
UC San Diego
Technical Reports

Title
Improving VNC Performance

Permalink
https://escholarship.org/uc/item/6325p8bz

Authors
Taylor, Cynthia
Pasquale, Joseph

Publication Date
2009-05-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6325p8bz
https://escholarship.org
http://www.cdlib.org/

Improving VNC Performance

Cynthia Taylor and Joe Pasquale
Department of Computer Science & Engineering

University of California, San Diego
{sriram,pasquale}@cs.ucsd.edu

ABSTRACT

Virtual Network Computing, or VNC, is a popular thin client
application used to access files and applications on remote
computers. It is especially relevant as infrastructure to sup-
port ubiquitous computing applications, as it offers a way to
run data-and-computation-intensive applications and allow
users to access them through lightweight devices. However,
VNC can suffer from significant losses in throughput when
there is high latency between the client and server.

In this work, we present a Message Accelerator proxy for
VNC. This Message Accelerator mitigates high latency net-
work effects while maintaining the advantages of a client-
pull system. By operating near/on the server, it can send
updates to the client at a rate corresponding to proxy-server
interactions which are faster than client-server interactions.
When testing using video, our Message Accelerator design
results in frame rates an order of magnitude higher than plain
VNC when running under high latency conditions.

Author Keywords

VNC, remote desktop control, thin client, distributed com-
puting

ACM Classification Keywords

D.0 Software: General

INTRODUCTION

Ubiquitous computing is characterized by context-aware ap-
plications that fit unobtrusively into the user’s life. These ap-
plications are frequently aware of the user’s location, what
is happening visually around the user, or other details of the
user’s changing surroundings. Effectively processing these
details will eventually depend on filtering large amounts of
data through computationally intensive machine learning and
computer vision applications. However, for devices to com-
fortably travel with the user, they must be at least as small
as a PDA or a cellphone, and ideally be something the user
would normally carry through their daily life. While these
small devices offer the ability to fully integrate into the user’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

life regardless of location, they generally will not have enough
computing power to take advantage of it by running context-
aware applications.

Thin client systems such as VNC allow client devices with
very little computational power to run computationally de-
manding processes remotely, while creating the illusion that
they are running locally. They allow long running processes
to execute on servers that reboot less frequently than a user’s
personal computer or devices that may run out of battery en-
ergy. While thin clients have existed in different forms for
many decades, trends in computer use today indicate that
now is an especially apt time for them [7]. For example, in
business environments, the client devices can have very little
computational power, allowing businesses to use cheap ter-
minals instead of expensive PCs. Having all of the data and
computation running on a central server means that a busi-
ness can just update software on one computer instead of
hundreds or thousands of PCs running on employees’ desks,
saving money on maintenance. Keeping all data on a cen-
tral server provides security from lost laptops or disgruntled
employees. Even the electricity costs of running thin clients
can be cheaper than that of running PCs. As a result, many
businesses have been moving over to thin client systems [6,
18].

However, one problem with thin client systems is that they
may suffer from poor performance, resulting from a num-
ber of factors. There is the computational overhead on the
server side of tracking and encoding display updates, and of
decoding and rendering them on the client side. There is the
limiting factor of bandwidth, or how much data can be sent
across the network in a given time period. Perhaps the most
significant limiting factor in thin client systems is network
latency [5]. Latency affects every message, regardless of its
size, sent between the client and server, so it is important that
it be minimized. These performance effects are especially
noticeable in media-intensive applications, such as video.

Several ubiquitous computing projects are already using VNC
as a component of supporting infrastructure in their systems,
either using available implementations as they are, or modi-
fying them to suit their needs [17, 8, 4, 3]. However, the poor
performance that VNC demonstrates under latency condi-
tions has prevented it from being as successful in projects
where the user may be a significant distance from the VNC
server. For example, the Labscape project by Arnstein et
al attempted an early implementation in which they used
VNC, but had to scrap it because their users were unhappy

1

with VNC’s responsiveness [1]. Takashio et al, in their goal
to support “Follow-Me applications in ubiquitous comput-
ing environments,” note the value of realizing user mobil-
ity by using VNC, and yet they explicitly reject it because
of networking problems, both bandwidth limitations and la-
tency concerns, and thus propose a new mobile agent frame-
work [15]. Unfortunately, this also sacrifices the use of VNC
as a standard, well accepted, and highly deployed system,
simply because of its poor performance in particular situa-
tions. In this work, we offer a way to mitigate VNC’s poor
performance under high latency conditions, making it a more
flexible and useful tool for ubiquitous computing systems.

The solution that we present is a very general and simple
proxy, called a Message Accelerator, that works with VNC
to mitigate the effects of network latency. Our Message Ac-
celerator runs on or near the server machine and requests up-
dates from the server in a client-pull fashion, thus mimicking
the VNC client. It then forwards these updates to the client
as soon as possible, at the faster rate of proxy-server interac-
tions rather than the slower rate of client-server interactions.
Because the Message Accelerator does not wait to receive a
request from the client before sending, it is not affected by
high network latency in the same way that traditional client-
pull systems are affected. Our Message Accelerator requires
no changes to the existing client or server, making it easy
for a user to install (essentially “plug and play”), and elimi-
nating parallel code maintenance issues. Using our Message
Accelerator with VNC can result in the client receiving up-
dates an order of magnitude faster in high latency situations.

We will first provide some background and related work in
Section 2. In Section 3, we will go into more detail about
VNC. In Section 4, we will describe our changes to VNC.
In Section 5, we will discuss our experiments and results.
In Section 6 we describe how our system evolved from our
original design to the system we present here. We will briefly
discuss future works in Section 7, and then conclude in Sec-
tion 8.

BACKGROUND AND RELATED WORK

This work is an adaption of the Virtual Network Computing
or VNC system [13]. The VNC system works as a user-
space application that requires no modifications to either the
operating system or user applications. The VNC server con-
tinually scrapes the framebuffer, an area of memory in which
color values for every on-screen pixel are stored. The VNC
client sends a request about a specific on-screen rectangle,
and the server responds with an update consisting of an en-
coding of the changes between now and the last time the
client requested information about that rectangle. We will
go into more detail about VNC in Section 3.

Thin client systems fall into two general categories in terms
of when the server sends an update to the client. In server-
push systems, updates are sent to the client as soon as the
server generates them. For example, if the user is playing
video, in a server-push system, when a new frame of video
is played, the server will immediately send an update to the
client with the changes to the framebuffer. In client-pull sys-

tems, the server waits to send an update until it receives an
explicit request from the client. If a user is playing video
on a client-pull system, when a new frame of video is avail-
able or is generated, the server stores the changes it makes to
the framebuffer in an internal representation, and when the
server receives a request from the client, it sends an update
containing all the changes to the framebuffer since the last
update. VNC is a client-pull system.

The SLIM system offers a contrast to VNC [14]. SLIM uses
a very similar message protocol to VNC, but differs greatly
in other ways. Instead of scraping the framebuffer to detect
updates, SLIM works as a virtual device driver and offers a
software library with display options for higher-level appli-
cations. In SLIM’s implementation, X-Windows is modified
to use the SLIM virtual device driver so that applications can
either explicitly invoke SLIM display commands through its
library, or pass their display commands to X-windows and
have it forward them to SLIM. In this way, applications with
specific display needs such as multimedia applications can
send commands to SLIM that include more semantic infor-
mation about how they should be processed. However, ap-
plications must be specifically altered to take advantage of
this. Even if no user-level applications are modified, at the
very least the window manager must be modified, and the
modified applications must be kept updated in parallel with
the original applications. The system is also limited to op-
erating systems with available source code because of this.
SLIM uses a server-push update system, and requires a net-
work and machines capable of handling server-push updates
with no loss of data.

THINC also acts as a virtual device driver, but at the abstract
hardware level so no changes need to be made to applica-
tions or operating system [2]. THINC also uses a similar
message protocol to SLIM and VNC. Device driver com-
mands are tracked in an intermediate encoding until they are
finally translated into messages and sent to the client. Com-
mands are highly processed while in their intermediate en-
coding to avoid sending any information that is fully or par-
tially overwritten by later updates. THINC is a server-push
system, but rather than sending messages immediately, be-
fore sending a message to the client it checks the socket to
see if the write will block, and waits until the buffer is next
flushed on blocking. THINC uses special handling for video,
using a stream-based system to avoid jitter between frames.
The special handling of video adds even more complexity to
an already quite complex system. In addition, since device
drivers are OS-specific, there must be a virtual device driver
written for each operating system on which THINC is used.

This work was also informed by the papers of Nieh et al,
which describe and compare many currently existing thin
client systems [10, 11, 5]. Nieh stresses that the perfor-
mance of thin client systems is especially affected by la-
tency, rather than bandwidth, and that client-pull systems are
affected more than others due to the fact that they must send
two messages for each update.

2

Figure 1. The VNC server scans the framebuffer and sends updates to

the client.

DETAILS OF VNC

In this section, we will describe the basic workings of a par-
ticular implementation of VNC, TightVNC [16]. These de-
tails can easily be generalized to other VNC systems. We
explain the concept of client-pull, the core operating feature
of this and all VNC systems, in the context of a real working
system that is publicly available and in wide use. We will
focus on the implementation of the RFB protocol and the
sending of messages between the client and server [12]. The
system is illustrated in Figure 1.

The VNC Client

The VNC client is implemented as a very simple program;
it is not multithreaded, and it blocks on reads and writes.
After a brief initialization phase in which it exchanges setup
information with the server, it falls into a while(true) loop. In
this loop, it first waits to receive an update from the server. It
processes the update and redraws the display. Then it issues
a request for a new update.

The client intersperses read calls throughout the processing
of the update, rather than reading the entire update and then
processing it. The structure of the update encourages this: it
contains a general header containing information about the
message, and then a series of rectangles, each with a rectan-
gle header that contains the dimensions of the data follow-
ing it and its encoding. Due to this message structure, it is
impossible to tell how many bytes an update is without pro-
cessing a significant portion of the message. An additional
advantage is that by processing the message as it is being
read, the client can get as much processing as possible done
before it has received the message in its entirety.

There are times when the client has processed as much of
the update as it has received, but cannot read any more from
the server. When this happens, the client uses the idle time
to collect user input, such as mouse movement and typing,
and sends the appropriate messages to the server. This is the
only time when it processes user input.

The VNC Server

The VNC server is more complex than the client. As the
server runs, it notes when the framebuffer is changed. It
stores an internal representation of the area modified, and
the new modifications made to it. This is called the modified
region. The server continues to add any modifications made
to the modified region until it receives a request from the
client.

The requests the client sends are very short, containing just
the dimensions of a rectangle, and a bit specifying whether
the update is incremental or not. The rectangle is always
the dimensions of the client’s display window and rarely
changes within a session. The first request the client sends
is not incremental, and all requests afterwards are incremen-
tal. If the request the server receives is not incremental, the
server immediately sends all of the framebuffer information
for the rectangle.

If the request is incremental, the server compares the rect-
angle the client requested to the modified region. If they
overlap, the server sends an update with the modifications
within the overlapping area, and clears those modifications
from the modified region. If the areas do not overlap, as in
the case where no changes have been made to the frame-
buffer since the last request, the server saves the rectangle as
the requested region. The next time the framebuffer is mod-
ified, the server checks to see if the modification falls within
the requested region. If it does, the server sends the client an
update with the new modifications and deletes the requested
region. If it does not, the server adds the modifications to the
modified region and keeps the requested region. This means
that the server can send an update in response to a request
from the client any time after it receives the request. If the
server receives more than one request before there are any
modifications to the requested region, it will just send one
update in response to all requests. We emphasize though
that the server will only send an update if it receives a re-
quest from the client, and no sooner than having received
the request.

VNC as a Client-Pull System

As described above, VNC is a client-pull system. This has
both advantages and disadvantages in terms of system per-
formance. Having the server wait until it receives a request
to send an update provides a very simple flow-control mech-
anism to prevent the client from being overwhelmed by up-
dates. The client will never receive an update that it is not
ready to process, since the server sends updates only after
the client specifically requests them. This is especially good
for the types of highly resource-limited clients that motivate
this work.

However, the sending of requests means that each update
will accumulate at least twice as much network latency as
updates in the server push system. In the rest of this paper,
we will describe how we modify the VNC system to retain
the advantages of a client-pull system, while getting rid of
the problems caused by this additional latency.

OUR IMPROVEMENTS TO VNC

Our changes to VNC take the form of adding a Message Ac-
celerator proxy between the client and server. We run the
Message Accelerator on the same machine as the server, but
it could also run on a separate machine close to the server
(i.e., to minimize delay due to network latency). The Mes-
sage Accelerator requests updates from the server, and for-
wards them to the client. It is invisible to both client and
server. The server believes it is communicating with a client,

3

Figure 2. The Message Accelerator quickly acquires an update from

the server, then pipelines sending the update to the client.

and the client with a server.

Since the Message Accelerator is on the same machine as
the server and communication does not have to travel over
the network, it can make requests in a client-pull manner at
a much faster speed than the actual client. It requests new
updates at the rate that it can send them to the client. Since
the client is single-threaded and performs reads interspersed
with processing, it will never read at a faster rate than it can
process. The Message Accelerator checks to make sure it
can write to the client’s socket without blocking before it
sends the update, so it will never send at a rate faster than
the network can handle. As a result of all of these factors,
the Message Accelerator sends updates at the client’s natural
processing rate, regardless of network latency.

Goals

The goal of our improvements to VNC is to create better
user-perceived performance, focusing on video communica-
tion in the case of high latency between the server and client.
We cannot change the time between when an action (such as
a mouse movement or keystroke) is taken on the client ma-
chine and when the client receives an update that reflects
that action. What we can change is the number of updates
the client receives between these two events. The more up-
dates the client receives, the less jumpiness the user will ex-
perience. This is especially important for video applications,
where the number of updates per second the client receives
becomes the number of frames per second the user sees.

We would like our changes to be as “plug and play” as possi-
ble, involving little to no effort on the part of the user. With
that in mind, we have designed our system so that our im-
provements do not require changing any of the existing client
or server code. In addition, if for some reason the Message
Accelerator cannot be run on the same machine as the server,
it can be run on another machine near the server in the net-
work with only a slight increase in overhead. With these
design choices, we avoid the issues of parallel code mainte-
nance, as any VNC system that adheres to the standard RFB
protocol should be compatible with our server [12].

Implementation

The Message Accelerator works by pipelining updates to the
client. Since the Message Accelerator is running on the same
machine as the server, it can very quickly send requests to
the server and receive updates in response. The Message

Algorithm 1 The Message Accelerator Central Loop

whi le (True) {
s e l e c t () ;

i f (can r e a d s e r v e r) {
u p d a t e s [r e c e i v e d] = r e a d (s e r v e r) ;
r e c e i v e d = r e c e i v e d + 1 ;
unansweredReques t = F a l s e ;

}

i f (can w r i t e c l i e n t) {
i f (s e n t < r e c e i v e d)) {

w r i t e (c l i e n t , u p d a t e s [s e n t]) ;
s e n t = s e n t + 1 ;

}
}

i f (can r e a d c l i e n t) {
r e q u e s t = r e a d (c l i e n t) ;

}

i f (can w r i t e s e r v e r) {
i f ((! unansweredReques t)

&& (r e c e i v e d − s e n t < 1)) {
w r i t e (s e r v e r , r e q u e s t) ;
unansweredReques t = True ;

}
}

}

Accelerator can duplicate and resend client requests, with-
out needing to wait for a new request from the client. It then
sends the updates from the server to the client at a constant
rate, regardless of network latency. This is illustrated in Fig-
ure 2.

The VNC session starts up with an initialization period dur-
ing which the Message Accelerator simply forwards every-
thing sent to it by the client to the server, and everything sent
to it from the server to the client. This period is where the
client sends the server information such as the user’s pass-
word, what encoding the client would like to use, and other
parameters. It is necessary for the Message Accelerator to
simply forward this information, since there is no way for it
to know these parameters ahead of time.

Once the initialization process is over, the Message Accel-
erator settles into a loop, illustrated in Algorithm 1. This
loop constantly polls to check if either the server or client are
available for reading or writing. The client sends short ten
byte requests that the Message Accelerator saves and sends
to the server. The server sends large updates (an average size
for typical desktop video is around 0.9 MB) that the Message
Accelerator forwards to the client. The Message Accelera-
tor will often receive partial updates from the server, and will
have to assemble an update over many reads.

If the Message Accelerator can read from the server, it reads
everything available, and then parses it to see if it is a com-
plete update. If the update is complete, it marks that the
server is ready to receive the next request, since in a client-
pull system we do not want to send a request until we have

4

fully received an update. If the update is not complete, it
saves what it has received so far and waits for more. Af-
ter it has read and parsed the available information from the
server, the Message Accelerator updates variables that keep
track of the number of complete updates and bytes of partial
updates it has received.

If the Message Accelerator can write to the client, it writes
as much as it can, and then records how much it has written.
When the Message Accelerator can read from the client, it
reads a request, and saves it to send to the server. Since the
client always sends a single complete request, the Message
Accelerator does not have to do any sort of book-keeping for
it. If the client’s display dimensions change, the client will
change the rectangle dimensions in the request it sends, and
all the updates the server sends after it receives this request
will reflect that change.

When the server is available for writing, the Message Accel-
erator first checks to make sure that it has received a com-
plete update since the last time it sent a request. It then com-
pares the number of updates it has received from the server
to the number of updates it has forwarded to the client. If it
has sent all of the updates it has received, it sends a request
to the server. Otherwise, it does nothing.

The Message Accelerator sends to the client whenever the
client will not block its write, similar to the send mechanism
in the THINC system [2]. Because we check to make sure
that the write will not block before we send it, and the client
is single-threaded and intersperses its read calls with its pro-
cessing of the update, the rate at which the Message Acceler-
ator can send to the client is controlled by how fast the client
can process the updates. However, because the Message Ac-
celerator sends requests to the server even if it has not yet
received a new request from the client, it is not affected by
network latency in the same way as a simple client-pull sys-
tem.

The Message Accelerator sends requests to the server at the
same rate that it is capable of sending updates to the client.
It must keep updates buffered to make sure it always has
something ready to send to the client. By buffering the bare
minimum of updates, we minimize the effects of changing
send rates. If the Message Accelerator was buffering a large
number of updates and the speed at which it was sending to
the client changed, these buffered updates would appear in
fast motion (i.e., fast forward fashion) if the sending rate de-
creased, and in slow motion if the sending rate increased. In
addition, perception of any user input would be delayed un-
til all of the buffered updates had been sent. The maximum
number of updates that the Message Accelerator should have
buffered at any time in order to always have something ready

to send to the client is ⌈(serverprocessingtime

acceleratorsendtime
)⌉. Because it

generally takes the server less time to process an update and
send it to the Message Accelerator than it takes the Message
Accelerator to send that update to the client, this number is
typically one.

Figure 3. The median update rate rapidly decreases in the unmodified

system, but stays constant with the Message Accelerator.

EXPERIMENTAL DESIGN AND RESULTS

Experimental Design

As described in Section 3.1, after initialization the VNC
Client goes into a loop where it reads and processes an up-
date, sends a request to the server, and then waits for the next
update. To compare the performance of a standard (i.e., no
Message Accelerator) and an improved (i.e., with Message
Accelerator) system, we instrumented the client to measure
how long it takes for the client to go through each iteration
of this loop. Since the client does this for each update it
displays, the faster it goes through this process the faster it
displays updates. Since this measurement is being taken in
the client, it is blind to whether or not the system is using the
Message Accelerator.

To test the systems, we need a media intensive application
with many framebuffer updates per second. We used an
episode of the television show Angel, playing on a loop in
the VLC media player. Our testing was done with the client
running on a Dell Vostro 200 machine with the Ubuntu In-
trepid Ibex OS, and the server and Message Accelerator run-
ning on a Dell Optiplex 755 with the Fedora OS. All TCP
settings were at the default.

To simulate network latency, we use the netem Network Em-
ulator to insert artificial network latency [9]. To generate
measurements, we leave the server running, and run a script
that runs the client connected directly to the server for one
minute, and then runs the client connecting through the Mes-
sage Accelerator for one minute. It goes through this loop
ten times. All of our experiments were run using the raw en-
coding of both systems. By running first unmodified VNC
and then VNC with the Message Accelerator, any network
or processing effects outside of our system will affect both
systems. All reported times are in ms (milliseconds).

Results

As shown in Figure 3 and Table 1, the unmodified VNC sys-
tem is drastically impacted by network latency. With net-

5

Unmodified System Message Accelerator
Latency Median Mean St Dev Median Mean St Dev

0 76.9 77.3 4.5 76.0 76.1 2.6
10 96.8 101.5 26.7 75.9 76.3 7.6
20 138.6 150.5 69.3 75.9 77.2 14.5
30 198.7 225.3 122.1 75.9 76.8 22.0
40 258.4 301.4 174.9 75.9 79.6 41.9
50 318.6 382.4 235.0 76.0 80.2 45.3
100 620.5 925.7 1117.9 83.1 111.8 172.0
150 920.6 1544.6 1243.3 86.4 128.3 187.1
200 1220.2 2313.1 1861.8 79.5 157.6 317.9
250 1520.8 3183.6 2500.7 79.2 182.4 366.5
300 1820.9 3723.3 2842.7 80.4 252.7 694.2

Table 1. Effects of network latency on client update length, in ms per update. The time per update rapidly grows in the unmodified system, but stays

constant with the Message Accelerator.

work latency of just 20 ms, the client processing rate has
almost halved. At network latency of 150 ms, the client pro-
cessing rate is ten times lower than it was with no network
latency.

In contrast, the results from VNC with the Message Accel-
erator show that there is no significant impact on the median
update time from network latency until the latter goes be-
yond 50 ms. At 150 ms of network latency, the Message
Accelerator system is outperforming the unmodified system
by an order of magnitude.

Figure 3 displays the median rate of both systems in updates
per second. The dip in rate that occurs around 150 ms of net-
work latency with the Message Accelerator was a phenom-
ena that occurred consistently in testing. Preliminary exper-
iments indicated that altering the TCP window size moved
or eliminated this drop in rate, so at this time we believe it is
an artifact of our default TCP window size.

In the results from both the systems, we see that the mean
is significantly higher than the median. This is due to ex-
treme outliers, where the update takes significantly longer
than normal. Some of these outliers are the first update sent
in a session. The first update takes a long time to send be-
cause things are not yet being buffered, and is much larger
than the later updates because it contains the entirety of the
framebuffer. There are also outliers due to packets being lost
or sent out of order, since packets resent by the TCP proto-
col are affected by the network latency. These outliers also
result in the high standard deviation.

On a qualitative and subjective note, while watching the videos,
the unmodified system becomes noticeably jittery with just
20 ms of latency, and becomes completely unwatchable with
100 ms of latency. At 100 ms, the unmodified VNC sys-
tem demonstrates user observable delay while rendering sin-
gle frames, and the video becomes a series of semi-related
frames with no illusion of movement between them. In the
VNC system with the addition of our Message Accelerator,
the video is still very watchable even at 300 ms, with very
little noticeable lag or jitter.

Figure 4. Standard deviation of client update times in ms. The standard

deviation quickly grows in the unmodified system, reflecting the uneven

rate at which frames of video are displayed.

As shown in Figure 4, we also observe that the standard de-
viation rises much more sharply in the unmodified system,
quickly becoming ten times higher than that of the system
with the Message Accelerator. This means that difference in
the time it takes different frames to render on the client is
much larger in the unmodified system. Disparate rendering
times such as this mean that video plays at a jerky, uneven
rate, alternately appearing sped up and slowed down.

Overall, we see that adding the Message Accelerator to VNC
drastically improves the frame rate under network latency,
even when the latency is not that large. With the Message
Accelerator, the time it takes an update to be displayed re-
mains consistent over added network latency, even when the
latency becomes quite high. By both qualitative and quanti-
tative measures, the system is much improved by the addi-
tion of the Message Accelerator.

THE EVOLUTION OF THE MESSAGE ACCELERATOR

Over the course of designing our system, we made many
changes from our original design. Our system evolved as we

6

Figure 5. In our original Design, the message accelerometer was on a

separate machine

learned more about the intricacies both of VNC and TCP.
Our first design was based purely on the theory of how VNC
should work, while our final design reflects the details of
its implementation. As in many cases where theory meets
design, the reality of how the system worked meant com-
pletely redesigning elements of our program. But once we
started working with the program as it actually ran, rather
than our ideas of how it should run, we found that it offered
intuitive ways for our Message Accelerator to work with it,
and that we could use aspects of the program that we had not
initially known existed to achieve much faster performance
when combined with our Message Accelerator. We offer this
section on the evolution of our Message Accelerator to pro-
vide some insight on the inner workings of VNC and the
lessons we learned.

The Original System

In our original design for the Message Accelerator, it would
have resided on its own machine, one that was, approxi-
mately one wifi hop away from the client machine. In this
position, the latency between the Message Accelerator and
client would be small, e.g., around 3 ms in a typical wireless-
access network environment. With its ability to quickly com-
municate with the client, the Message Accelerator would
measure the rate at which the client was capable of process-
ing updates, and then send requests to the server at this rate.
Because the Message Accelerator was not waiting to receive
a new update before it sent the next request, it could send
requests and receive updates at the rate at which the client
was processing them, regardless of network latency. The
Message Accelerator would then buffer the updates from the
server, and dispense them to the client in a client-pull fash-
ion, sending a complete update in response to a request. Our
original design is illustrated in Figure 5.

The Message Accelerator without Update Delimitation

One of the first problems we discovered with this system
was that waiting until the Message Accelerator had received
the complete update from the server before we sent it to the
client was causing a huge performance hit. The Message
Accelerator was reading the update in from the server one
packet at a time, and waiting until the Message Accelerator
had gotten a complete update before sending it to the client,
then sending it to the client, which then read it in a little bit
at a time, was causing a huge amount of overhead. With
no network latency it was taking an average of 103 ms for
the client to receive and process an update with the Message
Accelerator, as compared to 77 ms without the Message Ac-
celerator. We changed our Message Accelerator design so

that instead of collecting a complete update and sending it
in response to a client request, the Message Accelerator for-
warded everything it received from the server to the client
immediately. This meant that the client could immediately
process as much of the update as it had received, taking ad-
vantage of its interleaving of network reads and update pro-
cessing.

The Message Accelerator no longer had to parse the updates
as it read them in, or have any internal representation of an
update. It could simply read data in from the server and im-
mediately forward it to the client. This also meant that our
system was no longer a true client-pull system, and no longer
had the built-in client-pull safeguards. To avoid overload-
ing the client, we were relying on a combination of send-
ing requests at the same rate the client was processing, and
checking to make sure writes to the server would not block.
This change significantly increased performance, bringing
the time it took the client per update down to an average of
87 ms.

The Server Accelerator and Client Accelerator

We next discovered that sending requests to the server in a
non-client pull fashion was causing delays. The server is
designed so that if it receives multiple requests before it is
ready with an update, it will just send one update in response.
When the Message Accelerator sent requests at a very fast
rate, the server would frequently process and then ignore re-
quests that came too close together, so it was doing all of the
work of reading and parsing a request without sending more
frequent updates in response. We expected there would be a
performance advantage in sending requests to the server in
a client-pull fashion, but with the Message Accelerator on
a machine next to the client, we could not do that without
suffering from network latency in the exact same manner as
a system without the Message Accelerator.

So we added another accelerator, one that was placed on the
same machine as the server. This new Server Accelerator

read requests from the Client Accelerator, and forwarded
them to the server in a client-pull system, then forwarded
the updates it got from the server back to the Client Accel-
erator. When the Server Accelerator was able to write to the
server, it checked if it had received a new request from the
client, and if it had been sent a full update in response to the
last sent request. If both those checks passed, it sent a new
request to the server. We were still depending on the Client
Accelerator to set the rate at which the requests were sent.

Automatically Detecting Request Rate

Our original design for the Message Accelerator had it auto-
matically determining the amount of time it took the client
to process the request, completely separate from the time it
took the update to get to the client over the network. The
Message Accelerator would then send requests to the server
at that rate. In this way, the system would be able to run
at optimal speed, regardless of network latency. If the rate
at which the client received requests was reflected in the
measurement of how fast it was processing, we could suf-
fer from a drift effect in the feedback loop, where the rate

7

at which the Message Accelerator sent requests got slower
and slower in response to the client receiving and processing
messages slower and slower, which in turn was due to the
slowing Message Accelerator request rate.

Exactly how to measure pure processing was unclear, espe-
cially given the interleaving of network reads and process-
ing. We once more had to add knowledge and processing of
the updates into the Client Accelerator, after taking them out
when the Client Accelerator was simply forwarding all data
from the server. However, the Client Accelerator continued
to forward data from the server immediately after receiving
it, sending partial updates to the client, in order to keep the
performance advantages.

Measuring the time from when the Client Accelerator began
sending the update to when it received the next request from
the client would completely capture the time it took the client
to process the update. However, it would also be highly af-
fected by the time it took to send the update to the client,
especially now that the Client Accelerator was forwarding
partial updates as it received them. We tried measuring the
time from after the Client Accelerator had finished send-
ing the update to when it received a new request from the
client, but that returned very small times that did not capture
the amount of time the accelerator was spending processing,
again due to the interleaved reads.

In experiments with the Server Accelerator, we had observed
that the server sent updates to the Server Accelerator much
faster than the Server Accelerator could send them to the
client. This resulted in a slow-motion effect when the client
displayed the updates, since they were being shown on the
client at a much slower rate than they had been generated on
the server. To limit this effect, we put in checks so that the
Server Accelerator would only prefetch a limited number of
updates, and would wait to send requests to the server until
it had sent these updates to the client. We noticed that with
higher network latencies, the Server Accelerator was send-
ing requests to the server at the rate at which it could send
updates to the client, since this was higher than the rate at
which the Client Accelerator was sending requests. Because
we were checking that the client would not block before we
wrote to it, the Server Accelerator could not send faster than
the network could handle. Because of the interleaving of net-
work read and processing, the Server Accelerator could not
send faster than the client could process. Since the Server
Accelerator is always sending as much data as it can without
blocking regardless of how long it takes to hear back from
the client, it is not affected by network latency in the same
way as a purely client-pull system.

We removed the Client Accelerator, and had the Server Ac-
celerator send to the client as fast as it could without block-
ing. When the Server Accelerator can write to the server, it
checks to see if it has received a full update in response to
the previous request, and if it has already sent all of the up-
dates its received to the client. If both checks pass, it sends
a request to the server.

With this simple mechanism, we no longer had to worry
about separating processing time from network time. We
also no longer had to calculate an explicit rate at which to
send updates. By limiting the number of updates the Mes-
sage Accelerator prefetched, we ensured that the updates
were being generated by the server at the same rate they
were being received and processed by the client, and thus
we avoided any slow motion effects.

TCP Window Size

In all versions of our accelerator that featured the Client Ac-
celerator, we found that making changes to TCP window
size had a significant effect on performance. We experi-
mented with very small and very large window sizes, and
discovered that the optimal performance was when window
sizes were large enough to allow a number of updates within
a TCP window, but small enough that dropped packets were
discovered relatively quickly. The TCP defaults resulted in
our system running with a median time of 257 ms per update
with a 100 ms network delay. Changing the TCP window
size to 32 MB resulted in a median time of 96 ms with a
100 ms network delay, and additionally setting the Selective
Acknowledgment flag got our median time down to 85 ms.

However, when we removed the Client Accelerator and once
more had just the server and client machine, we found that
changing the TCP window size and flags had very little effect
on performance. With a 100 ms network delay, the Message
Accelerator had a median time of 79 ms with the default
settings, a median time of 81 ms with a window size of 32
MB, and a median time of 79 ms with the higher window
size and the Selective Acknowledgment flag.

FUTURE WORK

Using an adaptive message-accelerating proxy to improve
the performance of traditionally server-client applications may
be an approach that can be extended to many systems. The
message modifying program offers a simple way to improve
performance or add additional features, is easy to deploy,
and works with existing binaries. It does not suffer from
problems of parallel code maintenance, and will continue to
work as long as the message format between the client and
server remains the same. The proxy can even be deployed
to a different machine from the server, and still offer perfor-
mance advantages.

There are additional ways that a modifying proxy could be
used with VNC. The proxy could dynamically tightly com-
press updates when network speeds were low, and uncom-
press when the client device had low batteries or other com-
putational issues. With an additional client application, the
server application could encrypt updates, and the client ap-
plication could decrypt them either on the client machine,
or on a machine with a trusted network connection to the
client. The server application could also perform machine
vision tasks such as object detection or face recognition.

Clearly, adding an adaptive proxy to a client system offers
any number of ways to improve performance or transform
data. Updates can be buffered, information can be cached, or

8

messages can be modified in a wide variety of ways. Many
systems have taken these approaches, though we are not aware
of any other system that uses a proxy for message accelera-
tion.

CONCLUSION

The Message Accelerator proxy improves the performance
of VNC under high latency conditions tenfold. Even with
small amounts of latency, it performs as well as or better than
the unmodified VNC system. It is easy to install, requiring
no recompilation of client or server code. The Message Ac-
celerator is especially valuable for video applications, where
it virtually erases the effects of network latency. A video
displayed using the Message Accelerator system will look
the same with a 300 ms network latency as it does with a 3
ms network latency, while a video playing on an unmodified
system will take ten times as long to display updates when
latency is raised to 300 ms as it would at 3 ms.

While developing the Message Accelerator system, we learned
many things about the operation of a VNC system, many of
which surprised us. The client’s interleaving of processing
and network reads caused us to change our original design
for the Message Accelerator, but in the end it provided us
with a simple mechanism for determining the rate at which
to request and send updates. The reduction in server perfor-
mance when requests were not sent in a client-pull fashion
caused us to move the Message Accelerator onto (or near)
the server machine, which ended up gaining us performance
not only due to our use of client-pull, but also by eliminating
the need to read and write to a third machine on the network.

VNC with the Message Accelerator offers a way for context-
aware applications with large data and computational require-
ments to be run on powerful stationary servers while the user
travels with lightweight devices. Since the client needs only
to be responsible for I/O, it can even be deconstructed into
a collection of embedded devices. With the Message Accel-
erator, display updates can be generated on the server and
sent to the client in quick, steady fashion, regardless of net-
work latency. The user can travel freely without affecting
performance quality, and context-aware applications can use
as much computing power as they require to fully process
the data-rich environments of every day life.

REFERENCES

1. L. Arnstein, R. Grimm, C.-Y. Hung, J. H. Kang,
A. LaMarca, G. Look, S. B. Sigurdsson, J. Su, and
G. Borriello. Systems support for ubiquitous
computing: A case study of two implementations of
labscape. In Pervasive 2002, pages 30–44.
Springer-Verlag, 2002.

2. R. A. Baratto, J. Nieh, and L. Kim. THINC: A Remote
Display Architecture for Thin-Client Computing.
Computing Science Technical Report CUCS-027-04,
Department of Computer Science, Columbia
University, 2004.

3. T. Haraikawa, T. Sakamoto, T. Hase, T. Mizuno, and
A. Togashi. µvnc over plc: a framework for gui-based

remote operation of home appliances through
power-line communication. Consumer Electronics,
IEEE Transactions on, 48(4):1067–1074, Nov 2002.

4. A. Hasedawa and T. Nakajima. A user interface system
for home appliances with virtual network computing.
Distributed Computing Systems Workshop, 0:0229,
2001.

5. A. Lai and J. Niegh. Limits of Wide-Area Thin-Client
Computing. Proc. SIGMETRICS 2002, pages 228–239,
2002.

6. C. Lawton. ’Dumb Terminals’ Can Be a Smart Move.
The Wall Street Journal, January 2007.

7. S. Lohr. For Networks, Thin is In. The New York Times,
September 2007.

8. T. Nakajima. How to reuse exisiting interactive
applications in ubiquitous computing environments? In
Proc. 2006 ACM symposium on Applied computing,
pages 1127–1133. ACM, 2006.

9. NetEm. http://www.linux-foundation.
org/en/Net:Netem.

10. J. Nieh, S. J. Yang, and N. Novik. A Comparison of
Thin-Client Computing Architectures. Computing
Science Technical Report CUCS-022-00, Department
of Computer Science, Columbia University, 2000.

11. J. Nieh, S. J. Yang, and N. Novik. Measuring thin-client
performance using slow-motion benchmarking. ACM
Trans. Comput. Syst., 21(1):87–115, 2003.

12. T. Richardson. The RFB Protocol. Technical report,
RealVNC Ltd, 2007.

13. T. Richardson, Q. Stafford-Fraser, K. Wood, and
A. Hopper. Virtual network computing. Internet
Computing, 2(1):33–38, 1998.

14. B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The
interactive performance of slim: a stateless, thin-client
architecture. In Proc. SOSP ’99, pages 32–47. ACM
Press, 1999.

15. K. Takashio, G. Soeda, and H. Tokuda. A mobile agent
framework for follow-me applications in ubiquitous
computing environment. In Distributed Computing
Systems Workshop, 2001, pages 202–207, 2001.

16. Tight VNC. http://www.tightvnc.com/.

17. P.-L. Tsai, C.-L. Lei, and W.-Y. Wang. A remote
control scheme for ubiquitous personal computing.
Networking, Sensing and Control, 2004, 2:1020–1025
Vol.2, 2004.

18. D. Tynan. Think Thin. InfoWorld, July 2005.

9

