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Wedescribe a project-based introduction to reproducible and collaborative neuroimaging

analysis. Traditional teaching on neuroimaging usually consists of a series of lectures that

emphasize the big picture rather than the foundations onwhich the techniques are based.

The lectures are often paired with practical workshops in which students run imaging

analyses using the graphical interface of specific neuroimaging software packages.

Our experience suggests that this combination leaves the student with a superficial

understanding of the underlying ideas, and an informal, inefficient, and inaccurate

approach to analysis. To address these problems, we based our course around a

substantial open-ended group project. This allowed us to teach: (a) computational tools

to ensure computationally reproducible work, such as the Unix command line, structured

code, version control, automated testing, and code review and (b) a clear understanding

of the statistical techniques used for a basic analysis of a single run in an MR scanner. The

emphasis we put on the group project showed the importance of standard computational

tools for accuracy, efficiency, and collaboration. The projects were broadly successful in

engaging students in working reproducibly on real scientific questions. We propose that

a course on this model should be the foundation for future programs in neuroimaging.

We believe it will also serve as a model for teaching efficient and reproducible research

in other fields of computational science.

Keywords: neuroimaging, FMRI, computational reproducibility, scientific computing, statistics, education, Python

language, data science

1. INTRODUCTION

Few neuroimaging analyses are computationally reproducible,1 even between researchers in a
single lab. The process of analysis is typically ad-hoc and informal; the final result is often the
fruit of considerable trial and error, based on scripts and data structures that the author inherited
from other members of the lab. This process is (a) confusing, leading to unclear hypotheses and
conclusions, (b) error prone, leading to incorrect conclusions and greater confusion, and (c) an
impractical foundation on which to build reproducible analyses.

1Following Buckheit and Donoho (1995), we define an analysis as computationally reproducible when someone other than

the original author of an analysis can produce on their own computer the reported results using the author’s data, code, and

instructions.
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Confusion, error, and lack of reproducibility are ubiquitous
problems that programmers have been fighting since before
“programmer” became a job title. There are widely accepted
tools and processes to reduce these problems, including the Unix
command line, version control, high-level readable programming
languages, structured code, code review, writing tests for new
code, and continuous automatic test execution.

Many researchers accept that learning these techniques is
desirable, but believe that teaching them is too difficult, or would
cost too much in class time that should be spent on topics specific
to neuroimaging.

In the course we describe here, we tested our hypothesis
that we could effectively teach both the tools for efficient
and reproducible work and the principles of neuroimaging, by
building the course around a substantial collaborative project,
and putting the tools into immediate practice. Our emphasis on
the project can be seen as a version of project-based learning
(Thomas, 2000; Condliffe, 2017).

At intake, our students had little or no prior exposure to
neuroimaging, or to the computational tools and process we
listed above. We set them the open-ended task of designing
and executing a project, which was either a replication or an
extension of a published neuroimaging analysis, built from code
they had written themselves. We required the analysis to be
computationally reproducible; each project had to provide a short
text file that gave a simple set of commands with which the
grading instructor could fetch the data, run the analysis, and
generate the final report, including figures.

1.1. Background and Rationale
Between us, we have many decades experience of teaching
neuroimaging analysis. Like most other teachers of imaging,
we have taught traditional courses with a mixture of lectures
covering the general ideas of the analysis, combined with
practical workshops using one of the standard imaging software
packages.

We also have many years of experience giving practical
support for imaging analysis to graduate students and post docs.

Over these years of teaching and support, we have come to
realize that the traditional form of teaching does a poor job of
preparing students for a productive career in imaging research. It
fails in two fundamental ways:

• Computation with large complex datasets is difficult and
distracting; without training in standard practice to reduce
this distraction, we condemn our students to a life-time of
inefficient work and slow learning.

• Standard teaching assumes either that the students already
understand signal processing and linear algebra, or that they
do not need to understand them. In our experience, both of
these assumptions are mostly false, with the result that the
students do not have the foundation on which they can build
further understanding.

As a result, imaging researchers usually do not have the
vocabulary, understanding, or shared tools to collaborate fluently
with researchers from other fields, such as statistics, engineering,
or computer science.

The essential error in traditional teaching is one of emphasis;
it gives priority to the overview at the expense of the intellectual
and practical foundations. The assumption is that the student will
either know or pick up the mathematical and practical basis, with
the big picture as a framework to guide them in choosing what to
learn.

In fact we find that it is rare for students to go on to learn these
foundations. They usually continue as they were when they leave
the course: as inefficient practitioners with little ability to reason
about their analysis.

In contrast to the traditional approach, we emphasize:

• Efficient computational practice to decrease confusion, reduce
error, and facilitate collaboration.

• The fundamental mathematical and statistical bases of the
analysis, such as the linear model, using computational tools
to build, illustrate, and explain.

We were inspired by the famous epithet of Richard Feynman,
found written on his blackboard after his death: “What I cannot
create, I do not understand.”2 We first taught the students to
build code efficiently, and then we taught them how the methods
worked, by building them from code. Our aim was that our
students should be able to implement their own simple versions
of the major algorithms they were using.

Our course put great emphasis on a final group project that
accounted for more than half of the overall course grade. We did
this for two reasons:

First, we believe the motivations for computational
reproducibility and the difficulties of collaboration are too
abstract to be meaningfully understood in the absence of a
significant, concrete, group project. If a project lasts a few
weeks, it is possible to remember all the steps without carefully
recording and explaining them. If you have a small dataset and
a handful of tiny functions, it is reasonable to throw them all in
a directory and post them online. As datasets get larger and the
analysis more complex, it quickly becomes impossible to keep
track of what you have done without carefully organizing and
recording your work. Large datasets and complex analyses are
typical in research.

Second, we intended to teach the students efficient
reproducible practice with the standard tools that experts
use for this purpose (Millman and Pérez, 2014). Our own
practice has taught us that the power of these tools only becomes
clear when you use them to do substantial work in collaboration
with your peers. In contrast, we have found that teaching “easy”
tools that need less initial investment has the paradoxical effect of
making it harder for students to move on to the more powerful
and efficient tools that they will need for their daily work.

1.2. Hypothesis and Test
Our hypothesis was that it is possible to teach the combination
of standard reproducible practice and the fundamentals of
neuroimaging analysis in a single undergraduate class. We
considered our class to be a feasibility study for a large change
in the curriculum.

2http://archives.caltech.edu/pictures/1.10-29.jpg
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Because we were doing a feasibility study, our overriding
question was “can this be done?,” and we chose our teaching
methods to give us the best chance of success. Our course differed
in various ways from standard neuroimaging courses, including
(a) teaching tools first and content later, (b) greater emphasis on
fundamentals of statistical estimation and inference, (c) pervasive
use of online collaboration tools for review and feedback, and
(d) heavy emphasis on a substantial open-ended project as a
capstone.

We were not trying to evaluate any of these teaching methods
in isolation, and we have no way to disentangle their various
contributions to our success or failure.

Our index of success was the extent to which the students
were able to use the tools to do useful and reproducible work
on a scientific question of their choosing. In § 2, we describe
what we taught and how. In § 3, our main interest is an analysis
of the work in the student projects. If we succeeded, then the
student projects should be reproducible, and we should find good
evidence that the students engaged with the tools, data, and
scientific question.

2. MATERIAL AND METHODS

We taught Reproducible and Collaborative Statistical Data
Science,3 during the fall semester of 2015. The course was offered
through the department of Statistics at UC Berkeley, and was
open to upper-level undergraduates (as STAT 159) as well as
graduate students (as STAT 259).

The course entry requirements were Berkeley courses STAT
133 (Concepts in Computing with Data), STAT 134 (Concepts
of Probability), and STAT 135 (Concepts of Statistics). Together
these courses provide basic undergraduate-level familiarity
with probability, statistics, and statistical computing using
the R language. Many students were from statistics and/or
computer science; other majors included cognitive science,
psychology, and architecture. During the 15-week long semester,
we had three hours of class time per week in two 90-
minute sessions, plus two hours of lab time. Students were
expected to work at least eight hours per week outside class.
Project reports were due in week 17, two weeks after the last
class.

2.1. Course Overview
This was the entry for our course in the Berkeley course catalog:

A project-based introduction to statistical data analysis. Through

case studies, computer laboratories, and a term project,

students learn practical techniques and tools for producing

statistically sound and appropriate, reproducible, and verifiable

computational answers to scientific questions. Course emphasizes

version control, testing, process automation, code review, and

collaborative programming. Software tools include Bash, Git,

Python, and LATEX.

3http://www.jarrodmillman.com/stat159-fall2015/

2.1.1. Tools and Process
We had three guiding principles in our choice of tools
and process: (a) to teach efficient reproducible practice with
standard expert tools, (b) to teach fundamental mathematical and
statistical principles using explanation with simple code, and (c)
students should be able to build their own analysis from basic
building blocks.

Applying these principles, we taught command line tools,
version control, and document machinery using text files. Rather
than focusing on a specific neuroimaging analysis package, we
taught scientific coding with Python and its associated scientific
libraries (Millman and Aivazis, 2011; Pérez et al., 2011), and then
showed the students how to run standard statistical procedures
on imaging data using these tools (Millman and Brett, 2007).

2.1.1.1. Command line
The Unix environment is the computational equivalent of
the scientists’ workbench (Preeyanon et al., 2014). The Unix
command line, and the Bash shell in particular, provides mature,
well-documented tools for building and executing sequences of
commands that are readable, repeatable, and can be stored in
text files as scripts for later inspection and execution. Quoting
Wilson et al. (2014)—the Bash shell makes it easier to “make the
computer repeat tasks” and “save recent commands in a file for
re-use.”

The graphical user interface of operating systems such as
Windows and macOS can obscure the tree structure of the file
system, making it harder to think about the organization of data
as a hierarchy of directories and files. The command line tools
make the file system hierarchy explicit, and so make it easier to
reason about data organization.

2.1.1.2. Version control
Version control is a fundamental tool for organizing and storing
code and other products of data analysis. Distributed version
control allows many people to work in parallel on the same set of
files. The tools associated with distributed version control make
it easier for collaborators to review each other’s work and suggest
changes.

Git is the distributed version control system that has become
standard in open source scientific computing. It is widely
used in industry, with automated installers for all major
operating systems. Web platforms such as GitHub,4 Bitbucket,5

and GitLab6 provide web interfaces to version control that
simplify standard methods of collaboration such as code review,
automated testing, and issue tracking (see below).

2.1.1.3. Scientific Python
Python is a general purpose programming language, popular for
teaching and prevalent in industry and academia. In science,
it has particular strength in astronomy, computational biology,
and data science. Its impact in scientific computing rests on a
stack of popular scientific libraries including NumPy (computing
with arrays), SciPy (scientific algorithms including optimization

4https://github.com
5https://bitbucket.org
6https://about.gitlab.com
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and image processing), Matplotlib (2D plotting), Scikit-Learn
(machine learning), and Pandas (data science). The Nibabel
library7 can load files in standard brain image formats as arrays
for manipulation and display by the other packages.

2.1.1.4. Peer review
Regular peer review is one of themost important ways of learning
to be an effective author of correct code and valid data analysis.
Git and its various web platforms provide a powerful tool for peer
review.

Pull requests are a version control interface feature pioneered
by GitHub. A pull request presents proposed changes to the
shared repository in a convenient web interface. Collaborators
can comment on the changes, ask questions, and suggest
improvements. The discussion on this interface forms a record
of decisions, and a justification for each accepted set of changes.

GitHub, like other hosting platforms for version control,
provides an interface for creating issues. These can be reports
of errors that need to be tracked, larger scale suggestions for
changes, or items in a to-do list.

2.1.1.5. Functions with tests
Functions are reusable blocks of code used to perform a specific
task. They usually manipulate some input argument(s) and
return some output result(s). There are several advantages to
organizing code into functions rather than writing stream-of-
consciousness scripts. Functions encapsulate the details of a
discrete element of work. A top-level scriptmay call a well-named
function to express a particular step, allowing the user to “hide”
themechanism of this step in the function code. A top-level script
that uses functions in this way gives a better overview of the
structure of the analysis. Functions make it easier to reuse code
at various points in the analysis, instead of rewriting or copying
and editing it. Finally, writing functions allows the programmer
to test small parts of the program in isolation from the rest.

Testing is an essential discipline to give some assurance to
the authors and other users that the code works as expected.
Tests should also document how the code is expected to be used.
Inexperienced coders typically greatly underestimate how often
they make errors; expecting, finding, and fixing errors is one of
the foundations of learning from continued practice. There are
tools that can measure what proportion of the lines of code are
covered by the tests—this is test coverage.

2.1.1.6. Continuous integration
Tests are useless if they are not run, or if the authors do not
see the results. Modern code quality control includes continuous
integration testing, a practice that guarantees that the tests are
run frequently and automatically, and the results are reported
back to the coding team. Fortunately, this practice has become so
ubiquitous in open source, that there are large free services that
implement continuous integration, such as Travis CI,8 Circle CI,9

7http://nipy.org/nibabel
8https://travis-ci.org
9https://circleci.com

and Appveyor.10 These services can integrate with hosting sites
like GitHub in order to run tests after each change to the code.

2.1.1.7. Markup languages
A markup language allows you to write content in plain text,
while also maintaining a set of special syntax to annotate the
content with structural information. In this way, the plain text
or source files are human-readable and work well with standard
version control systems. To produce the final document, the
source files must undergo a build or render step where the
markup syntax (and any associated style files) are passed to a tool
that knows how to interpret and render the content.

LATEX and Markdown represent two extremes of markup
languages, each with their own usefulness. LATEX is notation-
heavy, but powerful. In contrast, Markdown is notation-light, but
limited.

Pandoc is a command line document processor that can
convert between multiple markup formats. It can also generate
rendered output from source files with text markup. For example,
it can generate PDF files from text files written with Markdown
markup.

2.1.1.8. Reproducible workflows
When working with the Unix command line, we frequently
generate files by performing a sequence of commands. The
venerable Make system was originally written to automate
the process of compiling and linking programs, but is
now widely used to automate all types of command line
workflows.

Makefiles are machine-readable text files consisting of rules
specifying the sequence of commands necessary for generating
certain files and for tracking dependencies between files.
Consider the following Makefile rule:

progress.pdf: progress.md

pandoc -t beamer -s progress.md -o progress.pdf

This rule defines the procedure to generate the PDF slide show
file progress.pdf. The first line specifies the target of the
rule, and any prerequisites. Here the target is progress.pdf;
building this target requires the source Markdown text file
progress.md. The indented line gives the recipe, which is the
mechanism by which the target should be generated from the
prerequisites. In this case, the recipe is to execute the pandoc
utility on the Markdown file, with various options applied.11 If
you edit progress.md, you can regenerate progress.pdf
from the command line using make progress.pdf.

In the example above, the recipe was a single command, but
Makefile recipes often involve several commands. The target of
a rule is often a filename (e.g., progress.pdf), but can also
be an arbitrary name to describe the sequence of commands in
the recipe. The dependencies of a rule can be filenames (e.g.,
progress.md), but may also be other rules in the Makefile.
These features allow Makefiles to chain together complex
sequences of commands necessary for generating multiple target

10https://www.appveyor.com
11http://pandoc.org/MANUAL.html#producing-slide-shows-with-pandoc
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files, which may depend on other files or steps; such chaining is
important for building and maintaining reproducible workflows.

2.1.2. Lectures, Labs, Notes, Homeworks, Readings,

and Quizzes
The weekly lectures and labs prepared students with the skills
and background needed for the group project. We demonstrated
methods and tools during lecture and lab, and expected students
to do additional research and reading as they worked on the
group project. For example, we only gave one or two lectures
on each of Unix, Git, Python, testing, and NumPy. Each weekly
lab focused on the software stack from previous lectures. For
example, after the Git lecture, we used Git and GitHub to fetch
and submit all exercises; after introducing code testing in lecture,
we continually reinforced testing in the labs. Course work outside
labs also made heavy use of the toolstack, including each new tool
as it was introduced in lectures.

For the first three lectures, we introduced students to the Unix
environment and version control using Git. The fourth lecture
was a high-level introduction to neuroimaging and functional
magnetic resonance imaging (or FMRI). We then introduced
students to scientific computing with Python. We referred
students to our course notes on Bash,12 Git,13 Make,14 Python,15

scientific Python packages,16 and LATEX.
17

By the ninth lecture (week 5), we started to focus on the
analysis of FMRI data with Python. Data analysis lectures
continued to develop the students’ skills with Unix and the
scientific Python software stack through practical problems,
which arose as we taught FMRI analysis methods.

We assigned two homeworks. Students had two weeks to work
on each homework. Homeworks were assigned and submitted
using Git and private GitHub repositories during the first half of
the semester. Typically, assignments were given as a collection
of tests that tested the desired behavior of named functions, and
function templates with missing implementations. The functions
were documented according to the NumPy documentation
standard.18 Students added implementations to the functions
according to the documentation and ran the tests to check
that their code returned the correct results for the provided
tests. Assignments were graded using extended tests, which were
not provided to the students before they submitted their work.
The homework reinforced the material we taught during the
beginning of the course and focused on scientific programming
in Python.

Over the course of the semester, seven readings were assigned
on a roughly bi-weekly basis. The readings consisted of articles
that emphasized the core concepts of the class, either with respect
to scientific computing, or neuroimaging. Students were required

12http://www.jarrodmillman.com/rcsds/standard/bash.html
13http://www.jarrodmillman.com/rcsds/standard/git-intro.html
14https://www.youtube.com/watch?v=-Cp3jBBHQBE
15http://www.jarrodmillman.com/rcsds/standard/python.html
16http://www.scipy-lectures.org/
17https://www.youtube.com/watch?v=8khoelwmMwo
18https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.

rst.txt

to compose a two-paragraph write-up that both summarized the
main points of the article, and commented on it.

The labs and quizzes emphasized hands-on experience with
the computing tools and process associated with reproducible
and collaborative computing (e.g., version control, LATEX,
etc.). Multiple choice quizzes were held at the beginning of
lab sessions, and emphasized the computing aspects of the
course material as opposed to the statistical and neuroimaging
components covered in the lectures. The remainder of the lab
was devoted to providing hands-on experience via collaborative
work on breakout exercises. These exercises were formulated
as small projects to be worked on in groups of three to four
students.

We also used the labs to help the students practice critical
code review. For example, we had the students form small groups
and review one another’s solutions to the second homework.
This involved all the students in each group creating pull
requests to a shared GitHub repository with their solutions.
Then they had to use the GitHub code review model, which
we had been practicing in class, to review three functions in
each solution. We asked them to summarize their findings
with respect to clarity, brevity, and performance. We used
their summaries to inform a subsequent discussion about code
review.

2.2. Course Project
The course centered around a semester-long group project that
accounted for 55% of the overall course grade. Students worked
on their projects in teams for three months.

Early in the semester (week 5) groups of three to five students
formed teams. To make sure every aspect of the project work was
computationally reproducible and collaborative, we immediately
created a publicly visible project repository for each team. The
groups defined the scope of their projects iteratively; the teams
submitted their proposals in week 6, a third of the way through
the semester. We gave each team feedback to clarify project
motivation and goals.

For their project proposals, we required the teams to use
a LATEX template, which we provided, and to add the source
file(s) to their project repository (see Figure 1). Each proposal
involved (a) identifying a published FMRI paper and the
accompanying data, (b) explaining the basic idea of the paper
in a paragraph, (c) confirming that they could download the
data and that what they downloaded passed basic sanity checks
(e.g., correct number of subjects), and (d) explaining what
approach they intended to take for exploring the data and
paper. All teams chose a paper and accompanying dataset
from OpenFMRI,19 a publicly-available depository of MRI and
EEG datasets (Poldrack et al., 2013; Poldrack and Gorgolewski,
2015).

We reviewed the project proposals and met with each
team in week 7 to help them refine their ideas. The feedback
process continued throughout the semester, with students
regularly submitting drafts according to milestones defined
within the project timeline. As much as possible, we used this

19https://www.openfmri.org/
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FIGURE 1 | The initial and final repository directory template for student

projects. We gave the students a project copied from the initial template in

week 5, from which they would write and build and their initial proposal. As the

course progressed, we pushed two updates to their repository. The first gave

them a template for building their final report, their top-level README.md file

and file specifying an open license for their work. The second gave them: an

initial set of functions we had shown them in class with associated tests (in the

code directory, not shown); machinery to trigger automatic execution of tests

on Travis-CI servers; automated code coverage reporting; and a template for

writing slides for their first progress report. (A) Initial repository template. (B)

Final project template.

process to replicate the way we work with collaborators in
the lab.

Project feedback included peer-review, where each research
team was responsible for cloning another team’s project,
running the tests and analyses, and evaluating the resulting
technical document. The peer-review process proved particularly
valuable, as the students benefited greatly from the exposure
to the coding techniques and organizational principles of their
peers.

Students used GitHub’s pull request mechanism to review
all project work. Code was written as a collection of functions
(with tests) and short scripts that called these functions to
perform the project data analysis. We taught students to
test their code thoroughly. We set up each project with a
configuration file for the Travis CI8 continuous integration
service, and enabled integration of this service with their
GitHub repository. The configuration file specified that their
tests would be run and reported on the Travis CI servers
each time they changed their code on the GitHub hosting site.
We added automated code coverage testing; each change to
the code on GitHub resulted in a measure of the proportion
of all code lines covered by tests. We expected students to

keep measured test coverage above 90%. While each team
decided when to merge pull requests, we recommended that
all pull requests should have at least three participants, test
coverage should not decrease, and tests should pass before being
merged.

Students also used the GitHub issues interface to record
project discussions and actions taken by the group members. We
told students to create a pull request or issue with code and text
and use the GitHub interface to ask one or more of us to respond,
if they had any questions about their projects. Periodically, we
would review their work and open issues.

We covered this workflow in depth during lectures and in
lab, and made clear that the project grade would be based
on (a) the final report, (b) the analysis code, (c) whether we
could run their analysis code to reproduce all their results
and figures, and (d) how effectively the team collaborated
using the techniques taught in the course (e.g., pull requests,
code review, testing). We told the students that we would
use the pull request and issue discussions as evidence for
their contributions to the project, and as data for their final
grades.

Rather than have students commit the raw FMRI data to
their project repository, we had them commit code to download
and validate the raw data used in their project (week 8).
Since this was the first code they added to their repositories,
we gave them example code to download a file and validate
it by checking the file against a stored checksum of the
file content. Once they added code to handle downloading
and validating the data, we had them commit code for
their exploratory data analysis (week 9). After this, the only
milestones we provided were for progress presentations and
report drafts.

The students gave their first progress report and presentation
in week 12; it consisted of a description of the data
they were using, what they had done so far, their plan
for completing the project, and a reflection on the overall
process (see Figure 2). We required the groups to write
their slides in Markdown text format for building into PDF
with Pandoc. They committed the Markdown source to
the project repository. The students gave their second slide
presentation in week 15, two weeks before the projects were
due, discussing their current progress and their plan for finishing
their project. At the end of the project, in week 17, they
had to commit the final PDF of their reports and provide
instructions for generating the report PDF from the source
LATEXfiles.

Early in the project, we told the students that we would grade
their project work on whether it was reproducible. In order to
reproduce their work, we told the students we would blindly
follow the instructions in a text file named README.md in
the root directory of the project repository. When we graded
their projects, the README.md file had to explain how to
install, configure, and run all aspects of their project. Each
README.md had to specify how to rebuild all the components
of the project and in what order to do so. For example, it might
include a section specifying the make commands to execute,
such as:
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FIGURE 2 | Class lecture material giving instructions for the first progress report. This is the text we showed them during class, and discussed, to prepare them for

their first progress report. As for almost all our lecture material, we posted this text to the class website.

make data # download the data

make validate # ensure the data is not corrupted

make eda # generate figures from exploratory analysis

make analysis # generate figures and results

make report # build final report

2.3. Neuroimaging Data Analysis
In terms of neuroimaging, our aims were for students to (a)
understand the basic concepts in neuroimaging, and how they
relate to the wider world of statistics, engineering, and computer
science; (b) be comfortable working with neuroimaging data

and code, so they could write their own basic algorithms,
and understand other people’s code; (c) continue to use the
computational techniques we had taught them to improve
efficiency and help their understanding.

For this course we concentrated on the statistical analysis of
FMRI data using a linear model. We designed each lecture to
teach the next analysis step the students would need for their
project work.

All the following teaching used simple Python code to show
them how the mathematics works in practice, and to give them
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sample code that they could edit and run for themselves.20

We specifically avoided using off-the-shelf imaging analysis
software packages, and encouraged the students to build their
own analyses from the building blocks we had given them. In
lectures, we interleaved teachingwith short group exercises where
students took the code from class and extended it to solve a new
problem.

We covered the following topics:

• The idea of images as visual displays of values in arrays.
• The standard neuroimaging NIfTI image format as a simple

image container, combining metadata (such as shape) and
image pixel/voxel data stored as a sequence of numbers. We
used the Nibabel Python package7 to load NIfTI data as
three-dimensional arrays.

• Four dimensional (4D) images as sequential time-series of 3D
image volumes. Slicing arrays to get individual volumes from
the 4D time-series. Extracting single-voxel time-courses from
4D images.

• Building regressors for the statistical model. We introduced
the idea of the neuronal time-course model as the
hypothesized change in neuronal activity caused by the
task. For a block design, this model becomes a box-car, with
all rest periods having identical low activity, and all activity
periods having identical high activity. The FMRI acquisition
measures something like blood flow, rather than neuronal
activity, but blood flow changes slowly in response to changes
in neuronal activity. We introduced the linear-time-invariant
assumption in predicting the hemodynamic activity from the
hypothesized neuronal activity, and then the hemodynamic
response function as the invariant response. Finally we
demonstrated the mechanism of convolution as a numerical
method to express the effect of the hemodynamic response
function acting in a linear-time-invariant way, and the caveats
to these assumptions. We now had hemodynamic regressors
to fit to our voxel time-course data.

• Correlation as a simple test of linear association between
the hemodynamic regressor and voxel signal. Calculating
correlation with a single regressor for every brain voxel and
the idea of a statistical parametric map.

• The linear model as a matrix formulation of multiple
regression. We started with simple (single-regressor)
regression as another measure of linear association. We
expressed simple regression as a linear model and showed
how the model can be expressed as the addition of vectors
and vector / scalar multiplication. This leads to the matrix
formulation of simple regression, and thence to multiple
regression. We introduce dummy indicator variables to
express group membership and show how these relate to
group means. We showed with code how this mathematics
can express statistical methods that they already know, such
as regression, t-tests, and ANOVA.

20For an example lesson showing our use of Python code to illustrate the

mathematical and statistical ideas, see http://www.jarrodmillman.com/rcsds/

lectures/glm_intro.html.

• High-resolution sampling of regressors. The simple cases
that we had covered above assumed events or blocks that
started at the same time as the scanner started to collect
a new brain volume. This is not the case in general. To
deal with events that do not start at volume onsets, we
need to generate a hemodynamic time-course at higher time
resolution than the spacing of the scan onsets, and then sample
this regressor (using linear interpolation) at the scan onset
times.

• Parametric modulation of event regressors. Some of the
OpenFMRI datasets that the students had chosen used
regressors to model parametric modulation of events. There is
one regressor to model the hemodynamic effect of a particular
event type on average, and another to capture the variation of
the hemodynamic event activity as a linear function of some
characteristic of that event, such as duration or intensity.

• Spatial smoothing with a Gaussian kernel; smoothing as
a form of convolution; the scipy.ndimage subpackage
in SciPy as an implementation of Gaussian and other
smoothing.

• The idea of voxel and millimeter coordinates in brain images,
and the image affine as a mapping between them. The students
needed this in order to relate the coordinates reported in their
papers to voxels in their own analyses.

We reinforced the material from class lectures and exercises
in the homeworks. Figure 3 shows an excerpt from the second
homework, in which we asked to students to fill out functions
implementing various algorithms on 4D FMRI data and use
these functions to build up a simple diagnostic test for outlier
volumes in the time series. Finally, they applied a linear (multiple
regression) model to the data to show that removing outlier scans
reduced residual variance from the model fit.

We encouraged students to use the basic Python building
blocks for their project analyses, but we did not insist. Our rule
was that, if they used other software, they had to persuade us that
they had a sound understanding of the algorithms that the other
software was using.

2.4. Project Grading
We based the evaluation of the final projects on criteria
that emphasized the underlying principles of reproducibility,
collaboration, and technical quality. See Table 1 for the final
project grading rubric, which we gave to the students on
week 11—the week before the first progress presentations. From
the perspective of reproducibility, we evaluated projects on
whether the presented results could be generated from their
repositories according to the documentation they provided in
their README.md text file. When we could not reproduce the
analysis, we raised one or more GitHub issues to negotiate with
the project team. We graded the code tests with respect to code
coverage. Grading for the collaborative aspects of the project
used the information from the project history provided by the
Git version history and GitHub web artifacts, including code
contributions, as well as reviewing GitHub pull requests and
discussion on GitHub issues. Finally, we assessed the technical
quality of the project in terms of the clarity of the final report and
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FIGURE 3 | Above we list the first few lines of diagnosis_script.py. This file was part of the second homework, which focused on detecting outlier 3D volumes

in a 4D FMRI image. Tasks included: (a) implementing functions on image arrays using NumPy, (b) exploring FMRI data for outliers, (c) running least-squares fits on

different models, and (d) making and saving plots with Matplotlib.

with respect to how well the proposed goals of the study were met
by the final results of the analysis.

3. RESULTS

There were a total of eleven research teams composed of three to
five students, each responsible for completing a final project of

their own design using datasets available through the OpenFMRI
organization. We named groups arbitrarily with Greek letters
(e.g., alpha, kappa, zeta). The project repositories are public at
https://github.com/berkeley-stat159.

Although we allowed students to select any
OpenFMRI dataset, in fact all groups selected one of the
following:
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TABLE 1 | Project grading rubric.

X– X X+

Questions Questions overly simplistic, unrelated,

or unmotivated

Questions appropriate, coherent, and

motivated

Questions well motivated, interesting,

insightful, and novel

Analysis Choice of analysis overly simplistic or

incomplete

Analysis appropriate Analysis appropriate, complete,

advanced, and informative

Results Conclusions missing, incorrect, or not

based on analysis

Conclusions relevant, but partially

correct or partially complete

Relevant conclusions tied to analysis

and context

Inappropriate choice of plots; poorly

labeled plots; plots missing

Plots convey information but lack

context for interpretation

Plots convey information correctly

with adequate and appropriate

reference information

Collaboration Few members contributed substantial

effort or each members worked on

only part of project

All members contributed substantial

effort and everyone contributed to all

aspects of project

All members contributed substantial

effort to each project aspect

Tests Tests incomplete, incorrect, or

missing

Tests cover most of the project code Extensive and comprehensive testing

Code review Pull requests not adequately used,

reviewed, or improved

Pull requests adequately used,

reviewed, and improved

Code review substantial and

extensive

Documentation Poorly documented Adequately documented Well documented

Readability Code readability inconsistent or poor Code readability consistent and good

quality

Code readability excellent

Organization Poorly organized and structured

repository

Reasonably organized and clear

structure

Elegant and transparent code

organization

Presentation Verbal presentation illogical, incorrect,

or incoherent

Verbal presentation partially correct

but incomplete or unconvincing

Verbal presentation correct,

complete, and convincing

Visual presentation cluttered, disjoint,

or illegible

Visual presentation is readable and

clear

Visual presentation appealing,

informative, and crisp

Verbal and visual presentation

unrelated

Verbal and visual presentation related Verbal and visual presentation clearly

related

Writing Explanation illogical, incorrect, or

incoherent

Explanation correct, complete, and

convincing

Explanation correct, complete,

convincing, and elegant

Reproduciblity Code didn’t run Makefile recipes fetch data, validates

fetched data, generates all results

and figures in report

Makefiles generate EDA work and

supplementary analysis

An “A” was roughly two or more check pluses and no check minuses.

• ds000005:21 Mixed-gambles task (Tom et al., 2007) (groups
delta, epsilon, eta, theta);

• ds000009:22 The generality of self-control (Cohen and
Poldrack, 2014) (group alpha);

• ds000105:23 Visual object recognition (Haxby et al., 2001)
(groups kappa, zeta);

• ds000113:24 A high-resolution 7-Tesla FMRI dataset from
complex natural stimulation with an audio movie (Hanke et al.,
2014) (groups beta, lambda);

• ds000115:25 Working memory in healthy and schizophrenic
individuals (Repovš and Barch, 2012) (groups gamma, iota).

During grading, we succeeded in fully replicating all group
analyses. The minor problems that arose were largely platform
differences between macOS used by the students and the Linux
system we were using for grading. Four projects reproduced
without issue, six required us to raise one GitHub issue, and one
required two issues.

21https://openfmri.org/dataset/ds000005
22https://openfmri.org/dataset/ds000009
23https://openfmri.org/dataset/ds000105
24https://openfmri.org/dataset/ds000113
25https://openfmri.org/dataset/ds000115

Table 2 shows code metrics for the project repositories, and
statistics for the projects’ use of the GitHub interface.

The median final lines of non-test code per project was 1,157.
We were not successful in persuading the students to test a
large proportion of their code; we estimated that tests covered
12.4% of code lines with a range of 2% to 91.5%. The code
coverage machinery we had put in place did not measure code
lines outside expected code directories, and the students had put
a large proportion of their code outside these directories, leaving
the automated code coverage score above 90% in all cases, even
though a large proportion of the code was not in fact covered by
tests.

The GitHub statistics suggest that the teams did engage
with Git and GitHub workflow. All projects used the Pull
Request (PR) feature to a reasonable degree, with a median
of 113 PRs per project. There was considerable variation in
the extent to which the teams used comments to review
PRs and issues, with a median of 86 comments per project.
All projects except Zeta had a low ratio of final lines of
code to number of commits, ranging from 1.7 to 4.2. Zeta
appears to have used a different strategy, with the most
lines of code per commit (24.1), and the smallest number of
comments.
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TABLE 2 | GitHub and other code metrics for student projects.

Project Commits Issues PRs Comments Words/comment LoC % Covered

Alpha 787 23 190 379 24.7 3,293 3.7

Beta 534 7 147 105 20.1 1,753 2.0

Delta 571 31 121 117 35.1 996 21.3

Epsilon 593 26 310 79 40.9 1,809 19.5

Eta 259 11 89 44 21.7 588 12.4

Gamma 329 4 79 35 22.3 1,040 37.6

Iota 414 26 113 144 24.3 928 8.4

Kappa 337 30 99 86 16.6 1,157 3.5

Lambda 365 22 67 82 17.6 732 91.5

Theta 547 25 133 450 22.1 1,186 23.1

Zeta 344 3 49 21 20.8 8,287 6.2

Commits: number of Git commits in repository. Issues: number of GitHub issues. PRs: number of GitHub Pull Requests. Comments: number of comments, either on issues or PRs,

not including the initial description of the issue / PR. Words / comment: mean number of words per comment. LoC: total lines of code measured with http://cloc.sourceforge.net, not

including test directories. % covered: Estimate of percentage of lines of code in LoC column that were covered by tests, from statistics at https://coveralls.io. Counts for commits,

issues, PRs and comments do not include those created by instructors, or those added after the end of semester. See https://github.com/jarrodmillman/rcsds-paper/tree/master/

project_metrics for details of these calculations.

No team used SPM, FSL, or AFNI. Two projects imported
the nilearn package,26 which is a Python neuroimaging
package designed for machine learning, but both projects
used Nilearn only for spatial smoothing and basic volume
visualization. One project used a single function from the Dipy
package27 for calculating a within-brain mask for the functional
images. Another used a class from the NiTime package28 for
temporal filtering. All projects used the basic NumPy, SciPy, and
Matplotlib packages; eight of eleven used the Scikit-Learn
package29 for machine learning; six used the Statsmodels
package30 for statistical modeling. The uses of Statsmodels were:
AutoRegressive Integrated Moving Average (ARIMA) modeling
of voxel time-series and autocorrelation plots (two projects);
logistic regression (two projects); ordinary least squaresmodeling
(one project); White test for Heteroscedasticity (one project);
mixed effects modeling (one project). Of these, we had only
shown the implementation of ordinary least squares analysis in
class.

There was a wide range in the novelty and scope of the
projects. Most projects consisted of a serious attempt to replicate
one or several statistical findings in the original paper, with
the addition of some further extension or exploration. These
extensions were typically the application of other statistical
techniques. For example, project epsilon was one of the four
groups working on the dataset ds000005—the Mixed-gambles
task. They first explored the imaging data using the outlier
detection machinery that all students had developed in the
second homework. Next they explored various logistic regression
models of the behavioral data. For the imaging data, they used the
SciPy ndimage subpackage to smooth the data, as we had briefly

26https://nilearn.github.io
27Dipy is a package for analysis of diffusion imaging data: http://nipy.org/dipy
28NiTime is a library for time-series analysis of data from neuroscience

experiments: http://nipy.org/nitime
29http://scikit-learn.org
30http://www.statsmodels.org

shown in class, and then followed some hints in the lectures to
explore different confound models such as linear and quadratic
drift, and Principal Components as regressors. They used code
from class to implement the general linear model at each voxel,
and calculate t- and p-values using contrast vectors. Finally they
thresholded their images using Bonferroni correction.

Other projects did more substantial technical or intellectual
extensions of the original analysis. Project alpha explored an
analysis from ds000009—The generality of self-control. Although
we had not covered this in class, they discovered from data
exploration and reflection that the times of slice acquisition
would affect their statistical modeling, and developed code to
shift their model back and forth in time corresponding to the
time of slice acquisition. They tried various confound models
on the data, including linear drift, Fourier bases and different
numbers of PCA regressors, and explored these models with
selection criteria such as the Bayes and Akaike Information
Criteria, and adjusted R2. They ran diagnostics to detect voxels
violating assumptions of normality. For whole brain analysis,
they implemented the FDR multiple comparison correction and
tried other methods for identifying activated brain regions,
including hierarchical clustering. Finally, they experimented with
ARIMA models of the voxel time course.

Project lambda did an heroic effort to replicate the analysis of
ds000113—a high-resolution FMRI dataset of subjects listening
to a description of the film Forrest Gump. This dataset had many
technical challenges; the images are unusually large, at over 1
million voxels per volume, and of unusually long duration, at
around 450 volumes per run, and having 8 runs per subject.
The analysis requires the correlation of many voxel time-courses
in each subject with voxel time-courses in all other subjects in
the analysis. The group did a variety of explorations, including
finding some artifacts in the original data, and an error in the
published paper, and then went on to replicate the original
correlation analysis, on a smaller number of subjects. They ran
the analysis on Amazon Web Services machines in order to
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deal with the demands of processing time and memory. As
they note in their README.md “We strongly encourage running
on a machine with 120 GBs of accessible RAM to emulate
development environment.” They extended the analysis by
running a random forest model to detect volumes corresponding
to outdoor and indoor scenes in the film. With all this, they
achieved around 92% code test coverage.

In the next paragraph, we report scores from the student
course evaluations. We consider them to be a measure of student
satisfaction. Student ratings have little or no relationship to the
success of the course in conveying the material (Boring et al.,
2016; Uttl et al., 2017), but they do appear to measure a variety
of unfortunate and irrelevant factors such as the gender and race
of the teacher (Boring et al., 2016), the subject being taught (Uttl
and Smibert, 2017), and the grade the student expects to get at the
end of the course (Krautmann and Sander, 1999; Worthington,
2002).

Seventeen out of forty undergraduates and six out of ten
graduate students completed anonymous course evaluations. The
primary question of interest to us was “Considering both the
limitations and possibilities of the subject matter and the course,
how would you rate the overall effectiveness of this course?.”
Ratings were on a 1 through 7 scale with 4 corresponding
to “moderately effective” and 7 corresponding to “extremely
effective.” The average undergraduate and graduate scores were
4.71 and 6.0 respectively, against a department average across
all courses of 5.23. Undergraduate, graduate, and department
average ratings for “I enjoyed this class” on a 1 through 7 scale
(with 4 corresponding to “somewhat” and 7 to “very”) were 4.69,
6.00, and 4.96 respectively.

70.5% of the undergraduate respondents and all the graduate
respondents claimed to have worked 10 or more hours a week on
average.

4. DISCUSSION

Most neuroimaging researchers agree that computational
reproducibility is desirable, but rare. How should we adapt our
teaching to make reproducibility more common?

The usual practical answer to this question, is that we should
train neuroimaging and other computational researchers as we
do now, but add short courses or bootcamps that teach a subset
of the tools we taught here but without the substantial practice.
That is, reproducibility is an addition on top of current training.

We believe this approach is doomed to failure, because the
students are building on an insecure foundation. Once you have
learned to work in an informal and undisciplined way, it is
difficult to switch to a process that initially demands much more
effort and thought. Rigor and clarity are hard to retrofit. To quote
the American chemist Frank Westheimer: “A couple of months
in the laboratory can frequently save a couple of hours in the
library.”

For these reasons, our course took the opposite approach.
We put a substantial, collaborative, and open-ended project at
the center of the course. We then started with the tools and
process for working with numerical data, and for building their
own analyses. We used this framework as a foundation on which

to build their understanding of the underlying ideas. As we
taught these tools, we integrated them into their exercises and
homework, and made it clear how they related to their project
work.

Our claim is that this made our teaching and our students
much more efficient. The secure foundation made it easier for
them to work with us and with each other. As they started their
project work, early in the course, they could already see the
value of these tools for clarity and collaboration. Our students
graduated from the course with significant experience of using
the same tools that experts use for sound and reproducible
research.

4.1. Did We Really Teach Neuroimaging
Analysis?
By design, our course covered tools and process as well as
neuroimaging. We used neuroimaging as the example scientific
application of these tools. Can we claim to have taught a
meaningful amount of neuroimaging in this class?

Class content specific to neuroimaging was a guest lecture in
class 4 (of 25), and teaching on the brain images, correlation, and
the general linear model from classes 9 through 15. We covered
only the standard statistical techniques needed for a basic analysis
of a single run of FMRI data. This is a much narrower range than
a standard neuroimaging course, but we covered these topics in
much greater depth than is typical for a neuroimaging course.
This was the basis for final projects that were substantial and
well-grounded.

Typical imaging courses do not attempt to teach the
fundamental ideas of linear models, but assume this
understanding and move onto imaging specifics. This
assumption is almost entirely false for neuroscience and
psychology students, and largely false for our own students,
even though most had training from an undergraduate statistics
major. As a result of this incorrect assumption, it is rare for
students of neuroimaging to be confident in their understanding
of the statistics they are using. We taught the linear model from
the first principles of vector algebra, using the tools they had just
learned, to build a simple analysis from basic components. As
a result, when the students got to their projects, they had the
tools they needed to build their own neuroimaging analysis code,
demonstrating and advancing their own understanding.

We note the difficulty of the task that we gave the students, and
the extent of their success. We made clear that their project was
an open-ended exploration of an FMRI dataset and paper. Few
students had any experience or knowledge of FMRI before the
course. The only guidance we gave was that they should prefer
well-curated datasets from the OpenFMRI depository. In order
to design and implement their project, they had to understand
at least one published FMRI paper in some depth, with limited
assistance from their instructors. We gave no example projects
for them to review, or templates for them to follow. The
submitted projects were all serious efforts to reproduce and / or
extend the published results, and all included analysis code that
they had written themselves.

We did not teach the full range of neuroimaging analysis. For
example, we did not cover pre-processing of the data, random
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effects analysis, or inference with multiple comparisons. Our
claim is that what we did teach was a sound and sufficient
foundation from which they could write code to implement their
own analyses. This is a level of competence that few neuroimagers
achieve after considerable experience.

4.2. Did We Really Teach Computational
Reproducibility?
We stressed the importance of reproducibility throughout the
course, and made it an explicit feature for grading of the final
project, so we were not surprised to find that it was possible to
reproduce all of the final projects with little extra clarification or
fixes from the group members.

By design, we gave the students a project that was close to
a real scientific data analysis. They had to work with a messy
and real dataset to explore the data, define their problem and
solve it with an analysis that they implemented themselves, to
various degrees.We required them to work closely in teams, often
remotely, using standard tools for collaboration.

We found this combination of a substantial analysis problem,
expert tools, and the requirement for reproducibility, was
effective at giving the students a concrete sense of the difficulties
in making an analysis reproducible, and how these can be
overcome. We speculate, from our own work, that the experience
of building a reproducible analysis makes it easier to commit to
the tools and practice needed for reproducible work in the future.

4.3. Did We Teach the Right Tools?
We do not believe that the individual tools we chose were
controversial. We taught the tools that we use ourselves, and that
we would teach to students working with us.

We could have used R instead of Python, but Python is a better
language for teaching, and has better libraries for neuroimaging
and machine learning.

A more interesting question is whether we went too far in
forcing the students to use expert tools. For example, we required
them to write their report in LATEX, and their presentation slides
and analysis description in plain text with Markdown markup.
We asked them to do all project interaction using GitHub tools
such as the issue tracker and pull requests. We set and marked
code exercises with Git version control and text files, rather than
interactive alternatives, such as Jupyter Notebooks.

Of course—at first—some students complained that they
would rather use Facebook for code discussions and PowerPoint
for their presentation slides. Should we have allowed this? We
believe not. Our own experience of using these tools is that
their power only becomes apparent when you learn to use them
for all the tasks of analysis, including generating reports and
presentations. Mixing “easy” but heavy tools like PowerPoint
and Facebook with “simple” and light tools like text editors and
Markdown causes us to lose concentration as we switch modes
from heavy to light and back again. It is easy to be put off by
the difficulty of getting used to the light tools, and therefore fail
to notice the clarity of thought and transparency of process that
they quickly bring. Successfully switching from heavy to light
is a process that requires patience and support; it is best done
in the context of a class where there are examples of use from

coursework and support from experienced instructors who use
these tools in their daily work.

4.4. Do Students Need to be Trained in
Programming?
One common justification for not training students in good
coding practice is the assertion that scientists do not need to be
programmers. However, scientists do have to use, read, and write
code, so a more defensible statement would be that scientists do
not need to be good programmers. It is surely true that successful
scientists can be bad programmers, but bad programmers are
inefficient and prone to error; they are less likely to detect errors,
and improve very slowly over time. We should invest teaching
time to help our students work efficiently and continue learning
for the rest of their careers.

4.5. Do Students Need a Substantial,
Collaborative, and Open-Ended Project?
We put great emphasis on the final project in this course, and this
was clear to most of the students. In response to the evaluation
survey question “What advice would you give to another student
who is considering taking this course?” one undergraduate wrote:

“[U]nlike most group projects (which last for maybe a few weeks

tops or could conceivably be pulled off by one very dedicated

person), this one will dominate the entire semester. . . . Try to

stay organized for the project and create lots of little goals and

checkpoints. You should always be working on something for the

project, whether that’s coding, reviewing, writing, etc. Ask lots of

questions and ask them early!”

The size of the project meant that the students had to learn to
collaborate with each other efficiently, often remotely, as students
had different class schedules. Many of the tools that we taught,
such as distributed version control, only become essential when
working in collaboration. Conversely, if you are not collaborating
with others, it can be difficult to see why it is worth investing
the time to understand powerful tools like the Git version control
software, or the GitHub interface.

Working in collaboration, and working reproducibly, changes
the way that we think. If we have to explain our work to others
in the group, or to another user of the work, then we develop
the expectation that whatever we write will always be something
we will demonstrate and explain to others. It becomes part of the
work to communicate our ideas and explain what we did.

It was important that the project was open-ended. If the
student has to solve a small problem with a single correct answer,
they can often check whether they have the right answer, and do
not need to worry about the quality of the process that generated
it. In an open-ended project, it is likely that the group will need
to explore different analyses as they progress. The answers are not
known, and the group has to proceed with care, to avoid making
false conclusions. This is typical of real scientific analysis, and
puts a higher burden on rigor and testing, than a typical small
classroom problem.

We should emphasize how hard it was to get the students
to engage with the project early, and work steadily. In the
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first class, we gave the students a document describing the
project, including the various project deadlines. We continued to
emphasize the project and project deadlines in announcements.
Nevertheless, it was only half way through the course that the
students began to realize how open-ended their task was, and
howmuch work they would have to do. For a few weeks, the class
was anxious, and our job as instructors was to project faith in the
teams’ ability to define a tractable and interesting question. We
mention this to say that, a large open-ended project has many
advantages, but to make it work, it does take courage from the
students and the instructors.

4.6. What Background do Students Need?
The requirements for our course were previous classes on
probability, statistics, and the use of the R programming
language.

We would be happy to relax the requirement for probability.
We did not refer to the ideas of probability in any depth during
the course. Authors JBP and MB have taught similar material
to neuroscience and psychology students who lack training in
probability; the pace of teaching and level of understanding were
similar for the statistics students in this course and the other
students we have taught.

Psychology and neuroscience students do have some statistical
training. Our impression was that this background was necessary
for us to be able to as start as quickly as we did in the analysis of
linear regression.

We would also keep the requirement for some programming
experience. We assumed familiarity with programming ideas
such as for loops, conditionals, and functions. In our psychology
/ neuroscience courses that used similar material, we required
some experience of programming in a language such as Python,
R, or MATLAB. It is possible that a brief introduction would be
enough to fulfill this requirement, such as a bootcamp.

4.7. Could This Material be Covered by a
Bootcamp or Hack Week?
There are several existing programs designed to address the
problems of informal and inefficient computational practice.
The best known may be Software Carpentry (Wilson, 2014).
A Software Carpentry course consists of a two-day bootcamp
covering many of the same tools we used, including the Unix
command line, distributed version control, and programming
with a high-level language such as Python or R. Hack weeks can
be a related approach to the same problems. Hack weeks vary
in format from a series of tutorials to a week of collaborative
work on a project that has already been agreed (Huppenkothen
et al., 2017). The tutorials and modeled working practice usually
include the same set of tools we used.

These approaches have some similarity with the early classes in
our course, but there are differences. Bootcamps and hack weeks
attract volunteers with interest in or commitment to efficient
and reproducible practice. These are typically graduate students
or post-docs that already have some technical experience. They
are motivated enough to come to campus on a weekend, stay
longer at a conference, or travel some distance. Even so, we
suspect that it would be possible to show that short introductions

in bootcamps will not be effective in changing practice in the
medium term, without later reinforcement and support by peers.

Our students did choose our course from others they could
have taken, but most of them had little background of good
practice in computation. The majority were undergraduates. We
suspect that many of the students finishing our course did have
enough experience of using the tools they had used, to continue
using them in their daily work, and teach others to do the same.
We base this suspicion on the depth and quality of the project
work.

Bootcamps and hack weeks can be useful, but their starting
point is an attempt to augment an aging curriculum that does
not recognize the need for training in accurate, effective, and
reproducible computation. We should fix this by changing our
curriculum; learning to work this way takes time, practice, and
support, and we teach it best with substantial commitment from
students and instructors.

4.8. Where Would Such a Course Fit in a
Curriculum?
Our course would not fully qualify a student for independent
research in neuroimaging. As we discuss above, we did not cover
important aspects of imaging, including spatial and temporal pre-
processing of data, random effects, or control of false positives
in the presence of multiple comparisons. Where should the
elements of our course sit in relation to a larger program for
training imagers and other computational scientists?

We think of this course as a foundation. Students graduating
from this course will be more effective in learning and analysis.
The tools that they have learned allow the instructor to build
analyses from basic blocks, to show how algorithms work, and
make them simple to extend. We suggest that a course like ours
should be first in a sequence, where the following courses would
continue to use these tools for exposition and for project work.

A full course on brain imaging might start with an
introduction to Python and data analysis, possibly as a week-long
bootcamp at the start of the semester. Something like our course
would follow. There should be follow-up courses using the same
tools for more advanced topics such as machine learning, spatial
pre-processing, and analysis of other modalities. We suggest
that each of these courses should have group project work as
a large component, in which the students continue to practice
techniques for efficient reproducible research.

4.9. What Factors Would Influence the
Success of Such a Course?
We should note that there were factors in the relative success of
this course that may not apply in other institutions.

Berkeley has as a strong tradition in statistical computing
and reproducibility. Leo Breiman was a professor in the
Berkeley statistics department, and an early advocate of what
we would now call data science. He put a heavy emphasis on
computational teaching to statisticians. Sandrine Dudoit is a
professor in the statistics and biostatistics departments, and a
founding core developer of the Bioconductor project devoted
to reproducible genomics research in R. The then head of the
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statistics department, Philip Stark, is one of many Berkeley
authors (including KJM) to contribute to the recent book “The
Practice of Reproducible Research” (Kitzes et al., 2017). Authors
KJM, MB, and JBP have worked with Mark D’Esposito, who runs
the Berkeley Brain Imaging Center, and was an early advocate for
data sharing in FMRI. Other imaging labs on campus take this
issue seriously and transmit this to their students. If there had
not been such local interest in the problem of reproducibility,
students may have been less convinced of the importance of
working in a reproducible way, especially given the short-term
convenience of a less disciplined working process.

Students of statistics and other disciplines at Berkeley are well
aware of the importance of Python in scientific computing, and in
industry. Tech firms recruit aggressively on campus, and Python
is a valuable skill in industry. The cross-discipline introductory
course in Fundamentals of Data Science uses Python. The new
Berkeley Institute of Data Science has a strong emphasis on
Python for scientific computing.

In the same way, a booming tech sector nearby made it more
obvious to students that they would need to learn tools like
Git and GitHub. For example, public activity on GitHub is one
feature that companies use to identify candidates for well-paid
positions as software engineers.

We required students to use LATEX to write their final reports.
This was an easy sell to statistics students, but students outside
mathematical fields might be less agreeable; if we were teaching
psychology and neuroscience students, we might choose another
plain text markup language, such asMarkdown, with the text files
run through the Pandoc document processor to write publication
quality output.

4.10. Instruction or Discovery?
We have asserted from our experience, that very few
neuroimaging researchers do research that is computationally
reproducible. We believe this is because researchers are left to
work out—discover—their analysis process with little guidance
or feedback from scientists and programmers with greater
experience and training. The current state of neuroimaging
practice is reminiscent of the failures of “pure-discovery”
and “minimal-guidance” learning (Mayer, 2004; Kirschner
et al., 2006). Students that are early in their learning need
expert guidance to be successful in building valid models of
mathematics, logical puzzles, and programming. Although we
did not know this literature when we designed our course, we did
have the strong intuition that we would save the students a great
deal of wasted time and energy by teaching the process that we
had come to by a combination of long experience, reflection on
failure, and learning from our peers in open source computing.

“Project-based learning” is another branch of educational
theory and practice that uses projects to encourage students to
discover knowledge through exploration of a “driving question.”
Project-based learning is difficult to define (Condliffe, 2017),
but an influential review by Thomas (2000) draws a distinction
between “application” projects and project based learning.
In project-based learning, “students encounter and learn the
central concepts of the discipline via the project.” In contrast,
application projects are those in which “project work follows
traditional instruction in such a way that the project serves to

provide illustrations, examples, additional practice, or practical
applications for material taught initially by other means.” The
projects in our course were application projects; we taught the
techniques and principles, with the project as their practical
application. Knoll (2012) traces the history of application projects
from the early eighteenth century, when schools of architecture
used projects as evidence that their students could apply the
principles they had been taught in lectures and tutorials.

5. CONCLUSION

Our course differs from other imaging courses that we know of, in
several respects. We started with correct computational practice,
before teaching neuroimaging. We emphasized computation
as a way of explaining the underlying ideas and taught the
fundamentals of the linear model, rather than assuming students
had this background, or would get this background later. We
made these ideas concrete with a substantial open-ended project
designed to be as close as possible to the experience of graduate
research.

We were largely successful in teaching the students the tools
they can continue to use productively for collaborative and
reproducible research.

We are sure that most of our readers would agree that, in
an ideal world, we should teach students to work in this way,
but, given all the other classes our students must take, can we
justify the time and energy that this course needs? We believe so,
but we know that not all our readers will be convinced. This is
true of students as well as instructors. We put such emphasis on
the final project, precisely because we know that it is difficult to
see how important these tools are, if you have not used them,
or used them only in toy projects. We cannot easily teach these
tools to our fellow teachers, so instead we offer this sketch of an
experiment, to make the discussion more concrete. Imagine we
took 200 students, and randomized them into two groups of 100
each. The first group takes something like the course we describe
here as an introduction, and then one or more further courses on
imaging. The second does not take such a course, but instead has
more traditional teaching on imaging that covers a wider range
of techniques, using off the shelf imaging software. Part of their
later teaching would include some techniques for reproducible
research. Two years after such an experiment, we predict that
students from the first group will have a greater understanding of
what they are doing, will be more effective in analysis, and more
likely to experiment with new ideas.We think it muchmore likely
that the first group will be doing reproducible research.
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