
UC San Diego
UC San Diego Previously Published Works

Title
Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives.

Permalink
https://escholarship.org/uc/item/6340036s

Authors
Kal, Satadeepa
Mahata, Sumana
Mahata, Sushil
et al.

Publication Date
2024-02-01

DOI
10.1016/j.peptides.2023.171147
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6340036s
https://escholarship.org/uc/item/6340036s#author
https://escholarship.org
http://www.cdlib.org/


Mitochondrial-derived peptides: Antidiabetic functions and 
evolutionary perspectives

Satadeepa Kala, Sumana Mahatab, Suborno Jatic, Sushil K. Mahataa,d,*

aDepartment of Medicine, University of California San Diego, La Jolla, CA, USA

bDepartment of Anesthesiology, Riverside University Health System, Moreno Valley, CA, USA

cDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 
USA

dVA San Diego Healthcare System, San Diego, CA, USA

Abstract

Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded 

by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types 

of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S 

rRNA type-c), and SHLP1–6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA 

(MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1–6 are encoded 

by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as 

compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard 

start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; 

(iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and 

MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand 

of the mtDNA, SHLP1–5 are encoded by the L (light owing to less guanine + thymine base 

composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 

diabetes (T2D), gestational diabetes, Alzheimer’s disease (AD), cardiovascular diseases, prostate 

cancer, and macular degeneration. The current review will focus on the MDP regulation of 

T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for 

conservation of the amino acid sequences of MDPs.
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1. Introduction

Mitochondria, originated from once free-living α-proteobacteria [1-3], are responsible for 

aerobic generation of ATP: the molecular currency that provides the chemical energy to fuel 

vital cellular processes [4]. In addition, mitochondria form highly connected networks called 

mitochondrial reticulum and communicate with the nucleus through retrograde signaling, 

which allows communication from mitochondria to the nucleus via secondary messengers 

including Ca2+, ATP/ADP, NAD+/NADH ratios, and other small molecules [5,6]. Due to 

their bacterial origin, mitochondrial genome inherited bacterial-like traits including circular 

and double-stranded DNA molecules (mtDNA), which are small (16,569 nucleotides in 

humans) and compact. mtDNA contains 37 genes that encode 13 subunits of the oxidative 

phosphorylation (OXPHOS) system, two ribosomal RNAs (rRNAs), and 22 transfer RNAs 

(tRNAs) [7]. The mtDNA has no introns but a few non-coding nucleotides between adjacent 

genes and “small open reading frames” (sORF ≤ 300 nucleotides) that encode functional 

“mitochondrial-derived peptides” (MDPs, 16–38 amino acids long) [8]. Three types of 

MDPs have so far been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within 

Twelve S rRNA type-c) and SHLP (small Humanin-like peptide, 1 to 6), expanding the 

expression of mitochondrial proteome [9]. MDPs, released into the body via paracrine and 

endocrine pathways, exert diverse functions as cytoprotective agents, such as maintaining 

cell viability and mitochondrial function under stress; are involved in cellular metabolism 

and cell survival and act in response to inflammation and oxidative stress [10-12].

Type 2 diabetes (T2D), the most common type of diabetes in adults (>90%), is 

characterized by hyperglycemia from to progressive loss of insulin secretion from the 

β-cells superimposed on a background of insulin resistance (IR), leading to relative insulin 

deficiency. Obesity (body-mass index [BMI]>30 kg/m2) is the strongest risk factor for 

T2D in East Asian populations [13,14] and is associated with metabolic abnormalities 

resulting in IR [15]. IR is associated with decreases in insulin-mediated glucose uptake 

in skeletal muscle and white adipose tissue [16-18], and an increase in hepatic glucose 

production (HGP) [19]. In contrast, type 1 diabetes (T1D) is characterized by autoimmune 

destruction of pancreatic β-cells, resulting in absolute insulin deficiency and hyperglycemia 

and is more common in males [20-23]. T1D accounts for ~5% of diabetes in adults. 

The prevalence of diabetes globally counts to 536.6 million people as of 2021 and is 

predicted to reach a 783 million by 2045 [24]. T2D causes mitochondrial dysfunction by 

reducing bioenergetic capacity and increasing production of reactive oxygen species (ROS) 

[25,26]. In fact, diabetes is associated with premature death, caused mainly by coronary 

artery disease [27-29], stroke [30-32], or renal dysfunction [33-36]. The levels of MDPs 

have been reported to decrease in diabetes, which results in metabolic dyshomeostasis 

[37]. Administration of MDPs to rodents or exposure of primary/immortalized cell lines 

with MDPs was shown to increase insulin sensitivity, reduce lipid accumulation, promote 

mitochondrial biogenesis, and increase energy expenditure [11,38-41].

In the current review, we will provide an up-to-date knowledge on regulation of T2D and 

T1D by MDPs. We will also highlight the evolutionary pressures on conservation of the 

amino acid sequences of MDPs.
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2. Mitochondrial genome and mitochondrial-derived peptides

The mtDNA was discovered in 1963 by electron microscopy and described as a bacterial-

like circular DNA [42,43]. The near complete sequence for human mtDNA was reported 

in 1981 [7], which was minimally revised in 1999 [7]. MtDNA in humans is an 16,569 

bp long double-stranded circular molecule, composed of heavy (H) and complementary 

light (L) strands, which encode 11 mRNAs that give rise to 13 subunits of the oxidative 

phosphorylation (OXPHOS) system, 22 transfer RNAs (tRNAs) and two ribosomal RNAs 

(rRNAs) that are essential for mitochondrial translation. The H-strand of the mtDNA 

encodes HN, SHLP6, and MOTS-c, while the L-strand encodes SHLP1–5 [44]. mtDNA 

uses ATA, ATT, and ATG as start codons, AGA and AGG (which code for arginine in 

nuclear DNA) as stop codons, and UGA (the standard stop codon in nuclear DNA) to 

code for tryptophan [45-47]. The mitochondrial genome is highly compact as it contains no 

introns and little non-coding DNA (a ~1 kb sequence known as the non-coding region NCR 

(mistakenly referred to as the D-loop) and a distant ~30 nucleotide sequence containing the 

origin of replication for the L-strand OriL) (Fig. 1). The NCR contains one transcription 

promoter for each strand (light strand promoter – LSP; heavy strand promoter – HSP) as 

well as the origin of replication for the H-strand (OriH). Almost all mitochondrial genes, 

including those that encode 12 subunits of the OXPHOS system (the monocistronic ND1–3, 
ND5, Cytb and COI-III, and the biscistronic ND4/ND4L and ATP6/ATP8), 2 mtRNAs (12 S 

and 16 S), and 14 mt-tRNAs (F, V, L, I, M, W, D, K, G, R, H, S, L, T), are transcribed from 

the template of the G-rich H-strand under the control of the HSP. The L-strands serve as a 

template to produce only 1 mitochondrial messenger RNA (mtRNA) that encodes subunit 6 

of NADH dehydrogenase (ND6), and 8 mt-tRNAs (Q, A, N, C, Y, S, E, and P).

2.1. MTRNR2 gene and the encoded peptides

Emerging studies indicate that the mtDNA contains sORF, expanding the mitochondrial 

genetic repertoire [11,12,48-50]. The 16 S ribosomal RNA gene is 1559 nucleotides in 

length, found within the MTRNR2 gene and spans mtDNA 1671–3229 bp. Humanin (HN), 

encoded as a 75-bp polycistronic sORF within the 16 S rRNA, was the first sORF to be 

identified in 2001 in the mtDNA [10,48,51]. In 2016, six additional peptides in the same 

region of mtDNA as HN (i.e., 16 S rRNA) were identified and named small HN-like 

peptides (SHLPs):SHLP1 (2490–2561 bp), SHLP2 (2092–2170 bp), SHLP3 (1707–1821 

bp), SHLP4 (2446–2524 bp), SHLP5 (2785–2858 bp), and SHLP6 (2992–3051 bp) [11].

2.2. MTRNR1 gene and the encoded peptide

The 12 S 954 bp rRNA gene (MTRNR1) spans from 648–1601 bp and encodes for MOTS-c 

(Mitochondrial ORF within Twelve S rRNA c: 1343–1393 bp) [12], which was discovered 

in 2015.

3. Primary sequence, physicochemical properties, and evolutionary 

pressures in the MDPs

The importance of a peptide is usually determined through loss (knockout or siRNA 

knockdown of the peptide domain) and gain (supplementation of the peptide to knockout/
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knockdown organism/cells) of function studies [52-54]. Although attempts have been made 

on mitochondrial genome editing by CRISPR [55], knockout of mitochondrial ORFs is 

yet to be achieved. Therefore, HN was knocked down using siRNA, which reduced its 

antiapoptotic and neuroprotective effects [51, 56]. The other straightforward test to assess 

the importance of a peptide relies on the evolutionary pressure on preservation of amino acid 

sequence, which has recently been applied in MDPs [57].

3.1. Gene symbol and primary sequences of MDPs

Below are the gene symbols and the amino acid sequences of the MDPs: MTRNR2: 

Humanin (MAPRGFSCLLLLTSEIDLPVKRRA).

MTRNR1: MOTS-c (MRWQEMGYIFYPRKLR).

MTRNR2: Small HN-like peptide 1 (SHLP1: MCHWAGGASNTGDARGDVFGKQAG).

MTRNR2: Small HN-like peptide 2 (SHLP2: MGVKFFTLSTRFFPSVQRAVPLWTNS).

MTRNR2: Small HN-like peptide 3 (SHLP3: MLGYNFSSFPCGTISIAPGFNFYRLYFI-

WVNGLAKVVW).

MTRNR2: Small HN-like peptide 4 (SHLP4: MLEVMFLVNRRGKICRVPFTFFNLSL).

MTRNR2: Small HN-like peptide 5 (SHLP5: MYCSEVGFCSEVAPTEIFNAGLVV).

MTRNR2: Small HN-like peptide 6 (SHLP6: MLDQDIPMVQPLLKVRLFND).

3.2. Physicochemical properties of MDPs

The physicochemical properties of MDPS (Humanin, MOTS-C. SHLP1. SHLP2. SHLP3. 

SHLP4. SHLP5, and SHLP6) are provided in Table 1.

3.3. Evolutionary pressures in the MDPs

3.3.1. Humanin—Several cDNAs sharing sequence homology to HN have been 

identified in plants, nematodes, and rodents demonstrating that HN is evolutionary 

conserved [48]. Furthermore, amino acid sequence alignments of HN in primates (n = 

252), mammals (n = 148) and vertebrates (n = 359) revealed that HN is conserved across 

vertebrates with seven residues (A2, F6, L9, L10, L18, R22, and R23) showing codon bias 

(fsyn ≥ 0.5) [57] (Table 2). In vertebrates, two regions are highly conserved, corresponding 

to the codons for C8, L9 and E15, I16. The authors implied to hypothesize that this 

conservation might be critical for ribosome function, or could be critical for HN function, 

or a combination of both [57]. Since methionine has only one codon in the standard DNA 

code, no fsyn value is provided in Tables 2-6. “Ter” stands for termination, or the stop codon. 

Values of fsyn ≥ 0.5 are presented in bold font.

3.3.2. MOTS-c—Amino acid sequence alignments of MOTS-c in primates (n = 254), 

mammals (n = 178) and vertebrates (n = 348) revealed that MOTS-c has almost no 

synonymous codon bias (fsyn ≥ 0.5) [57] (Table 3). MOTS-c, however, contains a highly 

conserved pentapeptide MGYIF in the middle of the sequence.
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3.3.3. SHLP1—Amino acid sequence alignments of SHLP1 in primates (n = 217) 

showed poor start codon conservation (33%) and almost no synonymous codon bias (fsyn ≥ 

0.5) [57].

3.3.4. SHLP2—Amino acid sequence alignments of SHLP2 in primates (n = 219), 

mammals (n = 174) and vertebrates (n = 369) revealed poor sequence conservation and 

almost no synonymous codon bias (fsyn ≥ 0.5) [57]. In primates, SHLP2 displayed an fsyn > 

0.5 in only one amino acid (L29). L15 and Y16 showed fsyn values close to 0.5 (Table 4).

3.3.5. SHLP3—Amino acid sequence alignments of SHLP3 in primates (n = 221) 

showed poor start codon conservation (18%) and almost no synonymous codon bias (fsyn ≥ 

0.5) [57].

3.3.6. SHLP4—Amino acid sequence alignments of SHLP4 in primates (n = 215), 

mammals (n = 144) and vertebrates (n = 339) revealed highly conserved N-terminal region, 

with many invariant bases (L2, R11, G12, and L26 in primates; L2, V4, R11, and F21 in 

mammals; R11, G12, and F19 in vertebrates), and is flanked by amino acids, L2 and R11 [57] 

(Table 5). Based on the above sequence conservation, the authors suggested the occurrence 

of purifying selection in mammals [57].

3.3.7. SHLP5—Amino acid sequence alignments of SHLP5 in primates (n = 216) 

showed poor start codon conservation (30%) and almost no synonymous codon bias (fsyn ≥ 

0.5) [57].

3.3.8. SHLP6—Amino acid sequence alignments of SHLP6 in primates (n = 242), 

mammals (n = 147) and vertebrates (n = 348) revealed SHLP6 as the most conserved MDP. 

The following residues showed synonymous codon bias (Q4, D5, L12, and V15 in primates; 

Q4, D5, and Q10 in mammals; D3, Q4, Q10, and L12 in vertebrates) (Table 6). Unlike other 

MDPs, the stop codon in SHLP6 is also highly conserved [57]. Like SHLP4, the authors 

opined that SHLP6 has also undergone purifying selection.

4. Functions of mitochondrial-derived peptides

4.1. HN

The term Humanin (HN) was coined after ‘humanity’ by Hashimoto [48]. HN has 

a positively charged N-terminal (Met1-Ala2-Pro3-Arg4), central hydrophobic region 

(Gly5-Phe6-Ser7-Cys8-Leu9-Leu10-Leu11-Leu12-Thr13-Ser14-Glu15-Ile16-Asp17-Leu18), and 

negatively charged C-terminal (Pro19-Val20-Lys21-Arg22-Arg23-Ala24) (Fig. 2). The above 

three domains help HN to bind hydrophobic pockets of proteins to form alpha helix [58]. 

Arg substitution of HN identified two structures – Leu9-Leu11 and Pro19-Val20, which are 

essential for the secretion of full-length HN [59]. Leu10 plays the most crucial role in this 

function. Utilizing Ala-scanned HN constructs, Yamagishi et al. identified that Pro3, Ser7, 

Cys8, Leu9, Leu12, Thr13, Ser14, and Pro19 were essential for the neuroprotective function of 

HN and that Ser7 and Leu9 were essential for self-dimerization of HN, which are critical for 

its neuroprotective action [59].
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4.1.1. HN binding partners, receptors and intracellular signaling—HN binds 

to many binding partners [60-67], some of which are regarded as receptors for HN. HN 

signals through binding to both intracellular molecules and putative cell membrane receptors 

[68-72]. Intracellularly, HN binds to B-cell lymphoma-2 (Bcl-2)-associated X (Bax) [51], 

Bcl-2-interacting mediator of cell death (Bim) [65], and Bcl-2-homology domain 3 (BH3)-

interacting protein (Bid) [64], and inhibits their proapoptotic effects (Fig. 3) [64]. HN is 

also reported to bind to insulin-like growth factor binding protein 3 (IGFBP-3) and regulates 

cell survival [65]. Besides the above, HN is shown to bind to actinin 4 [73], a tripartite 

motif protein TRIM11 [63], and M-phase phosphoprotein 8 (MPP8) [74]. Extracellularly, 

HN binds to human G protein-coupled formyl peptide receptor-like-1 (FPRL-1) and its 

murine counterpart FPRL-2 [61]. Of note, FPRL-1 and FPRL-2 are also functional receptors 

for Amyloid β (Aβ) 42 [61]. HN also binds to a tripartite cytokine-like receptor complex 

comprising the ciliary neurotrophic factor (CNTF) receptor, the IL-27 receptor WSX1, and 

glycoprotein (gp) 130 [62]. Activation of these receptors upregulate the Janus Kinase (JAK) 

2 and STAT-3 pathways (Fig. 3) [62].

4.1.2. HN mimetics/analogs—The most prominent finding in the structure-function 

analyses of HN is the substitution of Gly for the 14th Ser residue (HN-S14G), which 

enhances the neuroprotective activity (10 nM for HN-S14G versus 10 μM for HN) by 1000-

fold [48]. Comparable neuroprotective efficacy was achieved when L-Ser14 was substituted 

to D-Ser14 [75]. The hydrophobic structure of HN made by Leu12 to Ile16 was reported 

to be disrupted when Gly or D-Ser was substituted for Ser14, which was implicated for 

their enhanced potencies [75,76]. HN-S14G has also been reported to be more stable than 

HN [77]. The third HN mimetic constitute a substitution of Phe in the 6th position with 

Ala (HN-F6A), which changes the binding of HN to IGFBP-3 and enhances its main effect 

on glucose metabolism and insulin sensitivity [67]. The fourth HN mimetic HN-F6A-S14G 

(where F6 was changed to A and S14 was changed to G) was found to reduce atherosclerotic 

plaque size in the proximal aorta of ApoE deficient mice [78].

4.1.3. HN regulation of type 2 diabetes (T2D)—T2D, a heterogenous disease 

caused by an interaction between genetics (non-modifiable) and environmental (modifiable) 

factors, increase the risk for insulin resistance, β-cell dysfunction, obesity and ultimately 

leads to the development of T2D [79-84], which is the most common metabolic disease. 

T2D is associated with mitochondrial dysfunction (dysregulation of glucose homeostasis 

and derangement of metabolism) and oxidative stress (caused by hyperglycemia-induced 

generation of ROS) [85,86]. HN and its mimetic play a significant role in the mitigation of 

T2D.

4.2. Ex-vivo studies in pancreatic islets

Since impaired glucose-stimulated insulin secretion (GSIS) has been reported in islets 

obtained from diabetic mice and humans [87,88], the HN mimetic HN-F6A-S14G was tested 

for its effect on GSIS in isolated islets from 3-mos-old wild-type (WT) and db/db diabetic 

mice. The exposure of islets to 16 mM glucose plus HN-F6A-S14G (50, 250, or 500 ng/ml) 

resulted in augmented insulin secretion (by 3-fold) in islets from WT and 2.5-fold in islets 
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from diabetic mice [89], indicating that HN mimetic HN-F6A-S14G potentiates GSIS in 

diabetic mice.

4.3. In vitro studies in mouse βTC3 cells

Like in pancreatic islets, treatment of βTC3 cells (derived from transgenic mice carrying 

a hybrid insulin promoter-simian virus-40 tumor antigen gene) with 16 mM glucose plus 

HN-F6A-S14G (50 ng/ml) caused > 2-fold increase in insulin secretion [89]. HN-F6A-S14G-

induced insulin secretion was evident after 60 min exposure to 16 mM glucose, which 

coincided with HN-F6A-S14G-induced ATP production. The authors did not explain why 

it took 60 min for HN-F6A-S14G to induce secretion of insulin. Mitochondrial membrane 

potential was not affected by treatment with HN-F6A-S14G [89].

4.4. In vivo studies in rodents

Intracerebroventricular (ICV) administration of HN in 3-mo-old Sprague-Dawley rats under 

basal insulin levels (~1.41 ng/ml) during pancreatic-euglycemic clamp studies was reported 

to cause a significant increase in glucose infusion rate (GIR) to maintain euglycemia [90]. 

The authors believed that increased GIR was due to enhanced hepatic insulin sensitivity 

owing to decreased HGP.

Under physiologic hyperinsulinemic clamp conditions (insulin levels 3.9 to 4.6 ng/ml), ICV 

HN into the third ventricle was reported to cause a significant increase in GIR, which was 

secondary to suppression of HGP (62% in controls vs ~82% in HN-infused group) and 

associated with enhanced uptake of glucose in skeletal muscle, which the authors implicated 

an overall improvement in peripheral insulin sensitivity [90]. The authors reported that 

HN increased phosphorylation of the insulin sensitive AKT (pAKTS473) and Acetyl-CoA 

Carboxylase (pACCSer79) in skeletal muscle and phosphorylation of STAT-3 (pSTAT-3 

Tyr705) in the hypothalamus, the latter was believed by the authors to be critical for the 

effects of HN on glucose metabolism [90].

Intravenous administration (at a rate of 0.375 μg/g/hr) of a potent HN mimetic HN-F6A-

S14G during a hyperinsulinemic clamp resulted in a significant increase in GIR accompanied 

with increased glucose uptake in muscle and suppression of HGP. The effects of HN-F6A-

S14G on GIR and GSIS were also tested in 3-mo-old male Sprague-Dawley rats in a 

hyperglycemic clamp study where rats were subjected to 2 h of moderate hyperglycemia 

(11 mM) followed by glucose infusion for 2 h to maintain the above hyperglycemia. Rats 

received 20 μg of HN-F6A-S14G as a bolus injection followed by continuous infusion at the 

rate of 0.07 μg/g/h over 2 h. Under this condition, HN-F6A-S14G caused a moderate increase 

in GIR (~30%) and a ~2-fold increase in insulin level during the last hour of the clamp [89].

4.5. Studies in humans

Gestational diabetes mellitus (GDM) is defined as hyperglycemia during pregnancy and 

reflects an early stage of T2D [91,92]. Plasma HN level was reported to be significantly 

lower in women with GDM, where the HN level was negatively correlated with weight, 

body-mass index (BMI), and HOMA-IR and might serve as a predictor for the diagnosis of 

GDM [93]. Like GDM, T2D patients with or without complications also show decreased 
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levels of plasma HN [94]. In primary human hepatocytes, HN was reported to prevent 

palmitate-induced hepatic lipid accumulation, and insulin resistance (IR) via AMPK-

mediated suppression of the mammalian target of rapamycin (mTOR)/ sterol regulatory 

element-binding protein (SREBP1) pathway [95].

Polycystic ovary syndrome (PCOS), an endocrine disorder, is characterized by 

hyperandrogenism and IR [96,97]. HN was reported to be downregulated in the ovaries 

of PCOS patients with IR as compared to patients without IR [98].

A 12-week resistance training intervention (three times with 60 min/ session/week for 12 

weeks) has been reported to cause ~32% increase in HN in skeletal muscle in a male 

population with impaired glucose regulation [99]. The authors, however, did not find 

any change in serum HN levels after the above intervention. It has also been reported 

that patients with impaired fasting glucose had decreased levels of HN protein in plasma 

compared to a healthy control group [100].

4.5.1. HN regulation of Type 1 diabetes (T1D)—Type I Diabetes (T1D), an 

autoimmune disorder, is characterized by infiltration of immune cells (T cells and 

macrophages) which release cytokines like IL-β, IFN-γ, TNF-α during this autoimmune 

response and are important mediators of destruction of pancreatic β-cells [101,102]. 

Alterations in mitochondrial electron transport [103], mitochondrial reactive oxygen species 

[103], mitochondrial nitric oxide [104,105], and mitochondrial hyperpolarization of β-cells 

[106] are also critical for the destruction of pancreatic β-cells, implicating a link between 

mitochondria and T1D. It is becoming increasingly evident that apoptosis is the principle 

cause of β-cell death in the development of T1D [107]. Furthermore, evidences indicate 

β-cell loss by apoptosis after islet graft [108,109].

It has been reported that HN dose-dependently (1 to 1000 nM) protected (by 50%) NIT-1 

insulinoma cells from serum starvation (24 h)-induced apoptosis [110]. The authors have 

shown abolition of the protective effect of HN after co-treatment with a specific STAT3 

inhibitor, which implied STAT3 as a crucial player in this anti-apoptotic effect. HN (1000 

nM) was also shown to reduce IFNγ (5 ng/ml) and TNFα (5 ng/ml)-induced apoptosis in 

NIT-1 cells [110]. In humans, plasma HN levels were reported to be elevated in T1D men 

compared to T1D women [111].

4.5.2. HN regulation of Alzheimer’s disease (AD)—Alzheimer’s disease (AD), 

a leading cause of dementia around the globe [112], is characterized primarily by the 

extracellular deposition of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles 

[113-115]. The disease clinically presents with a slow progression of cognitive and 

behavioral impairment that severely affects day-to-day life [116,117]. Exposure of primary 

mouse cortical neurons with Aβ1–42 resulted in 70–80% death of neurons within 72 h as 

compared to 20–30% death of neurons in non-treated control cells. Treatment of Aβ1–42 

exposed primary mouse cortical neurons with HN (10 μm) or its mimetic HN-S14G (10 nM) 

completely prevented the death of cortical neurons [60]. The authors found that the peptide 

domain from Pro3 to Pro19 was responsible for neuroprotective action of HN, in which seven 

residues (Pro3, Leu9, Leu12, Thr13, Ser14 and Pro19) turned out to be essential [60]. Leu9 
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was later identified as the only amino acid residue that is essential in secretion, dimerization, 

and maintenance of the intact neuroprotection core domain Pro3-Pro19 [59]. It is becoming 

increasingly evident that formyl peptide receptor 2 (FPR2) serves as a receptor mediating the 

Aβ1–42-elicited proinflammatory responses that are implicated in the pathogenic process of 

AD. FPR2 was identified as a functional receptor of HN and the competitive binding of HN 

and FPR2 is attributed to the neuroprotective action of HN [118].

It was reported that after 3 and half months of intranasal treatment of 3xTg-AD mice 

(harboring APPswe, tauP301L, and PS-1M146V) with HN-S14G (10 nmol, 5 days a week), 

male mice showed significant improvement in spatial learning and memory [119]. In the 

Morris water maze test, HN-S14G-treated mice showed significant difference between 

platform quadrant and opposite quadrant. The time spent in the area within 60 cm from 

the platform location was significantly longer for HN-S14G-treated male mice than for the 

vehicle-treated control mice, suggesting better cognitive and memory function HN-S14G-

treated mice than control [119].

HN-S14G was also reported to ameliorate amnesia caused by muscarinic receptor antagonist 

[120-122].

4.5.3. HN regulation of healthy aging and lifespan—Aging leads to senescence, or 

a breakdown of biological processes. In addition, aging exhibits an incapacity to respond to 

metabolic stress [123] and is deeply associated with the accumulation of mtDNA mutations 

and the resultant metabolic dysfunction [124,125]. Evidences indicate that serum levels 

of HN negatively correlates with age and aging-associated diseases like T2D [94,126], 

AD [127] and cardiovascular diseases [128-130], indicating that supplementation of aging 

organisms with HN is expected to increase lifespan. Thus, HN-overexpressed transgenic 

worms experienced a small but significant lifespan expansion [131]. HN promotes healthy 

aging and increases lifespan by the following mechanisms: (i) by increasing lean body mass 

and reducing visceral fat [132]; (ii) by promoting the expression of antioxidant defense 

system proteins by reducing oxidative stress induced by H2O2; (iii) by reducing ROS 

production; (iv) by restoring chaperone-mediated autophagy in cardiomyocytes and cardiac 

mitochondria [133-135]; (v) by preserving cardiac function after myocardial infarction in 

an ischemia-reperfusion injury model by reducing cardiomyocyte cell death and myocardial 

infarct area [51,136, 137]; (vi) by decreasing macrophage infiltration and inflammation, as 

well as apoptosis, by interacting with the gp130 subunit of the IL-6 receptor, leading to a 

reduced in vitro production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α 
[138-141].

4.6. Mitochondrial ORF within twelve S rRNA c (MOTS-c)

Consistent with the most common secondary structure in naturally-occurring proteins 

[142-145], MOTS-c displays an α-helical structure [146], which is amenable to protein 

folding and protein-protein interactions. Besides structural advantage, MOTS-c interacts 

with and regulates two kinases that regulate metabolism and age-related diseases such as 

mechanistic target of rapamycin complex I (mTORC1) [146] and AMP-activated protein 

kinase (AMPK) [12].
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4.6.1. MOTS-c regulation of glucose metabolism—Decreased circulating levels of 

MOTS-c have been reported in humans suffering from obesity [147], IR [148-150], and 

T2D [151-153], implicating its potential roles in metabolism. MOTS-c improves glucose 

tolerance in normal chow diet (NCD)-fed mice during glucose tolerance test, while also 

improving insulin sensitivity by increasing GIR (by 30%) and insulin-stimulated glucose 

disposal rate (IS-GDR) as assessed by clamp studies [12]. This is achieved by increased 

expression and translocation of glucose transporter type 4 (GLUT4) to the plasma membrane 

in muscle cells [12]. MOTS-c also improves insulin sensitivity in insulin-resistant older male 

mice by enhancing glucose uptake in soleus muscle [12]. It has been shown that MOTS-c 

promotes glycolysis by stimulating entry of glucose into cells through AMPK pathway 

[154]. MOTS-c, however, did not inhibit HGP and do not affect the weight of NCD-fed mice 

[12]. MOTS-c also reduces D-galactose-induced peripheral lipid accumulation [155] and 

mitochondrial dysfunction [156], which are key players in the pathophysiology of metabolic 

disease.

In high fat diet (HFD)-induced obese (DIO) and insulin-resistant mice, MOTS-c prevented 

hyperinsulinemia and obesity by increasing energy expenditure, markedly reduced fat 

accumulation in liver, promoted activation of AMPK and expression of GLUT4 in the 

skeletal muscle [12]. These findings indicate that skeletal muscle is a major target organ of 

MOTS-c. In addition, hepatotoxicity associated with metformin can be avoided with the use 

of MOTS-c [157].

4.6.2. MOTS-c regulation of fat metabolism—MOTS-c has been reported to 

increase β-oxidation of fatty acids to prevent fat accumulation in DIO mice and 

increase insulin sensitivity by reducing sphingolipid metabolism, monoacylglycerol, and 

dicarboxylate metabolism [39]. Sphingolipid metabolism is associated with obesity and T2D 

[158,159]. The important metabolite that MOTS-c decreases in DIO mice is sphingosine 

1-phosphate (S1P), which inhibits insulin-mediated AKT signaling in the liver and muscle 

via S1P receptor [160]. However, in muscle, S1P increases expression of interleukin 

6 (IL-6), which inhibits insulin-stimulated activation of insulin receptor substrate (IRS) 

[161]. Monoacylglycerol and dicarboxylate metabolites were significantly decreased in 

response to MOTS-c. MOTS-c-induced decrease in monoacylglycerol metabolites included 

2-Oleoylglycerol, 1-Linoleolylglycerol, 2-Linoleolylglycerol, and 1-Linolenoylglycerol. 

Likewise, the dicarboxylate metabolism that were reduced by MOTS-c included the 

following: Suberate, Sebacate, Undecanedioate, and Tetradecanedioate.

4.6.3. MOTS-c modulation of methionine-folate cycle by activation of AMPK
—Folate (vitamin B9) and methionine cycles constitute one-carbon metabolism that are 

linked by methionine synthase, which is a rate-limiting enzyme that converts homocysteine 

to methionine using 5-methyltetrahydrofolate (5ME-THF) as a methyl donor and B12 as 

an essential co-factor [162,163]. 5ME-THF, the most abundant form of activated folate, 

is dramatically decreased in stably overexpressing MOTS-c cells as well as in response 

to exogenous treatment with synthetic MOTS-c [12]. Decreased 5ME-THF is associated 

with 20-fold increase in accumulation of AICAR (5-aminoimidazole-4-carboxamide 

ribonucleotide), which activates AMPK [164] and stimulate fatty acid oxidation via 
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phosphorylation-induced inactivation of acetyl-CoA carboxylase (ACC) [12]. Inactivation 

of ACC results in alleviation of allosteric inhibition of carnitine palmitoyltransferase 1 

(CPT-1), which is essential for β-oxidation of long chain fatty acids. Activated AMPK 

increases glucose transporter GLUT4 and the consequent enhancement of glucose uptake 

in muscle [12,165,166]. Increased phosphorylation of AMPKα (Thr172), ACC (Ser79) and 

AKT (Ser473), and elevated CPT-1 protein levels by MOTS-c support the above findings.

4.6.4. Nuclear translocation of MOTS-c and regulation of gene expression
—MOTS-c rapidly translocates to the nucleus in response to metabolic stress such as, 

glucose restriction, serum deprivation, and oxidative stress [167]. Nuclear translocation is 

transient as MOTS-c switches back to being majorly extra-nuclear within 24 hr. Prevention 

of this nuclear translocation by inhibition of AMPK activity using compound C and siRNA 

against AMPKα implicates crucial role of AMPK in nuclear translocation of MOTS-c [167]. 

Furthermore, it has been shown that the hydrophobic domain of MOTS-c (8YIFY11) is 

required for its nuclear translocation [167]. Upon translocation to the nucleus, MOTS-c 

directly binds to the DNA sequences of antioxidant response element (ARE) containing 

promoter regions (5’-TGACNNNGC-3’) of nuclear factor erythroid 2-related factor 2 

(NRF2) target genes, including Heme Oxygenase 1 (HMOX1), NAD(P)H Dehrdrogenase 

Quinone 1 (NQO1), UDP-Glycosyltransferase 1 Family Polypeptide A1 (UGT1A1), UDP-

Glycosyltransferase 1 Family Polypeptide A6 (UGT1A6), Thioredoxin (TXN), Ferritin 

Light Chain (FTL), and Glutathione Peroxidase 2 (GPX2). Of note, NRF2 intersects with 

AMPK [168] and regulate MOTS-c-related metabolic pathways [169].

4.6.5. MOTS-c regulation of aging and exercise—Aging leads to senescence, or a 

breakdown of biological processes. In addition, aging exhibits an incapacity to respond to 

metabolic stress [123] and is deeply associated with the accumulation of mtDNA mutations 

and the subsequent metabolic dysfunction [124,125]. Like obesity [147], IR [148-150], 

and T2D [151-153], MOTS-c levels also decrease with age in humans. Middle-aged (45–

55 years) and old-aged (70–81 years) individuals display 11% and 21% lower circulating 

MOTS-c levels compared to younger individuals (18–30 years), respectively [170]. Like 

humans, aged mice (4 mo vs. 32 mo) also show decreased plasma MOTS-c [12]. Unlike 

rodents, the levels of MOTS-c in skeletal muscle of the elderly humans were the highest, 

indicating the levels of MOTS-c in plasma and muscle decrease gradually with age [170]. 

These findings implicate higher levels of MOTS-c is beneficial to delaying aging.

Oxidized nicotinamide adenine dinucleotide (NAD+), and its reduced form, reduced 

nicotinamide adenine dinucleotide (NADH), are critical molecules as they support various 

metabolic functions [171-174]. As a co-enzyme, NAD+ catalyzes cellular redox reactions, 

and gets reduced to NADH, in many metabolic processes, such as glycolysis, fatty acid 

beta oxidation, or the tricarboxylic acid cycle [175-177]. NAD+ also acts as a co-substrate 

for three classes of enzymes: (i) the sirtuins (SIRTs), (ii) the adenosine diphosphate (ADP)-

ribose transferases (ARTs) and poly(ADP-ribose) polymerase (PARPs), and (iii) the cyclic 

ADP-ribose (cADPR) synthases (CD38 and CD157) [178,179]. Since the NAD+/NADH 

ratio declines with aging in worms, mice, and humans [180,181], restoring NAD+ levels 

can improve age-related disease conditions [174,179]. MOTS-c extends mouse lifespan by 
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increasing NAD+ levels and activating glycolytic effects via sirtuin 1 (SIRT1) [182]. In 

addition, MOTS-c restricts the folate/methionine cycle, causing a reduction in methionine 

metabolism. In rodents, methionine shortage can extend lifespan by 45%, lowers visceral 

fat and age-related diseases (e.g., cancer), and increases the major antioxidant glutathione 

(GSH) [183-186].

Exercise is one of the interventions that prevents age-related adverse effects in mice and 

humans [187-193]. Intraperitoneal administration of MOTS-c has been reported to improve 

the physical performance of mice of different ages (2, 12, 22 and 23.5 months) and slowed 

the emergence of age-related deficits over a two-week period [194,195]. Of note, MOTS-c 

treatment upregulated glycolytic and protein metabolism markers following exercise and 

led to an enrichment of genes associated with protein regulation/metabolism, cellular 

metabolism, and oxidative stress response [195].

4.6.6. Association of single nucleotide polymorphism in MOTS-c with T2D
—It has been shown that 5–10% of people with East Asian descent have a non-

synonymous mitochondrial DNA polymorphism in the MOTS-c coding region, m.A1382C 

(rs111033358), that causes an amino acid replacement from Lys (K) to Gln (Q) at the 14th 

amino-acid residue [123]. Meta-analysis with three cohorts (n = 27,527) including Japan 

multi-institutional collaborative cohort (J-MICC, Saga City), multiethnic cohort (Hawai and 

California), and Tohoku medical megabank project (Pacific coast of the Tohoku region in 

Japan) showed that men with C allele of m.A1382C exhibit a significantly higher risk 

of T2D [152]. Of particular interest, in J-MICC, in sedentary males with C allele of m. 

A1382C showed higher prevalence of T2D, demonstrating a kinesio-genomic interaction 

[152]. Treating HFD-fed mice with K14Q MOTS-c has been reported not to confer the 

metabolic benefits associated with native MOTS-c administration [152]. In vitro and in vivo 

studies confirm that MOTS-c K14Q is a partially bioinactive form of MOTS-c peptide [152]. 

Other mtDNA polymorphisms that contribute to T2D risk include MTND1 T4216C and 

MTND2 A4917G in European population [196], and N9a haplogroup in Asian (Japanese and 

Korean) population [197].

4.7. SHLP1

Immunoblotting revealed high expression of SHLP1 in mouse heart, kidney, and spleen 

[11]. Liver, brain, prostate, testis, and muscle also express significant amounts of SHLP1. 

Preliminary studies on murine derived NIT-1 murine β-cells and human prostate cancer cells 

22Rv1 revealed that SHLP1 had no effect on cellular viability [11]. Its specific roles remain 

to be deciphered and a scope of further studies remain in delineating its exact physiological 

role.

4.8. SHLP2

Immunoblotting showed highest expression of SHLP2 in mouse liver, kidney, and muscle 

[11]. Plasma SHLP2 levels were higher in males than in females.
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4.8.1. SHLP2 regulation of obesity and insulin sensitization

4.8.1.1. Peripheral actions on obesity, thermogenesis, and insulin sensitivity.: Obese 

and diabetic patients as well as murine models of obesity and diabetes such as ob/ob and 

db/db mice show decreased serum levels of SHLP2 [198], implicating that supplementation 

of obese mice with SHLP2 would improve insulin sensitivity. Thus, three weeks of treatment 

of DIO mice with intraperitoneal SHLP2 (2 μg/g body weight, once daily) caused the 

following phenotypes: (i) protection of mice against diet-induced increase in body weight, 

(ii) decrease in total body fat mass and circulating leptin levels, (iii) reduction in the size of 

inguinal and epididymal white adipose tissues, and (iv) profound decrease in HFD-induced 

hepatic steatosis [198]. Furthermore, SHLP2 treatment resulted in a significant lowering 

of blood glucose levels and improved glucose tolerance and sensitivity [198]. SHLP2 in 

presence of insulin promoted differentiation of 3T3-L1 murine pre-adipocytes, indicating 

its insulin-sensitizing effect in adipose tissue [11]. SHLP2 not only enhanced cell viability 

and decreased apoptosis in both NIT-1β and 22Rv1 cells but promoted cell proliferation 

in NIT-1β cells. Furthermore, SHLP2 treatment of C57BL/6 mice (2 μg/g body weight, 

BID, IP) for 5 days though had no significant effects on plasma insulin, IL-6, or monocyte 

chemoattractant protein-1 (MCP-1), but increased plasma leptin level without affecting body 

weight and food intake [11].

In addition, systemic SHLP2 administration also caused robust increase in O2 

consumption (VO2), CO2 production (VCO2) as well as heat generation by increasing 

expression of the genes involved in inguinal brown adipose tissue (iBAT) thermogenesis 

including peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (Pgc1α), 
iodothyronine deiodinase 2 (Dio2), PR domain-containing protein 16 (Prdm16), and nuclear 

respiratory factor 1 (Nrf1). SHLP2 also showed a significant reduction in daily food intake 

[198], which was attributed to a reduction in the expression of orexigenic neuropeptides in 

the hypothalamus such as agouti-related peptide (Agrp) and neuropeptide Y (Npy). Of note, 

SHLP2 was shown to cross the blood-brain barrier.

4.8.1.2. Peripheral effects on sphingolipid metabolism.: Metabolomic studies in DIO 

mice after three days of treatment with SHLP2 (2.5 μg/g body weight; twice daily) revealed 

significant alterations in the concentrations of lipid metabolites in plasma [199]. Since 

feeding HFD increases sphingomyelin levels in liver, adipose tissue and plasma, SHLP2’s 

effects were tested in DIO mice, which showed significant decrease in plasma levels 

of sphingolipids such as sphinganine, sphingomyelin, sphinganine-1-phosphate, glucosyl 

N-stearoyl sphingosine, and glycosyl N-palmitoyl sphingosine [199].

4.8.1.3. Peripheral effects on mitochondrial metabolism.: In human prostate cancer 

cells (22Rv1), SHLP2 caused significant increase in mitochondrial oxygen consumption 

rate (OCR) and cellular ATP, indicating enhanced mitochondrial metabolism by SHLP2. 

Pre-incubation of murine β-cells (NIT-1) and 22Rv1 cells with SHLP2 overnight resulted 

in significant suppression of serum-starvation-dependent formation of ROS, suggesting a 

cytoprotective role of SHLP2. In addition, SHLP2 fully blocked staurosporine-induced 

apoptosis in NIT-1β cells.
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4.8.2. Central actions of SHLP2 on obesity, thermogenesis, and insulin 
sensitivity—Like systemic administration, ICV administration of SHLP2 (3 μg) into third 

ventricle also protected the male mice from HFD-induced obesity, increased expression 

of thermogenic genes and uncoupling protein 1 (UCP1) in inguinal brown adipose tissue 

(iBAT), and improved glucose tolerance [39]. Therefore, it was thought that the thermogenic 

and anorexigenic effects of SHLP2 might be mediated through the central nervous system 

(CNS) [39].

Continuous ICV infusion of SHLP2 (at a rate of 0.16 ng/g/min) into conscious Sprague 

Dawley rats significantly improved insulin sensitivity by increasing GIR, suppressing HGP, 

and increasing peripheral glucose uptake in hyperinsulinemic-euglycemic clamp studies 

[11].

4.8.3. SHLP2 regulation of macular degeneration—Expression of MDP-coding 

MT-RNR2 gene along with all five oxidative phosphorylation (OXPHOS) complex I-V 

protein subunits have been reported to be downregulated in human transmitochondrial age-

related macular degeneration (AMD) ARPE-19 cell model. However, treatment of AMD 

cells with SHLP2 resulted in the following changes: (i) restoration of the normal levels of 

OXPHOS complex protein subunits, (ii) prevention of loss of viable cells and mitochondria, 

(iii) induction of anti-apoptotic effects, and (iv) attenuation of amyloid-β-induced cellular 

and mitochondrial toxicity [200].

4.8.4. SHLP2 regulation of Parkinson’s disease (PD)—The substantia nigra of 

PD patients show deficiencies of mitochondrial respiratory chain complex I activity [201]. 

Attenuated risk of PD has been reported in patients carrying mtDNA SNP (m .2158 T > C 

where lysine 4 is changed to arginine). Further studies revealed that K4R SHLP2 is not only 

more stable than WT SHLP2, but also more potently inhibited PD toxin (MPP+)-induced 

apoptosis in neuronal cells [202].

4.8.5. SHLP2 regulation of AD—Increased Aβ1–42 is the hallmark of AD [203]. 

Exposure of primary cortical neurons with 0.1 or 10 μM SHLP2 prevented Aβ1–42-induced 

neuronal cell death, implicating association of SHLP2 with AD [11].

4.8.6. SHLP2 regulation of prostate cancer—Since SHLP2 levels were found to be 

nearly halved in prostate cancer patients, SHLP2 levels are used as a biomarker for cancer 

patients [204].

4.9. SHLP3

Immunoblotting showed highest expression of SHLP3 in mouse brain, and spleen [11]. 

Kidney, prostate, and testis also express significant amounts of SHLP3. An immunoassay to 

measure SHLP3 is yet to be developed.

Like SHLP2, SHLP3 increases cell viability, decreases cellular apoptosis in both NIT-1β and 

22Rv1 cells, increases mitochondrial functions by increasing mitochondrial OCR, cellular 

ATP, and decreasing the ability to produce ROS, implicating its cytoprotective nature [11]. 

Unlike SHLP2, SHLP3 did not exert insulin-sensitizing effects in vivo. Like SHLP2, SHLP3 
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increases plasma leptin levels without altering food intake and body weight. As a sharp 

contrast to SHLP2, SHLP3 increases proinflammatory cytokines IL-6 and MCP-1, which 

possibly explains the lack of an in vivo insulin-sensitizing effect of SHLP3 [11].

4.10. SHLP4

Immunoblotting showed highest expression of SHLP4 in mouse liver, spleen, and prostate 

[11]. In addition, brain, kidney, and testis also show detectable amounts of SHLP4. Like 

SHLP2, SHLP4 also increase cellular proliferation in murine NIT-1 cells.

4.11. SHLP5

SHLP5 is the least studied SHLP till date. Apart from its peptide sequence not much has 

been elucidated in any scientific study hitherto.

4.12. SHLP6

Immunoblotting showed significant expression of SHLP6 in mouse heart, liver, and kidney 

[11]. A sharp contrast to SHLP2 and SHLP3, SHLP6 increased apoptosis in both NIT1 and 

22Rv1 cells [11,38]. Plasma levels of SHLP6 increased significantly after acute exercise in 

young human males, which returned to baseline during recovery [205]. Like humanin, short-

term high intensity interval training (HIIT) lead to an overall lower plasma concentration of 

SHLP6 but did not change the response to exercise [205].

5. Newly discovered mitochondrial microproteins

Two mitochondrial microproteins have recently been identified: SHMOOSE (Small 

Human Mitochondrial ORF Over SErine tRNA; 58 amino acids) [206] and MTALTND4 

(mitochondrial alternative ND4 protein; 99 amino acids) [207]. SHMOOSE binds to 

intermembrane space protein Mic60 (mitofilin) and modifies mitochondrial biology 

including increase in neural cell metabolic activity (by 10–20%) and increase in basal 

oxygen consumption rate by ~20%. Furthermore, SHMOOSE expression was found to be 

high (~15% greater compared control) in AD patient brains, linking its association AD 

pathophysiology [206]. In addition, treatment of neuronal cells (stressed with oligomerized 

amyloid beta) with SHMOOSE has been reported to protect those cells from death [206]. 

Like SHMOOSE, MTALTND4 also modulates mitochondrial function [207].

6. Conclusion and future perspectives

Mitochondria are the “powerhouse of the cell” as they are the main sites of ATP (energy 

currency of the cell) production [208]. Besides energy production, this important sub-

cellular organelle through its MDPs (e.g., MOTS-c) have developed extensive retrograde 

signaling networks to communicate with the nuclear genome, other intracellular organelles, 

and potentially neighboring cells or organs [209]. Therefore, mitochondrial dysfunction is 

believed to be a key player in the pathophysiology of metabolic diseases, including obesity, 

IR and T2D [156]. Consistent with this hypothesis, it has been reported that T2D patients 

show reduced NADH2-O2 oxidoreductase activity (attributed to complex I) and structural 

mitochondrial aberrations coupled with decreased subsarcolemmal mitochondrial function 
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[210,211]. Other studies using muscle biopsy samples from patients with T2D and from 

individuals with a positive family history of T2D revealed downregulation of genes that 

encode proteins involved in oxidative metabolism [212,213].

Circulating levels of MDPs (HN and MOTS-c) show negative correlation in humans 

suffering from obesity [147], IR [148-150], T2D [94,100,151-153], and GDM [93], 

implicating their crucial roles in metabolism. In addition, in humans, plasma levels of 

MDPs (HN, MOTS-c and SHLP2) show negative correlation with aging and age-related 

diseases like AD [214,215], indicating their critical roles in promoting lifespan and health. 

Based on the multifaceted actions, MDPs pave a new conceptual way for the treatment 

of metabolic (e.g., obesity, steatosis, and T2D) and age-related diseases like AD. Clinical 

trials to test the therapeutical potential of an MDP, MOTS-c is ongoing but currently 

limited, including a clinical trial using a MOTS-c analog for fatty liver and obesity 

(clinical trial #NCT03998514). Further studies are required to better understand the basic 

molecular mechanisms of MDPs, their stabilities in biological systems, oral bioavailability, 

and relevance to a broad range of diseases and conditions.

Based on a recent synonymous codon bias study in vertebrates [57], it was revealed that 

HN and SHLP6 exhibited strong synonymous codon bias and sequence conservation. As 

a sharp contrast, SHLP1, SHLP2, SHLP3, and SHLP5 showed no significant synonymous 

codon bias, and the sequences are poorly conserved. Although MOTS-c and SHLP4 lack 

significant synonymous codon bias, they contain highly conserved N-terminal regions. 

Sequence homology analyses of MOTS-c in 14 mammalian species revealed the following 

conservation: M1, M6, G7, and Y8 (100%); I9 and F10 (~94%); R2 (~44%); W3 (~82%); 

Q4 (~37%), E5 (~94%), and Y11 (~87%) [12]. In this context, it should be pointed 

out that like MDPs, sequence alignment of a nuclear-encoded Chromogranin A (CgA) 

derived peptide Catestatin (CST: human CgA352–372) in 53 mammalian species belonging 

to 8 orders revealed > 80% homology in 52 species, except in Platypus (lowest in 

the mammalian phylogenetic tree) where the homology with the primates (highest 

in the mammalian phylogenetic tree was >58%), indicating that CST is also highly 

conserved in mammals [216-218]. Besides sequence conservation, MDPs and CST exhibit 

several comparable features: length (MDP: 16–38 amino acids versus CST: 21 amino 

acids); isoelectric point (MDPs: 8.73 - 12.31 (except SHLP1 and SHLP6) versus CST: 

12.03); charge at pH 7.0: (MDPs: 1.22 - 2.83 versus CST: 3.83). In addition to the 

evolutionary conservation and comparable physicochemical properties, MDPs and CST 

exhibit comparable anti-diabetic [12,19,151,157,219], anti-oxidative [133,220-222], anti-

inflammatory [19,223,224], anti-apoptotic [225,226], cardioprotective [224,227-231], and 

neuroprotective effects [59,62,232]. Therefore, it is reasonable to assume that retrograde 

signaling of MDPs can regulate nuclear encoded genes such as CgA to maintain health and 

diseases.
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Fig. 1. Map of the human mitochondrial genome.
NCR (non-coding region), and OriL (origin of replication for the light strand) represent 

the major non-coding regions. The outer and inner circles represent the heavy (H) and 

light (L) strands, respectively. The G-rich H-strand encode 12 subunits of the OXPHOS 

system (ND1–3, ND5, Cytb and COI-III, ND4/ND4L and ATP6/ATP8), 2 mtRNAs (12 S 

and 16 S), and 14 mt-tRNAs (F, V, L, I, M, W, D, K, G, R, H, S, L, T). The L-strand 

encode only 1 mitochondrial messenger RNA (mtRNA) that encodes subunit 6 of NADH 

dehydrogenase (ND6), and 8 mt-tRNAs (Q, A, N, C, Y, S, E, and P). MTRNR2 gene and 

the encoded peptides including humanin and small humanin-like peptides (SHLPs) such as 

SHLP1, SHLP2, SHLP3, SHLP4, SHLP5, and SHLP6 are shown on the left. MTRNR1 gene 

and the encoded peptide MOTS-c are shown on the right.
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Fig. 2. 
Functional domains in the primary structure of Humanin and the effects of amino acid 

substitution on the function of Humanin. AA pos: amino acid position; AA SLC: amino acid 

single letter code.
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Fig. 3. Binding partners, putative receptors, and intracellular signaling for HN.
Intracellularly, HN binds with Bax, Bim, and Bid, and inhibits their proapoptotic effects. 

Extracellularly, HN binds to two cell surface receptors: formylpeptide receptor like-1 

(FPRL-1) and heterotrimeric HN receptor (htHNR) comprising of WSX-1, a subunit for 

cytokine IL-27, ciliary neurotrophic receptor a subunit (CNTFR), and gp130. FPRL-1 serves 

as a receptor for both HN and Ab. HN inhibits Ab-induced cell death by competitively 

inhibiting the binding of Ab to FPRL-1. HN activates JAK2/STAT3-mediated pro-survival 

signaling by binding to htHNR.
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Table 6

Synonymous codon bias in SHLP6.

Amino acid number 1 2 3 4 5 6 7

Human sequence M L D Q D I P

Codon bias in Primates (n = 242) * * * 0.99 1.0 0 0.10

Codon bias in Mammals (n = 147) * * * 0.88 1.0 0 0.22

Codon bias in Vertebrates(n = 348 * * 1.0 0.62 0.43 0 0.19

Amino acid number 8 9 10 11 12 13 14

Human sequence M V Q P L L K

Codon bias in Primates(n = 242) 0 * 0.41 0 1.0 0.20 0

Codon bias in Mammals(n = 147) * 0.59 0.01 * 0.07 0

Codon bias in Vertebrates(n = 348) * 0.55 0.02 0.73 0.35 0

Amino acid number 15 16 17 18 19 20 Ter

Human sequence V R L F N D Ter

Codon bias in Primates(n = 242) 0.91 0 * * 0 0 *

Codon bias in Mammals(n = 147) 0.20 0 0 0 0 0 0

Codon bias in Vertebrates(n = 348) 0.09 0 0 0 0 0 0
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