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Abstract

In this paper, we study human sequential behavior by inte-
grating cognitive, evolutionary, and computational approaches.
Our work centers around the emergence of shared vocabular-
ies in the Embodied Communication Game (ECG). Here, par-
ticipant pairs solve a shared task without access to conven-
tional means of communication, enforcing the emergence of
a new communication system. This problem is solved typi-
cally by negotiating a shared set of sequential signals that ac-
quire meaning through interactions. Individual differences in
Personal Need for Structure (PNS) have been found to influ-
ence how this process develops. We trained deep neural net-
works to mimic the emergence of new communicative systems
and used hyperparameter optimization to approximate latent
human cognitive variables to explain human behavior. We
demonstrate that models based on bidirectional LSTM net-
works are better at capturing human behavior than unidirec-
tional LSTM networks. This suggests that human sequence
processing in the ECG is influenced by expected future states.
The approximated variables cannot explain the differences in
PNS, but we do provide evidence suggesting that random and
uncertainty-directed exploration strategies are combined to de-
velop optimal behavior.
Keywords: Computational modeling; Human-machine inter-
action; Language emergence; Deep neural networks; Sequen-
tial behavior modeling

Introduction
For communication—between humans or between humans
and machines—to be successful, the coordinated actions of
all interlocutors must adhere to the grounding criterion, ac-
cording to which interlocutors have to agree on the meaning
of the current communicative purposes (H. Clark & Bren-
nan, 1991). The fulfillment of this criterion relies extensively
on the availability of a (partially) shared vocabulary between
interlocutors of a conversation (Pickering & Garrod, 2004).
Yet, the exact dynamics of how agents settle on an effective
grounded shared vocabulary is still unclear (Tylén, Fusaroli,
Bundgaard, & Østergaard, 2013; Mordatch & Abbeel, 2018).
Recent work in Computational Linguistics has started mod-
eling emergent communication setups using multi-agent sim-
ulations to understand this process better (e.g., Lazaridou,
Hermann, Tuyls, & Clark, 2018; Chaabouni, Kharitonov,
Dupoux, & Baroni, 2019; Chaabouni, Kharitonov, Boucha-
court, Dupoux, & Baroni, 2020; Chaabouni et al., 2021).

But the findings from these simulations often do not match
the outcomes of similar experiments with humans Lazaridou,
Potapenko, and Tieleman (2020). As such, recent literature
proposes to instill human language patterns in machines by
including human feedback in the learning loop instead of only
learning from large quantities of data (ter Hoeve, Kharitonov,
Hupkes, & Dupoux, 2021; Iocchi et al., 2022; Kouwenhoven,
Verhoef, de Kleijn, & Raaijmakers, 2022).

The interdisciplinary research presented here attempts to
instill such human communicative behavior in machines, us-
ing an experimental set-up that allows studying the initial
emergence of simple signals where no communication ex-
isted before. As such, we explore the grounding problem
from an evolutionary perspective, where humans must col-
laboratively create a novel shared communication system to
successfully play the ECG (Scott-Phillips, Kirby, & Ritchie,
2009). This two-player game addresses fundamental steps
in the emergence of languages: how does a signal obtain
its communicative intent, and how does this signal obtain its
meaning? Most human participants can solve this non-trivial
task by establishing an initial convention (i.e., settling on a
default behavior) and collaboratively bootstrapping new sig-
nals onwards (Scott-Phillips et al., 2009; Kouwenhoven, de
Kleijn, Raaijmakers, & Verhoef, 2022). These meaningful
signals are subsequently used to play the ECG successfully,
creating sequences of communicative behavior.

Once a communicative system exists, it must be processed
by the brain for comprehension and production. However, it
is not entirely clear how this happens for human languages.
Traditional views see the human brain as a forward-looking
prediction machine (e.g., A. Clark, 2013), but Onnis, Lim,
Cheung, and Huettig (2022) found evidence for the impor-
tance of backward-looking processing for language compre-
hension in two self-paced reading and eye-tracking tasks.
They showed that context, in the form of preceding words,
can be informative for integrating current words, and con-
clude that both forward and backward-looking appear to be
important characteristics of language processing. A simi-
lar debate exists on processing everyday sequential actions
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(De Kleijn, Kachergis, & Hommel, 2014). Early accounts
suggested that sequential actions are triggered by the percep-
tion of motor execution of the previous action (Washburn,
1916). Yet, there is also evidence that anticipated future states
also influence subsequent actions and that planning mecha-
nisms play a role in sequential tasks (e.g., Lashley et al., 1951;
Cohen & Rosenbaum, 2004; De Kleijn, Kachergis, & Hom-
mel, 2018), but how exactly this happens is hitherto not well
understood.

Context, in the form of preceding behavior or incoming
signals, and intended future states also play a role in the ECG.
Incoming and produced signals (i.e., context) are informative
of future behavior, and anticipated future states can be seen
as desired behaviors by the other (i.e., ending on a specific
color). The behaviors in the ECG are moreover sequential
but less complex than everyday actions and can therefore be
studied in a controlled manner. As such, investigating this
through computational modeling may reveal how sequential
processing possibly played a role in shaping human language,
what types of agent architectures are required to facilitate nat-
ural communication between humans and machines, and con-
tribute to the debate on sequential action processing in hu-
mans.

From a computational view, we use behavior cloning to 1)
investigate whether deep learning models can learn the ex-
pressed human behaviors during the development of signal–
meaning mappings in the ECG; 2) approximate latent human
cognitive variables by optimizing model parameters that in-
fluence learning and exploration (for an overview of similar
work, see Schulz & Gershman, 2019); 3) identify the appli-
cability of networks with different processing directions to
model human behavior. We then relate the model param-
eters with a cognitive measure of Personal Need for Struc-
ture (Thompson, Naccarato, & Parker, 1989) and compare
the ability to learn human behavior for models with different
processing directions. Doing so has the potential to facilitate
more natural human-machine interactions through the devel-
opment of (language) models that possess shared biases, re-
sulting in a more human-like quality. Vice versa, deviations
between human and computational biases provide a better un-
derstanding of why outcomes might not be as desired. Lastly,
a better understanding of the influence of such biases on the
emergence of language could steer learning mechanisms in
computational simulations of emergent communication and
close the gap between evolved human and computational be-
havior. Ultimately to the benefit of natural interactions with
conversational AI.

Background
The origin of language is extensively studied, but the ex-
act dynamics of language emergence remain unknown. One
question concerns the origins of the initial signal–meaning
mappings in case no prior communication system exists. If
neither form nor meaning is known, a possible way to es-
tablish this concerns the cooperative process of agreement

on the relations between communicative signals and mean-
ings. This process has been studied extensively through labo-
ratory experiments in which participants invent and negotiate
novel signals to solve a cooperative task (Steels, 2006; Scott-
Phillips & Kirby, 2010; Tylén et al., 2013). These studies
show that humans can establish shared conventions and de-
velop communication systems through social coordination. It
is moreover suggested that in addition to language use, human
learning and transmission of a language affect the emergence
of patterns (Kirby, Tamariz, Cornish, & Smith, 2015; Smith,
2022). A paramount explanation for the highly structured na-
ture of human language is that it emerges due to a human bias
for compressible systems through a preference for simplicity
(Kemp & Regier, 2012; Kirby et al., 2015; Kirby & Tamariz,
2022).

The Personal Need for Structure Scale is a measure of a
bias for simplicity (Thompson et al., 1989). This question-
naire quantifies individuals’ need for structure (PNS), desire
for cognitive simplicity (F1), and the aim of restructuring
an environment into a more manageable and simplified form
(F2) (Neuberg & Newsom, 1993). Differences in the desire
for structure influence how individuals understand and inter-
act with the world (Neuberg & Newsom, 1993) and also af-
fect problem-solving capabilities (Eva, Silvia, & Dáša, 2014;
Svecova & Pavlovicova, 2016). Furthermore, PNS affects the
task progression of participants playing the ECG, participant
pairs who respond differently to a lack of structure are more
successful (Kouwenhoven, de Kleijn, et al., 2022).

Embodied Communication Game
The ECG is a cooperative two-player game that consists of
two 2×2 grid worlds. Each quadrant has one of four col-
ors. Both players move between the quadrants, using the
arrow keys, and share the goal of ending on identically col-
ored quadrants. When they manage to do so, they score a
point. For both grids, the colors and starting positions are de-
termined randomly for each round, with the proviso of one
overlapping color, such that it is always possible to score a
point. Players see their movements and the movements made
by their partner, but only see the colors of their quadrants
(Figure 1a). The colors of both worlds are revealed to both
players (Figure 1b) when both finish moving. Their goal is
to score as many consecutive points as possible, meaning that
pairs must find a way to communicate reliably and coordi-
nate behaviors (see Scott-Phillips et al., 2009 for an in-depth
explanation).

Methods
The relationships between computational parameters and
cognitive measures are investigated through training deep
neural networks on human behaviors in the ECG. Specifi-
cally, algorithmic parameters are used as a proxy of human
preferences, we do not claim the existence of exactly these
representations in the human brain, but merely use them as
another measuring device of human behavior. Similar work
is done by De Kleijn et al. (2018), who used reinforcement
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(a) View while playing

(b) View when done

Figure 1: Only the colors from the participants’ own grid are
visible while players are moving (1a). When both players are
done, the colors of all quadrants are revealed to both players
(1b). Images were taken from (Kouwenhoven, de Kleijn, et
al., 2022).

learning (RL) models to fit human behavior in a serial re-
action time (SRT) task and found that good human perfor-
mance requires a high learning rate and a low discount factor.
Suggesting that low-scoring individuals do not update their
action-value function or the expected utility of their actions.
Curricularized learning for RL agents in the SRT task showed
that similar to infants’ curiosity-based learning, exploration
can promote robust later learning in virtual agents (de Kleijn,
Sen, & Kachergis, 2022).

For textual data, Nikolaus and Fourtassi (2021) evaluated
the ability of neural networks to acquire meanings of words
and sentences through laboratory tasks that involve cross-
situational learning used with children. They show that neu-
ral networks mirror learning patterns of acquiring semantic
knowledge in early childhood and suggest that children might
use partial representations of sentence structure to guide se-
mantic interpretation. Additionally, it is shown that language
models rely more on word frequency than children, but like
children, learn words slower when these are part of longer ut-
terances (Chang & Bergen, 2022). These models notably dif-
fered from children in the effects of word length, lexical class,
and concreteness on learning, emphasizing the importance of
social, cognitive, and sensorimotor experience in child lan-
guage development.

Figure 2: An example communication system.

Data

The data used in this paper was collected for the study de-
scribed in (Kouwenhoven, de Kleijn, et al., 2022). Here
we collected three additional pairs (N = 46: 36 females, 10
males; Mage = 22.2, SDage = 3.53). Participants received in-
structions after which they were separated and placed behind
two connected computers. This set-up ensured that conven-
tional communication was impossible and that the problem
of emerging signal–meaning mappings had to be solved by
the participants. The game was played for 40 minutes, for
an average of 256 rounds, after which participants filled out
the PNS questionnaire and described the communication sys-
tems they attempted to develop. Finally, they were debriefed
and allowed to discuss their experience. This study was ap-
proved by the Psychology Research Ethics Committee of Lei-
den University.

Out of 23 pairs, only 14 managed to create (i.e., re-
ported and demonstrated) a robust communicative system. A
Bayesian t-test showed that these pairs achieved higher scores
than pairs that did not establish a system (BF10 = 26.73). A
typical system contains sequences of movements to indicate
different colors (Figure 2). Once established, pairs negotiate
which color is available to both by repeating the sequential
moves associated with this color. We refer to Scott-Phillips
et al. (2009) and Kouwenhoven, de Kleijn, et al. (2022) for a
detailed description of the emergence of such communicative
behavior.

A sequence of game states, produced by the movements
of each participant, is stored for each round. A single state
contains the players’ position, the position of the other player,
the color of the currently occupied quadrant, and the entire
color layout of the players’ grid. This representation reflects
the information that a participant sees during the game. A
target label—corresponding to arrow keys and the spacebar—
is stored for each game state to create a sequence of actions.

The model

We trained a deep neural network—implemented with Long
Short Term Memory (LSTM, Hochreiter & Schmidhuber,
1997) cells—on the state–action sequences of each partici-
pant. The input data, therefore, differs for each model, but its
architecture is generic and fixed (Figure 3). The objective of
the model is to predict a participant’s subsequent move given
a particular sequence of states. For unidirectional process-
ing, each state of a sequence is processed chronologically,
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beginning with the first and ending with the last state1. For
bidirectional processing, the states are additionally processed
in reverse order, thus incorporating (i.e., anticipating) future
behavior to predict a subsequent move. The model output
layer computes probabilities for subsequent moves using tem-
perature (τ) scaling. Here, high values of τ cause actions
to be approximately equiprobable and therefore lead to ex-
ploratory behavior. Low values of τ cause greater differences
between the probabilities, with high probabilities for actions
with high expected rewards, and cause deterministic behavior.
The learning rate (lr) of the model influences how quickly
it updates its predictions, where a high learning rate means
quick changes. The Adam optimization algorithm (Kingma
& Ba, 2014) is used to minimize categorical cross–entropy
loss.

Figure 3: Neural network architecture. The output layer uses
temperature scaling as an activation function.

Measures
Game performance was measured by the number of con-
secutive successful rounds (high score). PNS and its sub-
factors were collected using a 12-statement questionnaire (see
Neuberg & Newsom, 1993), here, high values for PNS, F1,
and F2 correspond to a high need for structure. To ob-
tain participant-specific τ and lr, we performed hyperparam-
eter optimization on the game data of each participant, re-
sulting in 46 independently trained models. Put differently,
grid search was used to optimize model performance using
lr ∈ {0.0001, ...,0.075} and τ ∈ {0.001, ...,3.00}, with 10
equally spaced steps per parameter, resulting in 100 parame-
ter settings per participant. Each model was trained indepen-
dently for 5 epochs on each parameter combination. We take
the learning rate as a proxy of the extent to which individuals
weigh feedback when updating their estimates and use tem-
perature as an approximation of how explorative their behav-
ior was. The ability of the model to predict human sequential

1The backward processing layer is not used for unidirectional
networks.

behaviors is reflected in model accuracy (acc). Lastly, the cat-
egorical cross–entropy loss (cce, i.e., negative log-likelihood)
explains how likely the model and human would perform
the same action in a particular game state. For each model,
we used three-fold cross-validation to ensure that the model
was not learning the data explicitly but captured the underly-
ing structures of that participant. The cross-validation score
(i.e., the average over all folds) described model performance.
The parameter combination that resulted in the highest cross-
validation score was used as a proxy for the latent human cog-
nitive variables.

Modeling human sequential behavior
Behavior cloning was used to explain human behavior in
the ECG on two accounts. First, by comparing PNS mea-
sures with the computational parameters. Neuberg and New-
som (1993) showed that differences in the need for simple
structure influence how individuals understand and interact
with the world. Arguably, inferred computational parameters
such as learning rate and temperature have similar influences.
Therefore we sought correspondence between these param-
eters and the PNS scores of each participant. We hypothe-
sized that learning rate is related to the desire for cognitive
simplicity (F1) and high scores since a desire for structure
implies active searching for patterns, which seems crucial to
learn signal–meaning mappings in the ECG. Learning these
patterns faster (i.e., high lr) might result in faster emergence
of communicative patterns. Individuals who feel uncomfort-
able in unstructured environments (i.e., high F2) show lower
adaptability and flexibility in new environments, preferring
to respond with familiar behavioral patterns to counter the
uncomfortable feeling (Steinmetz, Loare, & Houssemand,
2011). Since lower values of τ correspond to less exploratory
behavior and a high lr corresponds with high adaptability, it
was expected for lr and τ to correlate negatively with F2.

Secondly, we manipulated the sequential processing cells
of the models. As argued before, the next move of a signal
and the intended finishing color influence immediate action
selection and can therefore be formulated as an anticipated
future state. As such, optimization as described in the previ-
ous section is done for the unidirectional (LSTM) and bidi-
rectional LSTM (biLSTM) model. Whereas unidirectional
cells process time steps of sequences in a chronological for-
ward manner, bidirectional cells compute inputs forward and
backward to make predictions (Schuster & Paliwal, 1997).
Note that although the LSTM layer in our model is different
for both types, the remaining architecture is identical.

Results
Statistical analyses were done using R 4.0.5 (R Core Team,
2021) and the BayesFactor 0.9.12-4.3 package (Morey et al.,
2018). First, we consider the overall performance of both net-
work types. The mean accuracy (acc) over all independently
trained models shows that both network types can learn to
predict subsequent moves relatively well (Table 1). Compar-
ison between the two network types with a Bayesian t-test on
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Table 1: The average model performance over the cross-
validation scores for each participant. Uni and bi correspond
to the model types LSTM and biLSTM respectively.

acc cce lr τ

Type M SD M SD M SD M SD
Uni .831 .112 .355 .241 .019 .019 .356 .745
Bi .972 .055 .084 .153 .039 .020 2.28 .716

acc and cce with network type as a predictor revealed a large
performance difference (BF10acc = 6.63e+11,d = 1.66 and
BF10cce = 1.50e11,d =−1.59). Indicating that bidirectional
sequence processing can better capture the human behavior in
the ECG than unidirectional sequence processing (Figure 4).
This result is robust when controlled for the number of param-
eters between the two network architectures. Optimal learn-
ing rate and temperature were higher for biLSTM networks
when compared to LSTM networks (BF10lr = 5.85e3,d =
.790 and BF10τ = 3.46e+ 14,d = 2.00). Since the learning
rate was taken as a proxy for the extent to which individuals
update their estimates, a higher learning rate implies flexi-
ble behavior. Therefore this result suggests that bidirectional
processing requires more flexibility toward updating behav-
ior policies. Additionally, it implies that explorative behav-
ior might complement updating these policies. We can as-
sume that a higher learning rate translates to better learn-
ing in humans since learning is required to play the ECG
successfully and learning rates were significantly higher for
pairs that managed to establish a communicative system com-
pared to those that did not (Msuccess f ul = .047,Munsuccess f ul =
.025,BF10 = 556,d = 1.39).

Figure 4: BiLSTM models show greater accuracy than LSTM
models. Stars indicate mean accuracy.

We now consider the relationships between model parame-
ters, cognitive measures, and high scores as described earlier.
Successful participants (i.e., participants with a high score)
performed complex and structured sequences in order to com-
municate. Nevertheless, we find that for LSTM networks, but
not for biLSTM networks, high score negatively influences
acc (BF10 = 3.07,r = −.346,r2 = .120). This suggests that

unidirectional processing is able to learn simpler human be-
havior relatively well but has difficulties capturing more elab-
orate behaviors. Importantly, this finding explains the differ-
ence observed in Figure 4.

(a) Relationship between learning rate and temperature.

(b) Relationship between learning rate and high score.

Figure 5: Relationships between learning rate, high score,
and temperature. Each point corresponds to one partici-
pant. Note: darker marks are overlapping data points and the
shaded area is the 95% confidence interval. Blue is used for
unidirectional networks and orange is used for bidirectional
networks.

Bayesian regression showed that for biLSTM networks,
there is a positive linear relationship between learning rate
and high score (Figure 5a BF10 = 12.8,r2 = .183), confirm-
ing our hypothesis and suggesting that participants who adopt
new behaviors faster are more successful in creating new
signal–meaning mappings in the ECG. We moreover find
that regardless of processing directionality, temperature, and
learning rate are related (Figure 5b, BF10biLST M = 28.1,r =
.452,r2 = .204 and BF10LST M = 1.40e7,r = .772,r2 =
.597), suggesting that participants who explored more also
adapted new behaviors faster. Surprisingly, we did not find
a relation between exploration and high score. This was to
be expected since explorative behavior may lead to new con-
ventions in the ECG. Lastly, in the current data learning rate
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or temperature cannot explain PNS, F1, or F2 for LSTM and
biLSTM networks. Thereby rejecting the remaining hypothe-
ses.

Discussion
Here we modeled human sequential behavior in the Embod-
ied Communication Game with deep neural networks and
investigated possible relationships between human cognitive
preferences and computational parameters. Specifically, we
looked at relationships between participants’ personal need
for structure, learning rate, and temperature parameters. Al-
though we showed that the current deep neural networks are
able to learn the behavior associated with creating signal–
meaning mappings, we did not find any correspondences be-
tween cognitive and computational variables. As such, PNS,
used here as a human bias for structure (Kirby & Tamariz,
2022), cannot be captured with this setup. Further research
should investigate how parameters of various network archi-
tectures may have correspondences with cognitive measures
or look at different games that investigate emergent commu-
nication (e.g., Galantucci, 2005; Steels & Loetzsch, 2012;
Mordatch & Abbeel, 2018). Being able to capture human
biases, such as the human bias for compressible and sim-
ple systems (Kemp & Regier, 2012; Kirby et al., 2015), in
computational systems is insightful for simulations of emer-
gent communication as they are then closer to human ex-
periments. Furthermore, playing these collaborative games
between humans and machines might also result in shared
grounded vocabularies that are adapted to the biases of hu-
mans and computers, ultimately resulting in better conversa-
tional AI (Kouwenhoven, Verhoef, et al., 2022).

Manipulation of the processing directionality of action se-
quences showed that participants’ behavior was explained
better by biLSTM models than by LSTM models. This
hereby provides additional arguments for bidirectional pro-
cessing of sequential actions in humans (Lashley et al., 1951;
Cohen & Rosenbaum, 2004; Onnis et al., 2022). For com-
municative purposes in the ECG, integrating current actions
is dependent on the preceding shared context (i.e., the ne-
gotiations of signals and intended final colors), and must be
taken into account when deciding what moves to take next.
The difficulties for LSTM networks to learn more complex
behaviors performed by more successful participants also in-
dicate that unidirectional processing is insufficient to capture
more elaborate human behavior. Although more research is
needed to support this, these findings suggest that the effect of
a backward-looking mechanism found by Onnis et al. (2022)
in a self-paced reading task might originate in the very early
stage of forming signaling conventions. To verify this, simu-
lations of emergent communication with deep learning agents
should look at the effect of processing directionality of net-
work architectures on the structure of emergent communica-
tive protocols. Integrating bidirectional networks may close
the current gap between human experiments and simulations.

We showed that for biLSTM networks learning rate pos-

itively influences high scores and was positively related to
temperature (Figure 5b). This seems to support the re-
cent view which suggests that humans combine random and
uncertainty-directed exploration strategies to develop optimal
behavior (Jepma et al., 2016; Schulz & Gershman, 2019). An
explanation for this could be that explorative behavior in the
ECG led to the emergence of new signals, which need to be
learned quickly (i.e., require a high learning rate) to be use-
ful. In other words, the correlation between learning rate and
temperature likely reflects the fact that participants who are
more explorative benefit from higher learning rates (i.e., there
is no benefit to explorative behavior if you do not use the ex-
plored options to update expected values). However, in-depth
analysis is required to strengthen this link further. For opti-
mal behavior, learning rate and explorative behavior would
be expected to decrease over time as strategies are learned
and exploration becomes less necessary, instead exploiting
the knowledge gathered thus far. However, literature on how
learning rate and temperature parameters develop with age
and experience has yielded conflicting results (Nussenbaum
& Hartley, 2019). Games like the ECG could be extended
over time to investigate the dynamic nature of the tempera-
ture and learning rate parameters.

Lastly, we acknowledge that the ECG is a highly simplified
setup, thereby limiting the generalizability to real-world pro-
cessing (Nastase, Goldstein, & Hasson, 2020). It also goes
without saying that these models are mere approximations of
the human brain and do not capture its breadth, but we simply
use them as a proxy to mimic human processes. These find-
ings must therefore be replicated in more ecological settings.

Conclusion

In this work, we modeled sequential human behavior cap-
tured in the Embodied Communication Game with deep
neural networks. Here participants have to establish a
communication system from scratch to solve a collaborative
task. We demonstrate that neural networks can learn the
human behaviors associated with the creation of a new com-
munication system. Manipulation of network types shows
that bidirectional processing of sequential actions better
explains human behavior than unidirectional processing,
hereby providing additional arguments for the existence
of a planning mechanism for sequential signal production
in humans. No relationship between Personal Need for
Structure and participant–specific computational parameters
was found, but our results suggest that humans combine
random and uncertainty-directed exploration strategies to
develop optimal behavior in the ECG. Future research should
attempt to extrapolate our results to communicative settings
with complex linguistic signal exchange (e.g., between
chatbots and humans). Additionally, experiments on the
emergence of a more complex human–AI language will
deepen the understanding of the relationship between natural
and artificial biases for communication.
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