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Analysis of Parametric Uncertainty in Physiological 
Pharmacokinetic and Multistage Cancer Models 

Frederic Y. Bois and Robert C. Spear. 

Biomedical and Environmental Health Sciences, School of Public Health and Lawrence 

Berkeley Laboratory, University of California, Berkeley, California 94720. 

SUMMARY 

A global optimization, using Monte Carlo simulations, was perfonned on the 29 parameters 

of a coupled physiological pharmacokinetic and multistage cancer model. The parameters 

were weighted according to their relative likelihood, and used to obtain the distribution of 

cancer incidence at low exposure levels. As an example, the case of benzene 

carcinogenicity is investigated. Using this new approach it appears that much more 

confidence can be placed on extrapolations made with a pharmacokinetic model, than with 

the multistage carcinogenesis component The distributions of estimated low-exposure 

risks are bimodal, and extend over several orders of magnitude. These results demonstrate 

limited value of the common animal cancer experiments for quantitative extrapolations, and 

indicate the need for more biological information relevant to the identification of the 

parameters of multistage models of carcinogenesis. 

1. Intr.oduction 

The coupling of physiological pharmacokinetic models with extended multistage models of 

carcinogenesis is potentially a tool of choice for performing human health risk assessment 

(Zeise, Wilson and Crouch, 1987). In this context the pharmacokinetic model provides an 

estimate of effective exposure, which the cancer model links to tumor incidence. It is 

assumed that the mechanistic basis of these models makes them more suitable than 

empirical fonnulae for inter-route, inter-species and low-dose extrapolations (Ritschel and 

Keywords: Cancer risk assessment, Maximum likelihood, Monte Carlo simulations, Pharmacokinetics 



Banerjee, 1986). While in theory their use is certainly beneficial, several difficulties are 

associated with their parametrization, especially when coupled. 
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Commonly, the pharmacokinetic component involves at least 15 parameters, most of 

which are fixed a priori, except for one or two (usually describing the metabolism) which 

are varied until an acceptable or best fit to the experimental data is obtained (Medinsky et 

al., 1989). The values of the fixed parameters are taken from the literature, where often 

little or conflicting information is available. Typically, the uncertainty affecting the parame­

ter estimates is ignored because a classical estimation procedure is not usually possible with 

that many parameters. Consequently, the pharmacokinetic models may often be poorly 

parametrized and poorly fitted. While they may give some insight into the dynamics of 

dispersion of a chemical within the body, the information they provide is mostly 

qualitative, and the uncertainty affecting their prediction of effective exposure is unknown. 

The situation is somewhat better for many of the multistage models, which contain 

fewer parameters: classical maximum likelihood estimates of the parameters may be 

obtained, together with their approximate confidence.intervals (Crump and Howe, 1984; 

Portier and Bailer, 1989). A difficulty arises when these models are coupled to the 

previous ones, as the effective exposure used as input is a random variable of unknown 

distribution for the reasons mentioned above. 

In this paper, in order to overcome the computational burden of the classical maximum 

likelihood approach, Monte Carlo simulations were used to optimize the adjustment of the 

pharmacokinetic and multistage models to experimental data. A new weighting procedure, 

based on likelihood estimation, was used to derive the distribution of predicted metabolic 

rates for the pharmacokinetic model and the distribution of predicted risk for the multistage 

model. Our approach is essentially pragmatic, as our main goal is not to describe or 

explain interactions between the model parameters, but to take them fully into account when 

using the models for extrapolations. Benzene, a carcinogen in animals and humans, was 

chosen to explore the benefits and limitations of the technique. 
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2. Physiological Pharmacokinetic Model 

In the phannacokinetic model developed, the mammalian body is divided into five compart­

ments: the well perfused tissues, which include the heart, brain, kidneys and other viscera; 

the poorly perfused tissues, consisting mainly of muscles and skin; the liver; the fat; and 

the bone marrow. The evolution with time of the concentration of benzene in each 

compartment is described by a differential equation dependent on the blood flow through 

the compartment, the partition coefficient between the tissue and the blood, the volume of 

the compartment and, for the liver and bone marrow, metabolic parameters (Andersen et 

al., 1987; Dedrick, Forrester and Ro, 1972; Gerlowski and Jain, 1983). A diagram of the 

model is presented in Figure 1. The description of benzene metabolism is critical since the 

metabolites are suspected to be the actual cancer-causing agents (Eastmond, Smith and 

Irons, 1987; Kalf, 1987). The major site of metabolism is the liver (Cooper and Snyder, 

1988). In addition, some metabolic activity, which may contribute to toxicity, occurs in the 

bone marrow (Irons et al., 1980). Michaelis-Menten terms, suitable for saturable kinetics 

(Gerlowski and Jain, 1983), are used to describe the enzymatic transformation of benzene 

into its metabolites in the liver and the bone marrow. 

To take into account known structural dependencies among the parameters, many of 

them are scaled to the body weight or to the body surface area (Davidson, Parker and 

Beliles, 1986). For example the blood flows to the various organs are percentages of the 

total flow, which in tum is proportional to the body weight to a given power (Le. 

proportional to the body surface area). Initial ranges were chosen for each of the scaling 

coefficients, one for each parameter of the model, and for the scaling powers (see Table 

1). The ranges were selected to include various values reported in the literature for adult 

rats (Andersen et al., 1987; Bois, Tozer and Zeise, 1989; Bois, Zeise and Tozer, 1990; 

Fairchild, 1972; Fiserova-Bergerova and Rugues, 1983; Pathiratne, Puyear and Brammer, 

1986; Sato et al., 1975). These initial ranges were made quite large to encompass the 

uncertainties affecting many of the published values. 
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3. Extended Multistage Model 

A simple clonal two-stage model previously described by Moolgavkar (1983), Moolgavkar 

and Venzon (1979), and Portier (1987), was adapted to the case of benzene (Figure 2). 

Let Z(t,E) denote the number of malignant cells at time t, in animals subject to expo­

sure E of benzene metabolites (or, equivalently, amount of benzene metabolized). In the 

model used, the probability that Z(t,E) ~ 1 is given by: 

I'( Z(,.E) <: II = 1-exp[ -(p, + <,E)(I', + <,E) exp((p. - ~'~ ~.\~ (Il, - 6.), J. (3.1) 

For a given animal this probability is taken as the probability of being cancerous at time 

t. The parameters correspond to the transition probability rates between the various events 

involved in the process (see Figure 2); for a non-zero exposure the transition rates between 

the stages are equal to J.Io+ ;oE and III + ~lE. Only the variables a = J.loJ.ll' b = J.Io~l + 

~l' C = ~~l,and 1'1 = PI - cSt are identifiable, so that the following 4-parameter model 

was used: 

I'(Z(,.E) <: II = 1-exp[(-a - bE -cE') exp(rl';.~ 1- r.' I (3.2) 

The parameter rt was not made dependent on E, as benzene can not be considered as a 

promoter on the basis of the available data. The ranges assigned to each of the parameters 

are given in Table 2. These ranges depend in part on the value of E, and their derivation is 

described in section 6. 

4. Global Optimization of the Pharmacokinetic Model 

Using uniform or log-uniform random sampling within each parameter range (log-uniform 

for the widest ranges), 1O,()()() Monte Carlo runs were performed to simulate experimental 

data published by Rickert et ale (1979) and Sabourin et ale (1987, 1988). These 

experiments provide extensive information about the kinetics of benzene in Fischer-344 
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rats, and the fonnation of its metabolites, after both gavage and inhalation exposure. 

Rickert et al. (1979) exposed rats to 1.28 mg/L of benzene in the air, for 6 or 8 hrs, and 

observed the blood, fat, and bone-marrow concentrations during and after exposure. 

These authors also report the quantity remaining to be exhaled after exposure. Sabourin et 

al. (1987) monitored the total amount of benzene exhaled, the quantity of metabolites 

excreted and left in the body, for 48 hrs after various gavage exposures (0.5, 5, 15, 50, 

150 and 300 mg/kg), and for 56 hrs after 6 hrs of various inhalation exposures (0.033, 

0.075,0.34,0.68,2.26 mg/L). Sabourin et al. (1988) report blood and liver concen­

trations after 6 hrs of exposure to 0.12 mg/L of benzene by inhalation. 

Assuming that the values for experimental results described above are normally 

distributed, the likelihood L(8) of each parameter vector 8 was computed as follows 

(Edwards, 1972): 

L(9) = IT (Sj2 + (J; - Yj)2 f"d
2
, 

j=1 

where N = 101 is the number of experimental data points. Si2, Yi, ni, and Yi, are the 

variance, mean, number of individual samples, and predicted mean for each point, 

respectively. 

(4.1) 

The best-likelihood vector, 8m, out of 10,000 trial vectors, produces the fit shown in 

Figure 3. The mean ratio between predicted and observed values is 1.01, with a standard 

deviation of 0.63, and ranges from 0.16 to 4.0. Here, "best likelihood" does not refer to 

the absolute maximum of the likelihood function, but to the highest likelihood value 

obtained during the Monte Carlo simulations. The search for the maximum likelihood 

vector by classical optimization would be prohibitive in term of computing load. Monte 

Carlo simulations give a useful approximation of the global maximum, while being 

insensitive to the potential presence of multiple maxima. 

In the course of the 10,000 runs several parameter ranges were modified, as it 

appeared that some extreme values would yield only very poor fits (with relative log-likeli­

hood r(8) = log(L(8)IL(8m)), less than -50.0). Consequently, the ranges for these 
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parameters were reduced in the subsequent runs (Table 1, column "final range"). It 

appeared also that values outside the original ranges could be acceptable for two parameters 

poorly defined in the literature, thus their ranges were extended (Table 1). 

The plots of the relative log-likelihood, r(8), versus the values of the scaling coeffi­

cients for the parameters F alv (alveolar ventilation rate) and V maxi (maximum rate of 

metabolism in the liver) are given in Figure 4 (only the results for the last 1000 simulations 

are shown). The paucity of high r(8) values indicates that most of the runs give poor fits. 

The parameters F alv and V maxi are among the few for which some information on location 

is available in such univariate analysis. For most of the parameters it was impossible to 

restrict the broad initial sampling range on the basis of the likelihood function (only 7 

parameter ranges could be modified from their a priori definition during the global adjust­

ment). One way to improve the performance of the Monte Carlo runs would be to stop 

computing the data points when the likelihood is certain to be below a given limit. On the 

other hand, a multivariate analysis - such as Classification and Regression Trees (Breiman 

et al., 1984) - of the results at an intermediate stage could point to regio~s of the parameter 

space where the likelihood is almost certain to be below a given limit; a parameter vector 

falling in such a region would be discarded and a new one sampled. 

5. Weighting of the Parameter Vectors 

A total of 10000 parameter vectors, with their respective likelihoods, were generated during 

the Monte Carlo simulations. Theoretically it should be possible to derive, from this 

information, a joint distribution function for the individual parameters of the model. Then, 

a resampling of the parameters out of this distribution could be performed in order to obtain 

the distribution of given model predictions (e.g. the rate of metabolic transformation at very 

low exposure). In fact, with 25 parameters the sampling of 10000 points is too sparse to 

make this approach feasible, and no realistic number of simulations will suffice. Here, 

instead, a weight was fIrst given to each parameter vector 8, based on its relative log-



likelihood r(9). The same 1()()()() vectors were used again to obtain a set of predictions, 

each of which carried the weight of its parent parameter vector. 

The parameter vectors were assigned to 45 different classes i, on the basis of their 

relative log-likelihood. The classes were defmed by reference to various ai confidence 

regions for 9m (ai = 0.01, ... , 0.1, ... , 0.91, ... , 0.991, ... , 0.9991, ... , 0.9999). A 

vector 9 would fall in class i if -2r(9) was included between the CXi-I and CXi fractiles of the 

X2
(n) distribution (Le. if9 was included in the CXi but not the CXi-I confidence region). For 

the phannacokinetic model the number of parameters n = 25. Vectors falling outside the 

0.9999 confidence region were not considered. Let Zi denote the number of vectors in 

class i. For any given vector 9 in class i, the weight W is: 

7 

(5.2) 

This ensures that each vector is weighted according to the inter-fractile region in which 

it falls, and the density of sampled vectors in that region. Each vector can be considered to 

represent its class, the representation of a class being equally divided among its vectors. In 

the following, the model predictions obtained using a parameter vector will be given the 

weight of that same vector. We will use the term distribution of the predictions when 

considering the graphs of the weights versus the values of these predictions. 

Out of 10,000 sampled vectors, only 54 were contained in the 99.99% confidence 

region. They were each used to compute the total amounts (termed E10 E2, E3 in the 

following) of benzene metabolized per week during the N1P cancer experiment, after 

exposure of male Fischer-344 rats to various doses of benzene (Huff et al., 1989). The 

exposures were to 50 mg/kg, 100 mg/kg and 200 mg/kg of benzene by gavage, 5 days 

per week, for 103 weeks. A non-exposed control group was observed in parallel. Only 

the amount metabolized during the first week was computed, as preliminary runs showed 

that for the 10 vectors of highest likelihood the relative difference between the first week 

and the following did not exceed 1 or 2 percent of the first week estimate and therefore was 

negligible. This indicates that an equilibrium was reached after one week of exposure. The 



predicted amounts metabolized were given the weight of their respective generating 

parameter vectors. Figure 5 shows the distributions of these amounts E 1, E2, and E3. 
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The height of the histogram bars corresponds to the sum of the relative weight, figured by 

vertical lines, in each class. These distributions are remarkably tight: estimates for El 

range from 64 to 82 mg/week; for E2from 99 to 131 mg/week; and for E3 from 139 to 204 

mg/week. Although the experimental data available do not give adequate infonnation for 

most of the individual parameter values for this model (see above and Figure 4), the 

parameter combinations controlling the amount metabolized appears to be quite well 

defmed. With 25 parameters, and the complex data set used, combinations are likely 

involve many parameters. It should be stressed that the Monte Carlo/weighting procedure 

used allows for an implicit account of the global covariance structure imposed both by the 

model and the experimental data. Portier and Kaplan (1989) also used Monte Carlo 

simulations to estimate the distribution of "virtually safe doses" in the case of methylene 

chloride, but did not take into account any parameter covariance. Their parameter values 

were derived mostly a priori, as well as the variation bounds imposed. In a similar 

context, Bois, Zeise and Tozer (1990) take into account the covariance between the two 

most sensitive input parameters, but not among all of them. 

Figure 6 shows the evolution of the estimated distribution for El. amount metabolized 

per week for a gavage dose of 50 mg/kg, during the course of the last 5000 simulations. 

The range did not change appreciably during the last 5000 runs and the 3 distributions 

formed after 8000, 9000 or 10,000 runs do not differ at P = 0.1 (using the Kolmogorov­

Smirnov test). We therefore assume that a sufficient approximation of the distribution was 

obtained. 

6. Results for the Multistage Model 

The 54 exposure triplets (E 1, E2, E3) generated by the pharmacokinetic model were used 

as the input of 10,000 Monte Carlo simulations with the multistage model. Each triplet was 

used for a number of simulations proportional to the relative weight Wof its generating 
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parameter vector in the pharmacokinetic model. At the same time, the four parameters of 

the multistage model (a, b, c, 1'1) were sampled log-uniformly from their respective 

intervals (Table 2), and the incidence of Zymbal gland carcinoma in male rats (given by 

3.2), after two years of continuous exposure to benzene was simulated. The initial 

parameter ranges were chosen to be very large. Preliminary runs showed that above the 

upper bound of these ranges no acceptable fit could be obtained. The lower bounds 

appeared to be at zero, except for the parameter a. An arbitrary low value of 10-30 was 

taken for the other parameters. The likelihood L(8') of each parameter vector 8' for the 

multistage model was computed, assuming a binomial distribution of the number of tumor­

bearing animals. Note that each 8' vector has an associated 8 vector of pharmacokinetic 

parameters used for computing the exposure triplet. The best-likelihood adjustment 

obtained is presented in Figure 7. The cancer incidence is related to the benzene gavage 

dose in Figure 7 A, and to the amount of benzene metabolized per week in 7B. The model 

parameter values are indeed the same in the two cases. A saturation of the rate of benzene 

metabolism occurring within the gavage dose range explains the difference in shape of the 

two curves. Adjustments obtained using the gavage dose, rather than the amount 

metabolized, as the effective exposure for the multistage model would give different 

parameter values, likely to lead to biased predictions of cancer incidence at low exposure. 

The best-likelihood estimates for the parameters a, b, c, ')1 (probabilities per week) were 

found to be 8.75xIO-6, 2.6x1O-29, 3.55x1O-9, and 2.10xl0-12, respectively. This best fit 

is nearly quadratic, b being negligible in the model. 

Out of 10,000 sampled 8' vectors, 767 were contained in the 99.9% confidence region 

(i.e.with a relative log-likelihood greater that -9.233). The relative weights w' of these 

vectors were computed as described above, and the vectors were used to predict the inci­

dence ofZymbal gland carcinoma, for gavage doses of 1 J,Lg/kg and 100 J,Lg/kg, using the 

NTP protocol. The amount metabolized per week at the same levels was first computed 

using the corresponding 8 vector of pharmacokinetic parameters. The results of this low­

dose extrapolation are presented in Figure 8A and B. 
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Both distributions are bimodal and extend over several orders of magnitude. The 

bimodality is an interesting effect which has been described, in a somewhat different 

context, by Portier and Hoel (1983). This arises because, in a linear-quadratic model, 

either the linear tenn, bE, or the quadratic term, cFJ., control the outcome of the simulation. 

Hence, in about 40% of .the cases, the quadratic term is significant and the linear tenn 

negligible, and vice-versa in about 30% of the cases. The remaining 30% of the predic­

tions fall at very low values, including zero, and have very little weight (they are not even 

visible on the Figures). The bimodality has no discemable influence within the range of the 

NTP exposure doses (50 to 200 mg/kg), as both alternatives lead to acceptable fits and high 

L(8') values. However, by contrast, larges differences are seen at low exposure levels. It 

should be noted that the parameter ')1 cannot be properly identified with the NTP data, as 

its likely values are spread evenly in the range sampled. The best-likelihood estimate of the 

cancer incidences at low doses falls in the lowest peak of the bimodal distribution 

(5.8xlQ-ll for a dose of 1 J.1g/kg and 5.9xlO-7 for 100 J.1g/kg). It would be very 

misleading to use only the best- or maximum-likelihood estimates, for example in risk 

assessment, without considering the fact that a large fraction (about 30%) of the possible 

risks lays at a much higher level. 

7. Conclusions 

A global adjustment of a pharmacokinetic model and of a multistage cancer model to 

benzene cancer data was obtained using Monte Carlo simulations. A weighting procedure, 

accounting for high-dimension covariance structure, was described and used to obtain the 

distribution of the effective exposure and of the cancer incidence at very low exposure. 

While our pharmacokinetic model has 25 parameters, about 100 data points obtained in 

various exposure situations are available to fit it Variation bounds for many of the 

parameters can be obtained a priori, when these parameters have an immediate physiologi­

cal meaning. This explains that a set of the most likely parameter vectors gives fairly 

precise predictions of the quantity of benzene metabolized. It can be concluded that good 
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confidence can be placed in the inter-route or inter-dose extrapolations made with such 

models, even if empirical parameter fitting is used to parametrize the model. This 

conclusion should hold for models designed to describe the pharmacokinetics of 

compounds other than benzene, provided that data from properly designed experiments are 

available. 

On the other hand, the parametrization of multistage models with currently available 

data is a much more delicate problem. There is not enough information in the usual cancer 

experiments to ~just the four parameters of the simple model considered here, which 

represents a gross simplification of the carcinogenic processes. As a result, very broad, 

bimodal distributions of low-dose risk estimates are obtained, implying that standard 

maximum-likelihood point estimation might be inadequate. As long as additional biological 

information is lacking, the types of uncertainty considered in this paper should not be 

ignored. If these uncertainties can not be reduced for now, at least they should be esti­

mated. The modeling method presented provides a mean of analyzing such variabilities. 

Beyond its obvious application to the specific problems of cancer risk assessment, the 

method developed here is useful in numerous cases where large models are considered. 
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Une optimization globale des 29 parametres d'un modele pharmacocinetique physiologi­

que, couple a un modele multi-etape de cancerogenese, est realisee a l'aide de simulations 

Monte Carlo. Les vecteurs de parametres sont ponderes sur la base de leur vraisemblances 
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. relatives, et reutilises afm d'obtenir la distribution de l'incidence de cancer estimee, pour de 

faibles niveaux d'exposition. Le cas de la cancerogenese par Ie benzene, chez Ie rat, est 

pris pour example. Cette approche originale montre que l'on peut avoir bien plus confiance 

dans les extrapolations faites a l'aide d'un modele pharmacocinetique, que dans celles 

realisees a l'aide d'un modele multi-etape. Les distributions des risques de cancer estimes, 

pour de faibles expositions, sont bimodales, et s'etendent sur plusieurs ordres de magni­

tude. Ces resultats demontrent la valeur limitee des experimentations de cancerogenese ani­

male actuelles, et appelent a davantage d'informations biologiques susceptibles de conduire 

a l'identification des parametres de modeles multi-etapes. 
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Table 1: Sampling ranges of the parameter scaling coefficientsa used for the model of 

benzene phmmacokinetics in male rats. The final ranges were derived from 

the initial ranges during the fitting process (see text). 

Scaled Parameter Multiplier Scaling Coefficient Sampling Range 

Initial Range Final Range 

Body weight (Bw) 1 0.205 - 0.245 b 0.205 - 0.245 b 

Scaling powers 
scI 1 0.65 0.85 0.65 0.85 
sc2 1 0.65 0.85 0.65 0.85 

Total blood flow (F tot) Bwsc1 0.22 0.28 0.22 0.28 
AlveolarVentilation rate (F alv) Ftot 0.5 1.0 0.5 1.0 

Blood flows 
Liver(Fi) Ftot 0.23 0.33 0.23 0.33 
Bone marrow (Fmn) Ftot 0.01 0.05 0.01 0.05 
Fat(Fi) Ftot 0.04 0.10 0.04 0.10 
Poorly perfused tissue (Fpp) Ftot 0.10 0.18 0.10 0.18 
Well perfused tissue (Fwp) C Ftot 

Volumes 
Liver (Vi) Bw 0.03 0.05 0.03 0.05 
Bone marrow (Vmn) Bw 0.02 0.04 0.02 0.04 
Fat (Vi) Bw 0.07 0.13 0.07 0.13 
Poorly perfused tissue (V pp) d Bw 

Well perfused tissue (V wp) Bw 0.04 0.09 0.04 0.09 
Blood/air partition coefficient (P a> 1 14.0 - 26.0 10.0 - 26.0 

Tissue/blood partition coefficients 
Liver (Pi) 1 0.5 3.0 0.5 3.0 
Bone Marrow (Pmn) 1 5.0 - 13.0 3.0 - 12.0 
Fat (Pi) 1 24.0 - 34.0 24.0 - 33.0 
Poorly perfused tissue (Ppp) 1 0.5 2.0 0.6 2.0 
Well perfused tissue (Pwp) 1 0.5 3.0 0.5 3.0 

Maximum rates of metabolism 
liver (Vmaxi) Bwsc2 0.05 0.18 0.05 0.17 
bone marrow (V7na.Xbrn) Vmaxp<Bwsc2 0.05 0.18 0.05 0.18 

Vmax/affinity constant ratios 
liver (Kmi) e 1 0.02 1.0 0.02 0.8 
bone marrow (Kfnbrn) e 0.001 0.2 0.001 0.2 

Intestinal absortion rate (King) 1 0.003 - 0.03 0.003 - 0.03 
Metabolite excretion rate (KeX) 1 0.0006 - 0.002 0.0009 - 0.002 

a Scaled parameter = multiplier x scaling coefficient Units: body weights in kg, flows (F) in l./min, 
volumes (V) in L, Vmax in mg/min, and KIn in l./min. 

b This range was used for simulating Rickert (1979) experiments. For Sabourin (1987,1988) experiments 
the range was 0.27 - 0.31 kg. 

c Values for F wp were computed at each run so that the sum of the blood flows was equal to the total flow. 
d Values for V pp were computed at each run so that the sum of the volumes was equal to 90% of the body 

volume. 
e These parameters were sampled log-uniformly. 
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Table 2: Parameter ranges used for the multistage model of Zymbal gland carcinoma in 

Fischer-344 rats. 

Parameter Range 

,~ Background transition rate (a) 10-8 - 5xlO-4 

Coefficient of the exposure (b) 10-30 - 8xlQ-6. 

Coefficient of the squared exposure (c) 10-30 10-7 

Net growth rate (n) 10-30 10-1 

Units: all parameters are probability rates per unit time (Le. per week). 

/ 
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Figure 1: Schematic representation of the physiological model used to simulate the distribution and 

metabolism of benzene. The symbols are: Falv. alveolar ventilation rate; Pat blood over air partition coeffi-

cient; Ftot. total blood flow; Vmax. maximum rates of metabolism; Km, Vmax/affinity constant ratios. 

Subscripts representing the tissues are used to identify the blood flows to the tissues, F, the volumes, V, 

and the tissue over air partition coefficients, P. The units of the parameters are given in Table 1. 
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DIVISION 

DEATH 

Figure 2: Schematic representation of the multistage model used to simulate the carcino­

genicity of benzene. The symbols are: J..lO, background transition rate from 

normal to initiated cell stage; J.11, background transition rate from initiated to 

cancerous; ~1' and 01 division and death rates, respectively, for the initiated 

cell stage. 
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Figure 3: Best-likelihood predictions versus observed values for the experimental 

phannacokinetic data of Rickert et al. (1979) and Sabourin et al (1987, 1988). 
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Figure 4A: Relationship between the value of the relative log-likelihood and.the value of 

the scaling coefficient of F mv. Only the values for the last 1000 Monte-Carlo 

simulations, out of 10,000, are presented. 
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Figure 4B: Relationship between the value of the relative log-likelihood and. the value of 

the scaling coefficient of V maxi. Only the values for the last 1000 Monte Carlo 

simulations, out of 10,000, are presented. 
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Figure 5A: Distribution of the predicted amounts, El, of benzene metabolized per week 

during the NTP cancer experiment, for Fischer-344 rats. The bars 

correspond to the sum of the individual weights (indicated by lines) within a 

given interval. The benzene gavage exposure simulated was 50 mg/kg. 
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Figure 5B: Distribution of the predicted amounts, E2, of benzene metabolized per week 

during the N1P cancer experiment, for Fischer-344 rats. The bars 

correspond to the sum of the individual weights (indicated by lines) within a 

given interval. The benzene gavage exposure simulated was 100 mg/kg 
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Figure 5C: Distribution of the predicted amounts, E3, of benzene metabolized per week 

during the NTP cancer experiment, for Fischer-344 rats. The bars 

correspond to the sum of the individual weights (indicated by lines) within a 

given interval. The benzene gavage exposure simulated was 200 mg/kg. 
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Distribution of the predicted amount of benzene metabolized per week, after 

N = 5000, etc., Monte Carlo runs of global optimization. The predicted 

amount is for the gavage dose of 50 mg/kg, during the NTP experiment 
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Figure 7 A: Best-likelihood adjustment of the multistage model to the NTP cancer data for 

Zymbal gland carcinoma in male Fischer-344 rats. The circles mark the 

experimental incidence (with estimated standard deviation), the solid line 

corresponds to the model predictions. The cancer incidence after two years of 

exposure is plotted against the benzene gavage dose. 
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Figure 7B: Best-likelihood adjustment of the multistage model to the N1P cancer data for 

Zymbal gland carcinoma in male Fischer-344 rats. The circles mark the 

experimental incidence (with estimated standard deviation), the solid line 

corresponds to the model predictions. The cancer incidence after two years of 

exposure is plotted against the amount of benzene metabolized which was 

taken as a measure of effective exposure. The model parameter values are the 

same as in Figure 7 A. 
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Figure 8A: Distribution of the predicted incidence of ZymbaI gland carcinoma, for 

Fischer-344 rats, at low exposure. A benzene gavage dose of 1 J.1g/kg was 

simulated. The dosing schedule is the same as in the NTP experiment (Huff 

et aI., 1989). 
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Figure 8B: Distribution of the predicted incidence of Zymbal gland carcinoma, for 

Fischer-344 rats, at low exposure. A benzene gavage dose of 100 ~g/kg was 

simulated. The dosing schedule is the same as in the NTP experiment (Huff 

et aI., 1989). 
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