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Here, we demonstrate an in situ electrostatic actuator that can operate underwater across a wide

range of displacements and frequencies, achieving a displacement of approximately 10 lm at 500 Hz

and 1 lm at 5 kHz; this performance surpasses that of existing underwater physical actuators. To

attain these large displacements at such high speeds, we optimized critical design parameters using a

computationally efficient description of the physics of low quality (Q) factor underwater electrostatic

actuators. Our theoretical model accurately predicts actuator motion profiles as well as limits of

bandwidth and displacement. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905385]

I. INTRODUCTION

The pinnacle of a microfluidic very large systems integra-

tion (VLSI) system is a network of thousands of densely

packed transducers that each perform a dedicated function

within micron-scale channels.1 To manipulate conveyed par-

ticles or fluid streams, physical actuators are an important type

of functional transducer that has transformed biological and

chemical assays.2 For example, dense arrays of polydimethyl-

siloxane (PDMS) valves are integrated into microfluidic chan-

nels to coordinate 102–103 distinct protein interactions in

parallel.1 These diaphragm valves can achieve O (10�5) m

displacements at frequencies up to 100 Hz.3 Similar PDMS di-

aphragm actuators can be integrated into the side of a micro-

fluidic channel to perturb flows for particle sorting; these can

achieve smaller O (10�6) m displacements at 250 Hz.4 While

these PDMS actuators have significantly advanced the func-

tionality of microfluidic VLSI networks, a physical actuator

that could operate across an even larger range of frequencies

and displacements would enable new, potentially transforma-

tive functions. For instance, an actuator with a displacement

range of O (10�5) m and 1 kHz bandwidth could enable

in-channel optical modulation or even high throughput defor-

mation of cells within a microfluidic channel. At higher

frequencies of 10 kHz and with a displacement of O (10�6) m,

an in situ physical actuator could generate local acoustic waves

to entrain biological species in micron-scale vortices.5 Given

these potentially transformative applications, we aim to design

a compact, underwater actuator that can attain a displacement

of O (10�5) m at frequencies in the range of 100 Hz–1 kHz and

a displacement of O (10�6) m at frequencies of O (104) Hz.

A silicon-based physical actuator has the potential to

attain up to 10�5 m displacements at 1 kHz (Fig. 1).7 The

natural frequency of an actuator is xn ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, where k is

the spring constant and m is the mass; therefore, the modulus

to density ratio of the material composing the actuator pro-

vides a measure of its achievable bandwidth. Silicon has a

modulus to density ratio that is over four orders of magnitude

FIG. 1. (a) Electrostatic physical actuator. Perforated members are sus-

pended and monolithic members are bonded to glass. (b) Amplitude modu-

lated voltage signal for underwater actuation. (c) Scanning electron

micrograph of the actuator fabricated by micromachining low-resistivity sili-

con bonded to glass.6
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larger than PDMS: an actuator fabricated from silicon can

thus achieve a bandwidth that is over two orders of magni-

tude larger than a PDMS actuator. Moreover, there are

well-developed tools to micromachine silicon wafers into

complex geometries with compact form factors; in contrast,

piezoelectric actuators are too large to be integrated into

micron-scale channels at high unit density.8

To attain the stringent performance objectives required

for advanced microfluidic VLSI units, we must first under-

stand the physics of actuators immersed in aqueous media.

The fluid surrounding the actuator is the strongest determi-

nant of the quality (Q) factor.9,10 Actuators in air or vacuum

have high Q-factors, while those immersed in water typically

have Q-factors that are at least four orders of magnitude

smaller. The motion profiles of high Q-factor actuators are

described by perturbation methods,11 which assume that

jQ�1j � 1; this assumption is not valid for low-Q physics.

Here, we develop the theory to describe actuator motion in

the low-Q range of Q�O (10�5–100); experimental results

have a strong agreement with this theoretical model.

II. NONLINEAR MODEL AND OPTIMIZATION

A sprung mass with a single degree-of-freedom in a vis-

cous medium is simply modeled as a mass-spring-damper

system (Fig. 2(a)) with the equation of motion

m€xðtÞ þ b _xðtÞ þ kxðtÞ ¼ Fðx;VÞ: (1)

Here, m is the actuator mass assumed as a point-mass, b is

the damping coefficient, k is the spring constant, x(t) is the

generalized coordinate, and F(x, V) is an electrostatic force

in the direction of the generalized coordinate.

Two deleterious phenomena preclude the utility of

actuators immersed in water:12 (1) Electrolysis at the

charged surfaces occurs at potential differences above 8 V

and thus constrains the applied voltage to V (t) � [�8, 8]

V in deionized water; and (2) Water molecules between

charged surfaces orient themselves with the electric field,

thereby shielding electrostatic forces. Charge shielding can

be minimized by using a voltage signal that flips the elec-

trode polarity faster than water molecules physically reor-

ient.12 A desired electrostatic force can thus be generated

by applying an amplitude modulated voltage signal (Fig.

1(b)) in which a desired fundamental signal has frequency

content on the order of the actuator bandwidth and a high-

frequency carrier wave flips polarity every 1
4pxc

s; xc should

be approximately two orders of magnitude larger than the

bandwidth.

The electrostatic force of an actuator with an applied

amplitude modulated voltage is given by Eq. (2), where the

position and voltage dependent components are separable

F x;Vð Þ ¼ f xð ÞV2 tð Þ;

F x;Vð Þ ¼ f xð Þ 1

2
�V 1þ cos xtð ÞP tð Þ

� �2

¼ f xð Þ �V2 3

8
þ 1

2
cos xtþ 1

8
cos 2xtþ H:F:T:

� �
;

(2)

and PðtÞ ¼ 4
p

P1
j¼1

1
2j�1
�1ð Þj�1

cos xcjt is the Fourier series

of a pulse-type carrier wave. After simplification, P2(t) has a

unit magnitude DC term plus an infinite sum of high frequency

terms (H.F.T.) that are inconsequential to actuator position.

The two most common electrostatic comb drive orienta-

tions are transverse drives (h¼ 90�), which exert large forces

but are limited to small displacements, and longitudinal

drives (h¼ 0�), which achieve large displacements but exert

small forces (Fig. 2(a)). In contrast, a hybrid drive (h � (0�,
90�)) of comparable size can exert a force that is approxi-

mately three times greater than a longitudinal drive and

achieve a displacement that is approximately three times

larger than a transverse drive. Such a hybrid actuator design

is thus advantageous for microfluidic VLSI as the footprint

can be reduced without sacrificing functionality. The posi-

tion dependent component of a hybrid drive is given by

f xð Þ ¼ Fk cos hþ F? sin h;

Fk ¼
1

2

1

x1 � x sin h
þ 1

x2 þ x sin h

� �
j�hM;

F? ¼
1

2

L0 þ x cos hð Þ x1 þ x2ð Þ x2 � x1 þ 2x sin hð Þ
x1 � x sin hð Þ2 x2 þ x sin hð Þ2

j�hM;

(3)

FIG. 2. (a) Model of an electrostatic actuator in an aqueous medium. The

inset shows the resultant force F(x, V) from the parallel Fk and perpendicular

F? force components acting on the comb fingers. The moving comb is dark

gray and the stationary comb is light gray. The force perpendicular to

F(x, V) is theoretically equal to zero as the drive is symmetric about the cen-

terline, which is denoted by the dashed line. (b) Static forces for an actuator

with k¼ 10 N m�1 and h¼ 20�. The equilibrium position x(t) given a con-

stant applied voltage has two solutions for �V < �V max and one solution, xmax,

for �V ¼ �V max. Finite Element Analysis (FEA) force calculations are based

on the geometry of the model in Fig. 1(a).
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where Fk and F? are the components parallel12 and perpen-

dicular13 to the face of the combs. Geometric parameters h,

L0, x1, and x2 are shown in Fig. 2(a). The other geometric pa-

rameters are the comb height, h, and the number of comb

pairs, M. The two physical parameters are j, the dielectric

constant of the immersing medium (1 for air, 78 for deion-

ized water), and �, the permittivity of free space (Table I).

Static actuator displacement as a function of applied volt-

age is calculated by solving the nonlinear equation kx

¼F(x, V) at VðtÞ ¼ �V . For �V < �Vmax, there is always one

stable and one unstable solution (Fig. 2(b)). As �V is

increased to �Vmax, the stable and unstable solutions con-

verge to a double-root xmax, which is the maximum stable

displacement of the actuator. There is no solution for
�V > �Vmax, yielding the well-known “pull-in” instability.14

Finite Element Analysis complements Eqs. (2) and (3), with

less than a 5% error across the range of relevant voltages

and displacements (Fig. 2(b)).

The dynamics of the actuator are collectively described

by Eqs. (1)–(3). The DC term of Eq. (2), 3
8

f ðxÞ �V
2
, imparts a

DC offset in the position, �x, that is solved by numerical

methods. x is rewritten as a deviation from the DC offset

position, xðtÞ ¼ �x þ x̂ðtÞ, and Eqs. (1)–(3) are expanded as a

Taylor series to the third-order, evaluated at �x, Eq. (4a)

m€̂x þ b _̂x þ k x̂ þ �xð Þ ¼ f �xð Þ þ @f �xð Þ
@x

x̂ þ 1

2

@2f �xð Þ
@x2

x̂2 þ 1

6

@3f �xð Þ
@x3

x̂3

� �
V2; (4a)

€̂x þ Q�1 _̂x þ ða10 þ a11 cos sþ a12 cos 2sÞx̂ þ ða20 þ a21 cos sþ a22 cos 2sÞx̂2 þ ða30 þ a31 cos sþ a32 cos 2sÞx̂3

¼ a01 cos sþ a02 cos 2s; (4b)

TðsÞD2X þ Q�1TðsÞDX þ TðsÞða10 þ a11C1 þ a12C2ÞX þ TðsÞða20 þ a21C1 þ a22C2ÞCðXÞX
þTðsÞða30 þ a31C1 þ a32C2ÞC2ðXÞX � TðsÞG ¼ 0:

(4c)

Equation (4a) is simplified by normalizing time by the funda-

mental frequency, s¼xt, yielding the nonlinear, parameter-

varying, non-homogeneous, ordinary differential equation

(4b). As the coefficients of the nonlinear terms are less than

0 (Fig. 3(b)), the electrostatic force acts as a weakening

spring: thus as deflection increases, the force returning the

actuator to the neutral position decreases and yields the

“pull-in” instability above a critical xmax.

The standard solution to Eq. (4b) utilizes perturbation

methods.11 This is a reasonable solution as the assumption

that jQ�1j � 1 is valid for actuators operated in air or vac-

uum, which have Q�1�O (10�4–10�5).14 However, in an

underwater environment Q�1 is 4–10 orders of magnitude

larger; the jQ�1j � 1 assumption is, thus, invalid.

Numerical methods can be used to solve Eq. (4b), however,

many coefficient permutations tested in a design

optimization algorithm (Fig. 3(b)) will yield systems that

are characterized as “stiff,” as they have distinct dynamic

modes that evolve on drastically different time scales.

Implicit and explicit numerical methods are inefficient for

“stiff” systems; for example, Eq. (4b) requires 5 h to solve

for many coefficient permutations. Clearly, to optimize

over a wide range of the actuator design space we need a

mathematical description that is computationally efficient,

valid for low-Q physics, and universally applicable to a

wide parameter range.

The differential equation (4b) is a specific form of the

Duffing equation11 that is both parametrically driven and ex-

ogenously driven by harmonic functions. Within the stable

displacement limit, the solution to Eq. (4b) is assumed to be

an Nth order harmonic function with unknown

coefficients17–19

TABLE I. Geometric and physical parameters.

m¼ 1.34� 10�9 kg x1¼ 5 lm h¼ 45 lm

b¼ 1.25� 10�3 N s m�1 x2¼ 8 lm M¼ 26 pairs

k � (0, 15] N m�1 L0¼ 115 lm h � (0�, 90�)

j (in water)¼ 78 �¼ 8.854� 10�12 s4A2m�3 kg�1

FIG. 3. (a) Algorithm to optimize pa-

rameters k and h. The optimization

loop uses the gradient-free DIRECT

algorithm15,16 to find an optimal h for

each k and x; a gradient-free method

must be used because a gradient does

not exist at the instability bound corre-

sponding to x(s)¼ xmax. (b) Coefficient

value ranges for Eq. (4b) for all 7007

candidate designs simulated.
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xðsÞ ¼ A0 þ A1 cos sþ B1 sin s

þ � � � þ AN cos Nsþ BN sin Ns:
(5)

Equation (5) is equivalently stated as x(s)¼ T(s)X

TðsÞ ¼ ½1; cos s; sin s;…; cos Ns; sin Ns�;
X ¼ ½A0;A1;B1;…;AN;BN�T ; (6)

where TðsÞ 2 R1�2Nþ1 is an orthogonal harmonic basis vec-

tor and X 2 R2Nþ1�1 is a vector of unknown coefficients.

The orthogonal basis is leveraged to rewrite Eq. (4b) as ma-

trix algebra, Eq. (4c), where D is the constant matrix that per-

forms the operation d
ds ; C1, and C2 are constant matrices that

multiply T(s)X, respectively, by cos s and cos 2s; CðXÞ is a

matrix of unknown coefficients that perform the operation

x2ðsÞ 	 TðsÞCðXÞX, and G¼ [0, a01, 0, a02, 0, 0,…]T.

Explicit constructions of D; C1; C2, and CðXÞ are given in

the Appendix. Equation (4c) is simplified to the nonlinear

matrix equation19

LX þ PðXÞ � G ¼ 0:

The solution vector X is solved by the Newton-Raphson

method

Xnþ1 ¼ Xn � Lþ @P Xnð Þ
@X

� ��1

LXn þ P Xnð Þ � Gð Þ; (7)

where n is the iteration index of the algorithm.

Given a stable operating voltage, algorithm (7) con-

verges to a solution vector X in less than ten iterations with

an average computation time of 31.6 s on a multi-core desk-

top computer. The Fourier series solution is two orders of

magnitude more efficient than implicit and explicit solvers.

III. OPTIMIZATION RESULTS

We use the DIRECT algorithm20 to optimize the two

design variables that have the largest influence on displacement

and bandwidth, k and h, by evaluating 7007 distinct designs

(Fig. 3). The solution vector Xnþ1 in algorithm (7) is called over

130 000 times. Design optimization predicts that the design

objectives (displacement of 10�5 m at 100 Hz–1 kHz and dis-

placement of 10�6 m at 10 kHz) are attainable for an actuator

design with k � (5, 10) N m�1 and h � (10�, 20�) (Fig. 4).

Our simulation results show that an underwater actuator

with k¼ 10 N m�1 and h¼ 20� behaves as a second-order

over-damped system (Fig. 5(c)): for a set �V ¼ 5:88 V, the mag-

nitude of xmax(x) remains constant until approximately 100 Hz,

whereafter xmax(x) decreases with increasing frequency (Figs.

5(a) and 5(c)). At frequencies above 100 Hz, the position x(t)
shifts out of phase with the parametrically and exogenously

driven terms in Eq. (4b); consequently, a higher displacement

can be achieved without introducing “pull-in” instabilities

(Figs. 5(b) and 5(c)). This essential knowledge of the frequency

dependence of the stable regime is only understood with a non-

linear model of the physics of low-Q actuators.

IV. METHODS

To validate our model, we micromachined an electro-

static actuator with k¼ 10 N m�1 and h¼ 20� (Fig. 1(c))

using standard lithographic processes6 for silicon-on-glass

wafers. We then immersed the actuator in deionized water

and applied the voltage function in Eq. (2) at different

FIG. 4. Optimized design parameter h for an actuator with a given k and

operated at a varying fundamental frequency, x. (a) Achievable xmax. (b)

Optimal comb drive angle hmax.

FIG. 5. Simulated time and frequency response for an underwater actuator with k¼ 10 N m�1 and h¼ 20�. (a) x as a function of normalized time for a constant
�V at select frequencies. (b) x as a function of normalized time at select frequencies operated at a �V max that maximizes actuator displacement. (c) Simulated fre-

quency response at a constant �V ¼ 5:88 V and at a variable �V ðxÞ.
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fundamental frequencies (x¼ 20, 20.5,…, 212 Hz) and volt-

age magnitudes ( �V ¼ 5:4; 5:5; 6;…; 8 V) and at a set

xc¼ 500 kHz. Displacement profiles were measured by

imaging actuator movement with an inverted microscope

and a high-speed camera and then processing images with a

custom MATLAB script.

V. RESULTS AND DISCUSSION

The experimental frequency response confirms the

prediction that the system will be over-damped and hence

Q� 1 (Fig. 6(c)). We observe that an underwater actuator

with k¼ 10 N m�1 and h¼ 20� can achieve a displacement

range of 8 lm at frequencies greater than 1 kHz (Figs.

6(a)–6(c)); this result is in close agreement with theoreti-

cal predictions. We also predict maximum displacements

across the full range of x and �V tested (Fig. 6(c)). These

results are the first demonstration of an in situ actuator that

can achieve displacements of O (10�5) m at kHz frequen-

cies, while immersed in water. The mathematical

model for low-Q physics and design optimization algo-

rithm are sufficiently general such that we can predict and

optimize performance for diverse applications ranging

from kHz frequency mechanical force probes to local

acoustic generators.
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APPENDIX: MATRIX CONSTRUCTIONS

Equation (4c) utilizes four 2Nþ 1� 2Nþ 1 matrices

that act on the harmonic basis function T(s). Matrices D; C1,

and C2 perform a simple change of basis in the coefficients

in X and are thus presented without details. Matrix CðXÞ is

complex and, thus, we provide basic details

D ¼

0 0 0 0 0 … 0 0

0 0 1 0 0 … 0 0

0 �1 0 0 0 … 0 0

0 0 0 0 2 … 0 0

0 0 0 �2 0 … 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 0 0 … 0 N

0 0 0 0 0 … �N 0

2
6666666666666664

3
7777777777777775

;

C1 ¼

0
1

2
0 0 0 … 0 0 0

1 0 0
1

2
0 … 0 0 0

0 0 0 0
1

2
… 0 0 0

0
1

2
0 0 0 … 0 0 0

0 0
1

2
0 0 … 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 0 0 … 0 0
1

2
0 0 0 0 0 … 0 0 0

0 0 0 0 0 …
1

2
0 0

2
66666666666666666666666666664

3
77777777777777777777777777775

;

C2 ¼ 2C2
1 � I;

where I is the identity matrix. CðXÞ is a complicated matrix

that is best expressed by the change in coefficients on the

harmonic basis for the equation x2(s)	 T(s)F. FðXÞ 2
R2Nþ1�1 is a vector of nonlinear functions of the unknown

coefficients in X (Eq. (6))

F0 ¼ A2
0 þ

1

2

XN

i¼1

A2
i þ B2

i

� �
;

and

F2j�1 ¼ A0Aj þ
XN

i¼0

AiAiþj þ
XN

i¼1

BiBiþj

þ 1

2

Xj�1

i¼1

AiAj�i � BiBj�ið Þ;

F2j ¼ A0Bj þ
XN

i¼0

AiBiþj �
XN

i¼1

AiþjBi

þ 1

2

Xj�1

i¼1

AiBj�i þ Aj�iBið Þ (A1)

FIG. 6. Large displacement, high frequency underwater actuation. (a)

Region-of-interest of the actuator probe for one cycle at a 1024 Hz actuation

frequency with �V ¼ 8 V. (b) Position trace for 2000 cycles at 1024 Hz with
�V ¼ 8 V. The mean plus and minus one standard deviation is denoted by the

error bars and the trace envelope is denoted by the dashed line. (c)

Frequency responses at varying �V levels. Each data point is the mean of at

least 80 cycles.
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for j¼ 1, 2,…, N. Each Ai or Bi term in Eq. (A1) must exist

in the coefficient space X. Terms exceeding this space are

assumed to be small and approximately equal to the coeffi-

cient on the highest order harmonic: Ai¼AN or Bi¼BN for

i>N;
Pb

að�Þ ¼ 0 for a>b. x2(s) is rewritten as

x2ðsÞ 	 TðsÞCðXÞX, where CðXÞ ¼ 1
2
@F
@X.
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