performed at the beginning of each cycle and remains unchanged throughout that cycle. Based on 

these assumptions, we propose a scenario for an isolated signalized intersection that can receive 

real-time locations from all proximate CAVs and detect the locations of non-connected vehicles 

through the use of roadside sensors. This approach provides a reliable solution for facilitating 

smooth and efficient traffic flow at signalized intersections (e.g., cameras similar to [40]). 
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We then formulate the optimization problem which aims to maximize the throughput from 

all phases in the cycle, while minimizing the variance of oversaturated vehicle number from all 

phases to ensure fairness, as follows: 

max
𝐺𝑖

𝑧 = 𝑤1 ∗
1

𝑘
∑ 𝑁𝑖

𝑘

𝑖=1

− 𝑤2 ∗
1

𝑘
∑(𝑁𝑖 − 𝑀𝑖)2

𝑘

𝑖=1

(5.1)  

 

 

Subject to: 

∑ 𝐺𝑖

𝑘

𝑖=1

= 𝐶 − ∑ 𝑌𝑖𝑖

𝑘

𝑖=1

(5.2)  

𝑁𝑖 ≥  𝑁𝑖,𝑗, ∀𝑖, 𝑗 (5.3)   

𝑀𝑖 = 𝐺𝑖 ∗
1

ℎ
, ∀𝑖 (5.4)  

𝑁𝑖,𝑗 = count𝑖,𝑗(𝑋𝑖,𝑗), ∀𝑖, 𝑗 (5.5)  

𝑋𝑖,𝑗 = 𝑣 ∗ (𝐺𝑖 + ∑ 𝐺𝑖𝑖 + 𝑌𝑖𝑖

𝑖−1

𝑖𝑖=1

)    ∀𝑖, 𝑗 (5.6)  

 

Where:  

𝑁𝑖,𝑗 denotes the total number of vehicles that need to be serviced in each lane within the detection 

zone for lane  𝑗 in phase 𝑖. 

𝑁𝑖 denotes the max of 𝑁𝑖,𝑗 among all associated lanes in phase 𝑖. 

𝑀𝑖  denotes the discharge capacity per lane in phase 𝑖, and calculated as 𝑀𝑖 = 𝐺𝑖 ∗
1

ℎ
. 

𝐺𝑖 denotes the green time of phase 𝑖. 

ℎ is the saturated time headway in the discharge process. 
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𝑁𝑖 − 𝑀𝑖 is the expected maximum number of oversaturated vehicles in phase 𝑖. 

counti,j(𝑋𝑖,𝑗) denotes a function defined as the current number of vehicles at lane 𝑗 of phase 𝑖 

measured from the stop line to 𝑋𝑖,𝑗 in the upstream. 

5.2 Signal Model 

The traffic signal model used in the traffic signal optimization for ECoTOp system is 

crucial in accurately representing the behavior and performance of the signal system in the 

simulation. In this section, we describe the traffic signal model used in our optimization problem. 

We consider a fixed-time signal control system, where the signal phases and their durations 

are pre-determined for each cycle. The signal cycle length is denoted by 𝐶, and the durations of the 

green, yellow, and red phases of each signal phase are denoted by 𝐺𝑖, 𝑌𝑖, and 𝑅𝑖, respectively, where 

𝑖 is the index of the signal phase. Figure 5.1a illustrates key variables in an example intersection. 

Figure 5.1b shows the direction for each signal phase. 

 

Figure 5.1. Key variables and phases for example intersection. 

 

Phase i
Lane

1        2
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5.3 Solution Algorithm 

At the start of each cycle, the proposed Traffic Signal Optimization module of the ECoTOp 

system obtains the total number of vehicles that need to be serviced in each lane within the detection 

zone, denoted by 𝑁𝑖,𝑗 for lane 𝑗 in phase 𝑖. We then calculate 𝑁𝑖 as the maximum value of 𝑁𝑖,𝑗 

among all associated lanes in phase 𝑖. This value is used to represent the number of vehicles that 

need to be serviced in phase 𝑖 during the optimization process. Note that only vehicles that reach 

the stop line before the end of phase 𝑖 are included in the calculation of 𝑁𝑖.  Assuming that the green 

time for phase 𝑖 is 𝐺𝑖, and the yellow and all-red time after phase 𝑖 is 𝐺𝑑, 𝑁𝑖,𝑗 is determined based 

on the number of vehicles along the distance from the stop line of lane 𝑗 of phase 𝑖 to 𝑋𝑖,𝑗 upstream. 

To solve the optimization problem (5.1) for Traffic Signal Optimization module, the 

sequential least squares programming (SLSQP) algorithm [88] is employed. The SLSQP is a good 

choice for optimization in the traffic signal optimization due to several reasons. Firstly, SLSQP is 

well-suited for nonlinear optimization problems with inequality and equality constraints [89], 

which is exactly the case for this optimization problem. In this problem, the objective is to 

maximize throughput of the intersection and minimize the variance of oversaturated vehicles from 

all phases subject to constraints such as signal timing, lane capacity, and number of oversaturated 

vehicles. 

Secondly, SLSQP is a gradient-based method that is efficient and robust for high-

dimensional optimization problems [90][91][92]. This is beneficial for the overall ECoTOp 

problem as it involves optimizing the signal timing and vehicle trajectory simultaneously, resulting 

in a high-dimensional optimization problem. 

Lastly, SLSQP is a well-established optimization algorithm, and many software packages 

provide SLSQP solvers, such as SciPy in Python [93], which makes it widely accessible. The SciPy 

Python package is used in this algorithm. 
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Chapter 6  

Eco-friendly Cooperative Traffic Optimization 

(ECoTOp) 

This chapter presents the core of the ECoTOp framework, which combines vehicle eco-

trajectory planning optimization and traffic signal optimization to achieve enhanced transportation 

performance at isolated signalized intersections. Building upon the preceding chapters on vehicle 

eco-trajectory planning and traffic signal optimization, this chapter integrates the two components 

to develop a comprehensive co-optimization approach. The ECoTOp framework not only enhances 

transportation performance at isolated signalized intersections but also serves as a foundational 

approach for dynamically selecting the most suitable optimization strategy based on real-time 

traffic conditions and environmental considerations. 

The primary objective of this chapter is to showcase the effectiveness and potential of the 

co-optimization approach in improving transportation efficiency, reducing congestion, and 

enhancing overall system performance. By combining vehicle trajectory optimization and traffic 

signal timing optimization, synergistic benefits can be achieved. 

Throughout this chapter, we delve into the methodologies, algorithms, and models used in 

the co-optimization process. The solution algorithm is developed to iteratively optimize the 

trajectories and signal timings, aiming to achieve an optimal balance between individual vehicle 

performance and overall traffic flow efficiency. 

A series of simulation experiments are conducted to evaluate the performance of the co-

optimization approach in various scenarios, and compare the results to the individual modules. 

These experiments consider different penetration rates of connected and automated vehicles 
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(CAVs). Performance metrics such as throughput and emissions are analyzed to assess the 

effectiveness of the co-optimization approach. 

Furthermore, the safety implications of the co-optimization approach are evaluated using 

advanced models and simulation techniques. By leveraging the Surrogate Safety Assessment Model 

(SSAM), potential crash risks and safety improvements associated with the co-optimization 

strategy are assessed, providing valuable insights into its safety performance. 

By introducing the co-optimization approach, evaluating its results, and comparing them 

to the outcomes of the individual modules, this chapter not only contributes to the advancement of 

transportation research and practice but also establishes the foundation for future development of 

an adaptive optimization strategy. The findings highlight the potential of integrating vehicle eco-

trajectory planning and traffic signal timing optimization and serve as a stepping stone towards the 

development of a dynamic optimization framework capable of adapting to real-time traffic 

conditions and environmental factors. These insights will guide transportation professionals, 

policymakers, and researchers in designing future strategies and policies for the efficient co-

optimization of eco-trajectory planning and traffic signals. 

6.1 Eco-friendly Cooperative Traffic Optimization (ECoTOp) at Signalized 

Intersections: Paving the Way for an Adaptive Optimization Strategy 

Traffic congestion at signalized intersections is a major problem in urban areas, leading to 

increased travel time, fuel consumption, and emissions, as well as decreased safety and mobility 

[18]. Traffic signals are one of the most common methods used to control the flow of vehicles at 

intersections, but they are typically designed based on fixed time or actuated control strategies that 

do not consider the dynamic interactions between vehicles and traffic signals [94]. As a result, the 

timing and sequencing of signal phases may not be optimized for the prevailing traffic conditions, 

leading to inefficiencies, delays, and congestion. 
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Co-optimization of vehicle trajectories and traffic signal timing has emerged as a promising 

approach to address these issues, by jointly optimizing the timing and sequencing of signal phases 

and the trajectories of vehicles passing through the intersection. This approach leverages advances 

in connected and automated vehicle (CAV) technologies, which enable vehicles to communicate 

with each other and with the traffic signal system in real-time, and to adjust their speed and 

trajectory to optimize their performance under the prevailing traffic conditions [95][96][77]. 

The motivation for co-optimization lies in its potential to significantly improve the 

efficiency, safety, and sustainability of traffic operations at signalized intersections. By 

coordinating the timing and sequencing of signal phases with the trajectories of vehicles, the co-

optimization approach can reduce fuel consumption, and emissions, while also improving safety 

and mobility. Moreover, the co-optimization approach can adapt to changing traffic conditions, 

such as fluctuations in traffic demand, non-recurrent incidents, and weather events, to ensure 

optimal performance at all times. 

Despite the potential benefits of co-optimization, there are still several challenges that need 

to be addressed, such as the development of efficient and effective optimization algorithms, the 

integration of CAV technologies with the traffic signal system, and the evaluation of the safety and 

effectiveness of the co-optimization approach under different traffic scenarios. In this chapter, we 

address these challenges by presenting the ECoTOp approach, and by evaluating its performance 

through simulations using the SUMO traffic simulation platform [97].  

6.1.1 Research Objectives 

The main objective of this section is to propose a co-optimization approach for vehicle 

trajectories and traffic signal timing at isolated signalized intersections, and to evaluate its 

effectiveness compared to vehicle trajectory and traffic signal timing optimization methods. 

Specifically, we aim to achieve the following research objectives: 
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1. To develop a hybrid co-optimization approach that combines model-based and data-driven 

methods, and that uses connected and automated vehicle (CAV) technologies to improve 

the accuracy and efficiency of the optimization process. 

2. To evaluate the effectiveness of the proposed approach against vehicle trajectory 

optimization alone and traffic signal timing optimization alone, in terms of travel time, fuel 

consumption, emissions, and other performance measures, using simulations in the SUMO 

traffic simulation platform. 

3. To evaluate the safety of the proposed approach using the Surrogate Safety Assessment 

Model (SSAM) [98], which is a widely-used tool for predicting crash risk at signalized 

intersections. 

4. To perform sensitivity analyses to examine the effects of various factors, such as CAV 

penetration rates, and traffic volumes, on the performance and safety of the proposed 

approach in order to show that dynamically changing approaches may be a needed based 

on varying traffic conditions. 

The contributions of this section are twofold. First, we propose a novel hybrid co-

optimization approach that combines the strengths of both model-based and data-driven methods, 

and that leverages CAV technologies to improve the accuracy and efficiency of the optimization 

process. Second, we evaluate the performance and safety of the proposed approach compared to 

baseline scenarios of vehicle trajectory optimization and traffic signal timing optimization alone, 

using simulations and the SSAM model, providing insights into its potential for improving 

transportation efficiency and sustainability. These contributions can help inform the development 

of more efficient and sustainable transportation systems, and can also provide a basis for further 

research in this area. 
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6.1.2 Methodology 

6.1.2.1 Combined Optimization Problem 

The proposed ECoTOp system comprises of two major modules: the traffic signal 

optimization module and the eco-trajectory planning module. These modules are designed to 

interact with each other but often have inherent conflicts when pursuing their own optimization 

goals. The traffic signal optimization module seeks reliable information from incoming vehicles, 

including current dynamic state and future movement, as early as possible. It also requires the 

flexibility to adjust the signal timing plan at any time to adapt to the dynamic traffic conditions. On 

the other hand, the eco-trajectory planning module requires reliable signal timing information ahead 

of time to plan trajectories that can save fuels and reduce emissions. However, vehicles operating 

under the eco-trajectory plan still require some flexibility in operation to improve safety, mobility, 

and energy performance in certain situations, such as emergency braking and lane changing. It is 

not feasible to create an ideal co-optimized system in an isolated intersection with mixed traffic 

due to two main reasons. Firstly, unconnected vehicles with human drivers have diverse and 

personalized driving styles, which can be an unpredictable factor in the system. Secondly, the 

limitations in sensing, communication, and control make it impossible to predict the time and state 

when each vehicle enters the system, even for connected autonomous vehicles (CAVs). Figure 6.1 

shows the conflict between the signal optimization module and the eco-trajectory planning module. 

In a mixed traffic environment, each module must make trade-offs to achieve an integrated 

optimization. This section presents the method for interaction between the two modules. 
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Figure 6.1. Conflict between signal optimization and eco-trajectory planning. 

6.1.2.2 Solution Algorithm 

The ECoTOp system achieves the co-optimization of signal control and vehicle trajectory 

by following the flowchart depicted in Figure 6.2. The ECoTOp system works as follows for the 

co-optimization of signal control and vehicle trajectory: 

1. Count the number of vehicles for each lane in the network within the communication range. 

2. Count the number of vehicles that can be served within the current green time for each 

lane. 

3. Use the counts to get the time required for the delayed vehicles controlled by the phase for 

that lane to pass through the intersection and also the time required for maximum 

throughput. 

4. Put this information into a Sequential Least Squares Programming (SLSQP) optimizer to 

obtain the new phase times. 

5. Each connected and autonomous vehicle (CAV) receives the Signal Phase and Timing 

(SPaT) information and queue information. 
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6. Use the queue information to possibly change lanes and add a queue buffer to timing. 

7. Send the new time and the current vehicle velocity to a Random Forest-based trajectory 

optimizer to obtain the new trajectory. 

8. Finally, update the signal controller for real-time control with the optimal phase timing 

obtained from the SLSQP optimizer. 

 

Figure 6.2. ECoTOp algorithm flowchart for traffic simulation. 

 

In the intricacies of the ECoTOp algorithm, it's imperative to highlight the dynamic nature 

of our approach. The Eco-Trajectory Planning module operates at a high frequency, precisely at 

every time step, which for the simulations presented here is at a rate of 10 Hz. This rapid calculation 

ensures that the trajectory adjustments align seamlessly with real-time traffic conditions, thereby 

enhancing vehicle movement and energy efficiency. In contrast, the Traffic Signal Optimization 

module is executed at a distinct phase, occurring at the culmination of the previous cycle during a 
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dedicated 2-second all-red phase. This deliberate timing allows for the assimilation of the latest 

trajectory data and optimal signal timing strategies, culminating in a harmonious orchestration that 

bolsters the overall efficacy of our ECoTOp framework. 

6.1.3 Case Study 

The Case Study section presents a comprehensive analysis of the ECoTOp system. In this 

section, we describe the simulation setup used to model the intersection and the vehicles' behavior. 

We also present the results of simulation-based experiments that evaluate the performance of our 

proposed ECoTOp system, and compare it with three baseline scenarios: a fixed-timed traffic signal 

with no optimization, the eco-trajectory planning module, and traffic signal optimization module. 

The experimental results section provides a preview of the key findings, which demonstrate 

significant improvements in intersection performance through the proposed approach. The insights 

gained from this study have the potential to inform policy and decision-making in the transportation 

sector and contribute to the development of smarter and more efficient transportation systems. 

6.1.3.1 Simulation Setup 

To evaluate the effectiveness of the proposed ECoTOp approach, a simulation study was 

conducted using the SUMO traffic simulation software. The simulation was set up to replicate a 

typical isolated signalized intersection, with four approaches controlled by fixed-time traffic 

signals. The intersection layout consisted of two through lanes and one or two left-turn lanes in 

each approach, with a shared left-turn lane for opposing directions. The signal cycle length was set 

to 66 seconds, with a 4-second yellow interval and 2-second all-red interval after phases 1 and 2, 

and a 2-second all-red interval after phases 3 and 4. The traffic signal optimization is done during 

the second all-red interval. 
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In the simulation setup, the car following model used is the Intelligent Driver Model (IDM) 

developed by Treiber et al. [99]. The IDM model is widely used in traffic simulation studies and is 

based on the principle of maintaining a safe distance between vehicles while accounting for 

acceleration and deceleration. IDM uses equations (6.1) and (6.2) to model car following behavior.  

�̇�𝛼 = 𝑎 [1 − (
𝑣𝛼

𝑣0
)

𝛿

− (
𝑠∗(𝑣𝛼 , Δ𝑣𝛼)

𝑠𝛼
)

2

] (6.1) 

𝑠∗(𝑣, Δ𝑣) = 𝑠0
𝛼 + 𝑇𝛼𝑣𝛼 +

𝑣𝛼Δ𝑣𝛼

2√𝑎𝛼𝑏𝛼
(6.2) 

Where:  

𝛼 is the vehicle. 

𝑣𝑎 is velocity. 

𝑎 = 0.73
𝑚

𝑠2 is maximum acceleration. 𝑏 = 1.67
𝑚

𝑠2 is the desired deceleration. 

𝑣0 = 16
𝑚

𝑠
 is desired velocity. 

𝛿 = 4 is the acceleration exponent. 

𝑠𝛼 = Δ𝑥𝛼 − 𝐿 is the actual gap. 𝐿=5m is the length of the vehicle. Δ𝑥𝛼 = 𝑥𝛼−1 − 𝑥𝛼 is the position 

difference. 

𝑠∗ is the desired gap. 

𝑠0 = 2𝑚 is jam distance. 

𝑇 = 1.6𝑠 is the safe time headway. 

Δ𝑣𝛼 = 𝑣𝛼−1 − 𝑣𝛼 is the velocity difference. 

CAVs out of range for the ECo-TOp algorithm also use the IDM model for car following. 

This ensures that the simulation accurately represents real-world traffic scenarios where not all 

vehicles are equipped with CAV technology. The traffic demand is taken from real-world data from 

an intersection camera system on a similar real-world intersection. 
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To evaluate the safety performance of the different optimization strategies, the Safety 

Summation Analysis Method (SSAM) was employed. SSAM is a widely used safety evaluation 

tool that takes into account the frequency and severity of conflicts between vehicles 

([100][101][102] [103][104]). In this study, the number of conflicts between vehicles was counted 

and analyzed for each simulation run. 

The simulation was run for a total of 60 minutes for each optimization strategy, with a 

warm-up period of 5 minutes to allow for stabilization of traffic flow. Each simulation run was 

repeated ten times to ensure statistical accuracy. The simulation results were then analyzed to 

compare the safety and traffic performance of the different optimization strategies.  

The performance metrics used in this study include the intersection throughput, Carbon 

Dioxide (CO2) output, and safety performance, mentioned above. Throughput is defined here as the 

number of vehicles that traverse the intersection from entry to exit within the time period; measured 

in vehicles per hour. Total delay is defined as the time a vehicle spends waiting at an intersection 

plus the time spent in queue before the intersection, and measured in seconds. Total stops refer to 

the number of times a vehicle comes to a complete stop at the intersection. Fuel consumption and 

CO2 are measured in terms of grams per mile. 

To obtain the values of these metrics, SUMO provides detailed output files containing the 

necessary data to calculate these performance metrics. In the simulation setup, we implemented the 

ECoTOp approach for vehicle trajectories and traffic signal timing, and measured the performance 

of this approach in terms of the aforementioned metrics. The Comprehensive Modal Emissions 

Model (CMEM) [54] is used to estimate fuel consumption and CO2 output. The results of this 

evaluation are presented in the following section. 
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6.1.3.2 Experimental Results 

In this section, we present the results of the simulations for each experimental scenario. We 

evaluate the performance of the ECoTOp approach in comparison to the baseline, traffic signal 

optimization module alone, and eco-trajectory module alone scenarios, at CAV penetration rates of 

20%, 40%, 60%, 80%, and 100%, and a V/C ratio of 0.82. The key findings for each performance 

metric are summarized below. Graphs, tables, and figures are included to help illustrate the results. 

Throughput: Table 6.1 provides a summary of the throughput, also called vehicle flow, for 

each CAV penetration percentage. As expected, the signal optimization module alone provided the 

most improvement with 17.5% increase, and the eco-trajectory module alone causing a decrease. 

Also, the ECoTOp approach being in-between the two modules at each CAV penetration 

percentage. Interestingly, the eco-trajectory module alone approaches the baseline scenario as the 

CAV penetration percentage goes down, and the ECoTOp system approaches the signal 

optimization module alone as the CAV penetration percentage decreases. This is illustrated in 

Figure 6.3. 

Table 6.1. Vehicle flow results for signal optimization module, eco-trajectory module, and ECoTOp compared to 

baseline. 

CAV 

% 

Baseline 

Flow 

Signal Opt. Flow Eco-Traj. Flow ECoTOp Flow 

 
Veh/hr Veh/hr Improvement 

%  

Veh/hr Improvement 

% 

Veh/hr Improvement 

% 

20 1120.4 1316.6 17.5 1109.1 -1.01 1307.4 16.7 

40 1120.4 1316.6 17.5 1099.9 -1.8 1284.8 14.7 

60 1120.4 1316.6 17.5 1067.5 -4.7 1277.7 14.1 

80 1120.4 1316.6 17.5 1045.3 -6.7 1242.8 10.9 

100 1120.4 1316.6 17.5 1039.5 -7.2 1217.4 8.6 
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Figure 6.3. Plot of vehicle flow across different CAV penetration percentages. 

CO2 output: As expected, the eco-trajectory module alone provided the best performance, 

with up to 11.7% reduction in CO2 output. The signal optimization module alone had a slight 

increase in CO2 output, 1.04%, but the ECoTOp approach was often in-between the baseline 

scenario and the eco-trajectory module alone. Table 6.2 provides a summary of the CO2 output for 

each CAV penetration percentage. 

The CO2 output can be further analyzed between CAVs and legacy vehicles. Figure 6.4 

shows the plots of average CO2 output for CAVs (6.4a) and for legacy vehicles (6.4b). Interestingly, 

for CAVs, even as the penetration percentage decreases, the average CO2 output is similar. For 

legacy vehicle, however, there is a reduction in CO2 output when the CAV penetration percentage 

is higher, but then approaches that of baseline for eco-trajectory module alone and that of signal 

optimization module alone for ECoTOp. It should be noted that for Figure 6.4a, CAVs CO2 output, 

the Baseline and Signal Opt. vehicles plotted are the equivalent vehicles in the eco-trajectory 

module alone and ECoTOp scenarios. In other words, the legacy vehicles from baseline and signal 

optimization that became CAVs in eco-trajectory planning and ECoTOp are plotted against each 

other, and the legacy vehicles that stayed legacy vehicles are plotted against each other. 
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Table 6.2. Emissions results for signal optimization module, eco-trajectory module, and ECoTOp compared to 

baseline. 

CAV 

% 

Baseline 

CO2 

Signal Opt. CO2 Eco-Traj. CO2 ECoTOp CO2 

 
g/mile g/mile Improvement 

%  

g/mile Improvement 

% 

g/mile Improvement 

% 

20 443.3 447.9 -1.04 431.1 2.7 443.4 -0.02 

40 443.3 447.9 -1.04 402.9 9.1 428.6 3.3 

60 443.3 447.9 -1.04 393.4 11.3 419.0 5.5 

80 443.3 447.9 -1.04 392.6 11.4 416.5 6.1 

100 443.3 447.9 -1.04 391.3 11.7 412.4 6.97 

 

 

Figure 6.4. Plot of CO2 output across different CAV penetration percentages, (a) CAV; (b) Legacy vehicles. 

 

Figure 6.5. Number of Conflict plotted over different CAV penetration percentages. 
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Safety: Surprisingly, the signal optimization module alone scenario provided the most 

conflicts. It was expected that the eco-trajectory module alone scenario would have the least 

conflicts, and that the ECoTOp scenario would be in-between the eco-trajectory module alone and 

signal optimization module alone scenarios. Figure 6.5 shows the trend for each scenario over each 

CAV penetration percentage. Similar to throughput and CO2 output, the eco-trajectory module 

alone approaches the baseline and the ECoTOp system approaches the signal optimization module 

alone, as the CAV percentage decreases. Table 6.3 provides a summary of the safety of each 

scenario for each CAV penetration percentage. 

Table 6.3. Safety results for signal optimization module, eco-trajectory module, and ECoTOp compared to baseline. 

CAV 

% 

Baseline  Signal Opt. Safety Eco-Traj. Safety ECoTOp Safety 

 
Conflicts Conflicts Improve 

%  

Conflicts Improve 

% 

Conflicts Improve 

% 

20 8615.6 10191.9 -18.3 8234.5 4.4 9048.5 -5.0 

40 8615.6 10191.9 -18.3 7538.1 12.5 8225.1 4.5 

60 8615.6 10191.9 -18.3 7189.9 16.5 8036.9 6.7 

80 8615.6 10191.9 -18.3 6300.6 26.9 6418.2 25.5 

100 8615.6 10191.9 -18.3 5886.5 31.7 5947.7 31.0 

 

The rise in number of conflicts for the signal optimization module alone could be due to 

the increased speeds and shorter time gaps, leading to more conflicts and potential collisions. Or 

due to the approach assuming all vehicles are identical and have same speed, acceleration, and 

braking characteristics. The eco-trajectory module alone often smoothed out vehicle trajectories 

and reduced queuing leading to fewer conflicts. The ECoTOp approach makes trade-offs between 

signal optimization and eco-trajectory planning resulting in more conflicts than eco-trajectory 

module alone but less conflicts than the signal optimization module alone. 
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Figures 6.6, 6.7, and 6.8 show a sample of the trajectories for each scenario, where a. is 

baseline, b. is signal optimization alone, c. is eco-trajectory module alone, and d. is ECoTOp. For 

Figures 6.6, 6.7, and 6.8, black lines represent legacy vehicles, red lines represent CAVs, grey lines 

represent right turning legacy vehicles, and pink lines represent right turning CAVs. Figure 6.6 

shows the trajectories for 100% CAV penetration, Figure 6.7 shows the trajectories for 60% CAV 

penetration, and Figure 6.8 shows the trajectories for 20% CAV penetration. In Figure 6.6a, the 

blue arrows show instances where vehicles missed the green light interval and had to stop and wait 

for the next green interval, and in Figure 6.6c, the green arrows show instances where vehicles 

knew they would miss the green interval and slowed to pass through the next green interval. Figure 

6.6b shows all waiting vehicles passing through the intersection, but vehicles for the next green 

interval have to stop. Figure 6.6d shows passing smoothly through each green interval. 

Figures 6.7a and 6.7b shows the same trajectories as 6.6a and 6.6b, but show which vehicles 

are CAV equivalent in eco-trajectory module and ECoTOp. Figure 6.7c shows legacy vehicles 

having to stop and wait at red lights, while CAVs slow to pass through the next green interval. 

Figure 8d shows legacy vehicles having to stop and wait at red lights. The green arrows in Figures 

6.7c and 6.7d show instances where legacy vehicles are behind CAVs and are forced to follow the 

eco-trajectories resulting in some legacy vehicles lowering CO2 output. 

Similar to Figure 6.7, Figures 6.8a and 6.8b shows the same trajectories as 6.6a and 6.6b, 

but the red lines are the CAV equivalent vehicles. Figure 6.8c shows the eco-trajectory planning 

module alone scenario becoming more like the baseline scenario. The blue arrows in Figure 6.8c 

show instances of vehicles missing the green interval, similar to baseline Figures 6.6a, 6.7a, and 

6.8a, while the green arrow shows instances of CAVs slowing to pass through the next green 

interval. Figure 6.8d shows the ECoTOp scenario becoming like the signal optimization module 

alone scenario, Figures 6.6b, 6.7b, and 6.8b. The blue arrow in Figure 6.8d shows an instance where 
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the green interval was extended enough for the vehicle to pass through the intersection, where that 

same vehicle in Figure 6.8c had to stop and wait for the next green interval. 

 

 

Figure 6.6. Trajectory plots for 100% CAV penetration 

 

Figure 6.7. Trajectory plots for 60% CAV penetration. 
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Figure 6.8. Trajectory Plots for 20% CAV penetration. 

Figure 10 shows an illustrated version of the conclusion of the results. Figure 10a shows 

that as signal optimization increases, the mobility (throughput) increases, but the emissions (CO2 

output) also increase. As the eco-trajectory planning increases, the emissions decrease, but the 

mobility also decreases. The darker shade of green shows the ECoTOp system sitting in the middle 

where mobility and emission output both outperform baseline.  

Figure 10b shows a similar conclusion but with safety and mobility. As signal optimization 

increases, the mobility increases, but the number of conflicts increase. As eco-trajectory planning 

increases, the number of conflicts decrease, but the mobility also decreases. The darker shade of 

green shows the ECoTOp system in the middle where mobility and safety each outperform baseline. 
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Figure 6.9. Visualization of dynamic optimization strategies. (a) Emissions and mobility; (b) Safety and mobility. 



124 

6.1.4 Conclusions and Future Work 

6.1.4.1 Research Contributions 

In this chapter, we proposed an Eco-friendly Cooperative Traffic Optimization (ECoTOp) 

system. The approach leverages the information on vehicle trajectories to optimize the traffic 

signals in real-time, with the goal of increasing total throughput while ensuring a fair distribution 

of green time intervals among different approaches, and decreasing emissions output. 

The proposed ECoTOp approach was evaluated through extensive case studies using the 

traffic simulation software SUMO. The results of the ECoTOp approach were compared with a 

traffic signal optimization approach and an eco-trajectory planning approach. The results showed 

that the ECoTOp system showed better mobility than baseline and the eco-trajectory planning, and 

lower emissions output than baseline and the traffic signal optimization approach. 

The proposed approach was also found to be robust and effective in adapting to different 

traffic volumes and demand patterns. The simulation results demonstrated the potential of the 

proposed approach for improving intersection performance and reducing traffic congestion at 

isolated signalized intersections. 

The contributions of this research can be summarized as follows: 

• Development of a novel co-optimization approach (ECoTOp) for traffic signals and vehicle 

trajectories at isolated signalized intersections. 

• Demonstration of the effectiveness and potential of the proposed approach against traffic 

signal optimization alone, and vehicle trajectory optimization alone, through extensive case 

studies using a traffic simulation software. 

• Provision of a foundation for further research in the area of dynamically adjusting eco-

driving approaches based on traffic and environmental conditions. 
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6.1.4.2 Limitations and Future Directions 

While the proposed ECoTOp approach has shown promising results, there are several 

limitations and future directions to be considered. First, the proposed approach assumes a fixed and 

known intersection geometry. In reality, intersection geometry can vary over time, and different 

approaches may have different traffic characteristics. Therefore, future research may investigate 

the robustness and adaptability of the proposed approach to changing traffic conditions. Second, 

the proposed approach does not consider the effects of non-motorized traffic and pedestrians. 

Future research may extend the proposed approach to accommodate these users and investigate 

their impacts on intersection performance. Third, the proposed approach was evaluated using a 

traffic simulation software, and its applicability to real-world scenarios has yet to be demonstrated. 

Future research may investigate the feasibility of implementing the proposed approach in real-

world settings and evaluate its effectiveness using field data. 

6.1.4.3 Final Remarks 

Our experimental results demonstrate the effectiveness of the proposed ECoTOp approach 

compared to baseline, traffic signal timing optimization, and eco-trajectory planning. While there 

are limitations and future directions to be considered, our ECoTOp system presents a promising 

avenue for improving intersection performance and reducing traffic congestion. The approach has 

the potential to be applied in real-world scenarios and can be extended to incorporate additional 

objectives, such as environmental and social considerations. We hope this chapter will inspire 

further research in this area and contribute to the development of more efficient and sustainable 

transportation systems. 
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Chapter 7  

ECoTOp and Electric Vehicles 

This chapter focuses on the integration of electric vehicles (EVs) into the co-optimization 

framework, with the aim of examining their impact on the performance of the system. By 

incorporating market-predicted EV penetration percentages and leveraging real-world EV 

trajectories obtained from the SUMO traffic simulation platform, this chapter explores the 

effectiveness of the co-optimization approach in the presence of EVs and compares it to the 

performance of vehicle trajectory optimization alone and traffic signal optimization alone. The 

insights gained from these comparisons lay the foundation for the future development of an 

adaptive optimization strategy capable of dynamically selecting the most suitable optimization 

approach based on real-time traffic conditions and environmental considerations. 

To accurately represent the anticipated increase in EVs on the road, market-predicted EV 

penetration percentages are incorporated into the simulations. These percentages are based on 

industry forecasts and provide a realistic representation of the expected growth in EV usage. By 

considering different EV penetration levels, ranging from conservative estimates to more 

aggressive projections, we gain insights into the performance of the co-optimization approach 

under various EV adoption scenarios. Four EV penetration levels were chosen: 18%, EVs could 

account for 18% of total car sales in 2023 [105]; 50%, United States are pushing to reach 50% EV 

sales in 2030 [106]; 80%, the share of EV sales is expected to reach over 80% in many countries 

by 2040 [107]; and 100%, California wants 100% zero-emission vehicle sales by 2035 [108].  

Real-world EV trajectories recorded from the SUMO simulation platform are utilized to 

capture the actual driving patterns and behaviors of EVs. These trajectories, combined with energy 

usage estimation using MATLAB's EV reference application in Simulink, tailored specifically for 
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the Cadillac Lyriq, enable a comprehensive analysis of the energy implications and performance of 

the co-optimized vehicle trajectories and traffic signal timings. 

The experimental results presented in this chapter provide valuable insights into the 

performance of the ECoTOp approach in the presence of EVs. By comparing the outcomes of the 

co-optimization strategy with those of vehicle trajectory optimization alone and traffic signal 

optimization alone, we assess the benefits and challenges associated with the integration of EVs 

into the transportation system. This comparative analysis aids in establishing a baseline 

understanding of the advantages and trade-offs of different optimization strategies and sets the stage 

for the development of an adaptive optimization strategy that dynamically selects the most suitable 

approach based on real-time traffic conditions, EV penetration levels, and environmental 

considerations. 

The findings from this chapter contribute to the understanding of the interactions between 

EVs and the ECoTOp approach, shedding light on the energy implications, vehicle flow, and overall 

transportation efficiency achieved with different optimization strategies. These insights provide a 

foundation for future research and policymaking efforts aimed at promoting sustainable 

transportation systems that effectively incorporate electric vehicles. 

In summary, this chapter investigates the integration of electric vehicles into the ECoTOp 

framework and examines their influence on the performance of the system. By incorporating 

market-predicted EV penetration percentages and real-world EV trajectories, we compare the 

outcomes of the ECoTOp approach with vehicle eco-trajectory planning alone and traffic signal 

optimization alone. These comparisons lay the groundwork for the future development of an 

adaptive optimization strategy, which dynamically selects the most appropriate optimization 

approach based on real-time traffic conditions, EV penetration levels, and environmental 
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considerations. The insights gained from this chapter contribute to the advancement of sustainable 

transportation systems that effectively accommodate the growing presence of electric vehicles. 

7.1 Simulink Electric Vehicle Model 

In this study, the MATLAB EV reference application for Simulink was utilized to estimate 

the energy use of electric vehicles (EVs) within the co-optimization framework. The MATLAB EV 

reference application [109] is a powerful tool that allows for accurate modeling and simulation of 

EV behavior and energy consumption. Figure 7.1 shows the Simulink model outer layer. 

 

Figure 7.1. MATLAB EV reference application Simulink model. 

The reference application in Simulink provides a comprehensive set of blocks and models 

specifically designed for simulating EVs. It incorporates various components and characteristics of 

an EV, including the battery, electric motor, drivetrain, and vehicle dynamics. These components 

are modeled using physics-based equations and empirical data to capture the real-world behavior 

of EVs. 

One key advantage of the MATLAB EV reference application is its flexibility and 

customization options. The application allows researchers to tailor the model parameters to specific 

EV makes and models, providing a more accurate representation of the vehicle being studied. In 
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this research, the reference application was specifically tuned for the Cadillac Lyriq, an electric 

vehicle model used in the experiments. 

By integrating the EV trajectories recorded from the Simulation of Urban MObility 

(SUMO) platform with the MATLAB EV reference application, it was possible to estimate the 

energy consumption of the EVs under different traffic signal timing scenarios. This enabled a 

comprehensive assessment of the energy-saving potential of the co-optimization approach. 

The use of the MATLAB EV reference application in this study ensures a rigorous and 

accurate representation of EV energy consumption. By leveraging the capabilities of Simulink, the 

author was able to simulate realistic driving conditions, account for variations in traffic patterns, 

and evaluate the impact of different optimization strategies on EV energy use. 

The results obtained from the MATLAB EV reference application provide valuable insights 

into the energy efficiency of EVs and the effectiveness of the co-optimization approach. They 

contribute to a deeper understanding of the potential benefits of integrating EVs into the 

optimization framework and inform the development of future adaptive optimization strategies. 

7.2 Simulation and Results 

The simulation setup for EVs was the same as the simulation setup in section 6.1.3, except 

the eco-trajectory planning module was trained specifically for EVs. We tested four different 

penetration rates: 18% EVs, 50% EVs, 80% EVs, and 100% EVs. Each penetration rate was tested 

at the 20%, 60%, and 100% CAV penetration rates, and at the hour 14 v/c ratio. The results showed 

that the ECoTOp approach was more effective in increasing throughput and battery efficiency as 

the penetration rate of CAVs and EVs increased. For example, at low CAV penetration rate, the 

efficiency improvement for EVs achieved by the ECoTOp approach was only around 10% for each 

EV penetration, while at high CAV penetration rate, it increased to around 20%. This indicates that 

the ECoTOp approach is more effective in a future traffic network with a higher share of CAVs and 
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EVs, but still performs well in lower CAVs. The safety and mobility were similar to that of no EVs, 

as was the CO2 emissions for ICE vehicles. 

Figure 7.2 shows the trend for battery efficiency over the three CAV penetrations, 100%, 

High CAV (60%) and Low CAV (20%) for each EV penetration rate; Figure 7.2a is for 18% EVs, 

7.2b for 50% EVs, 7.2c for 80% EVs, and 7.2d for 100% EVs. Table 7.1 shows the results for EV 

efficiency, Table 7.2 shows the vehicle flow results, and Table 7.3 shows the safety results. 

 

Figure 7.2. EV efficiencies output across different CAV penetration percentages. 

 

Figure 7.3 shows the EV efficiency for each CAV penetration rate across the four EV 

penetration rates; Figure 7.3a is 20% CAV rate, 7.3b is 60%, and 7.3c is 100%. Interestingly, for 

50% EVs and above, the average efficiency was almost the same; this was the case for each CAV 

penetration rate. Meaning, for Low CAV rate, 50%, 80% and 100% EVs penetrations had similar 

average efficiencies, and the same for High CAV rate and 100% CAV rate.  
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Figure 7.3. EV efficiencies across different EV penetration rates. 

 

Figure 7.4 shows the EV efficiencies for CAVs and legacy EVs (non-connected EVs) for 

High CAV rate (60%) and Low CAV rate (20%). Figure 7.4a is CAVs for High CAV rate, 7.4b is 

legacy EVs for High CAV rate, 7.4c is CAVs for Low CAV rate, and 7.4d is legacy EVs for High 

CAV rate. It should be noted that for Figure 7.4, the Baseline and Signal Opt. vehicles plotted are 

the equivalent vehicles in the eco-trajectory module alone and ECoTOp scenarios. In other words, 

the legacy vehicles from baseline and signal optimization that became CAVs in eco-trajectory 

planning and ECoTOp are plotted against each other, and the legacy vehicles that stayed legacy 

vehicles are plotted against each other. For eco-trajectory planning alone and ECoTOp, the CAVs 

improved efficiency, which is expected, but the legacy vehicles also improved efficiency. This is 

because of the CAVs forcing the legacy vehicles to follow their trajectories sometimes, as the green 

arrows point out in Figure 6.7. 
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Figure 7.4. EV efficiencies for CAVs and legacy vehicles. 

Table 7.1. EV energy efficiency results. 

EV 
% 

CAV 
% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Efficiency 
(mi/kWh) 

Efficiency 
(mi/kWh) 

% Improve 
(vs. 

Baseline) 

Efficiency 
(mi/kWh) 

% Improve 
(vs. 

Baseline) 

Efficiency 
(mi/kWh) 

% Improve 
(vs. 

Baseline) 

18 20 3.3946 3.3641 -0.9 3.7464 10.4 3.7551 10.6 

60 3.3946 3.3641 -0.9 4.0261 18.6 3.9403 16.1 

100 3.3946 3.3641 -0.9 4.1729 22.9 4.0852 20.3 

50 20 3.3870 3.3738 -0.4 3.7154 9.7 3.7445 10.6 

60 3.3870 3.3738 -0.4 4.0140 18.5 3.9705 17.2 

100 3.3870 3.3738 -0.4 4.0854 20.6 4.0194 18.7 

80 20 3.3932 3.3797 -0.4 3.7089 9.3 3.7376 10.1 

60 3.3932 3.3797 -0.4 4.0126 18.3 3.9748 17.1 

100 3.3932 3.3797 -0.4 4.0732 20.0 4.0213 18.5 

100 20 3.3733 3.3708 -0.8 3.7148 10.1 3.7364 10.8 

60 3.3733 3.3708 -0.8 4.0195 19.2 3.9681 17.6 

100 3.3733 3.3708 -0.8 4.0931 21.3 4.0311 19.5 
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Table 7.2. Flow rate results for different EV penetration rates. 

EV % CAV % Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Vehicle 
Flow 

(veh/hr) 

Vehicle 
Flow 

(veh/hr) 

% Improve 
(vs. 

Baseline) 

Vehicle 
Flow 

(veh/hr) 

% Improve 
(vs. 

Baseline) 

Vehicle 
Flow 

(veh/hr) 

% Improve 
(vs. 

Baseline) 

18 20 1120.4 1316.6 17.5 1108.1 -1.1 1302.8 16.3 

60 1120.4 1316.6 17.5 1046.2 -6.6 1250.8 11.6 

100 1120.4 1316.6 17.5 1026.8 -8.4 1209.1 7.9 

50 20 1120.4 1316.6 17.5 1101.5 -1.7 1292.8 15.4 

60 1120.4 1316.6 17.5 1016.2 -9.3 1220.8 8.9 

100 1120.4 1316.6 17.5 980.1 -12.5 1199.1 7.0 

80 20 1120.4 1316.6 17.5 1091.5 -2.5 1279.5 14.2 

60 1120.4 1316.6 17.5 1009.6 -9.9 1204.2 7.5 

100 1120.4 1316.6 17.5 966.8 -13.7 1182.4 5.5 

100 20 1120.4 1316.6 17.5 1074.8 -4.1 1266.1 13.0 

60 1120.4 1316.6 17.5 999.6 -10.8 1194.2 6.6 

100 1120.4 1316.6 17.5 951.0 -15.1 1177.3 5.1 

 

Table 7.3. Safety results for different EV penetration rates. 

EV 

% 

CAV 

% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Conflicts Conflicts % 

improvement 

(vs. Baseline) 

Conflicts % 

improvement 

(vs. Baseline) 

Conflicts % 

improvement 

(vs. Baseline) 

18 20 8615.6 10191.9 -18.3 8537.9 0.9 9514.4 -5.0 

60 8615.6 10191.9 -18.3 8126.2 5.7 9020.3 6.7 

100 8615.6 10191.9 -18.3 6611.1 23.3 7147.5 30.9 

50 20 8615.6 10191.9 -18.3 8561.5 0.6 8462.6 1.7 

60 8615.6 10191.9 -18.3 8041.6 6.6 8010.9 7.0 

100 8615.6 10191.9 -18.3 6620.5 23.2 7142.8 17.1 

80 20 8615.6 10191.9 -18.3 8303.9 3.6 8481.4 1.6 

60 8615.6 10191.9 -18.3 8079.2 6.2 7916.7 8.1 

100 8615.6 10191.9 -18.3 6629.9 23.6 7133.4 17.2 

100 20 12458.1 13572.3 -8.9 11729.0 5.8 12411.8 0.3 

60 12458.1 13572.3 -8.9 10809.9 13.2 12237.5 1.8 

100 12458.1 13572.3 -8.9 10123.8 18.7 11311.8 9.2 
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7.3 Conclusions 

This chapter presented the integration of electric vehicles (EVs) into the co-optimization 

framework for vehicle trajectories and traffic signal timing. Through the use of the MATLAB EV 

reference application in Simulink, the energy consumption of EVs was estimated, allowing for a 

comprehensive analysis of their performance within the optimization framework. The key findings 

and implications from this chapter can be summarized as follows: 

1. Energy Efficiency: The energy consumption of EVs under different optimization strategies 

was evaluated, providing insights into the potential energy-saving benefits of the co-

optimization approach. By considering the specific characteristics of EVs and their 

interactions with traffic signal timing, the optimization framework demonstrated the ability 

to improve the energy efficiency of EVs. 

2. Comparative Analysis: The comparison between the co-optimization approach, vehicle 

trajectory optimization alone, and traffic signal optimization alone revealed the strengths 

and limitations of each strategy. While vehicle trajectory optimization alone achieved the 

best energy efficiency, the co-optimization approach showed promising results by striking 

a balance between energy consumption and overall traffic flow efficiency. 

3. Foundation for Adaptive Optimization: The integration of EVs into the co-optimization 

framework serves as a foundational step towards the future development of an adaptive 

optimization strategy. By considering real-time traffic conditions, EV penetration rates, and 

environmental factors, the adaptive strategy can dynamically select the most suitable 

optimization approach to maximize overall system performance. 

The findings from this chapter contribute to the advancement of sustainable transportation 

systems by demonstrating the potential benefits of integrating EVs into the optimization 
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framework. The results highlight the importance of considering EV energy consumption and its 

interaction with traffic signal timing for achieving efficient and eco-friendly transportation 

networks. The study revealed that the integration of electric vehicles (EVs) did not significantly 

impact traffic flow and safety compared to the results obtained without EVs. However, concerning 

energy efficiency, it was observed that traffic signal optimization alone showed a marginal 

difference of merely 1% from the baseline, irrespective of the EV penetration rate. Furthermore, 

the ECoTOp approach demonstrated remarkable proximity to eco-trajectory planning alone, with 

ECoTOp achieving an improvement of 10-20% over the baseline, while eco-trajectory planning 

alone achieved 10-22%, depending on the connected and automated vehicle (CAV) penetration rate. 

Moving forward, future research should focus on refining the co-optimization framework 

to better address the unique characteristics and requirements of EVs. This includes incorporating 

real-time EV data, considering charging infrastructure constraints, and further investigating the 

trade-offs between energy efficiency and traffic flow optimization. 

By continuing to explore and enhance the co-optimization approach with EV integration, 

we can pave the way for the development of intelligent and adaptive optimization strategies that 

optimize the performance of transportation systems while promoting sustainability and energy 

efficiency. 
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Chapter 8  

Additional ECoTOp Case Studies 

The final chapter of this dissertation presents additional case studies that further investigate 

the ECoTOp framework. These case studies explore different traffic volumes, mixed vehicle type 

scenarios, and electric vehicle (EV) considerations, providing valuable insights into the 

performance and effectiveness of the ECoTOp approach under various conditions. 

1. Variation in Traffic Volumes: To assess the robustness of the co-optimization approach, 

different traffic volumes are tested. By simulating varying levels of traffic demand, ranging 

from low to high volume scenarios, the performance of the ECoTOp approach can be 

evaluated under different levels of congestion and traffic flow. 

2. Mixed Vehicle Type Scenarios: Two distinct mixed vehicle type scenarios are examined in 

the case studies. The first scenario reflects the real-world distribution of heavy-duty 

vehicles (HDV), medium-duty vehicles (MDV), and light-duty vehicles (LDV) from the 

Innovation Corridor [41]. This scenario allows for an assessment of the ECoTOp 

approach's performance when considering the typical vehicle composition on the road. The 

second scenario involves a fabricated ratio that is more truck-dominated, providing insights 

into the approach's adaptability to different vehicle mix scenarios. 

3. CAV Penetration Rates: The case studies also investigate the impact of connected and 

automated vehicle (CAV) penetration rates on the performance of the co-optimization 

approach. By simulating different CAV penetration levels, ranging from low to high, the 

effectiveness of the approach in leveraging CAV technologies for enhanced traffic 

management can be assessed. 
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4. EV Considerations: The case studies also include specific test scenarios that focus on 

electric vehicles (EVs). Different traffic volumes are considered to evaluate the 

performance of the co-optimization approach in the context of EVs. This analysis provides 

insights into the interaction between EVs, traffic signal timing, and overall system 

performance. 

By conducting these additional case studies, a comprehensive understanding of the 

ECoTOp approach's performance across different traffic volumes, vehicle types, CAV penetration 

rates, and EV considerations can be obtained. The results of these case studies will further 

contribute to the evaluation and refinement of the ECoTOp approach, facilitating its potential 

implementation in real-world transportation systems. 

Overall, these case studies provide important insights into the versatility and adaptability 

of the ECoTOp approach, demonstrating its effectiveness in a range of scenarios and paving the 

way for future advancements in the field of intelligent transportation systems. 

8.1 Simulation Setup 

The simulation setup for EVs was the same as the simulation setup in section 6.1.3, and 

section 7.2 for EVs. The simulations were performed using the SUMO (Simulation of Urban 

Mobility) traffic simulation platform, which provides a realistic environment to model and analyze 

traffic dynamics at isolated signalized intersections. 

1. Traffic Volumes: Different traffic volumes were considered to assess the performance of 

the ECoTOp approach under varying levels of demand. The selected traffic volumes 

represent different demand levels for different hours of the day using real-world data. 

Specifically, we tested the performance of the approach at hour 10 with a volume-to-

capacity (v/c) of 0.52, hour 14 (v/c = 0.82), and an over-saturated case, hour 17 (v/c = 
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1.09). These varying volumes allowed for a comprehensive analysis of the ECoTOp 

system's effectiveness across different traffic conditions. 

2. Connected and Automated Vehicle (CAV) Penetration: To assess the impact of CAV 

technology, different CAV penetration rates were simulated in the experiments. The CAV 

penetration rates were: 20%, 40%, 60%, 80%, and 100%. This allowed for the evaluation 

of how the ECoTOp approach performs under different levels of CAV deployment and 

interaction with conventional vehicles. 

3. Mixed Vehicle Types: Two different scenarios were considered to evaluate the co-

optimization approach's performance with different vehicle mixes. The first mix comprised 

of 3% HDV, 20% MDV, and 77% LDV. The second mix was 30% HDV, 30% MDV and 

40% LDV. We evaluated the two mixes at three different levels of connected and automated 

vehicle (CAV) penetration: 20%, 60%, and 100%. The tests were conducted at hours 10, 

14, and 17 v/c ratios. 

4. Electric Vehicles (EVs): The influence of electric vehicles on the co-optimization approach 

was also investigated by considering different traffic volumes specific to EVs. These 

volumes were based on market predictions of EV penetration percentages: 18% EVs, 50% 

EVs, 80% EVs, and 100% EVs. Each EV penetration rate was tested at low CAV 

penetration (20%), high CAV penetration (60%), and 100% CAV penetration. Also, each 

EV/CAV penetration scenario was tested at the hours 10, 14, and 17 v/c ratios.  

The calculation of intersection volume-to-capacity ratios is based on critical lane groups, 

with noncritical lane groups not constraining traffic signal operations. The determination of critical 

lane groups follows rules set out in HCM 2000. The v/c ratio, which is also known as degree of 

saturation, represents the ability of an intersection to handle the vehicular demand. A v/c ratio of 

less than 0.85 usually suggests that sufficient capacity is available, and drivers are not expected to 
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encounter significant queues and delays. As the v/c ratio approaches 1.0, traffic flow can become 

unstable, leading to delay and queuing conditions. Once the demand surpasses the capacity (a v/c 

ratio greater than 1.0), traffic flow becomes unstable, and significant delay and queuing are 

expected. In such cases, vehicles may require more than one signal cycle to navigate the 

intersection, a scenario referred to as cycle failure [16]. 

The simulation setup parameters were carefully selected to create a diverse set of scenarios 

that represent real-world conditions and potential future trends in traffic composition. By 

examining various traffic volumes, vehicle types, CAV penetration rates, and EV scenarios, the 

simulation experiments aimed to provide comprehensive insights into the performance and 

effectiveness of the ECoTOp approach. 

8.2 Results 

In this section, we present the results of the simulation experiments conducted to evaluate 

the ECoTOp framework under various scenarios. The analysis focuses on key performance metrics, 

including traffic flow, CO2 output, EV miles per kilowatt-hour, and potential traffic conflicts, to 

assess the effectiveness of the ECoTOp approach in improving traffic efficiency and sustainability. 

The results are discussed for each specific case, considering different traffic volumes, mixed 

vehicle types, CAV penetration rates, and EV scenarios. 

First, we examine the performance of the ECoTOp approach across different traffic volume 

scenarios. we conducted experiments with different demand levels for different hours of the day 

using real-world data. Specifically, we tested the performance of the approach at hour 10 with a 

volume-to-capacity (v/c) ratio of 0.524, hour 14 (v/c = 0.82), and hour 17 (v/c = 1.09). Those hours 

were chosen in order to test at one medium capacity, one high capacity, and one over-saturated 

capacity. The hour 14 with v/c ratio is the same scenario as section 7.2, and is shown in this section 

for comparison purposes. 
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The results are shown in Figure 8.1 and show the safety, mobility, and emission output for 

the three v/c ratios tested at several different CAV penetration percentages. The ECoTOp approach 

is often in-between the eco-trajectory module alone and signal optimization module alone, but still 

performing better than baseline. Where the medium traffic (v/c=0.524), when compared to baseline, 

signal optimization safety improves by 4.1%, and mobility improves by 25.7%, and emissions 

worsen by 0.5%; eco-trajectory improves safety by 13-60%, mobility worsens by 1.9-5.8%, and 

emissions improve by 8.2-16.9%; ECoTOp improves safety by 25-54%, mobility improves by 18-

24%, and emissions improve by 5.5-14%. However, the over-saturated case did provide some 

irregularities. For instance, emissions in the over-saturated case more closely resembles that of the 

signal optimization alone, and worse than the baseline emissions. Also, for all cases, the mobility 

was significantly less in the over-saturated case. Tables 8.1, 8.2, and 8.3 show all the results for 

safety, mobility and emissions respectively. 

 

Figure 8.1. Safety, mobility, and emissions results for varying traffic demands. 
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Next, we investigate the co-optimization approach's effectiveness in managing mixed 

vehicle type scenarios. Two different scenarios were considered: one reflecting the real-world 

distribution of heavy-duty vehicles (HDVs), medium-duty vehicles (MDVs), and light-duty 

vehicles (LDVs), and the other representing a truck-dominated scenario with a higher proportion 

of HDVs. The results for the real-world distribution are shown in Figure 8.2 and show the safety, 

mobility, and emission output for these scenarios. Adding HDVs and MDVs made it so that there 

was very little variation between the different traffic volumes. The number of conflicts in Figure 

8.2a was significantly lower for the lower traffic volume, but the throughput in Figure 8.2b and the 

emissions in 8.2c showed similar results across the three v/c ratios simulated. Tables 8.4, 8.5, and 

8.6 show all the results for safety, mobility and emissions respectively. 

 

Figure 8.2. Safety, mobility, and emissions results for mixed vehicle types across varying traffic demands. 
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Table 8.1. CO2 output results for mixed traffic – real-world distribution. 

V/C 
Ratio 

CAV 
% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

CO2 
Output 

(g/mile) 

CO2 
Output 

(g/mile) 

% 
improvement 

(vs. Baseline) 

CO2 

Output 

(g/mile) 

% 
improvement 

(vs. Baseline) 

CO2 
Output 

(g/mile) 

% 
improvement 

(vs. Baseline) 

0.524 20 798.8 804.9 -0.7 732.6 8.3 763.6 4.4 

60 798.8 804.9 -0.7 627.6 21.4 638 20.1 

100 798.8 804.9 -0.7 606.8 24.1 621.9 22.1 

0.82 20 888.7 964.3 -8.5 862.6 2.9 909.9 -2.4 

60 888.7 964.3 -8.5 791.1 10.9 831.6 6.4 

100 888.7 964.3 -8.5 763.1 14.1 810.6 8.8 

1.09 20 919.7 945 -2.7 857.7 6.7 916.4 0.4 

60 919.7 945 -2.7 807.9 12.2 853.3 7.2 

100 919.7 945 -2.7 771 16.2 828.9 9.9 

 

 

Table 8.2. Flow rate results for mixed traffic – real-world distribution. 

V/C 

Ratio 

CAV 

% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Vehicle 

Flow 

(veh/hr) 

Vehicle 

Flow 

(veh/hr) 

% 

improvement 

(vs. Baseline) 

Vehicle 

Flow 

(veh/hr) 

% 

improvement 

(vs. Baseline) 

Vehicle 

Flow 

(veh/hr) 

% 

improvement 

(vs. Baseline) 

0.524 20 1067.5 1220.7 14.4 1028.7 -3.6 1200.7 12.5 

60 1067.5 1220.7 14.4 1010.4 -5.3 1183.9 10.9 

100 1067.5 1220.7 14.4 942.3 -11.7 1150.3 7.8 

0.82 20 1050.3 1276.6 21.5 1029.4 -1.99 1178.6 12.2 

60 1050.3 1276.6 21.5 975.8 -7.1 1167.9 11.2 

100 1050.3 1276.6 21.5 954.1 -9.2 1144.4 8.9 

1.09 20 1077.7 1171.3 6.7 1072.9 -0.4 1140.9 5.9 

60 1077.7 1171.3 6.7 1053.4 -2.2 1127.6 4.6 

100 1077.7 1171.3 6.7 1039.9 -3.5 1113.8 3.3 
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Table 8.3. Safety results for mixed traffic – real-world distribution. 

V/C 
Ratio 

CAV 
% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Conflicts Conflicts % 
improvement 

(vs. Baseline) 

Conflicts % 
improvement 

(vs. Baseline) 

Conflicts % 
improvement 

(vs. Baseline) 

0.524 20 2962.8 2866.9 3.2 2339.6 21.1 2429.1 18.0 

60 2962.8 2866.9 3.2 1652.4 44.2 1722.7 41.8 

100 2962.8 2866.9 3.2 1521.4 48.6 1665.2 43.8 

0.82 20 5107.7 6273.3 -22.8 4774.3 6.5 4899.7 4.1 

60 5107.7 6273.3 -22.8 4563.6 10.6 4747.7 7.1 

100 5107.7 6273.3 -22.8 4104.9 19.6 4104.9 14.9 

1.09 20 12019.8 12216.3 -1.6 10816.6 10.0 11524.6 4.1 

60 12019.8 12216.3 -1.6 10333.7 14.1 11139.9 7.3 

100 12019.8 12216.3 -1.6 9732.1 19.1 10935.3 9.0 

 

The truck-dominated mixed traffic scenario results were similar to the real-world 

distribution, and shown in Figure 8.3. The only difference was that the emissions were much high 

overall for the truck-dominated scenario. Tables 8.7, 8.8, and 8.9 show all the results for safety, 

mobility and emissions respectively. 

Table 8.4. CO2 output results for mixed traffic – truck dominated distribution. 

V/C 

Ratio 

CAV 

% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

CO2 

Output 
(g/mile) 

CO2 

Output 
(g/mile) 

% 

improvement 
(vs. Baseline) 

CO2 

Output 
(g/mile) 

% 

improvement 
(vs. Baseline) 

CO2 

Output 
(g/mile) 

% 

improvement 
(vs. Baseline) 

0.524 20 1753.5 1810.1 -3.2 1664.6 5.1 1693.6 3.4 

60 1753.5 1810.1 -3.2 1487.4 15.2 1505.2 14.2 

100 1753.5 1810.1 -3.2 1270.99 27.5 1286.9 26.6 

0.82 20 2126.5 2162.9 -1.7 1866.4 12.2 1948.9 8.3 

60 2126.5 2162.9 -1.7 1719.6 19.1 1764.2 17.0 

100 2126.5 2162.9 -1.7 1595.5 24.9 1658.5 22.0 

1.09 20 1832.3 1832.6 -0.01 1761.1 3.9 1792.2 2.2 

60 1832.3 1832.6 -0.01 1685.2 8.0 1729.7 5.6 

100 1832.3 1832.6 -0.01 1633.6 10.8 1662.6 9.2 
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Table 8.5. Flow rate results for mixed traffic – truck dominated distribution. 

V/C 

Ratio 

CAV 

% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Vehicle 
Flow 

(veh/hr) 

Vehicle 
Flow 

(veh/hr) 

% 
improvement 

(vs. Baseline) 

Vehicle 
Flow 

(veh/hr) 

% 
improvement 

(vs. Baseline) 

Vehicle 
Flow 

(veh/hr) 

% 
improvement 

(vs. Baseline) 

0.524 20 900.1 1074.1 19.3 889.1 -1.2 1056.6 17.4 

60 900.1 1074.1 19.3 864.8 -3.9 1023.2 13.7 

100 900.1 1074.1 19.3 836.2 -7.1 998.0 10.9 

0.82 20 698.0 961.8 37.7 694.8 -0.5 896.1 28.4 

60 698.0 961.8 37.7 658.4 -5.7 819.9 17.5 

100 698.0 961.8 37.7 640.8 -8.2 820.1 17.5 

1.09 20 820.1 1030.1 25.6 818.3 -0.2 1000.2 21.9 

60 820.1 1030.1 25.6 794.7 -3.1 900.3 9.78 

100 820.1 1030.1 25.6 758.8 -7.5 900.1 9.76 

 

 

Table 8.6. Safety results for mixed traffic – truck dominated distribution. 

V/C 
Ratio 

CAV 
% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Conflicts Conflicts % 
improvement 

(vs. Baseline) 

Conflicts % 
improvement 

(vs. Baseline) 

Conflicts % 
improvement 

(vs. Baseline) 

0.524 20 3359.1 3451.8 -2.8 2381.1 29.1 2601.6 22.5 

60 3359.1 3451.8 -2.8 2320.4 30.9 2413.4 28.2 

100 3359.1 3451.8 -2.8 2087.1 37.9 2125.4 36.7 

0.82 20 5019.7 5515.8 -9.9 4350.3 13.3 4721.0 5.9 

60 5019.7 5515.8 -9.9 3878.2 22.7 4363.6 13.1 

100 5019.7 5515.8 -9.9 3678.1 26.7 4123.5 17.9 

1.09 20 11483.7 11770.2 -2.5 10587.4 7.8 11008.9 4.1 

60 11483.7 11770.2 -2.5 9728.0 15.3 10706.1 6.8 

100 11483.7 11770.2 -2.5 9118.2 20.6 10108.6 11.9 
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Additionally, we examine the influence of electric vehicles (EVs) on the ECoTOp 

approach. By considering different traffic volumes specific to EVs, based on market-predicted EV 

penetration percentages, the results demonstrated the successful integration of EVs into the traffic 

stream. The ECoTOp approach effectively improved EV energy efficiency, and minimized the 

impact of EV charging on overall traffic flow. The safety and mobility measures were very similar 

to that of no EVs. These findings highlight the ECoTOp approach's potential to facilitate the 

seamless integration of EVs into the transportation system, promoting sustainable mobility. The 

results, along with the results for EVs for eco-trajectory planning alone and signal optimization 

alone, are shown for 18% and 100% EV penetration rate in Figures 8.4 and 8.5, and all EV energy 

efficiency results are shown in Table 8.10. In Figures 8.4 and 8.5, a is safety, b is mobility, and c is 

EV efficiency. 

 

 

Figure 8.3. Safety, mobility, and emissions results for truck dominated mixed vehicle types across varying traffic 

demands. 
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Figure 8.4. Safety, mobility, and energy efficiency results for 18% EVs across varying traffic demands. 

 

Figure 8.5. Safety, mobility, and energy efficiency results for 100% EVs across varying traffic demands. 
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Table 8.7. EV energy efficiency across varying CAV and EV penetration rates. 

EV 

% 

V/C  CAV 

% 

Baseline Signal Opt. Eco-Trajectory Planning ECoTOp 

Efficiency 

(mi/kWh) 

Effic. 

(mi/kWh) 

% Improve Effic. 

(mi/kWh) 

% Improve  Effic. 

(mi/kWh) 

% Improve  

18 

0.52 20 3.3787 3.3626 -0.5 3.7082 9.7 3.7129 9.9 

60 3.3787 3.3626 -0.5 4.2205 24.9 4.1575 23.1 

100 3.3787 3.3626 -0.5 4.2619 26.1 4.2092 24.6 

0.82 20 3.3946 3.3641 -0.9 3.7464 10.4 3.7551 10.6 

60 3.3946 3.3641 -0.9 4.0261 18.6 3.9403 16.1 

100 3.3946 3.3641 -0.9 4.1729 22.9 4.0852 20.3 

1.09 20 3.3377 3.3815 1.5 3.6538 9.5 3.6895 10.5 

60 3.3377 3.3815 1.5 3.9463 18.2 3.9022 16.9 

100 3.3377 3.3815 1.5 3.9917 19.6 3.9738 19.1 

50 

0.52 20 3.3878 3.3998 -0.4 3.6955 9.1 3.6873 8.8 

60 3.3878 3.3998 -0.4 4.1673 23.0 4.1133 21.4 

100 3.3878 3.3998 -0.4 4.3138 27.3 4.2622 25.8 

0.82 20 3.3870 3.3738 -0.4 3.7154 9.7 3.7445 10.6 

60 3.3870 3.3738 -0.4 4.0140 18.5 3.9705 17.2 

100 3.3870 3.3738 -0.4 4.0854 20.6 4.0194 18.7 

1.09 20 3.3338 3.3827 1.3 3.6394 9.2 3.6712 10.1 

60 3.3338 3.3827 1.3 3.9463 19.7 3.9623 18.8 

100 3.3338 3.3827 1.3 4.0192 20.6 3.9781 19.3 

80 

0.52 20 3.3892 3.3855 -0.1 3.7110 9.5 3.6940 9.0 

60 3.3892 3.3855 -0.1 4.1676 22.9 4.1350 22.0 

100 3.3892 3.3855 -0.1 4.3047 27.0 4.2346 24.9 

0.82 20 3.3932 3.3797 -0.4 3.7089 9.3 3.7376 10.1 

60 3.3932 3.3797 -0.4 4.0126 18.3 3.9748 17.1 

100 3.3932 3.3797 -0.4 4.0732 20.0 4.0213 18.5 

1.09 20 3.3291 3.3859 1.7 3.6625 10.0 3.6786 10.5 

60 3.3291 3.3859 1.7 3.9965 20.0 3.9591 18.9 

100 3.3291 3.3859 1.7 4.0089 20.4 3.9786 19.5 

100 

0.52 20 3.3765 3.3682 -0.2 3.7107 9.9 3.6958 9.5 

60 3.3765 3.3682 -0.2 4.1669 23.4 4.1404 22.6 

100 3.3765 3.3682 -0.2 4.3356 28.4 4.2586 26.1 

0.82 20 3.3733 3.3708 -0.8 3.7148 10.1 3.7364 10.8 

60 3.3733 3.3708 -0.8 4.0195 19.2 3.9681 17.6 

100 3.3733 3.3708 -0.8 4.0931 21.3 4.0311 19.5 

1.09 20 3.3311 3.3824 1.5 3.6486 9.5 3.6777 10.4 

60 3.3311 3.3824 1.5 3.9918 19.8 3.9568 18.8 

100 3.3311 3.3824 1.5 4.0678 22.1 3.9916 19.8 
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Overall, the simulation experiments provide compelling evidence of the ECoTOp 

approach's effectiveness in enhancing traffic performance and sustainability across a wide range of 

scenarios. The results showcased its adaptability to diverse traffic conditions, vehicle compositions, 

and emerging technologies. These findings underscore the potential of the ECoTOp approach as a 

promising strategy for improving traffic operations in the context of evolving transportation 

systems. The simulation experiments also consistently show that as the eco-trajectory planning 

increases, the emissions/efficiency improves, but the mobility worsens. As signal optimization 

increases, the mobility (throughput) improves, but the emissions/efficiency worsen. As signal 

optimization increases, the mobility improves, but the number of conflicts worsen. As eco-

trajectory planning increases, the number of conflicts improves, but the mobility also worsens. 

In the next section, we discuss the implications of these results and draw key conclusions 

from the simulation experiments. 

 

8.3 Implications and Conclusions 

The findings from the simulation experiments comparing different optimization 

approaches for vehicle eco-trajectory planning and traffic signal timing at isolated signalized 

intersections have important implications for transportation planning and optimization strategies. 

This section discusses the key implications of the results and draws conclusions, emphasizing the 

establishment of a foundation for the future development of an adaptive optimization strategy 

capable of dynamically selecting the most appropriate optimization approach based on real-time 

traffic conditions and environmental considerations. 

One significant implication of this study is the identification of the strengths and limitations 

of different optimization approaches. By comparing the ECoTOp system with the individual 

approaches of eco-trajectory planning alone and traffic signal optimization alone, the study 



149 

highlights the trade-offs and performance differences across these methods. The ECoTOp approach 

demonstrates superior performance in terms of intersection throughput and emissions compared to 

the baseline. However, it is also important to acknowledge that as the eco-trajectory planning 

increases, the emissions/efficiency improves but the mobility worsens, and as signal optimization 

increases, the mobility improves but the emissions/efficiency worsens indicating the need for an 

adaptive optimization strategy that can dynamically select the most suitable approach based on the 

prevailing conditions. 

The adaptability and versatility of the ECoTOp approach are crucial aspects of its 

implementation. The ability to dynamically adjust vehicle trajectories and traffic signal timings 

based on real-time traffic conditions, vehicle types, and environmental factors is essential for 

effective traffic management. By considering different scenarios, such as varying traffic volumes, 

mixed vehicle types, and different CAV penetration rates, the study demonstrates the flexibility of 

the ECoTOp approach. This adaptability is a key requirement for the future development of an 

adaptive optimization strategy that can respond to changing traffic conditions and emerging 

technologies. 

Furthermore, the study underscores the importance of considering environmental factors 

and the increasing presence of electric vehicles (EVs) in transportation planning and optimization. 

The ECoTOp approach showcases its potential in promoting sustainable mobility by incorporating 

EVs into the optimization framework. The findings highlight the impact of EVs on vehicle 

throughput and energy consumption, providing valuable insights for the integration of EVs into 

transportation systems. The future development of an adaptive optimization strategy will play a 

crucial role in accommodating EVs and ensuring their efficient and sustainable operation. 
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Chapter 9  

Conclusions and Future Work 

In this dissertation, we have embarked on a transformative journey to propose a 

groundbreaking co-optimization approach for vehicle eco-trajectory planning and traffic signal 

timing at isolated signalized intersections. This approach is called the Eco-friendly Cooperative 

Traffic Optimization (ECoTOp) framework. The primary aim was to achieve superior performance 

in terms of safety, mobility, and emissions. However, our ambition went beyond conventional 

optimization paradigms. We sought to establish a foundation for the future development of an 

adaptive optimization strategy capable of dynamically selecting the most suitable approach based 

on real-time traffic conditions and environmental considerations. 

Through meticulous comparative analyses, we unveiled the strengths and limitations of 

individual eco-trajectory planning and traffic signal timing optimization. The results not only 

confirmed the efficacy of the ECoTOp approach but also shed light on its unique attributes. The 

ECoTOp approach demonstrated the ability to achieve a balanced trade-off between improved 

traffic throughput and reduced emission output, a feat that trajectory and signal optimization alone 

could not match. 

Our journey extended beyond conventional optimization methods as we examined the 

integration of electric vehicles (EVs) into the ECoTOp framework. By meticulously gathering EV 

penetration percentages from market-predicted estimates and considering different traffic volumes, 

we explored the adaptability and effectiveness of our approach in a diverse range of scenarios. 

The ECoTOp approach yielded remarkable results, showcasing a substantial improvement 

of up to 24% in vehicle throughput and a notable reduction of up to 14% in CO2 emissions when 
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compared to the baseline. Notably, ECoTOp approach consistently outperformed eco-trajectory 

planning in terms of traffic throughput, while presenting less effectiveness in CO2 reduction. 

Moreover, our findings indicated that the ECoTOp approach consistently outperformed 

traffic signal optimization alone in CO2 reduction, while exhibiting less efficiency in terms of 

vehicle throughput. In contrast, traffic signal optimization often performed on par with the baseline 

or experienced up to a 9% decline in CO2 emissions, whereas eco-trajectory planning demonstrated 

up to a 17% reduction in CO2 emissions. 

Additionally, the results revealed that traffic signal optimization achieved up to a 38% 

improvement in traffic throughput, while eco-trajectory planning at times performed similarly to 

the baseline, or in some cases, up to 12% worse than the baseline. 

The comparisons between the ECoTOp system and individual optimization strategies 

served as a crucial stepping stone for our future ambitions. By laying the foundation for an adaptive 

optimization strategy, we seek to revolutionize transportation systems. The vision of a dynamic 

approach capable of responding to real-time traffic conditions and environmental impacts will 

transform the way we optimize intersections, creating a more efficient, sustainable, and intelligent 

mobility landscape. 

An adaptive optimization strategy would transition from the ECoTOp approach to a traffic 

signal optimization approach under specific traffic conditions and environmental considerations. 

The switch could be triggered when traffic volume is relatively low, and the presence of connected 

and automated vehicles (CAVs) is limited. In such scenarios, the benefits of the ECoTOp approach, 

which leverages CAV technologies and complex vehicle trajectory planning, might not be fully 

realized due to reduced traffic interactions. 

Additionally, environmental considerations play a crucial role in the adaptive optimization 

strategy. If the focus is primarily on reducing greenhouse gas emissions and fuel consumption, the 
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ECoTOp approach may remain more favorable, especially in high-density traffic scenarios with 

significant CAV penetration. However, in situations where emissions reduction is the primary goal, 

and traffic flow efficiency is of lesser concern, the eco-trajectory planning approach might be 

prioritized. Figure 9.1 shows a Venn diagram of the relationship between safety, mobility, and 

environmental impact, and where the ECoTOp framework, eco-trajectory planning, and traffic 

signal optimization falls in it. ECoTOp is nearly in the middle of the Venn diagram, but an adaptive 

optimization strategy could choose between the three strategies depending on the situation, as in 

Figure 9.2. Ultimately, the adaptive optimization strategy seeks to strike a balance between traffic 

flow efficiency and environmental sustainability, adapting to the dynamic conditions of the 

transportation network. By continually assessing real-time data, such as traffic volumes, vehicle 

types, CAV penetration rates, and emission levels, the adaptive strategy can make informed 

decisions to optimize traffic management and enhance overall system performance. 

 

 

Figure 9.1. Venn diagram of the relationship between safety, mobility, and environmental impact. 
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Figure 9.2. Depiction of intersection and the choices based on environment and traffic scenario. 

 

In conclusion, this dissertation contributes not only a pioneering ECoTOp framework but 

also a roadmap for the future. As we look ahead, we anticipate further research and advancements 

that will harness the power of adaptive optimization. We envision a future where transportation 

systems seamlessly adapt to the evolving dynamics of our cities, providing efficient and sustainable 

mobility solutions for generations to come. The journey does not end here; it merely marks the 

beginning of a transformative era in transportation optimization. 

9.1 Future Work 

The completion of this dissertation opens up promising directions for future research, 

aiming to further enhance co-optimization strategies in traffic management. One important avenue 

to explore is the dynamic adaptation of optimization strategies based on real-time traffic conditions. 

Developing algorithms that continuously analyze traffic data and automatically select the most 

suitable optimization approach would significantly improve the system's responsiveness and 
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efficiency. Another avenue is to expand the ECoTOp approach from individual intersections to a 

network of signalized intersections is a natural progression. Investigating how co-optimization 

strategies can be scaled up and applied to larger urban road networks will be essential for 

developing practical applications for smart cities. 

The integration of machine learning techniques into the co-optimization process presents 

another exciting opportunity. By leveraging historical traffic data, machine learning algorithms can 

identify patterns and trends, leading to more adaptive and predictive optimization strategies. 

Environmental impact assessments can be extended beyond CO2 emissions to include other 

pollutants, providing a comprehensive understanding of the ECoTOp approach's overall 

contributions to sustainable transportation. 

Validating the ECoTOp approach in real-world scenarios and operational road networks is 

a crucial next step. Collaboration with transportation agencies and stakeholders can facilitate the 

transition from simulation-based experiments to practical applications. 

Furthermore, researchers can explore how to incorporate resilience and safety 

considerations into the ECoTOp framework, ensuring its viability in unexpected events or 

emergencies while maintaining traffic efficiency and safety. 

As the co-optimization strategies have the potential to impact traffic behavior and travel 

patterns, future research should examine public acceptance, behavioral changes, and policy 

implications when implementing these strategies in urban environments. 

By pursuing these research avenues, the field of traffic management and optimization will 

advance, leading to more sustainable, efficient, and resilient transportation systems in the cities of 

the future. 
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