Lawrence Berkeley National Laboratory Recent Work

Title

PREDICTIONS OP THE MASSES OF VERY NEUTRON-EXCESS LIGHT NUCLEI

Permalink

https://escholarship.org/uc/item/6331245z

Authors

Jelley, N.A.
Cerny, Joseph
Stahel, D.P.
et al.

Publication Date

1974-11-01

PREDIC TIONS OF THE MASSES OF VERY

 NEUTRON-EXCESS LIGHT NUCLEIN. A. J elley, Joseph Cerny. D. P. Stahel, and K. H. Wilcox

November, 1974

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

PREDICTIONS OF THE MASSES OF VERY NEUTRON-EXCESS LIGHT NUCLEI*
N. A. Jelley ${ }^{\dagger}$, Joseph Cerny, D. P. Stahel, and K. H. Wilcox

Lawrence Berkeley Laboratory and Department of Chemistry University of California Berkeley, California 94720

November 1974

ABSTRACT

A simple mass equation is derived and is shown to provide a good description of the masses of the recently measured $T_{Z}=5 / 2$ nuclei in the s-d shell. A comparison is made with the method of Garvey et al and predictions of masses and of the stability of neutron-excess light nuclei are given for both methods.

I. INTRODUCTION

Over the last few years many very neutron-rich light nuclei ${ }^{1}$ $\left(T_{Z}^{\prime} \geqslant 5 / 2, A<50\right)$ have been shown to be particle stable and the masses of several of these have also been determined. On comparing these results with theory, though good agreement with regard to predictions of stability based on the transverse relation of Garvey-Kelson ${ }^{2,3}$ is observed, as in the recent correct prediction that ${ }^{17} B$ should be particle stable ${ }^{4}$, poorer agreement is generally found for the measured mass-excess. For example, in the $s-d$ shell there are several $T_{Z}=5 / 2$ nuclei for which there is a significant discrepancy ($>500 \mathrm{keV}$) between the experimental and the calculated mass-excess.

In this report an alternative scheme, similar in approach to the method of Garvey et al. ${ }^{2}$ but taking more explicit account of shell effects, will be described which more successfully accounts for many of the observed masses of neutron-excess light nuclei.

II. MASS EQUATIONS

Following the simple shell model approach of Goldstein and Talmi ${ }^{5}$, the máss of a neutron-excess doubly closed shell nucleus, M_{0}, is related to that of a nucleus with additional m j protons and $n j$ ' neutrons in a higher shell, $M\left(\pi j^{m}{ }_{\nu j}, n\right)$, by the equation:

$$
\begin{equation*}
M\left(\pi j^{m} j_{j}{ }^{n}\right)=M_{0}+V\left(\pi j^{m}\right)+V\left(v j^{\prime n}\right)+V\left(j^{m}, j^{n}\right) \tag{1}
\end{equation*}
$$

In this expression $V\left(\pi j{ }^{m}\right)$ represents the kinetic energy, interaction with the closed shells and mutual interaction of the $m j$ protons, $V\left(V_{j}{ }^{n}\right)$ that of the $n j^{\prime}$ neutrons, and $v\left(j^{m}, j^{n}\right)$ the interaction between the j protons and j^{\prime} neutrons.

Simplification is possible in Eq. (1) since the values of $v\left(\pi j^{m}\right)$ and $V\left(\nu_{j}, n\right)$ can each be expressed in terms of just three parameters (as noted below). However, since other configurations besides that of the simple shell model are generally important in describing the ground state wave function of a nucleus, some allowance for such configuration mixing can be made by regarding $V\left(\pi j^{m}\right)$ and $V\left(\nu_{j}{ }^{n}\right)$ as separate parameters for each value of m and n. This is equivalent to replacing $M_{o}+V\left(\pi j^{m}\right)+V\left(V_{j}{ }^{n}\right)$ by the sum of arbitrary functions, $U(Z)$ and $w(N)$, of the number of protons and neutrons, respectively. Furthermore, if no odd-odd nuclei are considered, then $V\left(j^{m}, j^{n}\right)$ depends only on an average interaction potential, $V\left(j j^{\prime}\right)$, through the relation ${ }^{2,6} V\left(j^{m}, j^{n}\right)=m n V\left(j j^{\prime}\right)$. Hence, with the restriction ($\equiv \mathrm{mn}$ even) of no odd-odd nuclei and rewriting $\mathrm{M}\left(\pi j^{m} \vee \mathrm{j}^{\mathrm{n}}\right.$) as $\mathrm{M}(\mathrm{Z}, \mathrm{N})$, Eq. (1) is then equivalent to:

$$
\begin{equation*}
M(Z, N)=U(Z)+W(N)+m n V\left(j j^{\prime}\right) \quad[m n \text { even }] . \tag{2}
\end{equation*}
$$

This mass equation can be generalized to include neutron-excess nuclei from several configurations $\pi j_{i} \nu j_{k}$, though still with the requirement that the neutron shell νj_{k} lie higher than the proton shell πj_{i}. In this more general case the mass, $M(Z, N)$, is given by what will be denoted the modified shell model mass equation:

$$
\begin{equation*}
M(Z, N)=U(Z)+W(N)+\sum_{i k} m_{i} n_{k} V\left(j_{i} j_{k}\right) \quad\left[m_{i} n_{k} \text { even }\right] . \tag{3}
\end{equation*}
$$

The m_{i} and n_{k} are the number of protons and neutrons in the shells πj_{i} and νj_{k} respectively, and the sum $\sum_{i k}$ is over the neutron-proton interaction parameters $V\left(j_{i} j_{k}\right)$.

For comparison, in the simple shell model $M(Z, N)$ is given by:
$M(Z, N)=M_{o}+\sum_{i} V\left(j_{i}^{m} i\right)+\sum_{k} V\left(j_{k} n_{k}\right)+\sum_{i k} m_{i} n_{k} V\left(j_{i} j_{k}\right) \quad\left[m_{i} n_{k}\right.$ even].

Each function of the form $V\left(j^{q}\right)$ represents the interaction energy of q identical nucleons and assuming minimum seniority can be expressed as:

$$
v\left(j^{q}\right)=q e_{j}+q(q-1) a_{j} / 2+[q / 2] b_{j}
$$

where $[q / 2]$ is the integer less than or equal to $q / 2$, and e_{j}, a_{j} and b_{j} are three interaction parameters. ${ }^{6}$

Equation (3) is similar to the Garvey-Kelson transverse mass equation ${ }^{2}$:

$$
\begin{equation*}
M(Z, N)=F(Z)+G(N)+H(A) \tag{5}
\end{equation*}
$$

where F, G and H are arbitrary functions of the number of protons, neutrons and nucleons, respectively. Comparison of these equations shows that the two methods differ mainly in their parameterization of the residual neutron-proton interaction. In the method of Garvey et al. ${ }^{2}$ much of this interaction is given by the function $H(A)$, while in Eq. (3) more explicit account is taken of shell structure by the term $\sum_{i k} m_{i} n_{k} V\left(j_{i} j_{k}\right)$. Also, implicit in Eq. (5) is the assumption that the residual neutron-proton interaction is independent ${ }^{7}$ of T_{Z}.

The differences in assumptions allow the transverse mass equation to be more general than the modified mass equation, both in predicting masses of oddodd nuclei and in being able to predict masses farther from stability. In both cases predictions are carried out by determining the parameters of the mass equations by a least squares fit to known masses. (For Eq. (5) all known masses of $N \geqslant Z$ nuclei can be included (except $N=Z=$ odd), while for Eg. (3) only those which possess configurations $\pi j_{i} \vee j_{k}$ and which are not odd-odd can be used.)

III. RESULTS AND DISCUSSION

As a means of comparing these two approaches when applied to light neutron-rich nuclei, the masses of the $T_{Z}=5 / 2$ nuclei in the $s-d$ shell have been predicted, and their relative agreement with the experimental values is shown in Fig. 1. For these nuclei the predicted values arising from the transverse mass equation were taken from the calculations of Thibault and Klapisch ${ }^{3}$, who included as input from the s-d shell only known $T_{z} \leqslant 2$ nuclei. For the other predictions the modified mass equation was used except for the values for ${ }^{21} O$ and ${ }^{23}$ F where Eq. (4) from the simple shell model was employed, since insufficient masses are known for Eq. (3) to be used. Only known non-odd-odd $T_{z} \leqslant 2$ nuclei, together with ${ }^{29} \mathrm{Na}$, with configurations $\pi p_{1 / 2} v d_{5 / 2}{ }^{\prime} \pi d_{5 / 2} v s_{1 / 2}$, $\pi d_{5 / 2} \nu d_{3 / 2}$ and $\pi s_{1 / 2} \nu d_{3 / 2}$ were included as input. (The mass of ${ }^{29} \mathrm{Na}$ determines the interaction parameter $V\left(\pi d_{5 / 2} v d_{3 / 2}\right)$). As seen in $F i g .1$, considerably better agreement was obtained with the approach of this work than with the transverse mass equation; quantitatively the rms deviations between experiment and calculation are 260 keV and 620 keV , respectively (excluding the mass of ${ }^{21} \mathrm{O}$ because of its large error). A further comparison is afforded using the simple shell model, Eq. (4), alone. This yields a rms deviation of 390 keV , illustrating the importance of configuration mixing, which to some extent is allowed for in Eq. (3). Another example is discussed in Ref. 8 where the masses of the argon isotopes ${ }^{43-46}$ Ar are compared with the predictions of Eqs. (3) and (5); better agreement is also found using Eq. (3). For these isotopes the predictions of Zeldes et al. ${ }^{9}$, which are based on a generalization of an independent particle model, are also in good agreement with experiment. However, for lighter nuclei these latter predictions are less successful, probably due to charge-dependent
terms in their mass formula. ${ }^{2}$ Comparisons between different methods are made difficult, however, by differences in the input masses that were used and, as has been noted, ${ }^{4}$ predictions can be quite sensitive to changes in the masses of only a few nuclei. Bassichis and $A l i^{10}$ have recently accounted for the observed mass-excesses of the $\mathrm{T}_{\mathrm{Z}}=5 / 2$ nuclei ${ }^{25} \mathrm{Ne},{ }^{29} \mathrm{Mg}$ and ${ }^{33} \mathrm{Si}$ by employing a literal interpretation of the Garvey-Kelson mass formula to relate deviations from the simple predictions for certain sextuplets of nuclei. References to other recent work on mass relations and equations can be found in the paper of Jänecke and Behrens. ${ }^{7}$

Table I presents predictions of mass excesses and one- and two-neutron binding energies of selected neutron-excess nuclei at or just beyond the limits of current investigation obtained through a recalculation with Eq. (5), the transverse mass equation, as well as with Eq. (3), the modifed mass equation, denoted T and M, respectively. Experimental values are given when available (see Ref. 11 and 12 and those cited in the table) and those nuclei only known to be bound or unbound are indicated by the symbol "B" or "U". A complete tabulation of the results is given in Ref. 13.

Calculated T and M values in Table I arise from a least squares fitting program which employed with equal weight the appropriate particle-stable nuclei 14 with $N \geqslant Z$ whose mass-excesses are known to $\leqslant 200 \mathrm{keV}$; those known with less accuracy were not used in these calculations and are shown in the table enclosed in parentheses. All known nuclei (271) with $2 \leqslant Z \leqslant 35$ and $4 \leqslant N \leqslant 50$ were used in obtaining the transverse mass equation values. Compared to the recent calculation, ${ }^{3}$ the ten known $s-d$ shell, $T_{Z} \geqslant 5 / 2$ nuclei given in Table 1 were the additional nuclei included. For Eq. (3) the known non-odd-odd nuclei (74) with configurations. $\pi p_{3 / 2} v p_{1 / 2}, \pi p_{3 / 2} v d_{5 / 2}, \pi p_{1 / 2} v d_{5 / 2}, \pi d_{5 / 2} v s_{1 / 2}$, $\pi d_{5 / 2} \vee d_{3 / 2}, \pi s_{1 / 2} \vee d_{3 / 2}$ and $\pi d_{3 / 2} \vee f_{7 / 2}$ were employed. In Eq. (3) lack of
sufficient known masses required assumed values for the mass-excesses of ${ }^{21} 0$, 220 and ${ }^{14}$ Be: for ${ }^{21} O$ and ${ }^{22} O$ the values from Eq. (4) were used and (to determine the interaction parameter $V\left(\pi p_{3 / 2} v d_{5 / 2}\right)$) the mass-excess of 14 Be (known to be bound) ${ }^{15}$ was taken to equal ${ }^{12} \mathrm{Be}+2 \mathrm{n}=41.09 \mathrm{MeV}$, close to the value obtained with the transverse equation of 40.72 MeV .

In order to compare how well these two approaches account for known masses, ${ }^{6}$ one can evaluate the rms deviation defined as $\left[\sum_{i} \Delta_{i}^{2} /(N-P)\right]_{r}^{1 / 2}$ where the Δ_{i} are differences between the calculated and experimental masses, and N and P are the number of known nuclei and parameters, respectively. For nuclei with $2 \leqslant z \leqslant 17$ the transverse mass equation yields an rms deviation of $220 \mathrm{keV}(\mathrm{N}=82, \mathrm{P}=66)$ and the modified mass equation 200 keV ($N=51, P=36$). Though these values are very similar it does not necessarily follow that the predictive validity of the two approaches will be the same (compare the results in Fig. 1).

Several comments on nuclei at or near the current limit of experimental accessibility can be made from Table I. It appears that the differences between the T and M approaches observed in the $s-d$ stiell for the $T_{Z}=5 / 2$ nuclei persist to lighter nuclei, since the predictions for ${ }^{9} \mathrm{He},{ }^{13} \mathrm{Be},{ }^{15} \mathrm{~B}$ and ${ }^{19} \mathrm{~N}$ differ by more than 750 keV . In the $\mathrm{s}-\mathrm{d}$ shell the reported ${ }^{22} 0$ mass-excess ${ }^{12}$ is much less bound (by 2.1 MeV) than is calculated by either the transverse or the simple shell model mass equations (however, the experimental approach employed by Artukh et al. ${ }^{12}$ could possibly suffer from a systematic error in this direction, so that an additional measurement of the mass-excess of ${ }^{22} \mathrm{o}$ is of great interest): For ${ }^{31} \mathrm{Na}$ and ${ }^{32} \mathrm{Na}$ it has been pointed out from recent experimental measurements 11 that their mass-excesses imply a shell closure effect $(N=20)$ larger than would be deduced from the properties of nuclei closer to stability. Experimentally, the mass-excesses of ${ }^{31} \mathrm{Na}$ and ${ }^{32} \mathrm{Na}$ are $10.6 \pm .8 \mathrm{MeV}$ and $16.4 \pm 1.1 \mathrm{MeV}$,
respectively, ${ }^{11}$ while the transverse mass equation predicts 12.7 MeV and 21.0 MeV . This enhanced closure effect for ${ }^{31} \mathrm{Na}$ is also strikingly seen when comparing with experiment the predicted mass-excess of 14.4 MeV , arising from the modified mass equation.

These mass-excess calculations permit predictions of those nuclei lying on the edge of stability. The limits yielded by this recalculation with the transverse equation differ from those of Ref. 3, which did not employ any $\mathrm{T}_{\mathrm{Z}} \geqslant 5 / 2$ nuclei from the s-d shell, in that a) ${ }^{23} \mathrm{~N},{ }^{26} \mathrm{O}, 40_{\mathrm{Mg}}, 43 \mathrm{Al}$ and ${ }^{48} \mathrm{Si}$ are predicted to be the last nucleon stable isotopes, compared ${ }^{3}$ to ${ }^{25} \mathrm{~N},{ }^{28} \mathrm{O}$, ${ }^{42} \mathrm{Mg},{ }^{45} \mathrm{Al}$ and ${ }^{46} \mathrm{Si}$; and b) ${ }^{28} \mathrm{~F},{ }^{29} \mathrm{Ne}$ and ${ }^{37} \mathrm{Mg}$ are predicted to be the first unbound isotopes, compared ${ }^{3}$ to ${ }^{30} \mathrm{~F},{ }^{31} \mathrm{Ne}$ and ${ }^{41} \mathrm{Mg}$. Results from the modified mass equation are less extensive than those from the transverse equation, generally not predicting the edge of stability; however, for the lighter nuclei ${ }^{26} \mathrm{O}$ is calculated by Eq. (3) to be unbound by 240 keV , predicting ${ }^{24} \mathrm{O}$ as the last stable oxygen isotope. Also ${ }^{29}$ F is calculated to be unbound to $2 n$ decay by 910 keV , compared to the prediction of the transverse equation that it is bound by 770 keV .

Kelson and Garvey ${ }^{16}$ have also employed relations based on the charge symmetry of nuclear forces to predict quite successfully the masses of neutrondeficient nuclei through the titanium isotopes. An appendix of Ref. 13 tabulates results for mass-excesses and one- and two-proton binding energies from a similar recalculation of these nuclei which employed current known masses and predictions for neutron-excess nuclei from the transverse equation where necessary. Although many masses change considerably in this recalculation, the only revision ${ }^{17}$ in their predictions of the onset of nuclear instability is that ${ }^{31}$ Ar is now expected to be unbound.

The approach employing the modified mass equation described above appears to be a useful alternate predictive scheme for the masses of very neutron-excess light nuclei. Further mass measurements of nuclei far from stability such as, for example, the nucleon-stable isotopes ${ }^{15} \mathrm{~B}$ and ${ }^{19} \mathrm{~N}$ will afford particularly interesting new comparisons of this method and that of Garvey et al. ${ }^{2}$ with experiment.

We would like to thank Dr. Arthur Poskanzer for a most helpful criticism of the manuscript.
*Work performed under the auspices of the U. S. Atomic Energy Commission. +
†Present address: Nuclear Physics Laboratory, University of Oxford, England.

1. J. Cerny, Reactions Between Complex Nuclei, Vol. 2. ed. R. C. Robinson, F. K. McGowan and J. B. Ball (North-Holland Publ. Co., Amsterdam, in press).
2. G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi and I. Kelson, Rev. Mod. Phys. 41, Sl (1969).
3. C. Thibault and R. Klapisch, Phys. Rev. C9, 793 (1974).
4. C. Thibault and R. Klapisch, Phys. Rev. C6, 1509 (1972).
5. S. Goldstein and I. Talmi, Phys. Rev. 105, 995 (1957).
6. A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic, New York, 1963).
7. J. Jänecke and H. Behrens, Phys. Rev. C9, 1276 (1974).
8. N. A. Jelley, K. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak and J. Cerny, Phys. Rev. C9, 2067 (1974).
9. N. Zeldes, A. Grill and A. Simievic, Kgl. Danske Videnskab. Selskab, Mat.-Fys. 3, No. 5 (1967).
10. W. H. Bassichis and S. S. Ali, Phys. Letters 52B, 282 (1974).
11. R. Klapisch, C. Thibault, C. Rigaud, A. M. Poskanzer, L. Lessard and W. Reisdorf, Inter. Conf. on Nucl. Physics, Munich, Vol. l, ed. J. de Boer and H. J. Mang (North-Holland Publ. Co., Amsterdam, 1973) 325 and private communication (to be published).
12. A. G. Artukh, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, and J. Wilczynski, Nucl. Phys. Al92, 170 (1972).
13. N. Jelley, J. Cerny, D. P. Stahel and K. H. Wilcox, Lawrence Berkeley Laboratory Report LBL-3414.
14. Masses were generally taken from A. H. Wapstra and N. B. Gove, Nucl. Data A9, 265(1971). References to most new masses of interest are given in Table I; a few other new or revised masses [for ${ }^{34} \mathrm{P},{ }^{38} \mathrm{~S},{ }^{43-46} \mathrm{Ar}$, and ${ }^{58} \mathrm{Mn}$] are cited in Ref. 13. In addition, in order to determine all the parameters, it was necessary to use the mass of the particle-unstable nuclide ${ }^{7}$ He.
15. J. D. Bowman, A. M. Poskanzer, R. G. Korteling and G. W. Butler, Phys. Rev. C9, 836 (1974).
16. I. Kelson and G. T. Garvey, Phys. Letters 23, 689 (1966).
17. Fig. 16 in Ref. 15 presents those neutron-deficient nuclei expected to lie on the edge of stability, based on minor updating of Ref. $16 ; 3^{33} \mathrm{~K}$ and ${ }^{34} \mathrm{~K}$ are incorrectly. shown therein ${ }^{15}$ as nucleon stable due to an error in the proof of Ref. 16.

Table I. Comparisons with experiment of the predictions of the transverse (T) and the modified (M) mass-equations.

Table I (continued)

	N	EL	A	Mass Excess$(\mathrm{MeV} \pm \mathrm{MeV})$Experimental \quad Calculated			Binding Energy (MeV)					
							1 Neutron Experimental			$\begin{gathered} 2 \text { Neutron } \\ \text { Experimental Calculated } \end{gathered}$		
2					T	M		T	M		T	M
9	14	F	23	$3.36 \pm .17^{f}$	3.40	3.36	7.54			12.74		
9	15	F	24	B	8.04			3.44		.	10.89	
9	16	F	25	B	11.75	11.26		4.36			7.80	8.24
10	15	NE	25	$-2.16 \pm .10^{9}$	-1.95	-2.12	4.28			. 13.15		
10	16	NE	26	B	. 17	-. 27		5.95	6.23		9.89	10.43
10	17	NE	27	-	6.52	6.58		1.73	1.21		7.68	7.44
11	15	NA	26	$-6.90 \pm .02^{\mathrm{b}, \mathrm{h}}$,	-6.94		5.62			14.63		
11	16	NA	27	$-5.62 \pm .06{ }^{\text {b, }} 1 . j$	-5.71	-5.73.	6.79			12.41		
11	17	NA	28	$-1.14 \pm .08^{b, 1}$	-1.02		3.59			10.38		
11	18	NA	29	$2.65 \pm .10^{\text {b, }} 1$	2.32	2.66	4.28			7.87		
11	19	NA	30	$8.37 \pm .20{ }^{\text {b, }} 1$	8.50		2.35			6.63		
11	20	NA	31	$(10.6 \pm .8)^{b}$	12.70	14.38		3.87			5.76	4.42
11	21	NA	32	$(16.4 \pm 1.1)^{b}$	21.02			-. 25			3.62	
11	22	NA	33	B	26.90			2.19			1.94	
11	23	NA	34		35.08			-. 11			2.08	
12	17	MG.	29	$-10.75 \pm .05^{k}$	-10.70	-10.75	3.80			12.31		
12	18	MG	30	B	- 9.37	- 9.21		6.75	6.54		10.56	10.42
12	19	MG	31		-3.73	- 3.17		2.43	2.03		9.18	8.56
13	18	AL	31	$-15.01 \pm .10^{1}$	-15.00	-15.05	7.19			12.94		
13	19	AL	32	B	-11.14			4.21			11.50	
13	20	AL	33	B	- 9.34	-8.65		6.27			10.49	9.75
14	19	SI	33	$-20.57 \pm .05^{\text {m }}$	-20.71	-20.67	4.55			13.76		
14	20	SI	34	B	-20.57	-20.32		7.93	7.72		12.77	12.42
14	21	SI	35	B	-15.02			2.51			10.45	
15	20	p	35	$-24.94 \pm .08^{n}$	-24.90	-24.81	8.46			14.74		
15	21	p.	36	B	-20.88			4.05			12.46	
15	22	P	37	B	-18.98			6.17			10.22	

Table I (continued)

		EL	A	Mass Excess ($\mathrm{MeV} \pm \mathrm{MeV}$)			Binding Energy (MeV)								
				Experimental	Calculated		Experimental $\begin{gathered}1 \\ \text { Neutron } \\ \text { Calculated }\end{gathered}$			2 Neutron					
							Experimental	Cal	ted						
z	N				T	M					T	M		T	M
16	23	s	39	B	-23.07	-23.21		4.33	4.35		12.24	12.31			
16	24	S	40	B	-22.50	-22.64		7.50	7.51		11.83	11.85			
16	25	s	41		-18.31	-18.42		3.88	3.85		11.38	11.36			
17	24	CL	41	B	-27.43	-27.39		7.84			13.65	13.67			
17	25	CL	42	B	-24.68			5.32			13.16				
17	26	CL	43		-23.64	-23.61		7.03			12.35	12.36			

*Assumed , value, see text
${ }^{+}$calculated using equation 4
${ }^{\text {a J. Cerny, N. A. Jelley, D. L. Hendrie, C. F. Maguire, J. Mahoney, D. K. Scott and R. B. Weisenmiller, LBL-2984, }}$ phys. Rev. C (in press).
$b_{\text {Ref. }} 11$
${ }^{\text {C }}$. H. Howard, R. H. Stokes and B. H. Erkkila, Phys. Rev. Lett. 27, 1086 (1971);
G. C. Ball, J. G. Costa, W. G. Davies, J. S. Forster, J. C. Hardy and A. B. McDonald, Phys. Lett. 49B, 33 (1974).
G. C. Ball, J. G. Costa, W. G. Davies, J. S. Forster, J. C. Hardy and A. B. McDonald, Phys. Rev. Lett. 31, 395 (1973).
$e_{\text {Ref. }} 12$
fo. R. Goosman and D. E. Alburger, Phys. Rev. C10, 756 (1974).
${ }^{\text {G. H. Wilcox, N. A. Jelley, G. J. Wozniak, R. B. Weisenmiller, H. L. Harney and J. Cerny, Phys. Rev. Lett. 30, } 866 \text { (1973). }}$ D. R. Goosman, D. E. Alburger, and J. C. Hardy, Phys. Rev. C7, 1133 (1973).
$h_{E .}$ R. Flynn and J. D. Garrett, Phys. Rev. C9, 210 (1974).

$J_{\text {D. E. Alburger, D. R. Goosman and C. N. Davids, Phys. Rev. C8, } 1011 \text { (1973). }}^{\text {(}}$
K. K. Scott, B. G. Harvey, D. L. Hendrie, L. Kraus, C. F. Maguire, J. Mahoney, Y. Terrien and K. Yagi, Phys. Rev. Letters (in press). D. R. Goosman, C. N. Davids and D. E. Alburger, Phys. Rev. C8, 1331 (1973).
${ }^{1}$ D. R. Goosman and D. E. Alburger, Phys. Rev. C7, 2409 (1973).
m. R. Goosman, C. N. Davids and D. E. Alburger, Phys. Rev. C8, 1324 (1973).
${ }^{n}$ D. R. Goosman and D. E. Alburger, Phys. Rev. C6, 820 (1972).

FIGURE CAPTIONS

Fig. 1. Two comparisons of the differences between experimental and predicted mass-excesses for the $T_{Z}=5 / 2$ nuclei in the $2 \mathrm{~s}-1 \mathrm{~d}$ shell. See text.

Fig. 1

Appendix I

Experimental and predicted mass excesses and one- and two- neutron binding energies (in MeV) for neutron-excess isotopes of the elements from helium through chlorine. T and M refer to predictions from the transverse and modified mass equations, respectively.

References to masses employed in these calculations but not explicitly cited in the text are:

34 P: D. R. Goosman, C. N. Davids and D. E. Alburger, Phys. Rev. C8, 1324 (1973).
${ }^{38}$ S : G. A. P. Engelbertink and J. W. Olness, Phys. Rev. C3, 180 (1971).
43-46 Ar : Reference 8.

58
Mn: N. C. Dyer and J. H. Hamilton, Nucl. Phys. Al73, 393 (1971).

				EXPERIMENTAL	calculateo		EXP.-CALC.		1 NEUTRON		2 NEUTRON	
EL	A	2	N		T	M	T	M	T	M	T	M
HE	6	2	4.	17.60	17.60		. 00					
	7	2	5	26.11	26.11		.00		-. 44			
	8	2	6	31.57	31.57	31.57	.00	.00	2.61		2.17	
	9	2	7	U	42.61	43.49			-2.97	-3.85	-. 36	
	10	2	8	U	51.00	52.34			-. 32	-. 78	-3.29	-4.62
	11	2	9		65.87	65.04			-6.79	-4.63	-7.11	-5.41
	12	2	10		76.11	74.39			-2.17	-1.28	-8.96	-5.91
41	7	3	4	14.91	14.91		.00					
	8	3	5	20.95	20.95		.00		2.03			
	9	3	6	24.97	24.97	24.77	.00	. 20	4.05		6.09	
	10	3	7	U	33.25				-. 21		3.84	
	11	3	8	40.94	40.94	41.14	.00	-. 20	. 38		. 17	-. 23
	12	3	9	U	52.94				-3.93		-3.55	
	13	3	10		61.56	60.34			-. 55		-4.48	-3.05
	14	3	11		72.28				-2.64		-3.19	. 0 S
	15	3	12		81.59	79.78			-1.24		-3.88	-3.30
BE	8	4	4	(4.941	6.75							
	9	4	5	11.35	11.35		.00		3.47			
	10	4	6	12.61	12.61	12.77	.05	-. 16	6.81		10.29	
	11	4	7	20.18	20.19	20.29	-. 01	-. 12	. 49	. 55	7.30	
	12	4	8	25.03	25.02	24.75	.01	. 28	3.25	3.62	3.74	4.17
	13	4	9	U	35.39	34.60			-2.31	-1.77	. 94	1.84
	14	4	10	8	40.72	41.09*			2.74	1.58	. 44	-. 20
	15	4	11		51.21	51.11			-2.41	-1.95	. 33	-. 37
	16.	4	12		59.25	57.68			. 03	1.51	-2.38	-. 45
	17	4	13		70.62	68.37			-3.29	-2.62	-3.20	-1.11
	18	4	14	-	77.72	75.43			. 96	1.01	-2.33	-1.60
B	11	5	6	8.67	8.65	8.82	.01	-. 16				
	12	5	7	13.37	13.37		.00		3.36			
	13	5	8	16.56	16.58	16.41	-. 01	. 16	4.87		8.22	8.56
	14	5	9	23.66	23.66		.00		. 99		5.80	8.56
	15	5	10	8	28.75	29.89			2.97		3.97	2.66
	16	5	11	U	37.97				-1.24		1.83	
	17	5	12	B	44.36	43.62			1.67		. 53	2.41
	18	5	13		53.57				-1.13		. 54	2.41
	19	5	14		59.44	58.51			2.19		1.06	1.25
	20	5	15		68.12				-.60		1.59	. 25
	21	5	16		76.04				. 14		-. 46	
											-	
C	12	6	6		$.01$	-. 12		.12				
	13	6	7	3.13	3.11	3.01	.01	.12	4.97	4.94		

Appendix II

Predicted mass excesses and one- and two-proton binding energies (in MeV) of the $T_{z}=-2,-5 / 2$, and -3 nuclei through the titanium isotopes. The method of Kelson and Garvey (Ref. 16) was employed. In similar fashion to their work, the letter in parentheses beside the nuclear species specifies the type of information available on the neutron-excess isotope used in the prediction, with D or X signifying a nuclide whose mass is known or unknown, respectively. For the latter, the mass predicted by the transverse mass equation (and listed in Table I) was assumed.

vuc.	$\begin{aligned} & \text { MASS } \\ & \text { LXCESS } \end{aligned}$	BINDING 1P	ENERGY 2F
oc (0)	35.77	-. 15	-2.44
10f (x)	34.38	-3.21	-1.92
$1<0101$	33.06	-. 32	-2.82
14F (0)	33.37	-2.56	-1.22
16tre(0)	24.67	. 23	-2.09
18pa(0)	25.57	-1.66	. 20
20MG(0)	17.40	2.16	2.39
22AL(0)	17.95	. 14	3.40
2451(0)	10.75	3.28	3.41
26P (0)	11.19	-. 11	3.31
285101	4.46	2.28	3.00
$30 C L 101$	4.99	-. 62	2.59
3ARAO)	-2.16	2.47	2.69
34 K 101	-1.41	-. 65	2.71
socalo)	-6.45	2.59	2.64
38SC(0)	-4.67	-1.17	1.04
$4071(0)$	-9.01	2.23	2.55

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

