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Kinetic Monte Carlo (KMC) methods are frequently used for mechanistic studies of ther-

mally driven heterogeneous catalysis systems but are underused for electrocatalysis. Here,

we develop a lattice KMC approach for electrocatalytic CO2 reduction. The work is moti-

vated by a prior experimental report which performed electroreduction of a mixed feed of
12CO2 and 13CO on Cu; differences in the 13C content of C2 products ethylene and ethanol

(∆13C) were interpreted as evidence of site selectivity. The lattice KMC model considers

the effect of surface diffusion on this system. In the limit of infinitely fast diffusion (mean-

field approximation), the key intermediates 12CO* and 13CO* would be well-mixed on the

surface and no evidence of site selectivity could have been observed. Using a simple two-

site model and adapting a previously reported microkinetic model, we assess the effects

of diffusion on the relative isotope fractions in the products, using estimated surface diffu-

sion rate of CO* from literature reports. We find that size of the active sites and the total

surface adsorbate coverage can have a large influence on the values of ∆13C which can be

observed. ∆13C is less sensitive to CO* diffusion rate as long as it is within the estimated

range. We further offer possible methods to estimate surface distribution of intermedi-

ates and to predict intrinsic selectivity of active sites based on experimental observations.

The work illustrates the importance of considering surface diffusion in the study of electro-

chemical CO2 reduction to multi-carbon products. Our approach is entirely based on freely

available open-source code, so will be readily adaptable to other electrocatalytic systems.
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I. INTRODUCTION

Electrocatalytic CO2 reduction (CO2R), if powered by renewable electricity, is a possible way

to produce hydrogen-carbon-based chemicals and fuels without increasing anthropogenic carbon

emissions.1,2 In particular, multi-carbon products such as ethylene, ethanol, and propanol which

can be produced when Cu is employed as an electrocatalyst are predicted to be economically

desirable.3 However, Cu is not selective as an electrocatalyst, and, typically, a mixture of C1-C3

hydrocarbons and oxygenates is produced.4 While it would be clearly beneficial to improve the

selectivity of Cu-based CO2R catalysts, the reaction mechanism is complex as a result of the large

number of elementary steps and intermediates.5

Substantial progress has been made towards elucidating the reaction mechanism by using den-

sity functional theory (DFT) to calculate the binding energies of adsorbed intermediates and

the energy barriers of the elementary steps which connect them.6–9 When combined with zero-

dimensional microkinetic models (MKMs), it is possible to predict the partial current densities

of typically observed products (CO, methane, ethylene, etc.) and compare them to experimental

observations.7,8,10–21 A possible shortcoming of this approach of combining ab-initio calculation

with MKM is that typically only the activity of a single active site, e.g., the (100) plane of Cu, is

predicted.

There is also ample evidence that nanostructuring the Cu surface, for example, by repeated

oxidation-reduction cycling,22–27 can steer selectivity to C2 products. Moreover, the catalysts

used in high-current density (>1 A cm−2) demonstrations of electrochemical CO2 reduction are

nanostructured catalysts.28,29 The different binding sites on these types of nanostructured Cu vary

widely in their binding energy for CO*, which is believed to be the key intermediate for the

formation of all C2 products on Cu.30 Indeed, it would be expected that these different sites might

conceivably have different selectivities to specific C2 products, for example, hydrocarbons vs.

oxygenates.

Recently, evidence for this supposition was provided by Lum and Ager.31 In their study, reduc-

tion of mixed feeds of 12CO2 and 13CO was performed on both oriented surfaces of Cu ((111) and

(100)) and nanostructured “oxide-derived” Cu (OD Cu). Under these conditions, surface adsorbed

CO* has two formation pathways: two-electron reduction of 12CO2 to form 12CO* and direct ad-

sorption of dissolved 13CO to form 13CO*. Observation of differences in the 13C content of C2

products ethylene and ethanol (∆13C), which was observed on the nanostructured Cu but not on
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the oriented surfaces, was interpreted as evidence of the presence of product-selective sites.

The observation of product-selective sites would not have been possible if the surface diffusion

of 12CO* and 13CO* were much faster than the dimerization rate; in this fast diffusion case the

isotopes on the surface would be well mixed and all the active sites would produce C2 products

with the same isotope fraction. Evidently, the surface diffusion rate, at least on the nanostructured

Cu, is sufficiently slow compared to the dimerization rate such that differences in the 13C con-

tent of C2 products can be observed. Therefore, the question naturally arises as to whether the

surface diffusion of intermediates between the active sites in these catalysts, which would not be

captured by a 0-D microkinetic model, might be important. Thus, the lattice KMC approach de-

veloped in this study is designed to study competition between surface diffusion and the reaction

of intermediates in CO2 reduction quantitatively.

There are surprisingly few prior studies of lattice KMC as applied to electrocatalysis. Koper

introduced the approach in the 1990s, examining electrochemical CO stripping on Pt and Pt-Ru

surfaces.32,33 In this case, the mobile surface intermediates are CO* and OH*. Korzeniewski and

Kardash examined CO phase formation on single-crystal Pt, again in the context of CO stripping.34

Recently, Chun et al. used a combined DFT and KMC approach to study electrocatalytic deni-

trification on Pt(100), finding that the initial NO* coverage affected the probability of different

pathways.35 However, we know of no prior application of the KMC method to electrochemical

CO2 reduction.

Here, we develop a lattice KMC approach for electrochemical CO and CO2 reduction. We

begin by considering the case with no surface diffusion (no-mix), and then introduce a simple two-

site model (A, B) in which the relative rates of 12CO2 reduction to 12CO* and 13CO adsorption to
13CO* (PA, PB) and the branching ratios to hydrocarbon (ethylene) and oxygenate (ethanol) (SA,

SB) are adjustable parameters (Section II A). The reaction network is constructed based on the

MKM model of Goodpaster et al.11 We estimate the surface diffusion rate of CO* on Cu based on

the NMR observations of CO* diffusion on Pt,36 the binding energy of CO* on Cu and Pt,13,30,

and a scaling relationship between the binding energy and the diffusion barrier (Section II B).37 By

these methods we obtain a reasonable range of CO* diffusion rates based on the binding energies

calculated for CO* on various sites on Cu nanoparticles.30

For the simulation engine, we have adapted the open-source software package Zacros devel-

oped by Stamatakis and Vlachos.38,39 (Section II C). With our electrocatalysis-oriented adaptions,

Zacros can simulate and visualize electrochemical processes like cyclic voltammograms (CV) with
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multiple trajectories as we show by validating our approach by comparison with the CO stripping

results of Koper.32

The maximum difference in 13C content between ethylene and ethanol (∆13C) occurs when no

surface diffusion is allowed (no-mix limit), whereas this difference is zero in the limit of infinite

diffusion coefficient (mean field approximation, as assumed in MKMs). The KMC simulations

consider intermediate cases and show that ∆13C largely depends on the size of the two regions (A,

B) and the total surface occupancy (Section III). Interestingly, ∆13C is less sensitive to the CO*

surface diffusion rate within and between Regions A and B, as long as it is in the estimated range.

The simulation results are further compared with experimental observations (Section IV A). Fi-

nally, we outline some future directions for the applications of KMC approaches to electrochemical

CO2 reduction (Section IV B). The workflows we employ are in the form of Jupyter notebooks,

and the notebooks and representative simulation input and output files have been shared in a pub-

licly accessible repository on GitHub to permit general use by the electrocatalysis community.

II. COMPUTATIONAL METHODS

A. Two-site model

1. No surface diffusion (no-mix limit)

We develop the two-site model by initially considering a case in which no diffusion of interme-

diates on the surface occurs. In the study of Lum and Ager,31 an OD Cu electrocatalyst was co-fed

with 12CO2 and 13CO such the products generated contained both 13C and 12C. It was experi-

mentally determined that the 13C fraction was higher in hydrocarbon products such as ethylene

compared to oxygenates such as ethanol (Figure S1), especially at the more positive potentials

which were employed (e.g. −0.56 V vs. RHE). This behavior can be captured by assuming that

OD Cu has two different product-specific active sites (A and B), and that the one which favors the

generation of ethylene (B) has a faster rate of 13CO adsorption as compared to 12CO2 reduction.

Similarly, the active site which favors ethanol (A) should have a slower rate of 13CO adsorption as

compared to 12CO2 reduction. With these assumptions, Site B will have a larger relative fraction

of 13CO* compared to Site A.

In this model, two parameters determine the 13C fraction in the products: the relative probabil-

ities for adsorption of 13CO and reduction of 12CO2 to form CO* and the subsequent probabilities
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of hydrocarbon vs. oxygenate products formed by CO* dimerization. For each site, we denote the

relative probability of forming 13CO* via 13CO adsorption as PA and PB and the branching ratios

towards ethylene as SA and SB for Sites A and B, respectively. As a further simplification, we

assume ethylene and ethanol are the only products and that PA +PB = 1 and SA +SB = 1.

In this case with no surface diffusion, the fraction of 13C content in the products ethylene and

ethanol can be analytically expressed:

13Cethylene = 2PASA +1−PA−SA, (1a)

13Cethanol = PA +SA−2PASA. (1b)

Thus, the difference in the 13C fraction (∆13C), which was experimental observable, is:

∆
13C =13 Cethylene−13 Cethanol = 4PASA +1−2PA−2SA = (2PA−1)(2SA−1). (2)

If PA = 0.5, meaning that each site has the same rate of direct 13CO adsorption and two electron

reduction of 12CO2, no difference in isotope fraction in the products will be observed as the relative

populations of 13CO* and 12CO* will be the same on each site. A similar null result is predicted if

the sites are not selective for hydrocarbons vs. oxygenates (SA = 0.5). On the other hand, we can

consider a more extreme case in which Site A is very selective for 12CO2 reduction (SA = 0.1) and

only produces ethanol (SA = 0) while Site B is very selective for 13CO adsorption (SB = 0.9) and

only produces ethylene (SB = 1): in this case ∆13C = 0.8, meaning that ethylene will be highly

enriched in 13C compared to ethanol.

2. Site geometry

Diffusion of CO* on the surface will reduce the value of ∆13C compared to the predictions of

Equation 2 because CO* formed on Site A can travel to Site B to be coupled to form C2 products on

Site B and vice versa. To capture the isotope mixing meditated by surface diffusion, we implement

the two-site model on the catalyst surface by assuming that each type of site occupies an area of

L sites×L sites arranged in a checkerboard pattern as shown in Scheme 1. The 2L× 2L region

in the orange circle represents one repeating unit. All simulations are conducted on a 200 sites×

200 sites lattice with periodic boundary conditions.

8



2L L L

B

A B

A

B

A B

AB

A B

A

B

A B

A

Site A: 12CO* ↑

Site B: 13CO* ↑

Ethylene: 13C ↑      Ethanol: 12C ↑

Surface diffusion

Repeating unit

Simulating lattice

Scheme 1: Simulation design. A square lattice (200 sites× 200 sites) with periodic boundary

conditions is used for the KMC simulations. Two types of active sites A and B are considered

and the size of Region A or B is L sites×L sites, number of repeating units included is different

for cases with different region size (L). The difference in 13C content in the products (∆13C =

13Cethylene−13 Cethanol) are compared for different conditions. For situations with both PA and SA

smaller than 0.5 (smaller 13CO* and lower selectivity to ethylene for Site A), 13Cethylene should be

larger than 13Cethanol and ∆13C should be > 0, which corresponds to the experimental observations.

3. Atomic lattice

There have been thorough investigations, both experimentally and theoretically, of the CO2R

activity and selectivity of the commonly exposed facets of Cu: (100), (110), and (111).4,40 Here,

we use Cu(100) for the atomic lattice as it has the highest selectivity for C2 products among the

high-index surfaces of Cu. The lateral distance between the active sites for CO* adsorption for

Cu(100) is a√
2
, where a is the lattice constant of fcc copper (a = 3.6Å).40 The impact of region

size on 13C content in the products was explored by varying L. A higher isotope mixing effect

will be expected for a smaller region size (L), which corresponds to a shorter distance between the

centers of Regions A and B.
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B. Chemical network

1. Simplified reaction network

While more than 15 products can be generated during CO2 reduction from Cu, including C1

to C3 products as well as byproducts H2 from the competing reaction hydrogen evolution reaction

(HER), we consider here a simplified pathway to C2 products via CO-CO coupling at adjacent

atomic sites adapted from Goodpaster et al.11 We note that the Goodpaster model has another

pathway to C2 products via CO*+CHO* which is operative at higher overpotentials. Under the

range of potentials considered in this work,−0.4 V to−0.8 V vs. RHE, we find that this competing

pathway is slower than CO* dimerization (Figure S2) and thus do not include it in the model. With

this simplification, the reaction network has four steps, with "*" and "**" denoting one and two

adjacent empty surface sites, respectively.

CO(g) or CO2(g)+∗
k1

GGGGGGA CO∗ (R1)

CO∗+CO∗
k2

GGGGGBFGGGGG

k−2

OCCO∗∗ (R2)

OCCO∗∗
k3

GGGGGGA C2H4(g) or C2H5OH(g)+∗∗ (R3)

CO∗+∗
k4

GGGGGGA ∗+CO∗ (R4)

R1 actually represents two elementary steps: the adsorption of 13CO and the two-electron reduc-

tion of 12CO2, which, if a mixed feed of CO and CO2 is provided, will compete to form CO*

on the surface. R2 describes the elementary step of CO-CO coupling, the shared reaction path

for both C2 products. Further proton-coupled electron transfer steps towards ethylene (C2H4) and

ethanol (C2H5OH) are represented by a lumped reaction (R3). Examples of possible detailed re-

action pathways towards ethylene and ethanol that are lumped together here as R3 are provided

in Figure S3 in the Supporting information (SI). Finally, R4 represents the surface diffusion of

adsorbed CO*.

2. Rate constants

DFT simulations with an explicit solvent model suggest that the CO* coverage on Cu is around

0.3 at −0.5 V vs. RHE.13 Therefore, we set the potential at −0.5 V vs. RHE at pH 7 for our
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TABLE I: Rate constants for R1 required to maintain CO* coverage.a

Total coverage (θ ) 0.3 0.5 0.7 0.9

H* coverage (θH∗) 0 0.2 0.4 0.6

k1 (s−1) 2.754 ×10−3 4.109 ×10−3 7.487 ×10−3 2.249 ×10−2

a CO* coverage is 0.3 for all cases, while the total coverage is tuned by the amount of spectator H* added. For the

values of k1 shown in the table, the surface occupancy of CO* and thus the total coverage (θ ) remain relatively

stable during the simulation.

base case simulation. Simulations were initiated by placing 13CO* and 12CO* randomly on the

surface. Specifically, the populations of 13CO* and 12CO* on Sites A and B were calculated using

PA, PB, and θ , and the random seeding function of Zacros was used to distribute them on the

respective sites. The impacts of total coverage on the surface diffusion of CO* were investigated

by loading the surface with different amount of H*, which is a spectator in the chemical network.

Other products, reactants like water, and other intermediates on the surface were not considered

specifically, but the influence of these can be assessed by using the rate of R1 and the coverage of

H* to tune the overall coverage. Table I summarizes the reaction rate constants (k1) required to

keep the CO* coverage constant at total surface coverage (θ ) between 0.3 and 0.9.

The two branches of R1 are:

12CO2(g)+∗
k1a

GGGGGGGA
12CO∗ (R1-1)

13CO(g)+∗
k1b

GGGGGGGA
13CO∗ (R1-2)

The rates for formation of 13CO* and 12CO* on Sites A and B are different and can be calculated

based on PA. Taking Site A as an example, to realize the branching ratio to 12CO* (R1-1, PB) and
13CO* (R1-2, PA), the rate constant k1a and k1b for 12CO* and 13CO*, respectively, should be in

the following relationship, where p = PB/PA is used for simplification. Details are in SI (Table

S1).

k1a

k1b
=

PB

PA
= p GGGA k1a = pk1b, (3a)

k1a + k1b = k1 GGGA (1+ p)k1b = k1 GGGA k1b = k1/(1+ p). (3b)

11



TABLE II: Rate constant parameters for R2 and R3.a

R2 forward (k2) R2 reverse (k−2) R3 (k3)

a2 b2 a−2 b−2 a3 b3

−0.1723 0.4616 −0.3891 −0.0620 −0.1667 −0.1667

a Rate constants for R2 and R3 are given by Equation 4 with parameters summarized here.

CO-CO coupling (R2) is treated as reversible with k2 and k−2 representing the forward and

backward reactions, respectively. As shown in Equation 4, the reaction rates k2 and k−2 are con-

trolled by the free-energy barriers G†
i which is a linear function of applied potential (V vs. SHE):

∆G†
i = ai×E +bi, (4a)

ki =
kBT

h
exp

[
−∆G†

i (E)/kBT
]

(4b)

where kB is Boltzmann’s constant, h is Planck’s constant, and values for ai and bi are given in

Table II. Parameters in the rate constant format used by Zacros are shown in Table S2.

The proton-coupled electron transfers from the CO dimer towards ethylene and ethanol (R3)

are also adapted from the Goodpaster model and are considered irreversible (Table II, Equation 4):

OCCO∗∗
k3a

GGGGGGGA C2H4(g)+∗∗ (R3-1)

OCCO∗∗
k3b

GGGGGGGA C2H5OH(g)+∗∗ (R3-2)

Taking Site A as an example, to realize the branching ratio to ethylene (R3-1, SA) and ethanol

(R3-2, SB), the rate constants k3a and k3b for ethylene and ethanol, respectively, should be in the

following relationship, with s = SA/SB being used for simplification (Table S3).

k3a

k3b
=

SA

SB
= s GGGA k3a = sk3b, (5a)

k3a + k3b = k3 GGGA (1+ s)k3b = k3 GGGA k3b = k3/(1+ s). (5b)

For OCCO** adsorbed across the boundary of Regions A and B, we assumed that the selectivity

for ethylene and ethanol is the same (SAB = 0.5).
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TABLE III: Diffusion coefficient for CO* on Pt in electrolyte.36

θCO (CO* coverage) 1 0.68 0.46 0.36 0

DCO (cm2 s−1) 3.6×10−13 8.1×10−13 9.5×10−13 1.5×10−12 2.17×10−12

∆ (nm s−1)a 12 18 19 24 29b

a The displacement per second is calculated from the formula: ∆ = (4DCOt)1/2.
b This value is derived from the fitting curve of the displacement per second (∆) vs. coverage (θCO).

3. Surface diffusion

Regarding R4, as far as we know, the CO* diffusion on the Cu surface has not been calculated

or measured yet. However, measurements on other metals provide a basis for estimation. By

applying 13C electrochemical nuclear magnetic resonance (EC-NMR) to nanoparticle Pt catalysts,

Babu et al. showed that the CO* diffuses on the surface at a rate of∼10 nm s−1.36 As expected, the

diffusion rate in electrolyte is much smaller than that in the gas and also decreases as the surface

coverage of CO* increases. There is also a rule of thumb relating the barrier for diffusion to the

binding energy, E∗ =−0.12BE−0.02 eV, where E∗ is the diffusion barrier, and BE stands for the

binding energy of the adsorbate in its most-stable site on the metal surface.37 DFT simulations of

the CO* BE with the same solvent environment have been conducted for both Cu and Pt;13 these

can be used to assess the difference in binding energies. Finally, a range of CO* binding energies

Cu nanoparticles was reported in a combined DFT and machine learning study.30

Table III is reproduced from a previous report on CO* diffusion on Pt detected by EC-NMR,

where the diffusion rate decreases as the surface coverage increases. We found out that the dis-

placement of CO* per second (∆ in units of nm s−1) is in linear relationship with the coverage,

thus we fit ∆ vs. θCO to predict the ∆ value at 0 coverage, and further calculated the diffusion

coefficient DCO using the relationship ∆ = (4DCOt)1/2. Assuming CO* diffuses on Pt by hopping

between adjacent active sites with a density of 1.32×1015 sites cm−2,32 the rate constant for Pt at

0 coverage is calculated to be 2864 s−1.

Table IV provides the range of the binding energy for CO* on Cu with and without electrolyte

obtained from the previous literature and compared to Pt. Specifically, the binding energy without

electrolyte was extracted from the previous work showing the range of the binding energy of CO*

on Cu nanoparticles, with Cu-High and Cu-Low representing the facets with highest and lowest

13



TABLE IV: Binding energy of CO* with Cu and Pt and the diffusion barrier derived from this.13

Facets
Binding energy

without electrolyte (eV)

Estimated binding energy

with electrolyte, BE (eV)

Diffusion barrier,

E∗ (eV)

Cu-High −1.38 −0.85 0.0817

Cu(211), boundary −1.06 −0.75 0.07

Cu(100) −0.86 −0.62 0.0544

Cu(111) −0.77 −0.48 0.0376

Cu-Low −0.59 −0.24 0.0082

Pt −1.62 0.1744

binding energy of CO* on Cu.30 Another DFT calculation with explicit water model provides the

value of CO* binding energy for commonly investigated facets of Cu and Pt including Cu(211),

Cu(100), Cu(111), Pt(211), and Pt(111).13 By comparing the binding energy with and without

electrolyte, the range of binding energy of CO* on Cu in electrolyte conditions (BE for Cu-High

and Cu-Low) are estimated with a fitting curve between binding energy with and without elec-

trolyte for Cu(211), Cu(100), and Cu(111). We then use the average of BE for Pt(211) (−1.77

eV) and Pt(111) (−1.47 eV) to represent BE for Pt black (−1.62 eV) used in the NMR tests for

surface diffusion rate, considering the surface of 10 nm Pt nanoparticle (similar to the Pt black (7

nm) in the EC-NMR test) contains various facets including {111} and other higher index facets,

and small amount of {100} and {110}.41 The diffusion barriers were then calculated from this

using E∗ =−0.12BE−0.02 eV.37

Considering the two-site model, two scenarios should be considered for CO* diffusion, in-

cluding k4 representing the diffusion within Regions A and B, and k4AB representing the diffusion

across the boundary between Regions A and B. k4 and the corresponding displacement per second

of CO* were obtained based on the rate constant of Pt and the calculated ratio between Cu and Pt

(Table V).

Specifically, the ratios among different facets are calculated by e−
E∗

kBT , considering the CO*

diffusion on Cu and Pt share the similar prefactor of 1013 s−1. The calculated ratios were then

used to derive the rate constants for CO* diffusion on Cu based on the rate for CO* diffusion

on Pt with 0 CO* coverage (2864 s−1). Assuming a Cu(100) surface with a distance between

14



TABLE V: Parameters for R4 within Regions A and B (k4).

Facets Cu-High Cu(100) Cu-Low

k4 (s−1) 1×105 3×105 19×105

∆a (nm s−1) 161 279 703

a Displacement per second for near zero coverage.

TABLE VI: Parameters for R4 across the Regions A and B (k4AB).

k4AB (s−1) 5×104 1×105 2×105

∆a (nm s−1) 114 161 228

a Displacement per second for near zero coverage.

active sites of a√
2

(lattice constant a = 3.6Å), the displacement of CO* on Cu per second were

calculated. As expected, because of its smaller binding energy, the diffusion rate for CO* on Cu

is much larger compared with that on Pt, and we estimate that the displacement per second for

near-zero coverage varies from 161 nm s−1 for facets with highest binding energy for CO* to 703

nm s−1 for facets with lowest binding energy with 279 nm s−1 for Cu(100) lying in between. We

expect this estimated range of CO* diffusion rates on Cu is reasonable thus use it for the following

simulations. We note that the effective surface diffusion distance of CO* on Cu will decrease

with an increased surface coverage, and we will explore this effect in the simulations discussed in

Section III B.

Regarding the diffusion rate across the boundary (k4AB), Cu(211) composed of (111) terraces

separated by (100) steps is one way to represent the boundaries between Regions A and B. There-

fore, simulations with k4AB = 2×105 s−1 based on the binding energy (BE) of Cu(211) are used

for base case in Section III C. We also considered the possibility that the boundary sites might have

a larger binding energy than Cu(211), so simulations were also performed with smaller values of

k4AB as shown in Table VI.
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C. KMC simulation methods

1. Simulation conditions

To ensure that steady state conditions could be captured, we simulated a very selective case with

SA = PA = 0.1 for 360 s over a range of region sizes, total coverages, CO* binding energies, and

boundary diffusion rates. In all cases, steady state behavior was reached within 180 s (Figure S4).

As we expect less time to be required for less selective cases to reach steady state, all simulations

described below were performed for 180 s. For each set of input parameters, simulations were run

10 times and the mean values are reported.

2. Adaptation of Zacros KMC code for electrocatalysis

Although the Zacros simulation platform we employed was developed for thermal catalysis,42

it has a number of features that are well-suited to electrocatalysis, such as the equilibration of

reversible steps, the use of a cluster Hamiltonian, and a scaling feature to speed up simulations

if there are relatively fast or slow steps.43 Moreover, the code developers have made available a

number of Python wrapper scripts which prove to be very useful for simulation and data visual-

ization.

However, electrocatalysis differs in some key aspects from thermal catalysis. Compared to

thermal catalysis in which the absolute temperature can range within a relatively narrow range, the

potentials which drive electrochemical reactions can be controlled in a very wide range, with small

changes in potential on either side of the equilibrium condition producing extreme variations in

the rate constants for elementary steps. As a result, turn-over frequency and selectivity in a given

chemical network can depend sensitively on potential. Also, the changes in applied potential can

be quite fast compared to the increase or decrease of the temperature in a thermally driven catalytic

system.

Therefore, several adaptations for Zacros are required to enable application to heterogeneous

electrocatalysis. As one example, as described in the SI, we used the generalized prefactor term

in the Arrhenius expression to replicate Butler-Volmer behavior (Equation 4) with temperature

serving as a proxy variable for potential. KMC simulations of CO stripping were conducted and

compared with MKM predictions and KMC results from Koper.32 Agreement was excellent as

shown in Figures S5-10, validating the approach.
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FIG. 1: Factors that have a large impact on ∆13C. (a) KMC simulation results for active site sizes

L between 10 and 100 sites compared with MKM prediction (∆13C = 0) and no-mixing limit,

Equation 2. (b) KMC simulation results with various total surface coverages (θ ) for active site

size L = 10. Coverage of CO* is 0.3, k4 = 3×105 s−1, and k4AB = 2×105 s−1 for all cases.

Reported values are the average of 10 independent simulations. Numerical values are in Tables

S4 and S5.

III. COMPUTATIONAL RESULTS

Referring back to Equation (2) which describes the no-mixing limit, if either PA and SA is

smaller than 0.5, ∆13C will be non-zero and, in principle, experimentally observable. Figure 1a

shows the predictions of this model. For example, for PA = 0.1, SA = 0.1, ∆13C = 0.64 (star in

upper left corner of the 3D plot), while for a less selective case with PA = 0.4, SA = 0.4, the value

is only 0.04 (star in lower right corner). In contrast, in the limit of the mean field approximation

used in MKMs, ∆13C is 0 for all conditions as shown by the green pentagons in Figure 1a, because

the 12CO* and 13CO* on the surface will be completely mixed. We show in the following sections

that cases with a finite diffusion rate for CO* on Cu lie in between these extremes, beginning with

two factors which have a large influence on 13C fraction in C2 products: the size of Region A, B

(L sites per side) and the surface occupancy by adsorbates (θ ).

A. Effect of region size

To assess the influence of active site size on ∆13C, we varied L between 10 and 100, which

corresponds to region sizes between 2.5 nm to 25.5 nm as shown in Table VII. Larger active site
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TABLE VII: Region size L and the corresponding length

L (sites per side) 10 25 50 100

Length (nm)a 2.5 6.4 12.7 25.5

a The value is calculated based on Cu(100) lattice using the equation with a as the lattice constant of Cu: a√
2
L.

areas have a longer average path length for CO* to diffuse to the other region, and we expect to

have a larger ∆13C value predicted for the same values of PA and SA compared to smaller active

sites. This effect can be clearly seen in Figure 1a: in the L = 100 case, predicted values of ∆13C

are close to the no-mixing limit whereas for L = 10 they approach the mean-field approximation

limit of zero. As a result, in the limit of small active sites which are less selective, it may not

be possible to observe site selectivity by the isotope labelling approach. Conversely, for large (or

well-separated) active sites, it will be possible to obtain evidence of site selectivity.

B. Effect of surface coverage

If CO* only travels by surface diffusion, we would expect that the distance it can travel before

CO-CO coupling will depend on the surface coverage. Figure 1b shows that the total surface

coverage can have a large influence on ∆13C. Simulations were performed by fixing the coverage

of CO* at 0.3 for all cases and tuning the total coverage by adding spectator H* on the surface. We

fixed the active site size at L = 10 because very small values of ∆13C are predicted at θCO = 0.3

in the absence of H* (purple triangles in both Figures 1a and 1b). With a small amount of H*

added to the surface (θ = 0.5, blue squares), the value of isotope difference only increases a little,

suggested by the smaller distance between blue squares and purple triangles with the same active

site properties (PA and SA, the same perpendicular line to the x-y plane in Figure 1b). Evidently, at

smaller total coverage, CO* is still surrounded by a sufficient number of empty sites for diffusion

to be effective in isotope scrambling.

However, when the total surface coverage is 0.7, the diffusion of CO* on the surface is substan-

tially hindered, thus resulting in a large increase in ∆13C. With further H* added until 0.9 of the

surface is occupied (red circles), the increase in ∆13C becomes even larger, suggesting with such

a high surface occupancy, the diffusion of CO* on the surface towards the boundaries between

different types of active sites before being transformed to the CO2R products is much slower. In
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this case, an observable difference in the 13C fraction in C2 products might still be observable even

though the active sites are quite close (L = 10, 2.5 nm).

C. Sensitivity to diffusion rate within Regions A and B (k4)

As discussed before (Section II B 3), the possible range of surface diffusion rate of CO* on Cu

is bounded by the range of the largest binding energy to the lowest binding energy of CO* on Cu.

Therefore, here, we compared the impact of surface diffusion rate within this estimated range on

the 13C fraction in the products. Figure 2a summarizes the effect of diffusion rate within Regions

A and B: cases considered use k4 = 1× 105, 3× 105, and 19× 105 s−1 corresponding to facets

with highest binding energy (−0.85 eV), Cu(100) (−0.62 eV), and facets with lowest binding

energy (−0.24 eV), respectively. Other parameters were region size L = 25, and diffusion rate

across the boundary of Regions A and B k4AB = 2×105 s−1. Surprisingly, ∆13C is comparatively

insensitive to the CO* diffusion rate compared to region size and surface occupancy, even with the

large range of binding energies and the corresponding diffusion rates. Even for the case where the

highest ∆13C is expected (PA = SA = 0.1), the difference between the largest binding energy to the

lowest are only 0.055. For the cases where the active sites are not so selective, the difference in

∆13C is even smaller among facets with different binding energies.
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FIG. 2: Factors that have little impact on the isotope fraction in products. (a) Binding energy of

CO* on Cu (BE) that influences the surface diffusion rate within Region A, B (k4). Plots show

the comparison for cases with −0.85, −0.62, −0.24 eV, representing the facets with highest CO*

binding energy, Cu(100), and facets with lowest CO* binding energy. (b) Diffusion rate constant

across the boundaries (k4AB). L = 25 with a total coverage of 0.3 for all cases. The data in the plots

are an average of 10 KMC trajectories, see tabulated values in Tables S6 and S7.

D. Sensitivity to diffusion rate across the boundary (k4AB)

We investigated the possibility that strong CO* binding at the boundaries between regions

might slow the overall diffusion of CO*. For base case simulations we use the CO* diffusion rate

on Cu(211) to represent the boundaries between Regions A and B (k4AB = 2× 105 s−1). Other

situations with much higher binding energy, such as vacancies, can be envisioned to exist at the

site boundaries. To capture their behavior, we decreased k4AB to 1× 105 and 5× 104, s−1, with

these values corresponding to the largest CO* binding energy and half of it, respectively. Other

parameters used were L = 25, and k4 = 3× 105 s−1. Similar to the effect of diffusion within

the active site regions, the effect of diffusion rate across the boundary is small (Figure 2b). An

additional effect might occur for very small active site areas. In this case, products generated

at the boundaries will be a larger fraction of the total production. As we have assumed that the

boundaries are not product selective, this would decrease the overall ∆13C.
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IV. DISCUSSION

A. Comparison with experimental observation

Our KMC simulations clearly show that surface diffusion of adsorbates reduces ∆13C to a

greater or lesser degree for all considered cases. As a result, measurement of ∆13C with a mixed
13CO/12CO2 feed will provide an underestimate of the actual site selectivity. Furthermore, the

sites need to be very selective in order for experimental evidence for them to be found in this way.

In the isotope labelling experiment, the difference in 13C fraction in CO2R products was only

observed on OD Cu, but not on Cu(100) or Cu(111). The present results show that the null result

for oriented Cu does not rule out the possibility that they may have product-selective sites, steps vs.

terrace sites, for instance. Indeed, the impact of surface diffusion might be larger for oriented Cu

compared to nanostructured OD Cu, because the latter may contain more defects that increase the

CO* coverage or the coverage of spectator species, such that the overall diffusion rate is decreased,

leading to a higher ∆13C as depicted in Figure 1b.

The experimentally observed value for OD Cu was ∆13C = 0.12 at −0.56 V vs. RHE. We

discuss here the selectivity and diffusion parameters which would allow this value to be observed.

As we do not know the selectivities for ethylene vs. ethanol (SA) and 12CO2 reduction vs. 13CO

adsorption (PA), these were varied parametrically for different active site areas (L = 25, 50, 100),

total coverages (θ = 0.7, 0.9), CO* binding energies (−0.24 eV, −0.62 eV, −0.85 eV), and k4AB

(5×104, 1×105, 1×105 s−1), see Figures S11-14 for details.

Figure 3a considers different region sizes (L). For all cases, either SA or PA needs to be smaller

than 0.4 for 13C = 0.12, the experimentally observed value, to be predicted. For example, for

L = 25, when the active sites are very product-selective (SA = 0.1), PA only needs to be 0.334,

which is not very selective between CO2 reduction and CO adsorption (PA). However, when the

sites are very similar and not obviously selective for specific product (SA = 0.3), PA needs to be

0.1, very selective for CO2 reduction vs. CO adsorption. For the largest region size (L = 100) the

requirements approach those of the no-mix limit, Equation 2. A clear shift to higher selectivity

requirement is observed when the region size becomes smaller. For small region size (L = 10), no

matter how selective the sites are (within the simulation range), the predicted ∆13C is always less

than 0.12. As a result, no parametric curve for this case is plotted. Figure 3b considers different

total coverages (θ ) for L = 10. For conditions with small total coverage (θ is 0.3 and 0.5), the
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observed ∆13C for all situations (SA and PA) is smaller than 0.12, thus not plotted. However, when

the total surface occupancy increases (θ is 0.7 and 0.9), and the effective diffusion of CO* is

limited, the isotope difference can be observed.

This analysis shows that relating the isotope labeling results to intrinsic site selectivity will

require knowledge of the surface coverage of CO*. Moreover, controlled introduction of spectator

species can be used to modulate the surface diffusion of CO* and thus quantify its influence. It

is even conceivable that this approach could reveal site selectivity for oriented Cu. Finally, we

evaluated the influence of diffusion within and between the sites but found, as could be expected

by examination of Figure 2, that these have only a small influence on the selectivity requirements

as expected (Figure S15).

We also note that ∆13C observed from OD Cu decreases as the applied potential becomes more

negative (Figure S1). With more negative potential applied, the surface occupancy should be

higher although the composition may change,13 and we could expect slower surface diffusion of

CO* and hence a larger value of ∆13C, which is the opposite of the experimental observation. It

appears that either the active sites become less selective for the generation of ethylene vs. ethanol
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or less selective for CO2 reduction vs. CO adsorption at more negative potentials. Another possi-

bility might be that the more negative potential has triggered other less selective active sites, again

reducing the value of ∆13C .

B. Limitations and possible extensions of KMC model

We have considered the simplest possible model that could yield the observed behavior. Here,

we discuss limitations of the model and at same time provide some possible extensions which

could be implemented if more information about the surface under electrocatalytic conditions

were available.

In the present model, the domain size size L and the surface diffusion coefficient DCO have a

similar effect: i.e., decreasing L and/or increasing DCO both lead to more isotopic mixing between

the two regions. This naturally leads to the question as to why we considered them separately.

Importantly, these two parameters have different physical origins and could, in principle, be con-

trolled separately. For example, the oxidation/reduction cycling used to produce OD Cu is known

to reduce the grain size (smaller L). At the same time, different facets and grain boundaries of

Cu have different binding energies for CO. It is thus possible to imagine that KMC modelling of

the type introduced here could be used to design catalysts which would balance these effects to

control selectivity.

It is relevant to consider how the model could be extended to capture the complex interplay of

the the gas/solid/liquid interface with the catalyst surface which is known to exist in electrochemi-

cal CO2R.4,28,44 Experimental information about the catalyst surface, including the active site size,

the gas/adsorbate exchange rate, and surface diffusion would allow construction of models with

fewer estimated parameters and conditions, hence yielding more useful insight.

We considered a very simple two-site model with PA+PB = 1 and SA+SB = 1, but CO2 reduc-

tion on Cu can generate a variety of C1-C3 products. It would be straightforward to add pathways

to additional products, particularly if the relevant intermediates and product ratios were known.

Also, a more realistic surface model with inactive and/or non-selective sites could also be imple-

mented. The boundaries between active regions could possess complete different properties from

the active regions and may also have a gradual impact area that is not considered in the simplified

two-site model. More types of active sites and specific designed lattice structures could be used to

better describe the surface.
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Our model only considered CO* transport by surface diffusion. However, there is some evi-

dence that CO* can desorb and re-adsorb on the Cu surface during CO2R.45 In the context of an

isotope labelling experiment, the 12CO* reduced from the 12CO2 may also have a chance to partic-

ipate in the CO adsorption equilibrium and blend with the 13CO feeding gas and be re-adsorbed to

the surface. This scenario could be considered by adding a step describing the desorption of CO*

based on the information of exchange rate (CO∗ GGGBFGGG CO(g)) and the tracking of a near-surface

reservoirs of CO(g).

In our two-site model, SA and PA are separately determined parameters. However, one might

expect that, based on scaling relationships, that these descriptors would be correlated with each

other. Thus, there is an opportunity to use DFT and/or molecular dynamics to narrows the range

of values for SA and PA, particularly if the structure of the active sites is known.

The model only considered a single metal, Cu. The model could be extended to simulate

bimetallic catalysts, where it has been proposed that CO* (CO) generated on CO-selective ele-

ments (Au, Ag) can spillover to Cu to be further reduced to multi-carbon products.46–48 The KMC

simulations could also track variations in surface occupancy, such as found in island formation of

adsorbates.49 Is is known that Cu can undergo non-uniform surface reconstruction during CO2R;

this can be captured by dynamically changing the lattice structure during the KMC simulations.

Finally, the present model considers only C2 products. It could be extended to C3 products such

as propanol, particularly if information on the surface diffusion of the C2 intermediates becomes

known.

V. CONCLUSIONS

In summary, we have performed Kinetic Monte Carlo simulations of electrocatalytic CO2 re-

duction on Cu, adopting the open source software Zacros to do so. We employed a two-site model

(A, B) to investigate the impact of surface diffusion on the difference in 13C fraction in C2 prod-

ucts (∆13C) from electrocatalytic CO2 reduction when Cu is cofed with 13CO and 12CO2. If Sites

A and B have different selectivities for hydrocarbon vs. oxygenate production, differences in the
13C content of these products would expected; however, fast surface diffusion would scramble the
13CO* and 12CO*, which would reduce the effect.

Results show that measurement of ∆13C with a mixed 13CO/13CO2 feed will provide an under-

estimate of the actual site selectivity if the impact of surface diffusion is not considered. ∆13C is
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largely influenced by the active site size and the total surface occupancy, but is less sensitive to

the diffusion rate within the region with identical active sites and across the boundaries between

regions as long as it is in the estimated reasonable range for CO* on Cu based on previous research.

The comparison between KMC results and the experimental observations provide the require-

ments of site selectivity towards products and for CO2 reduction vs. CO adsorption to observe

the difference in 13C fraction in products. If information on the surface coverage of CO or of its

diffusion rate were available, the intrinsic selectivity of the active sites for C2 products could be

determined. Finally, using the Python workflow with simple modifications, the presented KMC

simulation approach can be easily adapted to other electrocatalytic systems.

SUPPLEMENTARY MATERIAL
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