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ABSTRACT OF THE DISSERTATION

High-Performance Accelerator Modeling: Toward Improving Controls and Diagnostics for

High-Brightness Beams in Experiment

by

Frederick William Cropp V

Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Pietro Musumeci, Chair

One of the main charges of beam physics is to improve the overall beam quality deliv-

ered to experiments and applications, which is generally quantified by the beam brightness.

High brightness beams have numerous applications, including x-ray free electron lasers and

ultrafast electron diffraction (UED). To these ends, this thesis details efforts to use high-

performance models — high-fidelity models that execute quickly — for controls and diag-

nostics. To demonstrate the generality of these techniques, this thesis focuses on three of

the most successful photoinjector designs currently used worldwide: the UCLA/SLAC/BNL-

type high-gradient S-band gun, the continuous-wave high-repetition rate VHF APEX gun

and the L-band DESY-PITZ-type gun. Work will be shown from Pegasus (UCLA), HiRES

(LBNL) and FAST (FNAL).

Specifically, data-driven models for online virtual diagnostics are presented, in this case,

in the context of UED at HiRES, leading to a temporal resolution improvement. Methods

for improving the fidelity of physics-based models are discussed, with examples at HiRES,

Pegasus and FAST. Markov-chain Monte Carlo analysis is applied to match simulations,

in the context of photocathode studies at HiRES and Pegasus. Lastly, the augmentation

of online model-based predictions with model-independent optimization is explored in a

fluctuating environment at Pegasus and HiRES.

ii



A central theme of this dissertation is working with parameter fluctuations when modeling

an accelerator beamline. Long-term drifts and shot-to-shot jitter exist in every accelerator

to a varying degree and therefore play an important role in every chapter of this dissertation.

This thesis attempts to address the issues associated with these fluctuations when trying to

develop faithful model representations of the system.
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CHAPTER 1

Introduction

From their inception, the development of particle accelerators has been motivated by and has

resulted in new scientific discoveries. The first accelerators, such as the cathode ray tube,

which would pale in comparison to modern accelerators — in terms of precision, energy

and capability — bequeathed fundamental discoveries such as Thomson’s discovery of the

electron [2]. Notably, these kinds of fundamental discoveries also motivated improvements

to the mechanism for discovery itself: the particle accelerator. In 1930, the first modern

particle accelerator, the cyclotron, was born [3, 4], which shepherded in a new era of high

energy beams, and led to numerous discoveries such as nuclear fission research and new

elements (e.g. [5]). Newer discoveries, such as the recent discovery of the Higgs Boson [6],

were enabled by beams with even higher energies.

However, it is not just higher beam energies that have enabled historical and current

experiments and discoveries. Having a high quality beam is also important. In general,

beam quality can be thought of as how “ordered” the beam is, or how small the intrinsic

angles are. This can be visualized by the divergence of a small, collimated beam; a high

quality beam will remain small in this case, while a lower quality beam will diverge due

to the internal disorder — or angles — in the beam. In addition, holding other properties

constant, a small spot size is desirable. The angles and spot size are generally put together

into a quantity called emittance, which will be introduced formally below. Finally, holding

other properties constant, having a high charge is also desirable. As such, the ratio of charge

to emittance is defined as the beam brightness often cited as the definitive metric of beam

quality (and will also be more formally defined below).
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Beam brightness has also improved over the years in part because of the technology that

allows for higher beam energies, which allow for relativistic suppression of electron Coulomb

repulsion. More recent improvements include the introduction of the RF photoinjector [7,

8, 9] and associated improvements in the generation and transport of beams [10]. The

resulting high brightness beams have allowed for the development of new means of scientific

discovery, including x-ray free-electron lasers [11, 12] and ultrafast electron diffraction (UED)

(e.g. [13, 14, 15, 16, 17, 18, 1]), the latter of which will feature prominently in this thesis,

in particular in Chapter 2 and some in Chapter 4. Not only did high brightness beams

allow for the development of these techniques, these techniques are also applications of the

state-of-the-art high brightness beams.

As described above, progress toward making higher brightness beams has been made

by leveraging new technologies, ultimately toward better control of beams. Usually, better

control of beams requires an improvement of the diagnostics that inform the control policy.

In other words, the capability to produce high brightness beams is due to scientists and en-

gineers’ use of new technologies to improve controls and diagnostics for particle accelerators.

This dissertation concerns the application of novel contemporary tools to improve models

of particle accelerators in order to improve controls and diagnostics for particle accelerators

and ultimately, to improve the brightness of electron beams.

1.1 High Brightness Beams

1.1.1 Definitions

Beam brightness is generally defined as proportional to the amount of charge that can fit

into a given phase space area. As beam emittance is a measure of the area in phase space

occupied by the beam, this definition can be given as:

B{2D,4D,6D} =
Q

ϵ{2D,4D,6D}
(1.1)
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where Q is the charge of the beam, while ϵ is the beam emittance. A discussion of the

dimensions (2D, 4D or 6D) is below. The emittance can be defined in a geometric sense as

Figure 1.1: Beam brightness increases from top to bottom and left to right. The red ellipse

encloses one standard deviation of the distribution and the area inside therefore corresponds

to the RMS emittance.

the area enclosed by the red in Fig. 1.1. However, as can be seen, some particles are outside

the red ellipse. This is because the a particle distribution can also be treated in a statistical

sense. An electron bunch can be defined by a beam distribution function f(x, x′, y, y′, z, δ),

which is a probability density function in six dimensions. These are the position coordinates
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(x,y,z) and the normalized momenta, where

x′ =
Px

Pz

=
γβxmc2

γβzmc2
=

βx

βz

(1.2)

and likewise

y′ =
βy

βz

(1.3)

where β⃗ is the normalized velocity and (βx,βy,βz) are its cartesian decomposition. The

normalized momentum in the longitudinal coordinate is given as

δ =
Pz − ⟨Pz⟩

Pz

(1.4)

where Pz is the longitudinal momentum and ⟨Pz⟩ is the average longitudinal momentum of

the beam.

As a statistical distribution, the true emittance can be difficult to define, as many dis-

tributions, such as a gaussian beam distribution function, will have tails that go to infinity.

As such, the RMS emittance is an important concept, where this is the area that encloses

all particles within one standard deviation of the mean particle in all dimensions. The RMS

emittance is shown by the red ellipse in Fig. 1.1 and differs from the true emittance, which

is the smallest ellipse that would enclose all of the particles — or in other words, the total

amount of phase space that the beam occupies. In general, it is therefore more practical

to use the RMS emittance than the true emittance. Other fractions of the amount of the

beam enclosed can be used; metrics such as the 95% emittance exist, but this thesis will use

the RMS emittance for convenience. The convenience of this notation will be shown in the

remainder of this section. A further discussion of the conservation of the RMS emittance

and the true emittance is discussed in Section 1.1.2.

The RMS emittance can be thought of conveniently using the covariance matrix of the

beam particle coordinates, hereafter referred to as the “beam matrix.”
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Σ6D =



⟨xx⟩ ⟨xx′⟩ ⟨xy⟩ ⟨xy′⟩ ⟨xz⟩ ⟨xδ⟩

⟨x′x⟩ ⟨x′x′⟩ ⟨x′y⟩ ⟨x′y′⟩ ⟨x′z⟩ ⟨x′δ⟩

⟨xy⟩ ⟨x′y⟩ ⟨yy⟩ ⟨yy′⟩ ⟨yz⟩ ⟨yδ⟩

⟨xy′⟩ ⟨x′y′⟩ ⟨yy′⟩ ⟨y′y′⟩ ⟨y′z⟩ ⟨y′δ⟩

⟨xz⟩ ⟨x′z⟩ ⟨yz⟩ ⟨y′z⟩ ⟨zz⟩ ⟨zδ⟩

⟨xδ⟩ ⟨x′δ⟩ ⟨yzδ⟩ ⟨y′δ⟩ ⟨zδ⟩ ⟨δδ⟩


(1.5)

The beam matrix is composed of the second order moments of the beam distribution function,

for example:

⟨xy⟩ =

∫
xyf(x, x′, y, y′, z, δ)dxdx′dydy′dzdδ (1.6)

In general, the RMS geometric emittance is defined as the square root of the determinant of

the beam matrix:

ϵ6D =
√

det (Σ6D) (1.7)

An astute reader would note that in Fig. 1.1, the emittance is defined by the area in

phase space, i.e. position and momentum coordinates, while in Eq. 1.7, the emittance

appears to be defined in terms of position and some angle, rather than momentum. Indeed,

this is related to the fact that Eq. 1.7 is defined in trace space, which does indeed use angles

rather than momenta. Note that the geometric emittance is defined in Eq. 1.7, whereas

the normalized emittance is defined as:

ϵN,6D = (γβz)
3
√

det (Σ6D) (1.8)

where γβz is the average normalized longitudinal momentum. This can be shown to be

equivalent in cases of low spread in Pz to an analogous calculation of emittance using a

modified beam matrix in phase space, rather than trace space, where the momenta are not

all divided by Pz.

In addition, in Fig. 1.1, the emittance appears to be defined in two dimensions, rather

than six, as shown in 1.7. This is related to the dimensionality of the problem. There are

equivalent definitions of emittance in 2D and 4D. The beam matrix is defined as the required
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blocks of the 6D beam matrix. For example, the 2D emittance in the x-coordinate plane is

the upper left 2x2 block of the 6D beam matrix:

Σ2D
x =

 ⟨xx⟩ ⟨xx′⟩

⟨x′x⟩ ⟨x′x′⟩

 (1.9)

and the normalized emittance is:

ϵN,2D = γβz

√
det (Σ2D) (1.10)

Likewise, the 2D emittance can be defined in the y- and z-coordinate planes.

The 4D emittance is usually defined in the transverse coordinate plane, such that

Σ4D =


⟨xx⟩ ⟨xx′⟩ ⟨xy⟩ ⟨xy′⟩

⟨x′x⟩ ⟨x′x′⟩ ⟨x′y⟩ ⟨x′y′⟩

⟨xy⟩ ⟨x′y⟩ ⟨yy⟩ ⟨yy′⟩

⟨xy′⟩ ⟨x′y′⟩ ⟨yy′⟩ ⟨y′y′⟩

 (1.11)

and the normalized emittance is:

ϵN,4D = (γβz)
2
√

det (Σ4D) (1.12)

This leads to an important point: it is often assumed that the planes are separable, or

the off-diagonal blocks of Eq. 1.5 are composed of zeros. This means that the correlation

between the planes is zero. In general, for an idealized beam, this is true, but in this thesis,

two examples will be clearly indicated (in Sections 3.3 and 4.2) where this assumption does

not hold. Where the assumption of separability does hold,

ϵ4D = ϵx,2Dϵy,2D (1.13)

and

ϵ6D = ϵx,2Dϵy,2Dϵz,2D (1.14)

Hereafter, the normalized 2D emittances will be written as ϵx, ϵy and ϵz for brevity. As such,

there are different definitions of beam brightness, usually clearly defined:
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• 2D beam brightness: B2D=Q
ϵξ

, where ξ ∈ {x, y, z}

• 4D beam brightness: B4D= Q
ϵ4D

. If separable, B4D= Q
ϵx,ϵy

• 5D beam brightness: B5D = I
ϵ4D

. If separable, B5D= I
ϵx,ϵy

• 6D beam brightness: B6D= Q
ϵ6D

. If separable, B6D= Q
ϵx,ϵyϵz

where the normalized emittances are used in these equations, and Q is the charge and I is the

current. The 5-D beam brightness is an often-cited quantity in beam physics, for example in

the determination of the efficiency, gain length and saturation power of free electron lasers

[19, 20]. Of course, there is the consideration, particularly for the 5-D brightness, of peak

versus average brightness. Since the charge in a beam passing a certain point is not uniform

in time, a different current can be obtained based on the time window used to calculate it.

The average current is the total charge that passes a point divided by the total beam bunch

length (in seconds), while the peak current indicates the current in a small time window with

the most charge passing a given point. Various normalization factors can be applied to the

definitions given above, in order to agree with various conventions in different fields. For the

remainder of this work, the above definitions — with the above normalization factors — will

apply. In general, accelerator improvements are measured by how much they improve the

beam brightness, but it is worth carefully considering which definition of beam brightness is

improved for a given problem.

1.1.2 Beam Production and Control

Improving beam brightness can be thought of in two broad arcs:

1. improving source brightness

2. improving beam transport in order to maximize the beam brightness at a point down-

stream, where a diagnostic or experiment is positioned.

This thesis pertains almost exclusively to the latter, but it is worth stating why the former

is critical to the work presented herein.
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The initial source quality is generally quantified by two very related metrics: the thermal

emittance and the mean transverse energy (MTE). This thesis mostly refers to the latter,

but it is worth showing the equivalence. Both seek to quantify the angles of the beam as it is

produced. The thermal emittance is simply the emittance of the beam before any deleterious

effects such as space charge, RF curvature or nonlinear magnet aberrations can increase the

emittance. The normalized thermal emittance can be given as [21, 22]:

ϵx =

√
⟨xx⟩MTE

mc2
(1.15)

Working in the x transverse plane without loss of generality, the spot size term, ⟨xx⟩ is

easy to determine using a virtual cathode camera (a diagnostic described below). In a beam

emitted by near-threshold photoemission, the MTE is given by:

MTE =
Eexcess

3
(1.16)

where Eexcess is the excess energy beyond the work function:

Eexcess = hν − ϕeff (1.17)

where ϕeff is the work function of the material after accounting for the tunneling probability

(Schottky effect), which is described in detail in Section 3.3.

From the photocathode, the beam is transported downstream, a process that is more

heavily emphasized in this thesis. To a linear approximation, each particle is transported

downstream as follows:



xf

x′
f

yf

y′f

zf

δf


= R ·



xi

x′
i

yi

y′i

zi

δi


(1.18)
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where the linear transport matrix R evolves the particle coordinates from the initial state

to the final state. These transport maps are symplectic [23] and have determinant unity.

Notably, the R21, R43 and R65 elements control the focusing of the element in the x, y and

z planes. The R12, R34 and R56 elements are critical to the evolution of the particle, as it

links the angles to the downstream coordinates.

Although single-particle dynamics are critical, the transport matrices can evolve the

second order moments of the beam matrix as shown in Eq. 1.5 as it goes through various

beam elements. The beam matrix Σf can be computed from the initial beam matrix Σi as

follows:

Σf = R · Σi ·RT (1.19)

These transport matrices can likewise be defined in 2-D and 4-D, as required.

Again, this transport map is shown to work on the RMS quantities as described in

Section 1.1.1. But when transported downstream, there is a fundamental difference between

the RMS emittance and the true emittance, in terms of conservation. Liouville’s theorem in

Hamiltonian mechanics states that so long as a system can be described by a Hamiltonian,

then the phase space area is conserved. Thus, the true emittance (total phase space area)

is always conserved when the beam dynamics can be described by a Hamiltonian. Under

most circumstances in a linear accelerator, this is the case, but examples of cases where

this assumption is untrue include intrabeam scattering [24, 25] and coherent synchrotron

radiation (e.g. [26, 27].

The RMS emittance is conserved under linear transformations. This can be seen easily

by taking the determinant of Eq. 1.19 and recalling that the determinant of the transport

matrix is unity:

det (Σf ) = det (R · Σi ·RT ) = det (R) · det (Σi) · det (RT ) = det (Σi) (1.20)

RMS emittance is not in general conserved, however. Even in the presence of nonlinear

space charge forces, as are experienced in any accelerator, there is RMS emittance growth
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(e.g. [28]). The best that can be expected is that the emittance is conserved during transport.

Thus the source brightness sets the upper limit on beam brightness in general, so the work

presented herein is given more meaning with better source brightness.

While the 6-D true emittance is a constant of motion in Hamiltonian systems, and the

6-D RMS emittance is a constant of motion for linear systems, the 4-D emittance (and

longitudinal emittance) are only constants if the transport is separable (see Section 1.1.1)

and thus both are independently constant. Similarly, if the transport is uncoupled between

the transverse planes, the 2-D RMS emittance is constant in a linear system. This thesis

includes work on the round-to-flat beam transform (FBT) in Chapter 4, which is a technique

to increase beam brightness in one transverse plane at the expense of another, with a clear

coupling between the two transverse planes.

In addition to “borrowing” emittance from one plane at the expense of another, this

thesis also contains work toward increasing peak beam brightness without regard to average

brightness. However, these “loans” of brightness allow for certain applications, but in general,

the limitation on the beam brightness set by the source remains.

Figure 1.2: A cartoon of an RF photoinjector: a laser pulse is imaged onto a photocathode.

The resultant electron beam is focused by an emittance compensation solenoid and additional

magnets downstream, exemplified herein by three quadrupole magnets.

10



1.1.2.1 RF Photoinjectors

The transport of high brightness beams to minimize the emittance growth described above

is not an easy feat. Downstream of the production of high brightness beams, numerous

techniques and strategies are implemented in order to preserve the beam brightness & emit-

tance. For example, generally, high charge beams are rapidly accelerated to high energies in

order to minimize the effect of the nonlinear space-charge forces. The desire to do so in part

motivated the development of the RF photoinjector [7, 9, 8], which is the state-of-the-art in

high brightness beam production. The photoinjector is the type of electron source that this

thesis will focus. A cartoon of which is shown in Fig. 1.2.

In an RF photoinjector, one of the main sources of high-brightness electron beams, on

which this thesis will focus, a laser is shone onto the surface of a photocathode, which

forms the part of the back-plane of the RF gun. The RF gun accelerates the beam to

high energies by exposing the photocathode to a sinusoidally-varying longitudinal electric

field. The incident laser pulse must arrive during the time the electric field will accelerate

the emitted electrons downstream, rather than back into the photocathode. In general, the

laser pulse must be short enough in duration to not sample the curvature of the sinusoidal

RF-fields in the gun [29]. An emittance-compensation solenoid then follows the gun, which

can focus the beam, as well as line up the different slices in phase space, in order to reduce

the overall emittance of the beam [30]. Additionally, a bucking solenoid can be used to

minimize the initial correlations in the beam (see description in previous section) (e.g. [31]).

Downstream of the gun, optics are used to minimize dispersion (e.g. [1]), focus the beam

to the proper size, and in some cases remove correlations in the beam matrix (e.g. [32,

33, 34, 35, 36, 37, 31, 38, 39]) before being used for an experiment, impacting destructive

diagnostics, and/or going to a beam dump.
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1.2 Modeling for Diagnostics & Control

As can be seen from the description of an RF photoinjector above, there are numerous param-

eters to optimize, and running an accelerator quickly becomes a complex control problem.

However, any control policy is only as good as the diagnostics that inform it. Diagnostics

allow users and operators to have knowledge about properties of the beam. In the following

paragraphs, diagnostics that are relavant to this thesis are listed.

The simplest example is a scintillating screen. The electron beam impacts the screen,

and where it does so, photons are emitted and imaged by a camera. This allows the user

and/or operator to see the transverse properties of a beam. A screen naturally integrates

over the angle coordinates; it takes only a snapshot in time of the particle positions. In the

longitudinal direction, the screen and camera combination are generally considerably slower

than the bunch length of the beam, so an integration in z is also performed. As such, the

integrals in the form of Eq. 1.6 become much easier:

⟨x2⟩ =

∫∫
x2f(x, y)dxdy (1.21)

⟨y2⟩ =

∫∫
y2f(x, y)dxdy (1.22)

⟨xy⟩ =

∫∫
xyf(x, y)dxdy (1.23)

The screen-camera system resolution is limited by the point-spread function (PSF) of

the screen, the resolution of the lens system, the pixel size on the camera, among other

contributions to the overall PSF.

Other diagnostics include the transverse deflecting cavity (TCAV), which gives a time-

dependent transverse kick based on the time of arrival of the beam, so one can measure

the time of arrival of the beam by observing the beam centroid position and transverse size

on the screen. This is accomplished by introducing a sinusoidally alternating electric field

orthogonal to the beam travel direction. By selecting the zero-crossing phase, such that the

central particle receives no kick, and by ensuring that the beam is short enough relative

to the RF wavelength that the kick received is approximately linear, one can see a linear
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spread of the beam splayed transversely on a screen. Limiting factors on resolution include

the initial beam size, the RF frequency, along with the screen resolution, and higher order

effects [40, 41, 42]. Similarly, one can measure the imprint of the beam energy spread using

a dipole magnet and a screen. A streak camera [43] uses a similar principle to streak the

image after photon emission from the screen through the use of an additional photocathode

and electron optics.

Other nondestructive diagnostics include beam position monitors (BPM) and integrating

current transformers (ICT). These measure the current induced from the passing electrons

and deduce the transverse position and charge of the bunch, respectively. Another nonde-

structive diagnostic is the so-called virtual cathode camera (VCC), which allows the user to

look at a facsimile of the laser that is shone onto the photocathode in a photoinjector. This

is accomplished using a beam splitter and a transport line that is exactly the same length

as the transport line to the photocathode.

As can be seen, many of the diagnostics above are destructive diagnostics, meaning that

the beam can either be measured, or used for an experiment, but not both. Although

nondestructive diagnostics such as the ICT or BPM are often used, they require a specific

device that may not be implemented on a given accelerator. Thus, a unique opportunity for

an accelerator model exists: the virtual diagnostic. Virtual diagnostics use a model to infer

beam properties — that would otherwise need to be measured — based available information,

such as the accelerator settings and nondestructive measurements of other beam properties.

Virtual diagnostics have become commonplace in accelerator physics (e.g. [44, 45, 46, 47,

48, 49]). These are particularly useful when predicting a time-consuming measurement,

or measurements are not available due to other requirements for the beam (i.e. needed

for another experiment). However, it is obvious that the model predictions of the virtual

diagnostic must be of high fidelity to the real beam properties, or the diagnostic is not useful.

Further, the execution time must be short, or the latency of the predictions make the tool

less useful in an online setting, where numerous control policies may rely on knowing the

current state of the beam.
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This is a more general point about models for control. In the simplest case, a beam with

certain properties is requested by a user and an operator must make control inputs to comply.

With numerous variables, this quickly becomes an optimization problem for a model. Of

course, determining the optimal accelerator inputs requires a model of high fidelity to the

data, but the execution speed is also important. While a slower model can be helpful to

guide beam optimization, a fast model that can be optimized in a short time can significantly

decrease the time required for manual or model-independent beam optimization and — in

practice — increase the reliability of the procedure, as there is no human intervention.

Clearly, for diagnostics and control, there are numerous benefits to having a model that

is of high fidelity to the data and that can be executed quickly. In this thesis, such a model

is referred to as a high-performance model.

1.3 Modern Modeling Tools & Machine Learning

While simple matrix-based calculations for particle accelerators, as described in Section

1.1.2, have their place in low charge, simple, linear environments, these models, as expected,

tend to diverge from reality in the presence of nonlinear effects. For example, in a space

charge dominated regime, the standard transfer matrices will not predict the proper beam

evolution, as space charge effects are neglected. Similarly, higher order nonlinearities, such

as aberrations in magnetic electron lenses are neglected. Higher order transport tensors can

be defined [50], or a linearized space charge matrix can be defined [51], but calculation of

higher order effects can quickly become a computational problem.

Over the past decades, as predicted by Moore’s law, computational power has doubled

nearly every two years. Through sheer computational power and the software improvements

that it has spurred, the fields of accelerator physics and engineering now have access to

numerous physics-based simulations and mathematical models. Modeling tools for particle

accelerators are more accurate, more general and faster to execute than ever before. These

tools often use of the following techniques (or combinations thereof):
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• Advanced matrix-based codes, which use an approach similar to that described above,

but with higher order calculations included

• Particle tracking codes, which calculate the trajectories of the various particles in the

electric and magnetic fields in an accelerator at each step

• Particle-in-cell codes, which can model the interaction of particles with electromagnetic

fields, which are self-consistently calculated by solving Maxwell’s equations for any

geometry and medium.

Example codes include ELEGANT [52], OPAL [53], MAD-X [54], ASTRA [55] and General

Particle Tracer [56].

In general, mathematical models that make simplifications, such as linear transfer matrix

models, are fast to execute, given modern computing power. The downside, as alluded to

above, is that with this quick execution time, the fidelity of the model to real beamline

behavior may degrade in the presence of nonlinear effects. Computational models, on the

other hand, while quite accurate, are generally slow enough that they are incompatible with

online operation, in particular when optimization is involved. Even offline, optimization

problems can quickly become a task for a supercomputer, particularly as the number of

optimization parameters becomes large.

Meanwhile, the same increases in computational power that have spurred higher fidelity

computational models have spurred an increase in the capability, availability, and utility of

machine learning models. Regardless of the simulation or mathematical modeling approach

listed above, the core of the modelling problem remains the same: certain inputs to the

accelerator are specified and a prediction of of the beam properties given those settings is

given. Accelerators have a clear set of input and output data, along with plentiful data sets.

As such, a machine learning approach can be quite useful in bridging the above gap, and

learning the relationship between inputs and outputs in simulation. Then the ML model

can be a fast so-called “surrogate model” where the ML model can replace the simulation

model, or real beamline in the optimization problem or online situation. The ML model can
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run at the millisecond scale on a desktop computer, similar to a transfer matrix model, but

includes the nonlinear effects of simulation. The downside of using such a model is the range

in which it can operate, as discussed below.

1.3.1 Models & Fluctuations

The benefits of models for controls and diagnostics are incontrovertible, but modeling ac-

celerators and beams can be a difficult problem. While they have many inputs and outputs

and large quantities of data, short- and long-term parameter fluctuations, particularly when

unmeasured, can make modeling difficult.

In each of the parts of an RF photoinjector (shown in the previous section and in Fig.

1.2) and downstream beam manipulations, there are measured and unmeasured fluctuations

in accelerator parameter space, which affect the particle trajectories and fields to which the

beam is exposed. For example, laser pointing jitter can cause a time-dependent jitter of

position of the beam on the photocathode, which can lead to numerous deleterious effects

for the production and transport of the beam. The beam could be produced off-axis in the

gun, leading to a sampling of RF fields that introduce coupling between longitudinal and

transverse planes and increase the transverse projected emittance, which can require further

correction downstream [57]. In addition, the laser jitter can cause the laser to sample different

parts of the photocathode, which if it has a nonuniform quantum efficiency (QE) map, can

cause a charge difference with the jitter [58]. If instead, the operator decides to image an

iris on the photocathode using an optical lens or lens system, the pointing jitter becomes

an intensity jitter, as on each shot, a different amount of the beam will be aligned with

the aperture. Intrinsic fluctuations in the laser can also cause similar intensity changes in

the beam produced. To make matters worse, not all beamlines have passive virtual cathode

camera data acquisition, so these fluctuations can go unnoticed. In other cases, at high

repetition rates, the fluctuations can be averaged, leading to an increase in apparent beam

size due to jitter alone.

Other examples of fluctuations in a photoinjector are the intrinsic fluctuations in the RF,
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which vary from system to system, and can be measured non-destructively using an antenna,

but not all systems have a measurement that is independent of the feedback system. Magnet

fluctuations also can play a role in beam stability, but are not generally measured at this

level or precision synchronously with the beam. Further, external factors, such as ambient

temperatures, time-varying magnetic fields from other experiments, or even the presence of

industrial activities in the proximity of the beamline can cause accelerator parameter drift

and/or beam movement that is unrelated to accelerator parameter drift.

In general, large fluctuations in laser and RF parameters are mitigated by PID-type

feedback, but some fluctuations remain. From a modeling perspective, the main impediment

to building models is a change to the beam that cannot be explained by the model inputs.

The solution can be as simple as incorporating more inputs into the model, but the real

problem is unmeasured parameters, which can be catastrophic to a modeling effort.

Another problem that exists because of (measured) jitter and drift in parameter space is

that of so-called “distribution shift” in machine learning. As stated in the previous section,

ML models can strike a balance between model fidelity and execution time, but a major

downside is that ML models do not extrapolate well outside the training set. Numerous

efforts have been made to make models more robust to distribution shift, including a “soft

landing” outside of the parameter space, so the models do not immediately deviate grossly

from the previous predictions as soon as the system drifts outside of the span of the training

set [59, 60]. However, the fact remains that online modeling can be impeded by a lack of

training data of all parts of the parameter space. Jitter and drift can take the accelerator

to previously-unexplored parts of the parameter space, causing problems for the models,

including making physically-impossible predictions.

Modeling in the presence of jitter and drift is a theme in this thesis. In addition, working

under the paradigm of “measurement is easier than control,” model-informed techniques to

use jitter and drift to minimize acquisition times and increase measurement accuracy will

also feature prominently.
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1.4 Dissertation Overview

In this thesis, various methods to improve diagnostics and controls by improving beamline

modeling will be explored. In Chapter 2, virtual diagnostic models to predict beam time of

arrival and energy will be presented in the context of ultrafast electron diffraction (UED). In

Chapter 3, the building of high-fidelity beamline models is discussed, including using tools

such as Markov chain Monte Carlo (MCMC) to infer unmeasured or difficult to measure

input parameters for the model. Finally, in Chapter 4, accelerator modeling in the presence

of distribution shift and jitter is discussed, in particular focusing on the optimization of the

round-to-flat-beam transform (FBT) at the Pegasus laboratory at UCLA, and on the use of

extremum seeking (ES) to compensate for drift and jitter. Further studies of ES at HiRES

will also be briefly described.
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CHAPTER 2

Virtual-Diagnostic-Based Time Stamping for Ultrafast

Electron Diffraction

2.1 Motivation and Background

2.1.1 Virtual Diagnostics & UED Temporal Resolution

As outlined in Chapter 1, virtual diagnostics have been shown to be particularly useful for

accelerators (e.g. [44, 45, 46, 47, 48, 49]). These tools use fast, high-fidelity accelerator

models — models that accurately predict the beam behavior from accelerator parameters

— to make predictions where destructive measurements would otherwise be required. This

leaves the beam to be used for other experiments, measurements and/or applications. There

are numerous situations where this can be advantageous, but it is particularly useful when

previous measurements of the beam properties do not provide the required level of confidence

in the beam properties of future shots. Two examples of situations when this might occur

are:

1. When the desired beam properties change. For example, accelerators often run for

multiple experiments in a given time period. Different users might request different

beams. After the upstream accelerator properties are changed, the beam properties

will change, indicating low confidence in the previous measurements of beam prop-

erties. In addition, day-to-day changes in experimental conditions can make previous

days’ measurements from a similar set point unreliable. For example, hysteresis and/or

changes in laboratory thermal or humidity conditions can lead to equipment perfor-
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mance differences, which change the beam properties given similar accelerator settings.

If upstream measurements of the true magnetic field and/or temperature and humidity

exist, then a virtual diagnostic could help.

2. In the presence of large fluctuations on the short- and long-term timescales (hereafter

referred to as jitter and drift, respectively), no single shot is the same as any previous

shot, leading to a low level of confidence in the future beam properties given the

previous measurements.

In the first case, the beam might be able to be measured immediately after the change in

accelerator settings, but this is not always the case. For example, in a setup with multiple

beamlines, steering from one to the other could change the beam properties and also steer it

away from certain diagnostics. In addition, in systems laden with fluctuations — the second

case above — virtual diagnostics become particularly useful for two reasons:

1. Traditional techniques of measuring a beam parameter, then assuming that it stays

constant for a short period and using a future shot to perform an experiment can

be unreliable. The slightly more advanced, but similar approach of characterizing

the noise by measuring multiple shots, then factoring in an uncertainty due to this

measurement can lead to large uncertainty, and assume a stationary distribution (i.e.

that there is jitter and no drift).

2. The “measurement is easier than control” paradigm: if the beam application requires

intentionally varying a parameter that is known to fluctuate, a virtual diagnostic can

make use of these natural fluctuations, instead of the fighting them. Simply by mea-

suring — or inferring from a virtual diagnostic — the fluctuating parameter, one can

avoid or minimize varying the parameter intentionally. This is a general approach

that has advantages such as reducing acquisition time, and/or improving measurement

precision in applications. There are numerous examples in accelerator physics where

a scan of a fluctuating parameter is required, including beam energy scans for x-ray
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free electron laser spectrum tuning or, as featured below, time of arrival scans for

pump-probe ultrafast electron diffraction (UED).

2.1.2 Ultrafast Electron Diffraction

UED is a staple of ultrafast techniques and has broad application to understanding various

phenomena on a fundamental timescale in chemistry, biology and materials science [61]. The

technique is as follows: an electron beam (probe) is directed toward a sample, and shortly

before it arrives, a laser pulse (pump) excites the sample to a non-equilibrium state. The

resulting diffraction pattern is recorded and thus a snapshot is measured and tagged with

the time delay between the pump and probe arrival times. UED is typically a multi-shot

technique in which the pump-probe time delay is varied and diffraction patterns are recorded

at each delay setting. The measurement is complete when a series of diffraction patterns at

different time delays are stitched together to show the temporal dynamics.

For UED to be able to have high temporal and spatial resolution there are strong con-

straints on the electron beam:

1. Due to spatial resolution considerations, a low transverse emittance beam is required.

2. A short bunch is required for high temporal resolution.

3. Due to experimental considerations, such as image signal and acquisition time, a high-

beam charge and/or a high repetition rate beam is also helpful [62].

Note that these conditions are equivalent to stating that a high 5-D beam brightness is

required (see discussion in Section 1.1.1), for each individual beam and averaged over many

beams at high repetition rate. Each of these constraints will be explored in greater detail

below.

The spatial resolution of a UED experiment is determined by the lateral coherence length:

Lc =
λc

2πϵ2D
σ (2.1)
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where λc = h
mc

≈ 2.42pm is the Compton wavelength σ is the transverse beam size in one

dimension. Thus, UED requires a low-emittance beam. Particularly with short electron

bunches, one of the main impediments to a low emittance beam delivered to the sample is

the emittance dilution due to space charge.

At higher beam energies, space charge forces are suppressed. As such, holding everything

else constant, a higher energy beam has less emittance dilution due to non-linear space charge

(as discussed in Chapter 1). One of the main improvements in UED in recent years is the

use of higher energy beams [61]. The use RF photoinjectors (discussed in Chapter 1), have

brought MeV-scale energy beams to UED [63, 14], which have a higher energy than those

produced by DC guns, which brought the energy range for UED to the tens of keV [64].

Even these relatively low-energy DC guns had a high energy relative to the seminal works

in UED from the 1980s [65, 66, 67].

However, a low transverse emittance beam is only part of the story. Having a high

beam brightness is critical. Thus, the ability to go to a higher charge is also important,

in its own right. In a diffraction experiment, only the scattered electrons are measured,

while the “zeroth-order” beam that is not scattered by the sample is discarded. UED is

a transmission technique. As such, most samples must be thin, as the mean free path for

a metal, for example, is on the order of 100 nm. For a thin sample, this can lead to low-

signal environment, which requires a large number of incident electrons. A complimentary

approach for the low signal problem is to integrate for many shots to boost SNR. If hardware

setups allow for it, a high repetition rate is beneficial in this setup. However, this makes the

same assumptions during the integration time that are described in the previous section.

The work shown herein makes use of HiRES [62, 1], which starts with the APEX gun

[68], a high repetition rate source of semi-relativistic (nominally 750 keV) beams at up to

250 kHz. This allows for high brightness beams at a high charge, but also allows for many

shots to integrated at high repetition rates.

The longitudinal properties of the beam are also critical for UED. In a UED experiment,
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temporal resolution is defined as:

τ =
√

∆t2e− + ∆t2laser + ∆t2fluct + ∆t2VM , (2.2)

where ∆te− is the electron bunch length, and ∆tlaser is the laser pulse length. These quantities

can be reduced using a bunching cavity and laser compressor, respectively. As can be seen,

the development of chirped pulse amplification (and therefore ultrafast laser systems) [69]

played a critical role in providing the fast laser pulses and also the short electron pulses

needed for UED, as most modern UED sources use a probe beam made from photoelectrons.

∆tVM is the velocity mismatch term, which can be neglected for ultra-relativistic beams and

thin samples. That leaves the limiting factor of ∆tfluct, the uncertainty in time-of-arrival

due to the fluctuations between the laser pulse and electron bunch.

In general, how well the time of arrival (TOA) uncertainty between the laser and electron

beam has been minimized is the main consideration for the fluctuation term. This work

seeks to move beyond the hardware control limitations to improve the TOA uncertainty, and

therefore the overall temporal resolution, which is particularly important in systems where

long-term drift in the TOA is dominant. In such a system, traditional PID-type feedback

can be insensitive to slow changes. Characterization measurements are impractical and the

lack of data can lead to a better estimate of the temporal resolution of the system than

actually exists. The time stamping approach in this work is shown to compensate well for

long term drifts.

In order to measure the time of arrival and tag each shot in a UED scan, nondestruc-

tive time stamping techniques have been proposed or implemented. For example, the use

of electro-optical sampling [70] and THz-based streaking [71] can be used for UED time

stamping. However, these techniques strongly constrain the machine setup (charge, crystal

proximity, THz deflector, depending on the setup), which might not be fully compatible with

high-quality diffraction patterns. The approach shown in this work is more general and can

be used in any setup in which upstream accelerator parameters can be tracked.
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2.1.3 Chapter Outline

This chapter details the development of a virtual diagnostic at the HiRES beamline (LBNL)

to predict the electron beam time of arrival and energy in a drifting environment, with

application to time-tagging shots in a stroboscopic UED measurement, and is based heavily

on [72]. The virtual diagnostic serves to reduce the uncertainty, thus improving temporal

resolution, along with decreasing acquisition time, as no online corrections will be required.

In the next section, a correspondence between the energy and time of arrival virtual

diagnostics will derived to highlight the connection between time of arrival stability and

energy stability (and therefore timing and energy measurements). Thereafter, a description

of the HiRES beam line, along with the synchronization and measurement schema will be

given. Following that, a description of the prediction techniques will be given. Finally,

results in time stamping, energy stamping and future directions are discussed.

2.2 Energy & Time of Arrival

Particularly at sub-MeV energies, one of the largest contributions to the time-of-arrival

of the beam at the sample is the beam energy. In a drift, higher energy particles arrive

sooner. With more complex arrangements of beamline elements, such as the drift-buncher-

drift lattice described in this section, the relationship can become more complex. Using the

linear transport theory described in Eq. 1.18, the connection is represented by the matrix

element R56. Note that in this section, the transport matrix is defined in terms of time of

arrival (relative to the reference particle) and energy deviation (from the reference particle),

as shown below.
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where ∆E
E

is the relative energy deviation relative to the reference particle.

2.2.1 Longitudinal Dispersion in a Drift

In t-E space, the R56 term for a drift can be defined as follows:

∆t = t− t0 =
L

cβ
− L

cβ0

=
L

c

(
1

β
− 1

β0

)
(2.4)

where β0 is the normalized velocity of the reference particle and

γ2 =
1

1 − β2
. (2.5)

Thus, Eq. 2.4 becomes

t =
L

c

(
γ√

γ2 − 1
− γ0√

γ2
0 − 1

)
(2.6)

Taylor expand to first order around the central beam energy, γ0

∆t =
−L

c

γ − γ0

(γ2
0 − 1)

3
2

(2.7)

Defining ∆γ = γ − γ0 and noting that Eq. 2.5 can be rearranged as

γβ =
√
γ2 − 1, (2.8)

then Eq. 2.23 becomes
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−Lγ
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0
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0

∆γ

γ
(2.9)

Since ∆E
E

= ∆γ
γ

, the R56 of the drift is:

R56 =
−L

cγ2
0β

3
0

(2.10)

2.2.2 Longitudinal Dispersion with a Radiofrequency Buncher Cavity

From Eq. 2.2, it is clear that a short electron bunch at the sample is critical. One of the

main methods for bunching beams of energy of a few MeV or lower is the so-called ballistic

bunching scheme. In this scheme, an RF buncher cavity chirps the beam such that the back

of the bunch receives an accelerating kick, while the front of a bunch is decelerated. In a

drift, (in this energy range) this allows the back of the bunch to “catch up” with the center;

the front of the bunch is slowed to arrive at the same time as the center. To first order,

all the electrons to arrive at the same time (of course, other higher order effects make for a

short, but nonzero pulse length). The ballistic bunching scheme has been employed for UED

numerous times (e.g. [73, 74, 62]) and has been shown to produce beams shorter than 10

fs [75]. At higher energies, a chicane-based bunching scheme can be employed (see Section

3.3).

To a linear approximation, one can use transfer matrices to model this system. The

longitudinal transfer matrix for the buncher in time-energy coordinates is:

Rb =

1 0

h E0

E1

 (2.11)

where h can be calculated analytically as follows:

h =
αωb

E1

cos(ϕb) (2.12)

E0 and E1 are the central energy of the beam before and after the buncher cavity, respectively.

If the buncher cavity is run at the zero-crossing phase, then E0/E1 = 1.
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This assumes that the buncher is a thin lens, focusing longitudinally. This can be seen

to be a fair approximation, as the phase slippage of a travelling wave cavity is given as [76]:

dϕ

dt
=

2πc

λ
(1 − β) (2.13)

given the time needed to traverse the approximately 20cm two-cell 1.3 GHz buncher cavity

at HiRES at β ≈ 0.91, this comes to only approximately 29 degrees, and thus the effect of

the phase change along the buncher length can be neglected.

In the case of an accelerator lattice such as that in the time-stamping section below,

composed gun, drift, buncher and drift, the following longitudinal transfer matrix applies

for the system (gun to screen):

Rgs =

(1 + h ·R56,bs) (R56,gb + R56,bs · (h ·R56,gb + E0

E1
)

h (h ·R56,gb + 1)

 (2.14)

where R56,gb and R56,bs refer to the R56 terms for the first (gun to buncher) and second

(buncher to screen) drifts (see Eq. 2.10), respectively.

Neglecting the second order effect from the changing buncher strength h near the zero

crossing, the overall R56 of this beamline is:

R56,gs = R56,gb + hR56,bsR56,gb + R56,bs (2.15)

2.2.3 Comparison with Published Works

This is shown to agree with a similar analysis for the design of HiRES [1], where the following

equation is given:

∆TeTOF =
∂TeTOF

∂tcLaser
∆tcLaser +

∂TeTOF

∂ϕg

∆ϕg

+
∂TeTOF

∂ϕb

∆ϕb +
∂TeTOF

∂Vg

∆Vg +
∂TeTOF

∂Vb

∆Vb

(2.16)
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where ϕg and ϕb are the phases of the gun and buncher, respectively, Vg and Vb are the gun

and buncher voltages and ∆tcLaser is the delay of the cathode laser. The fourth term, the

term that relates the initial energy to the final TOA, is the R56. Using equations from the

appendix of [1],

∂TeTOF

∂Vg

∆Vg = R56,gs ·
∆Eg

Eg

=
γg − 1

γg
R56,gb

(
Cbs +

R56,bsγgβg

R56,gbγsβs

)
∆Vg

(2.17)

where ∆Eg

Eg
is the relative energy deviation at the exit of the gun. Note that the R56 definition

in [1] has been modified to meet the definition of using the t-E space from Eq. 2.10. As the

buncher is at the so-called zero-crossing phase,

R56,gs ·
∆Eg

Eg

=
γg − 1

γg
R56,gb(Cbs +

R56,bs

R56,gb

)∆Vg (2.18)

where Cbs is the compression factor:

Cbs =
σf

σi

= 1 + h ·R56,bs (2.19)

Thus, Eq. 2.18 becomes

R56,gs ·
∆Eg

Eg

=
γ − 1

γ
R56,gb(h ·R56,bs + 1 +

R56,bs

R56,gb

)∆Vg (2.20)

Note that
γ − 1

γ
∆Vg =

∆Eg

Eg

(2.21)

Thus,

R56,gs ·
∆Eg

Eg

= (R56,gb + hR56,bsR56,gb + R56,bs)
∆Eg

Eg

(2.22)

which matches with Eq. 2.15.

2.2.4 Derivation of Time-Energy Comparison at the Screen

Ultimately, the goal is not to derive an R56 term for the whole beamline, but to derive a term

to correlate measurements of time of arrival and energy deviation. This can be accomplished

as as shown below.
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Eq. 2.14 leads to two equations:

∆Es

Es

= h · ∆tg + (h ·R56,gb + 1) · ∆Eg

Eg

(2.23)

∆ts = (1 + h ·R56,bs) · ∆tg + (R56,gb + R56,bs · (h ·R56,gb + 1)) · ∆Eg

Eg

(2.24)

where ∆ts and ∆Es

Es
are the time of arrival relative to the reference particle and relative

energy deviation at the screen. Since it is assumed that all beams start at the same time

from the gun, ∆tg is defined as zero, this means that the first term in Eq. 2.23 and Eq. 2.24

go to zero.

As such, by substitution, one can find δs, the energy deviation at the screen as:

∆Es

Es

= ∆ts ·
h ·R56,gb + 1

R56,gb + R56,bs · (h ·R56,gb + 1)
(2.25)

where ∆ts is the time of arrival at the screen. Thus, rewriting this in terms of the time

of arrival at the screen, the total conversion factor between energy and time for the drift-

buncher-drift-TCAV case is:

∆ts =
∆Es

Es

·
(

R56,gb

h ·R56,gb + 1
+ R56,bs

)
(2.26)

which connects the final time-of-arrival with the relative energy deviation ∆E/E from the

reference particle. Thus, the first-order contribution of beam energy is often the dominant

contribution to the particle time-of-arrival at a given plane in the beamline and a virtual

diagnostic that looks at the kinetic energy of the beam could be useful to refine the predictions

of the relative time-of-arrival fluctuations in a UED setup [77].
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Figure 2.1: The HiRES beamline. The UED beamline starts at D1 and goes through the

dogleg to DD, while the diagnostic beamline goes straight from D1 to VS3. Adapted from

[1].

2.3 Synchronization & Measurement

2.3.1 The HiRES Beamline

The HiRES accelerator begins with the APEX gun, which is a continuous-wave-class, normal-

conducting electron photogun with a nominal resonant frequency of 185.7 MHz [68] (RF1

in Fig. 2.1). The beam is then focused transversely through an emittance compensation

solenoid (S1) and focused longitudinally through a bunching cavity (RF2) operating at 1.3

GHz, which is the 7th harmonic of the gun. As a CW-class gun, the maximum electron beam

reptition rate is fixed by the photocathode laser to 250 kHz. An acousto-optic deflector at

the end of the laser amplification chain can select user-defined patterns and/or lower the

repetition rate. The nominal beam energy is 750 keV and all measurements in the chapter

were taken with an approximate beam charge of 15 fC.

Referring to Fig. 2.1, a dipole magnet (D1) downstream of a second solenoid (S2) is used

to select between two beamlines, each providing access to a series of diagnostic tools. The

two beamlines are hereafter referred to as:
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1. The diagnostic beamline: This line is the straight line, accessible with D1 turned off,

and contains a third focsing solenoid (S3), a transverse deflecting cavity (RF3), which

provides accurate pulse length and time of arrival information, with calibration of

23.37 fs/pixel. The deflected beam is measured on the downstream imaging screen

(VS3).

2. The UED beamline: This is the beamline that leads on which UED experiments are

performed. It branches off at D1 at an angle of 60◦ with respect to the straight line,

resulting in high dispersion at the imaging screen VS2, and enabling high resolution

energy measurements. The nominal dispersion is approximately 1 m, but can be in-

creased or decreased using the quadrupole triplet just upstream VS2 (Q1). As such,

the nominal ∆E/E at the screen is 2.5 × 10−5/pixel. In the measurements presented

in this section, the calibration for ∆E/E was 1.7 × 10−5/pixel. In normal operations,

Q1 is run in dispersion compensation mode, with the first and third quadrupole set to

minimize x-Pz correlation at and after the exit of the second dipole D2. The second

quadrupole in Q1 has the opportunity to focus in y and have a minimal effect on the

x beam size, as the beam is near a focus in x in this setup, due to symmetry. Fur-

ther downstream, the beam undergoes quadrupole focusing through Q2 and enters the

sample chamber (EX), where samples can be placed in the path of the beam for UED.

Downstream, there is DD, the UED detector, where diffraction patterns are imaged

by an intensified Princeton Instruments PIMAX 4 camera. It is also worth mentioning

that there is an insertable Faraday Cup (FC) that can measure the charge of the beam.

C1, a v-shaped slit, allows for energy collimation, while C2 is a pinhole, designed to

select part of the beam, and/or remove remaining dark current. A collimating pinhole

at the position of VS1 removes dark current upstream.

The HiRES accelerator has a demonstrated history as a successful UED beamline (e.g.

[78, 79]) and R&D beamline, developing new technologies for compact and large-scale user

facilities (e.g.[80, 81, 82]). One of the notable features of the HiRES beamline is the CW

APEX gun and the requisite RF subsystems. The low-level-RF control electronics (LLRF),
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one of the most critical sub-systems for ensuring electron beam energy stability, has been

developed at LBNL and then deployed at the LCLS-II accelerator at SLAC [83]. The system

allows precision control and measurement of amplitude and phase, with minimal cross-talk

(more the 100 dB isolation in the upgraded version) and white noise background below 150

dBc/Hz. Such development is a key component for developing high precision feedback loop

controls, and for high fidelity prediction of beam parameters.

2.3.2 Synchronous Data Acquisition

A virtual diagnostic is a model-based diagnostic, and as such, building a model of the

system is the most important part. This process involves correlating measurements of beam

parameters with machine settings. In this work, beam parameters are extracted through

destructive measurements on a scintillator screen. In the following sections, the beam energy

is measured using a dipole spectrometer in the UED line as described above; the beam is

intercepted on VS2 in Fig 2.1 after passing through D1. The time of arrival measurement

requires intercepting the electron beam at VS3 after receiving a transverse, time-dependent

kick from the transverse deflecting cavity (TCAV). In both cases, the figure of merit is

derived from analyzing the resulting images for the beam centroid. The beam centroid is

the first order moment of the beam distribution, calculated as follows:

⟨x⟩ =

∫∫
xf(x, y)dxdy (2.27)

using a similar argument to Eqs. 1.23, as the screen integrates over the other dimensions.

Note that the choice of x-coordinate is intentional; both the dipole and the TCAV give a

transverse kick in the x-direction. Also note that Eq. 2.27 includes an integration in y, also.

While a line-out could be used, integrating over the y dimension helps improve the signal-

to-noise ratio (SNR). Since the camera pixels are inherently discrete, Eq. 2.27 becomes a

summation over the pixel intensities:

⟨x⟩ =

∑
y

∑
x

xI(x, y)∑
y

∑
x

I(x, y)
(2.28)
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Figure 2.2: a) Synchronization scheme: RF amplifier run at 50% duty cycle with a 2 ms

period. Up to 10 laser shots arrive at 4 µs intervals for a short period toward the end of each

RF pulse, where the RF is generally most stable. b) Correlation plots of RF gun amplitude

and relative energy deviation (measured at the dipole spectrometer) for synchronized and

temporally misaligned acquisition schemes.

where I(x, y) is the image pixel values. An alternative to Eq. 2.28 is to use Gaussian fitting,

which provides the first and second order moments using an approximation that the beam
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is Gaussian.

The SNR of the training datasets is of particular importance as the model will be trained

on the processed variables extracted from the images, and any error in the calculation for

the parameter corresponds to an effective loss of information. In order to boost image SNR,

so that it is easier to see the beam above the background, it is possible to integrate multiple

electron beam pulses (because of the high repetition rate of the system, each only 4 µs apart),

so long as the timescale of system changes is longer than the averaging period.

At fixed RF power, the rate of change of the phase or amplitude of an electromagnetic

field in a resonant cavity is limited by the cavity bandwidth, which acts as a filter for external

disturbances, so that every noise component outside its bandwidth is strongly attenuated.

In the case of the APEX gun, a 186 MHz CW-RF gun, with a quality factor Q greater than

104, we can estimate the time scale of field fluctuations:

τnoise =
1

∆f
=

Q

f
> 50µs (2.29)

where f is the resonance frequency of the cavity. Further, there is an intra-pulse PID-

type feedback system engaged, which should further reduce jitter. The engagement of the

intra-pulse feedback can be seen after approximately 250 µs in the RF traces in Fig. 2.2.

For the RF bunching cavity and deflecting cavity, RMS fluctuations of the amplitude and

phase of the RF in both cavities shows only a minimal increase when integrated for 40 µs

relative to the case when integrated for 4 µs (the inherent uncertainty in laser shot time of

arrival), as shown in Fig. 2.3. The slight increase in fluctuations in each cavity is expected

to increase the uncertainty in beam time of arrival at the final screen by less than 10 fs each.

Therefore, most of the data produced in this work has been collected by averaging 10 beams

per image, therefore sampling the fields over an interval of 40 µs, in order to increase the

SNR in the images (see Fig. 2.2).

In order to obtain the most accurate model and predictions, the heterogeneous data

acquired (a mix of images and waveforms) requires deterministic time-alignment with a

precision equal or better than τnoise. Figure 2.2 describes the timing setup. The electron
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Figure 2.3: Mean moving standard deviation of the intrapulse fluctuations for the TCAV

and buncher. These are extrapolated to TOA using the calibrations listed above.

gun is used in pulsed mode for these experiments, with a total duration of the RF pulse of

1 ms and a repetition rate of 500 Hz (corresponding to a duty cycle of 50%). The optical

gate sending the burst of 10 consecutive laser pulses can be activated at any time along the

RF pulse, with a precision of 4µs. In Fig. 2.2b, the correlation plots are shown of electron

beam relative energy deviation and the amplitude of the field in the electron gun, in the

simple case where no other cavity is used. The ρ value on top of each plot corresponds

to the value Pearson correlation coefficient between the two. The data is shown in the

case of synchronized and incorrectly-synchronized acquisition, providing a clear idea of the

information lost without precise time alignment.

Since in general, the model learns the relationship between the predictors and a posi-

tion beam centroid position on a screen, calibrated either to TOA or energy, in general,
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readbacks from the measurement apparatus must also be included. In addition, the beam

centroid position can change because of a magnet current change, or because of laser pointing

fluctuations on the cathode. Therefore a complete model should calculate correlations with

all the relevant parameters of the accelerator.

Since the gun is operated in pulsed mode, with approximate macropulse duration of

1 ms, and the cameras integrate over the 10 laser shots, the photocathode laser position

and final images must be synchronized to below the ms scale. Up to the limitation on the

FPGA-enabled RF chassis, RF parameters are taken synchronously, on the µs scale. Not

all data requires the same level of time-alignment. Variations in parameters such as cavity

temperatures, water flows and magnet currents mostly contribute to machine drifts, and only

require synchrony at the sub-second level, which can be achieved via software. At HiRES,

continuous data storing of user-requested machine setting is performed automatically by an

online database with 10 Hz periodicity, providing the necessary information to include all

machine parameters in the model.

Data for the deflecting cavity deserves a special discussion. As mentioned above, data

on this cavity should in principle be taken synchronously, as small short-term fluctuations

are expected. In Fig. 2.4 the correlation plots between the electron gun amplitude and

the measured beam time-of-arrival before and after the compensation of TCAV short-term

fluctuations are shown. Given the small contributions of these jitters to the measured short-

term fluctuations and due to the limit in the number of channels that could be acquired at

the same time, TCAV data are acquired via the database, and therefore account only for

long-term drifts of the field in the cavity.
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Figure 2.4: Synchronous measurements of beam TOA at TCAV: correlations of TOA with

electron gun amplitude (without the use of the RF bunching cavity, similar to data in

Fig. 2.2). Left: TCAV RF jitters are not taken into account in post processing. Right:

fluctuations in TCAV RF amplitude and phase are used to correct beam time-of-arrival

measurements. In a) long term drifts are uncompensated. In b) a moving average is sub-

tracted to show only short time scale jitters. Note the much smaller y-scale in the bottom

plots.
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2.4 Data Analysis & Prediction

2.4.1 Linear Regression

In the following sections, virtual diagnostics based on multi-variable linear regression are

presented. Multiple linear regression is a statistical modeling technique where

Y = Xβ + ϵ (2.30)

where Y is a vector the observed quantities, X is a matrix of dimension number of obser-

vations by number of predictors, β is a vector of regression coefficients (dimension: number

of predictors) and ϵ is the error term, a vector of individual errors on each observation.

Estimates of regression coefficients, β̂ are learned by minimizing residuals as follows:

Y− Ŷ = Y−Xβ̂ (2.31)

Rather than producing a black-box model, which produces predictions through an opaque

process, multiple linear regression produces an interpretable model. As it will be shown

below, the regression coefficients are learned and can be analyzed in order to characterize

quantitatively the impact that each predictor has on the overall prediction.

It is also important to observe that linear regression between two variables is agnostic to

the time relation between different data points as it is inherently a time-independent method.

However, the data sets in this work are all time-series datasets. While linear regression is

effective in quantifying the consistent effect that the predictors have on the observation, the

method will fail to identify the time-dependent noise processes that perturb the system and

affect both the predictors and the observations.

In this case, a slightly adapted procedure was used: 1) the data were not randomized, in

order to preserve the time-series ordering and 2) the model is trained on the first part of the

data, while the last part of the data is reserved for validation. However, a linear regression

model is exactly that: linear. Thus, any presence of small non-linearities in the system will

not be captured. Also, the model may change with time, and therefore some sort of adaptive
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tuning could be exploited (see [81, 59]). A discussion a forecasting method aimed at reducing

each of these contributions follows in the next paragraphs.

2.4.2 Temporal Fusion Transformer

The regression approach relies on the assumption that TOA or energy can be extracted

from linear correlations with the predictors, but could be further improved upon by taking

into account temporal evolution using more complex models. In this work, an approach

is shown that leverages advancements in forecasting to use a Temporal Fusion Tranformer

(TFT) architecture to reduce temporal correlation in the residuals and further improve the

prediction performance of the model.

The TFT, described in [84], is a state of the art transformer architecture for forecast-

ing. Transformers are a member of the class of auto-regressive models that build upon

models such as recurrent neural networks (RNNs) and long-term short-term memory net-

works (LSTM). Transformers use sub-modules consisting of stacked LSTM neurons as well

as novel components such as self-attention in order to train on many datasets or large se-

quences. Transformers consist of an encoder that maps feature vector {x1,t, x2,t....xn,t} to

a continuous representation {z1,t, z2,t....zn,t}, which is then used by a decoder to generate a

sequence of m predictions {y1,t, y2,t....ym,t}. While the transformer architecture was origi-

nally used in the field of natural language processing, it has subsequently been expanded to

a variety of other modalities including time-series forecasting and visual processing [85, 86].

In a TFT, at each time step t, a context window of length k consisting of past predictors,

along with the past values of the ground truth, are sent to the encoder. Known machine pa-

rameters at the prediction time steps (or horizons) are also encoded. TFTs contain multiple

variable selection networks that reduce network complexity through the modulation of the

probability that a given predictor’s signal propagates to deeper layers of the network. This

reduces the need for data pre-processing, the impact of noisy variables and prevents over-

fitting. The TFT decoder includes a multi-headed attention module for long-term temporal

pattern recognition. Through multi-headed attention, weights are learned that reflect the
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degree to which encoded variables attend or correlate with one another [87]. These weights

are then passed from the decoder to a dense layer that produces the quantile predictions.

In summary, the TFT offers an easily interpretable model that predicts a distribution of

results instead of a point prediction. TFTs extract variable importance using both attention

and automated variable selection [84]. Quantile predictions allow confidence of a prediction

to be assessed, which is useful for human evaluation and downstream control tasks.

2.5 Time Stamping

2.5.1 Linear Regression

As described above in Eq. 2.2, the temporal resolution in UED experiments is often domi-

nated by relative time of arrival fluctuations between excitation laser and probing electron

beam. Therefore an online diagnostic capable of precise non-destructive measurement of

TOA would have a profound impact on the overall instrument performance. For the data

presented in this section, the accelerator setup matched the beam and machine parameters

used during UED experiments, except that the beam was sent to the diagnostic line. As

such, the RF bunching cavity (RF2) is set for temporal compression, with nominal field

amplitude and zero degree injection phase (the so called zero-crossing phase). The fields in

both the electron gun and the bunching cavity are stabilized in amplitude and in phase by

fast, FPGA-based PID-type feedback loops.

In Fig. 2.5 the standard deviation of the time-of-arrival of the beam at the deflecting

cavity (measured converting the centroid variation of the beam on the screen using the pixel

to time deflector calibration) is shown as a function of the temporal duration for the data

acquisition. This quantity continuously increases due to short and long term drift. In the

inset, zooming in on the 1 minute time scale, it is shown how short-term drifts account for

less than 200 fs of temporal jitter. On the other hand, with an increase in the temporal

width of the acquisition window, the overall stability of the system is observed to degrade at

longer timescales. Depending on the duration of the intervals in between re-establishing a
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Figure 2.5: Standard deviation of transverse beam centroid calibrated to TOA relative to

the reference beam as a function of the width of the acquisition time window. Inset shows

a short timescale.

new time-zero position in UED pump probe scans [61], the integrated resolution can become

as large as 600 fs.

Figure 2.6 shows the evolution of the beam TOA at the TCAV over about 3 hours.

The data are divided in two sections (highlighted by the vertical dashed line), with 75% of

the points used for developing a model of the system (the training data set), and the last

25% is used to validate it. A further test set is not required to test generalization, as no

hyperparameter tuning was required.

The linear regression model described in Sec. 2.4.1 is then used for prediction. Inputs to

the model include RF amplitude and phase of the electron gun, the bunching cavity and the

deflecting cavity, the photocathode laser arrival time at the cathode with respect to the RF

wave and an image of its transverse shape, intensity and position at the cathode.

Parameters for the model in this section are listed in Table 2.1. Parameters marked

as “Async” were taken asynchronously, as described in Section 2.3.2. For the gun and
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Figure 2.6: Time of arrival fluctuation measured using the TCAV screen while the PID-type

feedback was engaged. Residual drifts not corrected by the feedback are present. The linear

regression is also shown. The uncertainty due to long-term drifts is reduced to the 200 fs

level similar to the shot-to-shot, short-term jitter shown in Fig. 2.5.

buncher, PID-type feedback loops were engaged, based on some of these readings. If PID-

type feedback was engaged based on one of the parameters, it is designated as “IL” or

“in-loop.” If an independent measurement of the parameter exists, it is denoted as “OL” or

“out-of-loop.”

The red line in Fig. 2.6 shows the result of the regression. The model is able to learn the
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Parameter Name Description

Gun Probe Amp (IL) In-loop gun RF probe amplitude

Gun Probe Phs (IL) In-loop gun RF probe phase

Gun Probe Amp (OL) Out-of-loop gun RF probe amplitude

Gun Probe Phs (OL) Out-of-loop gun RF probe phase

Laser Phs Phase difference between laser and RF

Laser Crosstalk “Amplitude” of the above signal – measures channel crosstalk

Gun Rev Amp Amplitude of reverse power

Gun Rev Phs Phase of above

Gun Fwd Amp Amplitude of forward power

Gun Fwd Phs Phase of above

Buncher Probe Amp (OL) Out-of-loop buncher RF probe amplitude

Buncher Probe Phs (OL) Phase of above

Laser Position (x) x-coordinate of the virtual cathode image centroid

Laser Position (y) y-coordinate of the virtual cathode image centroid

Buncher Rev Amp 2 (Async) Amplitude of reverse power at buncher coupler 2

Buncher Rev Phs 2 (Async) Phase of the above

Buncher Fwd Amp (Async) Amplitude of buncher forward power

Buncher Fwd Phs (Async) Phase of above

Buncher Rev Amp (Async) Amplitude of buncher reverse power

Buncher Rev Phs (Async) Phase of above

Buncher Probe Amp (IL – Async) Amplitude of in-loop buncher probe

Buncher Probe Phs (IL – Async) Phase of above

TCAV Rev Amp (Async) Amplitude of TCAV reverse power

TCAV Rev Phs (Async) Phase of above

TCAV Fwd Amp (Async) Amplitude of TCAV forward power

TCAV Fwd Phs (Async) Phase of above

TCAV Probe Amp (Async) Amplitude of TCAV probe

TCAV Probe Phs (Async) Phase of above

Table 2.1: List of predictors for the time stamping models.

correlations in the data and predict to a high degree of accuracy, decreasing the uncertainty

in the long-term data (RMSE) by more than a factor of two in the test set. This represents
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a major improvement, one that reduces the uncertainty from the hours-long timescale in

Fig. 2.5 to the minutes-long stability.

Figure 2.7: Left: TCAV phase calibrated to apparent change in TOA. Right: TCAV reverse

power calibrated to apparent change in TOA. In both, the dashed gray line indicates the

train/validation boundary, while the red line shows the TCAV parameter spike.

Notably, the model was able to predict accurately the outcome of a sudden large phase

shift in the TCAV in the test dataset (visible at around 8600 seconds). Such a jump is

mostly due to a sudden variation in the phase and amplitude of the TCAV, and not to an

actual change in beam TOA. Using linear regression, this can be referenced to (apparent)

TOA fluctuations. See Fig. 2.7 for plots of the TCAV phase and TCAV reverse power as

a function of time (interpolated to synchronous timescale, as discussed in Sec. 2.3.2). The

phase jump at approximately 8600 seconds (denoted by a red dashed line; the train/validation

split is denoted with a black dashed line) has an amplitude of 0.9 degrees in approximately

60 seconds, and it is most severe phase jump seen in the data. This is likely due to a spike in

the reverse power of the TCAV, which is also included in the model. By tracking parameters

of the measurement system, i.e. TCAV RF amplitude and phase, real temporal shifts can be

isolated from simple beam centroid fluctuations due to variations of the fields in the TCAV.

Indeed, once the system correlations have been learned from the training dataset, all the

coefficients that would contribute to a beam movement on the screen but not necessarily to
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a change in TOA can be removed.

Figure 2.8: Validation set: Uncertainty with and without virtual diagnostic (VD) predic-

tion as a function of time since previous measurement. The lines in black show the RMS

fluctuations from a fixed reference at the beginning of the measurement, whereas the STD

measures the RMS fluctuations relative to the mean.

Although the improvements made so far are impressive, they do not fully take into ac-

count the complexity of a drifting, time-series dataset. The discrepancy arises because of

the distinction between the root mean square error (RMSE) of the linear regression predic-

tion from the actual measurement, and the standard deviation (STD), which measures the

deviation from the mean value. It is essential to carefully choose the reference point for

assessing the virtual diagnostic’s best performance. With traditional feedback, the typical

approach is to minimize the system’s drift until it becomes negligible, and the uncertainty

is then determined by the STD. Essentially, when destructive measurements are turned off,

the beam is presumed to have the same properties as the last-measured beam. Thus, in a

drifting system, the uncertainty in the TOA would increase with time (due to the variation
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in the mean value), as is shown in Fig. 2.5.1, where the mean STD fluctuations for a window

of a certain size is shown, compared with the mean RMS fluctuations from the shot prior to

the window. This comparison is shown for the system fluctuations and the virtual diagnostic

error. As can be seen, by utilizing the linear regression virtual diagnostic, it is possible to

compensate these drifts, and the uncertainty remains relatively constant over time, with

little to no degradation.

Figure 2.9: Top 10 model predictors and the associated TOA movement with 1 STD move-

ment in the validation set. Details of the predictors can be found in Table 2.1 in Appendix

2.5.1.

As described in the Section 2.4.1, the impact of each predictor on the overall time of

arrival estimate can be extracted from the model. In Fig. 2.9 the top predictors’ impacts

(one standard deviation of variation converted to TOA prediction using the corresponding

β from Eq. 2.30) are reported. This can be helpful for several reasons, including 1) to

46



see if conventional feedback systems can be better tuned and 2) to see if the perceived

TOA variation is due to measurement uncertainty (i.e. the TCAV measuring the TOA is

jittering) or if the TOA is actually moving. Although the effect of the TCAV is significant, the

dominating contribution is that of the buncher, meaning that the TOA is actually moving,

despite conventional feedback systems. It also suggests that these conventional feedback

systems could be improved for the buncher cavity.

These results show how the combination of a linear-regression-based model and time-

aligned data can help enhance the performance of traditional feedback systems. However,

as a time-independent method, predicting, any time-dependent correlations are neglected,

as are all higher order correlations. In the following section, a technique to address both of

these contributions is discussed.

2.5.2 Advanced Prediction

2.5.2.1 Method

In offline forecasting tasks, access to past ground truth data allows for the context window

to be populated with observations of the target as shown in Eq. 2.32. A prediction at time

step t is given by:

Ŷt = f({Xt−k, ...,Xt}, {Yt−k, ..., Yt−1}) (2.32)

where X at each time step is a vector of predictors, such as machine parameters. Y at

any given time step is the ground truth data, in this case the beam TOA, where Ŷ is the

prediction of this quantity. k is the context window, or history, that the model is given.

In the context of the HiRES virtual diagnostic, the lack of ground beam TOA mea-

surements during deployment about the beam TOA has to be negotiated once destructive

measurements cease. In such an online or a multi-horizon task, one approach would be to

introduce previous predictions recursively as shown in Eq. 2.33.

Ŷt = f({Xt−k, ...,Xt}, {Ŷt−k, ..., Ŷt−1}) (2.33)
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In this approach, residual bias introduced in the model’s estimates would accumulate

with each recursive prediction and over thousands of timesteps would become significant.

Even without a significant increase in error, error would time-correlated rather than being

normally distributed. In order to avoid this problem, once destructive measurements cease,

previous ground truth measurements must be replaced with time-independent predictions as

shown in Eq. 2.34.

Ŷt = f({Xt−k, ...,Xt}, {g(Xt−k), ..., g(Xt−1)}) (2.34)

where g(x) is any time-independent model. In the work presented herein, the linear regression

model as shown in Sec. 2.5.1, as described in Eq. 2.30 is used to replace ground truth data,

after training with access to the ground-truth data, as shown in Eq. 2.32. During training,

the TFT has access to a context window of long-term trend information in X and Y in

order to learn from a more complete view of the system’s dynamics. Following training,

during online application, accurate estimates of Y as provided by the linear regression-based

estimates g(Xt) are utilized and therefore the approach does not suffer from catastrophic

degradation of the predictions after destructive measurements are no longer available.

The results in this section make use of a TFT implemented in Pytorch Lightning [88]

with the PyTorch forecasting package [89]. A 75/25 training split identical to that of the

linear regression model above was employed with one caveat: for both the training and

validation sets, the first k instances (with k being the length of the context window) do not

have corresponding predictions. The predictors were the same as those used for the linear

regression model in Section 2.5.1, as shown in Table 2.1. Finally, a robust normalizer was

applied to the data, which scales and centers it with regard to but without transforming the

target.

The TFT architecture is outlined in detail in [84]. The hyperparameters for the TFT

model are listed in the Table 2.2.
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Hyperparameter Value

Hidden Size 89

Dropout 0.276

Attention Head Size 2

Learning Rate 0.0012

Max Encoder Length 25

Table 2.2: List of hyperparameters for the model shown in Section 2.5.2.

Figure 2.10: TFT TOA median and interquartile range (shaded) predictions in the validation

set. Predictions are compared with linear regression (LR) predictions and the ground truth.

2.5.2.2 Results and Discussion

The results shown in Fig. 2.10 are the quantile predictions trained on ground-truth observa-

tions of the beam TOA. Note that the RMSE is approximately 6% better than that of linear
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regression, as the residuals of the model are in general closer to zero, as shown in Fig. 2.11.

This improvement can be explained by noting that despite state-of-the-art stability at

HiRES, Fig. 2.11 demonstrates that the processes causing long-term TOA drift introduce

correlations of error over time that could be reduced via the use of a forecasting model.

As shown in Fig 2.11, residuals of the TFT show little auto-correlation between time steps

relative to the linear regression results. This demonstrates that the approach of incorporat-

ing historical accelerator parameter information despite the challenges of online forecasting

detailed above is a reasonable one.

Figure 2.11: Left: Error histogram comparing the absolute value of the residuals from the

linear regression and TFT models. Note that the error is bunched closer to zero for the TFT.

Right: Residual correlation for linear regression and TFT models. Note that the use of a

TFT model reduces the correlation in the residuals between time steps relative to a linear

regression model.

It should be noted that because of the small number of observations, only a validation

set was used in this work, and a test set was omitted. Although the validation set was

used for hyperparameter optimization and as a metric for training, the generalization to a
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validation set is still notable, under these conditions. In the future, pre-training on data

from different accelerator runs prior to fine-tuning on related data should be investigated

to further reduce residual error and allow for increased observation of anomalous states in

the machine parameters and their correlated effect on the target beam parameters. Every

state-of-the-art use of the Transformer model used in Natural Language Processing since

2015 has relied on pre-training to increase performance [90] and the use of transformers for

forecasting would likely benefit from similar methods. Greater diversity of observations from

better exploration of the parameter space of predictors would lead to better generalization

and better model performance. The inability for the predictions to capture the full variation

of the ground truth beam TOA exhibited in Fig. 2.11 could be explained by the fact

that while relationships between machine parameters and beam TOA have been learned

in training, anomalous transitions in machine parameters have not been observed before,

forcing the model to extrapolate. While anomalous observations are, by definition, rare, a

larger number of observations of similar transitions in other experiments would allow for

greater predictive power during these periods. Training with more raw data and possibly

with lagged data could help capture temporal relationships between changes in the variables.

2.6 Energy Stamping

A similar approach can be used to obtain very accurate predictions of the electron beam

energy. To showcase this capability, the work in this section makes use of separate beamline

settings. In particular, the electron beam is transported into the UED line and measured

at the VS2 screen (Fig. 2.1) after acceleration by the electron gun, while the RF bunching

cavity (RF2) is left off for simplicity of interpretation. Three hours of data were acquired

for the two different cases of stabilized and unstabilized accelerating field in the gun (using

the active LLRF PID stabilization loop mentioned earlier).

The simpler setup leads to fewer predictors, as is shown in Table 2.3. The quantity that

the virtual diagnostic model predicts is the beam position after the dipole, calibrated to

energy deviation from the reference.
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Figure 2.12: Linear regression predictions with and without traditional PID-type feedback

(FB) engaged. Top: The variation from the mean of the training data is shown, after

conversion to relative energy deviation. Bottom: the validation errors are shown. Note that

the FB off case shows greater improvement than the FB on case on both an absolute and a

relative scale.
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Parameter Name Description

Gun Probe Amp (IL) In-loop gun RF probe amplitude

Gun Probe Phs (IL) In-loop gun RF probe phase

Gun Probe Amp (OL) Out-of-loop gun RF probe amplitude

Gun Probe Phs (OL) Out-of-loop gun RF probe phase

Laser Phs Phase difference between laser and RF

Gun Rev Amp Amplitude of reverse power

Gun Rev Phs Phase of above

Gun Fwd Amp Amplitude of forward power

Gun Fwd Phs Phase of above

Laser Position (x) x-coordinate of the virtual cathode image centroid

Laser Position (y) y-coordinate of the virtual cathode image centroid

Table 2.3: List of predictors for the energy stamping models.

Results of energy stability measurements in the two cases are shown in the histogram

of Fig. 2.12a. The effect of the fast feedback in stabilizing the energy is evident, with

RMS relative energy stability going from approximately 10−3 to 2 × 10−4 over a 3-hour

run. Nevertheless, a clear structure is evident in the stabilized case, with a double peaked

distribution of unknown cause, suggesting even better performance may be achieved.

The application of the linear regression model to both scenarios results in the histograms

of Fig. 2.12b. Here, the residual error left after comparing the model predictions with the

measured ground truth is shown. Importantly, the application of the model increases the

precision with which the energy of each electron beam can be asserted, by a tenfold factor

for feedback-off, and by a small factor in the feedback-on case.

The application of the model also results in a distribution of residual error that is much

closer to a Gaussian, to be expected when only random noise is left, and nothing else can

be learned from the system. This is therefore a first indication that our model is close to

optimal.
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The final RMSE is similar in the stabilized and unstabilized case. This point is quite

interesting, as it shows that virtual diagnostic tools have comparable performances with

respect to traditional feedback systems. For applications where time-of-arrival may vary,

but in a well-controlled fashion, such as pump-probe experiments, this suggests that in

the future, software-based approaches could outperform hardware-based approaches in the

stabilization and control of particle beams. In the future, considering likely increase in

computing power, network speed and bandwidth, feedback could even be based on virtual

diagnostics.

However, it is worth noting the greater improvement in the feedback off case, both rela-

tively and absolutely, which is related to the accuracy in the measurement of key parameters,

and the level of noise in the measured ground truth used for training the model. In this work,

final predictions with accuracy at the 10−5 level are desired, which requires more than 100

dB SNR in measurements of radiofrequency signals. Potentially more dangerous is the re-

quirement on the currents energizing the different magnets in the beamline. Measuring 10−5

variations on this currents requires specialized hardware that it is usually not available for

each magnet of the accelerator. Therefore, an offline experimental sensitivity study was per-

formed to verify the dipole D1 as the one with the highest impact on the beam position on

the screen. The current fluctuations driving the magnetic dipole were then measured with

high precision by a specialized setup. A Danisense DS50ID ultra-stable flux-gate current

transducer with a 16-bit digitizer was set up to measure the current provided to the dipole

from the CAEN A3620 power supply, when set to a nominal value corresponding to a 750

keV electron beam. A 66-hour-long measurement of the current was taken, and showed fluc-

tuations on the high 10−5 level, corresponding to apparent relative energy functions on the

of 5 × 10−5 level. See Fig. 2.13 for more details. The RMS fluctuations found during this

test, although not contextual with beam measurements, are of the same scale of the residual

error obtained in both cases of Fig. 2.12, showing that direct synchronous measurement of

the current in the dipole magnet could increase the precision of the virtual tool.

As such, when the PID-based feedback is engaged, the energy fluctuations in the training
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set are small and on the same order of magnitude as the noise. This has two important

consequences: 1) The training set does not explore much of the input parameter space,

which makes it difficult for the model to learn the trend and 2) measurements of the change

in energy of the beam are dominated by noise, making it even harder to learn the pattern

in training.

Figure 2.13: Measured current fluctuations on D1 (see Fig. 2.1) to perceived relative energy

fluctuations (as would be measured on VS2 in the dogleg) for a 750 keV electron beam, as

in experiment.

Using the matrix formalism for the linear transport in longitudinal phase space, developed

in Section 2.2 one can compare the virtual diagnostics results for the energy and time of

arrival measurements. At the TCAV screen,

∆t =

(
R56,gb

h ·R56,gb + 1
+ R56,bs

)
∆E

E
(2.35)

where R56,gb and R56,bs are related to the drift distances from the gun to the buncher and

from the buncher to screen, respectively. These R56 elements are given in time-energy co-
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ordinates for convenience. For HiRES, these can be calculated to be 0.73 ns and 3.20 ns,

respectively. h is the R65 term associated with a thin lens description of the buncher cavity.

For HiRES, calibration measurements indicate this to be (−2.02ns)−1. This can be expressed

in engineering units to be approximately:

∆t [ns] = 4.3415
∆E

E
(2.36)

where ∆t is given in nanoseconds. Using an uncertainty from the energy stamping virtual

diagnostic of about 7.45 × 10−5 (see the feedback off case of Fig. 2.12), the uncertainty is

227 fs, when subtracting a resolution term for the dipole. This result is comparable to the

225 fs uncertainty of the time stamping virtual diagnostic.

2.7 Outlook & Conclusion

In this chapter, a novel application of model-based virtual diagnostics has been explored,

toward enhancing UED temporal resolution by predicting electron beam TOA or the main

contributor to TOA in this energy regime, beam energy. It is also worth noting here that

there are other cases where non-destructive measurements of the beam energy (which other-

wise require bending the beam in a dipole spectrometer) would greatly improve accelerator

performances. For example, in multi-shot measurements of transverse phase spaces, such as a

quadrupole or solenoid scan emittance measurements [91, 92] energy fluctuations change the

focusing strength of the magnets, which would be considered to be constant for such a scan;

poor energy stability is catastrophic to such a measurement. Even single-shot emittance

measurement techniques, such as [93] require knowing the beam energy.

Linear-regression-based models can be used to greatly reduce uncertainty in machine

parameters. For energy stamping, linear-regression-based virtual diagnostics were shown

to mitigate the long-term drift to a level comparable to what can be accomplished with

the PID feedback loops. For time stamping, linear-regression-based virtual diagnostics were

shown to work in concert with traditional feedback to mitigate long-term drift and lower

the uncertainty to 225 fs, which is on same scale as the shot-to-shot fluctuations and a
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significant reduction from the uncompensated standard deviation uncertainty of 600 fs. The

linear regression results serve as a practical baseline result that – by itself – shows promise

for improving stability, but state-of-the-art forecasting models were applied to mitigate the

temporal correlation of residuals of the model predictions, resulting in a nominal reduction

in prediction uncertainty to 212 fs in the time stamping case. The tool has been tested for

single-shot beam predictions using information collected passively during beam runs and,

while in these first tests the acquisition was limited to 1 Hz, minor modifications to the

timing system would allow much faster repetition rates, in the kHz range and beyond.

In the future, this model-based virtual diagnostic approach can be applied to reduce the

TOA uncertainty in UED measurements. This could be accomplished by informing a control

policy (i.e. feedback) or by working under the “measurement is easier than control” paradigm

that is a theme of this thesis. Rather than working to control further the natural parameter

drift of the machine in an already state-of-the-art stability environment, the remaining drift

and jitter can be harnessed to improve measurements. In UED experiments, if for each

shot, the virtual diagnostics showcased in this work are applied to retrieve the relative time

of arrival within the shot-to-shot error, one would be able to reorder the data using the

shot-tag information with a corresponding improvement in the temporal resolution as well

as significant reduction of acquisition times.
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CHAPTER 3

Physics-Based Model Matching

3.1 Motivation & Background

As discussed in Chapter 1, high-performance models are invaluable to accelerator controls

and diagnostics. In general, these models can be anything that predicts beam properties

given accelerator settings. Two main categories of these models are the physics-based model

and the data-driven model.

Data-driven models are described elsewhere in this thesis and are applied to control

(Chapter 4) and diagnostics (Chapter 2). These are powerful tools, in particular if two

conditions are met:

1. the model can be trained such that during experiments, the parameters do not drift

outside the span of the training set.

2. the input parameters can be measured continuously (i.e. the synchronous measure-

ments that were detailed in the previous chapter). An effort to forecast unmeasured

parameter drift was explored in the previous chapter, but is not the ideal solution:

tracking input parameter drift is.

Physics-based models are complimentary to data-driven models and are particularly ben-

eficial to controls and diagnostics when the two conditions above are not both met. Meeting

the first condition above can be challenging, as acquiring the requisite amount of training

data can be an arduous task, despite methods to sample efficiently the space [94, 95].
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A general description of physics-based models appears in Chapter 1. In this section,

General Particle Tracer [56] (GPT) is used extensively. GPT is a particle tracking code,

in which the user defines the input distribution and accelerator lattice. GPT then solves

the equations of motion at each time step, as the beam evolves down the beam line. Both

external fields (due to lattice elements) and self-fields (space charge) are incorporated. Care

must be taken that each of these input parameters is properly specified. Not only does the full

initial 6-D phase space need to be specified — at least to an equivalent beam approximation

[96, 97, 98, 28] — each of the field maps, including those of magnets and RF cavities must

match reality. In some cases, it can be best to approximate these using analytic functions, for

faster and more accurate (due to interpolation errors) results. Additionally, while GPT has

an automatic time-step determination algorithm, sometimes the user must select a smaller

time-step for more accurate results.

In a perfect world, physics-based models would match perfectly the reality of the experi-

ment (and the predictions would match those of a data-driven model), but generally do not,

due to factors that fall outside the control of the experiments or uncertain parameters that

serve as simulation inputs, such as those listed above. Jitter and drift, discussed throughout

this work, also can be a contributor to the lack of agreement between measurements of input

parameters and reality.

One of the many benefits of having a physics-based model that matches the true behavior

is that one can use the measurements of downstream parameters to extract physical knowl-

edge of about unmeasured parameters. This chapter will employ Markov chain Monte Carlo

(MCMC) sampling of inputs to physics-based models in order to gain extra information

about unmeasured photoinjector parameters in photocathode studies.

In photocathode studies, in order to ascertain the photocathode MTE, solenoid scans

are performed. This measurement generally requires varying the solenoid and measuring

the beam distribution at the exit of the screen. There are numerous parameters that affect

the beam behavior, aside from the photocathode MTE, including the photocathode recession

depth in an RF photoinjector, which can lead to additional focusing or defocusing (depending

59



on the sign of the recession depth) in cases where the plug is not seated flush with the gun

back-plane. Other factors include higher-order magnetic field components in the solenoid,

for example quadrupole moments, which affect the transverse focusing of the beam and

introduce an asymmetry between measurement axes. As a multi-shot technique, solenoid

scans can also be susceptible to fluctuations in the laser, RF and solenoid, where these are

supposed to be held constant. By determining these parameters all together, the MTE can

be found with more confidence.

This chapter will highlight a method for sampling the posterior distribution of this pa-

rameter space, such that error estimation and correlation analysis of these parameters can

be performed. This is followed by discussion of a method to improve the accuracy of the

predictions even when the second condition above — the acquisition of synchronous data —

is satisfied.

Following a discussion of MCMC for photocathode studies, an additional example of

physics-based model fitting in the absence of a data-driven model is shown at FAST, where

limited data availability precludes an experimentally-trained data-driven model. This model

will benefit numerous studies at FAST, including proposed photocathode studies. This

chapter borrows heavily from manuscripts that will be submitted on MCMC and on the

FAST model matching.

3.2 Injector Characterization Using Markov Chain Monte Carlo

Methods

3.2.1 MCMC Background

Markov Chain Monte Carlo (MCMC) methods are extremely widespread in other branches

of physics [99, 100, 101], but have been so far less commonly applied in accelerator and beam

physics. In this approach, a reliable model can be used determine a posterior probability

distribution function of parameters that are known to affect the measurements. Thus, the

goal of the MCMC sampling is matching model parameters given data. One could use an

60



optimizer for this type of problem. Depending on the problem, a local optimizer could be

selected, such as the derivative-free Nelder-Mead Simplex [102] or a gradient-descent opti-

mizer. A description of the various types of optimizers is beyond the scope of this dissertation;

textbooks such as [103, 104] list many optimizers and their advantages and disadvantages.

Although similar in their aim for this problem, MCMC sampling is fundamentally different

than an optimizer; an optimizer seeks to “fit” and predict a singular point in parameter

space that best matches data. MCMC sampling can be used to predict the high probability

region in parameter space that matches data.

The key is to estimate the probability of the model parameters given the data. This can

be seen through Bayes’ Theorem:

P (θM |D) =
P (D|θM)P (θM)

P (D)
. (3.1)

This is a general theorem for any θM or D. However, for the problem posed above of fitting

model parameters to data, D represents the data and the model parameters are represented

by θM . The probability of the model parameters given (conditional upon) the data (the LHS

of Eq. 3.1) is the quantity that is sought. The denominator on the RHS of Eq. 3.1 is simply

a normalization factor. Explicit calculation of this factor requires knowing and integrating

over all possible states of D. In general, it is simpler to work with the following:

P (θM |D) ∝ P (D|θM)P (θM). (3.2)

The first term on the RHS of Eq. 3.2 is is referred to as the likelihood function and is

the conditional probability of the data given the model parameters. This is in general

what one hopes to gain from simulations: information about the result given certain model

parameters. The second term is referred to as the prior probability, or the probability of the

model parameters. This is where the user can inject prior knowledge, such as limits for the

parameters.

In MCMC sampling, the probability distribution is sampled as a function of various

θM , given some D. An initial starting point is specified by the user. A move is proposed
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in parameter space, and the move is accepted with probability related to improvement in

the posterior probability computed using Eq. 3.2. As in the Monte Carlo method, this is

completed numerous times with pseudorandom numbers determining the outcome of each

step. The chain of moves is only related to the current and proposed positions in parameter

space, and is therefore a Markov Chain.

A common algorithm used in determining the sequence of random samples is the Random

Walk Metropolis-Hastings algorithm [100], where candidate moves are accepted with proba-

bility proportional to the ratio of new value of Eq. 3.2 relative to the old value. However, in

all of the examples in this thesis, the “Stretch-Move” algorithm, as proposed by Goodman

and Weare is used [101]. In this case, the probability of acceptance of the proposed moves is

related to the distance of the move and proportional to the ratio of the new and old posterior

probabilities given in Eq. 3.2.

If allowed to converge with sufficient number of moves, then the density of the samples

in the steady state is approximately the posterior distribution. Knowledge of the a posterior

distribution of the fitted parameters can be used to understand the reliability of the retrieved

answer. MCMC allows for the computation of an interval of confidence (or even an actual

probability density function) for each of the retrieved parameter, gives a high-probability

region for each parameter, along with the covariance of various parameters.

3.2.2 Solenoid Scans

Solenoid scans are used to characterize various unseen accelerator and beam parameters that

are impossible or impractical to measure directly, such as the mean transverse energy of the

electrons emitted from the photocathode (e.g. [21, 105]), or indirectly, the photocathode

response time [106]. The general idea is to build a reliable model of the accelerator and fit

input parameters to that model based on the beam sizes on a screen as the solenoid is varied.

Accurate determination of the beam sizes is critical to the success of the solenoid scan.

Due to signal-to-noise ratio considerations, in this work, the projection 1-D projection

method is used to determine RMS beam sizes; two of the three transverse spatial second-
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order moments, σxx and σyy, can be obtained relatively trivially by means of a projection.

The third, σxy can also be calculated by means projections, if a 45-degree rotation of the

image is used. It can be shown that the beam’s spatial projection on the screen has the

following form:

f(x, y) = exp

−1

2

X
Y

T

Σ−1

X
Y


 (3.3)

where X, and Y are vectors of he mean-subtracted particle positions and Σ−1 is given by:

Σ−1 =
1

det (Σ)

 ⟨yy⟩ −⟨xy⟩

−⟨xy⟩ ⟨xx⟩

 (3.4)

Note that det (Σ) is an invariant of rotation. These coordinates, X and Y , can be related

related to those in the u− v plane of a rotation of 45 deg. Hence,X
Y

 =

 1√
2

− 1√
2

1√
2

1√
2

u
v

 = R

u
v

 (3.5)

Inserting Eq. 3.5 into Eq. 3.3, the following relation can be found:

f(u, v) = exp

−1

2

u
v

T

RTΣ−1R

u
v


 (3.6)

By comparing Eq. 3.6 with Eq. 3.3, the following equations are obtained:

RTΣ−1R =
1

det (|Σ|)

 ⟨vv⟩ −⟨uv⟩

−⟨uv⟩ ⟨uu⟩


=

1

2

1

det (|Σ|)

⟨xx⟩ + ⟨yy⟩ − 2⟨xy⟩ ⟨xx⟩ − ⟨yy⟩

⟨xx⟩ − ⟨yy⟩ ⟨xx⟩ + ⟨yy⟩ + 2⟨xy⟩

 (3.7)

Hence,

⟨xy⟩ =
⟨xx⟩ + ⟨yy⟩ − 2⟨vv⟩

2
=

2⟨uu⟩ − ⟨xx⟩ − ⟨yy⟩
2

(3.8)

The determination of the second moments in u and v can be likewise computed using the

1-D projection method after rotating the image by 45 degrees. Thus, it can be seen that all

three second order moments of the beam distribution can be determined by four projections
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(two rotated). Due to propagation of error considerations and the fact that the ⟨xy⟩ term

goes to zero when the semi-major axes of the beam ellipse are aligned with the x and y axes,

hereafter, solenoid scans will be fit to match the x, y, u and v second order moments, rather

than ⟨xx⟩, ⟨yy⟩ and ⟨xy⟩. This is equivalent in an error- and noise-free environment; ⟨xy⟩

can be determined from the four projections.

3.2.3 Markov Chain Monte Carlo Methods for Injector Characterization at

HiRES

Characterizing the beam is critical to optimizing the beamline for UED experiments, which

is one of the primary functions of the HiRES beamline (e.g. [78, 79], and as described in

the previous chapter). HiRES is shown in Fig. 2.1 and is described in the previous chapter.

These data in this chapter were taken on VS1, and the first solenoid, S1 was varied to create

a solenoids scan.

It is worth mentioning that the HiRES gun is equipped with a INFN-style load-lock

photocathode plug insertion system, as shown in Fig. 3.1. As such, the photocathode plug

is not necessarily flush with the back plane of the gun, which as discussed above, can result

in focusing effects. Further, the solenoid has quadrupole moments of unknown strength

and angle. In general, a quadrupole moment can be decomposed into its normal and skew

moments. As such, the elements are considered separately for the remainder of the chapter.

Along with the photocathode recession depth and the quadrupole moments, the peak field

in the gun and the MTE were included as free parameters in the model to which this chapter

seeks to give confidence. Five parameters were identified as unknown and not possible to

measure in situ to a high degree of accuracy: 1) the photocathode MTE, 2) the beam energy

(known to within a few percent), 3) the normal element of the quadrupole moment in the

solenoid, 4) the skew element of the quadrupole moment in the gun and 5) the recession

depth of the photocathode plug relative to the back plane of the gun. As described above,

the four second order moments, x, y, u, and v, are measured using the projection method

on the removable YAG screen. A model of the beamline was created and simulated using
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Figure 3.1: Load-lock system at HiRES, where the beam travel direction is oriented down-

ward. On right: full schematic of load lock system at HiRES. Inset on left shows the

photocathode plug in the gun. Often, the plug has some longitudinal offset relative to the

nominal position, leading to a focusing or defocusing effect in the gun.
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Figure 3.2: The various two-dimensional projections of the posterior distribution predicted

by MCMC sampling. These 2-D projections are useful for seeing correlations, such as that

of the MTE and recession depth. On the diagonal, the 1-D projections are shown in gray.

General Particle Tracer (GPT) particle tracking simulations [56].

Because of the relatively slow execution of the GPT model, a neural network surrogate

model was developed. Approximately 20k iterations of GPT were run using a pseudorandom

samples from a uniform distribution of of the five above parameters and used as training data

for a feed forward, fully connected neural network with 6 hidden layers of 10 nodes each, with

tanh activation function. The output is the x, y, u, and v moments. The model was trained

to predict the beam sizes to within 5 µm, a small price to pay for the orders-of-magnitude

speed increase. On a standard desktop computer, the model can execute in around 50 µs.

A major improvement can be seen with larger numbers of simulation by vectorizing multiple

simulations.

Of course, the surrogate model has limitations. As always, if an input parameter is outside
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Figure 3.3: Plot of model predictions relative to measured data.

the span of the training set, the result from the NN will not be reliable. Assumptions on the

input distribution of the beam were made. The model assumes that the beam is spatially

Gaussian with no correlation between any dimension. In angles, the beam was assumed

to have angles specified by the MTE of the beam (also Gaussian in x′ and y′, but a half-

gaussian in longitudinal momentum). In this work, these assumptions are generally good,

as the charge was seen to have a negligible effect on the transverse dynamics, meaning that

the transverse dynamics are generally decoupled from the longitudinal dynamics. The VCC

indicated a near-Gaussian beam and using angles given by the MTE is a standard assumption

(e.g. [21])

The MCMC sampling was run on the surrogate model. The resulting projections of the

posterior distribution are shown in Fig. 3.2. The mean values of the posterior distribution,

with one standard deviation shaded error bars are shown plotted against the data in Fig.

3.3. Note that because of the relatively noise-free data, the error bars decrease as a 1√
N

where N is the number of solenoid scan data points.

It is worth noting the correlation between the MTE and the photocathode recession
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Figure 3.4: Walker convergence for MTE. Note that the walkers start spread out over the

entire parameter space, but eventually converge.

depth. At the photocathode, assuming a non-magnetized photocathode (for examples of

magnetized cathodes, see [37, 35, 36, 38, 107]), the particle positions and momenta are

decoupled. As such, the inital emittance is given by:

ϵ = σ

√
MTE

mc2
(3.9)

where σ is the RMS size of the beam at the photocathode. It is apparent that the MTE

represents the divergence. A cathode recession also affects how much the beam diverges,

due to a focusing effect. Although not the same effect, so the solutions are unique, there is a

correlation between the two effects in the posterior distribution, as expected, as can be seen

in Fig 3.2 in the lower lefthand plot.

The walker convergence is shown in Fig. 3.4. The walkers are started with uniform

probability in the parameter space, but converge to a steady state posterior distribution.

The period before convergence is called the burn-in period and is omitted from the analysis

in Figs. 3.2 and 3.3. A similar plot can be made in the other dimensions of the parameter

space, but the MTE plot is shown as an example.
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3.2.4 Measurement Resolution Improvement

As a model-based reconstruction technique, the technique shown above is open to the frame-

work of incorporating measured fluctuations into the reconstruction. At each point in the

solenoid scans above, multiple shots were recorded in order to characterize the fluctuations

and increase the SNR of stationary noise. The characteristic
√
N (where N is the number

of shots) improvement in the SNR assumes that the measurements are centered around a

fixed mean; if this assumption is violated, less or no improvement will be seen by taking

multiple shots, depending on the relative scale of the drift (mean fluctuations) to that of

the jitter (fluctuations about the mean). Given the state-of-the-art short-term stability of

HiRES, which is discussed in the previous section, taking multiple shots to improve the SNR

is clearly a good path (in fact, most measurements at HiRES, including the ones shown

above inherently average over multiple shots, as the maximum repetition rate is 250 kHz).

However, this is not always the case, as many beamlines have significant jitter and drift

components. For example, the jitter and drift of a previous version of Pegasus is discussed

in the next chapter. Numerous beamlines suffer from fluctuations, but in a model-based

reconstruction technique, if the input parameter fluctuations are tracked synchronously with

the measurements, the additional information can be put into the model and used to improve

the resolution of the measurement. In the following paragraphs, a simulation study will be

undertaken on the Pegasus beamline to show the effect of synchronous data acquisition

on the measurement resolution. As discussed in the next section, the Pegasus beamline

has a UCLA/SLAC/BNL-style gun, operating at 2.856 GHz, followed by an emittance-

compensation solenoid, which is followed by a YAG screen. Notably, this setup differs from

the Pegasus setup described in the next chapter, as — prior to the work shown in this

chapter — the photocathode back-plane was replaced with an INFN-style plug-compatible

back-plane, which was installed with a load-lock system to exchange photocathodes, similar

to the one shown in Fig. 3.1 for HiRES. Simulations took this setup difference into account

by using a gun field map with a plug recession depth of 750 µm, which is known to be

approximately the experimental condition, due to changes in the measured overall operating
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Description Minimum Maximum

Solenoid Peak Field (T) 0.1 0.25

Photocathode MTE (eV) 0 2

RMS x Laser Size (µ m) 30 500

y/x Laser Size Ratio 0.7 1.3

Laser Rotation (rad) 0 pi

RMS Laser Pulse Length (fs) 50 200

Gun Peak Field (MV/m) 60 90

Gun Phase (deg) 5 30

Beam Charge (fC) 50 650

Photocathode Recession Depth (mm) 0 1.5

Table 3.1: List of free parameters and their limits for the feed forward neural network

surrogate model for GPT for Pegasus

frequency of the gun.

The simulation of the beamline was accomplished on a feed forward neural network

surrogate model for the GPT [56] model of Pegasus, with five hidden layers with 10 nodes

each, which predicts the beam spot sizes in x, y, u and v to within 5 µm. Training data

comprised approximately 105 samples. Free parameters are listed in Table 3.1. The model

assumes a uniform transverse profile of the beam in particle positions, which is a reasonable

assumption given the the small beam sizes at Pegasus, which are created by demagnifying

and imaging an aperture that cuts the core a Gaussian laser pulse. The remaining spatial

dimension of the initial 6-D phase space (discussed in Chapter 1) is a Gaussian with RMS

pulse length left as a free parameter in simulation. The transverse angles of the initial 6-D

phase space distribution are Gaussians as determined by the photocathode MTE. The initial

forward momentum is a half-Gaussian distribution determined by the photocathode MTE.

The goal of this study is to show the improvement in the accuracy of the reconstruction of

the photocathode MTE by incorporating the shot-to-shot measured fluctuations upstream
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Figure 3.5: Schematic of the approaches. The same simulated data are plotted twice using

the traditional approach (top) and the approach in this section (bottom). Top: Plot of

RMS beam size in the x-dimension vs. solenoid control value. Amplitude and phase jitter is

averaged at each solenoid value. The black line represents a nominal scan — the same scan

with no jitter. Bottom: RMS beam size in the x-dimension for individual shots tagged by

RF phase and amplitude.
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Figure 3.6: Red: Posterior projection while taking into account the shot-to-shot jitter with 5

measurements per solenoid setting. Blue: Posterior projection using the traditional method

of averaging. Ground truth MTE is shown in black.

accelerator parameters. The comparison between the case of simply averaging over the

fluctuations and taking into account each shot is shown in Fig. 3.5, which was created

by sampling two Gaussian distributions of phase and amplitude centered about a nominal

value. Each point (amplitude and phase) in parameter space was simulated using the model

described above in order to give an RMS beam size.

The results of the projected posterior distribution of MTE is reconstructed using MCMC

and is shown in Fig. 3.6. Something to note is that since MCMC now sees more points, the

uncertainty goes down, leading to more confident predictions. Note that Fig. 3.5 and Fig.

3.6 use five measurements per solenoid setting. Note that the uncertainty in the posterior

distribution goes down accordingly by a factor of
√
N where N is the number of shots using

MCMC. See Fig. 3.7 for a plot of posterior MTE uncertainty as a function of number of

samples. By increasing the number of samples per solenoid setting to 50 shots per solenoid

setting, note that the uncertainty improves accordingly, while no improvement is seen for

the traditional, averaging scan in Fig. 3.8.
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Figure 3.7:
√
N dependence of the projected posterior uncertainty of the MTE

However, as is seen in Fig. 3.8, by injecting additional information into the fit (in this

case RF amplitude and phase), the uncertainty reduction is even greater than
√

50 between

the shot-to-shot versus averaging case. This is because even with 50 samples per point, there

is some error associated with approximating the sample mean as the population mean. This

can result in a different MTE.

Similarly, as the fluctuations become large, the MTE appears to become larger. This

is because at different input settings, different solenoid settings will bring the beam to a

minimal size at the screen. The effect of having a different beam energy at each point

results in different focusing effects, which appear to “wash out” the minimum, resulting in

an apparent MTE increase. This effect is shown in Fig. 3.9. While the fluctuations shown

to the right of this plot are too high to accurately represent the fluctuations at Pegasus, it

shows that by using knowledge of the RF phase and amplitude, one can compensate for this

increase.

In summary, if data are available, it helps the accuracy and confidence in the MCMC

predictions of the MTE to include upstream fluctuations. This is due to three reasons:
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Figure 3.8: Red: Posterior projection while taking into account the shot-to-shot jitter with 50

measurements per solenoid setting. Blue: Posterior projection using the traditional method

of averaging. Ground truth MTE is shown in black. Note that the standard deviation

of the posterior distribution using the traditional method is 0.0157 eV, whereas the new,

shot-to-shot method produces 0.0013 eV using the same metric.

Figure 3.9: Apparent MTE increases with upstream fluctuations.
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• Increased number of data points for MCMC

• Increased information injected into the fit

• Reduction in the “washout” of the MTE by having MCMC aware of the different

focusing that occurs due to the fluctuations

3.3 FAST

3.3.1 FAST Background

In a similar problem, matching a physical model to experimental results at the Fermilab

Accelerator Science and Technology (FAST) will be highly beneficial for several ongoing and

upcoming projects. These projects include providing beam for Integrable Optics Test Ac-

celerator (IOTA) [108], and the under-construction FAST Gamma-Ray Electron Enhanced

Source (GREENS) [109] and for upcoming photocathode studies in a high-gradient photoin-

jector proposed by the Center for Bright Beams. FAST is a very versatile machine, and as

such, does not satisfy the first condition listed in Section 3.1, as making the experimental

training data for all modes of operation would be incredibly costly.

Having a physics-based model for photocathode studies, as mentioned in the previous

section will be required, as such studies require a model to invert/optimize to deduce pho-

tocathode properties from solenoid scans (e.g. [21]). For FAST-GREENS, the requirements

on peak 5-D beam brightness from the injector are particularly demanding. To these ends,

FAST-GREENS will require the FAST injector to run at near the boundary of capability on

the Pareto front of beam charge vs. transverse emittance. Indeed, the nominal requirements

of 3 mm mrad emittance in each dimension, along with a peak current of 600 A will require

optimization of the upstream injector parameters on a model. This section reports on the

development of a high-fidelity model of FAST for optimization toward high peak 5-D beam

brightness for FAST-GREENS. IOTA experiments could also benefit from such a model, if

further optimization is needed for beam properties.
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Figure 3.10: The FAST injector, with selected diagnostics shown. Q106, Q107 and Q111

are 45 degree skew quadrupoles. Diagnostics with X delineation are screens (YAG or OTR),

while those delineated with a B are noninvasive beam position monitors (BPM).

The FAST beam line (shown in Fig. 4.3) starts with the gun, of similar type to the DESY-

PITZ gun [110]. The 1.3 GHz, 1.5 cell cavity is followed by an emittance compensation

solenoid, with adjustable position. The bucking solenoid directly upstream of the gun is

generally set to produce a magnetic field in the opposite direction of the main solenoid at a

magnitude such that the field at the photocathode is zero, so that the beam is born with zero

angular momentum. The gun as an INFN-style load lock system that allows for the exchange

of photocathodes, similar to the one shown in Fig. 3.1. Two TESLA cavities [111] (CC1 &

CC2 in Fig. 4.3) are used to accelerate the beam to 35-50 MeV in nominal cases. A series

of quadrupoles are used to manipulate the beam transversely. The quadrupoles are followed

by a chicane that is used to compress the beam. The chicane can also be bypassed and the

beam can be directed from Q113 to Q118, the start of a quadrupole triplet. Following B122,

the beam energy can be measured on the beam dump line.

As mentioned above, one of the primary goals of this study is to provide a model for

optimization of compression in the chicane. In a chicane, beam emittance will be diluted

by coherent synchrotron radiation (CSR) effects, which must be modeled properly. To these

ends, General Particle Tracer (GPT) [56] has been shown to be a good choice to model CSR

effects [112]. As such, GPT was chosen as the physics model to use in this effort.

There are numerous free parameters for the model. Table 3.2 lists the free parameters

and the data taken to fit them.
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Parameter Data

Main Solenoid Position Main Solenoid Scan & Downstream Images

Bucking Solenoid Position Bucking Solenoid Scan

X101 Position Main Solenoid Scan & Downstream Images

Gun Peak Field CC1 Energy Scan

Gun Phase Gun Phase Scan

Initial Pulse Length Gun Phase Scan & Streak Camera Images

Beam Initial Transverse Size Virtual Cathode Image

Solenoid Strengths Solenoid Magnetic Measurements

CC1 Peak Field CC1 Energy Scan & Downstream Images

CC1 Phase CC1 Energy Scan

Table 3.2: Free parameters in the model and the tests completed to fit these parameters.

3.3.2 Longitudinal Dynamics

In order to verify the longitudinal dynamics of the beam and match a model, two tests were

performed: a gun phase scan and a streak camera measurements at X121 (see Fig. 4.3),

approximately 17.4 m downstream of the photocathode. Both will be described below. In

addition, a scan to verify the energy of the beam before and after CC1 (see Fig. 4.3) is

shown.

For the first test, the gun phase was changed in 0.2 degree intervals and extracted charge

was measured at the exit of the gun. The time it takes for the beam to be extracted from

the cathode can be measured from this scan. Neglecting the Schottky effect, under purely

classical conditions, where the laser induces above-threshold photoemission, the measured

charge should start as soon as the RF phase is such that the field accelerates the head of the

bunch downstream. As the phase is increased, more of the bunch experiences an accelerating

field, until the full bunch does, at which point the full beam charge is measured. Based on

the degrees of phase sampled between first electrons and full beam, the length of the pulse

from the gun can be determined. For a uniform distribution, the rise would be linear, but
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Figure 3.11: RMS laser pulse length fit with an adjustment for the Schottky effect due to

quantum tunneling probabilities.

for a Gaussian beam, the rise can be modeled as an error function.

However, this is a simplified picture. In fact, as the RF phase changes, the magnitude

of the field at the cathode also changes, which changes the tunneling probability of the

electrons. As such, the Schottky enhancement on the quantum efficiency can be modeled as

proportional to:

QE ∝ (Eexcess)
2 (3.10)

where Eexcess is given in Eq. 1.17, but is repeated here with more detail on the contributions

to the barrier to photoemission:

Eexcess = hν − ϕw + ϕSchottky (3.11)

and
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Figure 3.12: Measured compression using CC1 and the chicane for compression. Streak

camera measurements are overlaid with GPT predictions convolved with a resolution term

(PSF).

ϕSchottky =

√
e

4πϵ0

√
βE0sin(θ) (3.12)

where hν is the photon energy and ϕw is the nominal work function of the photocathode.

E0 is the magnitude of the electric field, while θ is the RF phase. In practice, the constants,√
e

4πϵ0
can be lumped into β, the Schottky enhancement factor, in a fit. As such, the error

function can be combined with the Schottky fit to fit the initial pulse length. At FAST, this

yielded an 8.6ps RMS initial pulse length, as shown in Fig. 3.11.

Additionally, the electron beam bunch length was measured downstream using a streak

camera setup at X121. This measurement used an OTR screen and the used the streak

camera method established in numerous studies (e.g. in [43]) to characterize the pulse length.

These yielded comparable results to the GPT simulations, when factoring in a resolution term

due to the width of the collimating slit width for the streak camera measurement. See Fig.

3.12 for details.
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Figure 3.13: Kinetic energy measurements as a function of CC1 phase. Measured using D122

in Fig. 4.3.

The beam energy was measured using a dipole spectrometer. Using the geometry of the

system and the magnetic field in D122 (as shown in the Fig. 4.3), the beam’s kinetic energy

can be calculated using the relationship:

Bρ = pc/e (3.13)

where B is the magnetic field, ρ is the bending radius of the magnet and p is the beam

momentum. ρ is determined by the geometry of the system. By varying the phase in CC1,

the beam energy can be controlled directly. Given that the a sinusoidal energy kick imparted

by CC1, the kinetic energy of the beam at the exit of the gun can also be deduced.

Ekin = Egun + ECC1cos(θ) (3.14)

The geometry of the system is determined by four non-destructive BPMs, B121, B122,

B123, and B124 in Fig. 4.3. The latter two of these BPMs are in the dogleg beamline. As

such, both the beam position and angle of the beam can be determined before and after the
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dipole. While the NMR probe inside the dipole gives a readback on the magnetic field inside

the dipole, this measurement has systematic (mostly due to calibration errors and physical

misalignment) and random error associated with it. As such, the energy in the preliminary

GPT model is adjusted slightly to match the transverse behavior described below. See Fig.

3.13.

3.3.3 Transverse Dynamics

On the transverse side, a virtual cathode camera image was recorded on each run day. This

was used to start a distribution of particles in simulation.

Solenoid scans were measured on screen X101, which has a position that is not recorded in

the survey data of the beamline. See Fig. 3.14 for more details. The position of the screen

is a free parameter within a range of the estimated position of 1.062 meters downstream

of the photocathode. The screen was moved approximately 5cm upstream in simulation

relative to its estimated position. Note that in simulation, the positions of the solenoids are

also free parameters, as there is no reliable survey data on the location of these. The main

solenoid was positioned 32 cm downstream of the photocathode, nearly 10cm downstream

of its estimated position.

Importantly, the transverse beam sizes were measured at X108 (when available), X109

and X111 and compared to simulation for various charges. See qualitative agreement with

preliminary model in Fig. 3.15.

The transverse emittance was measured using the two quadrupole scan method [92].

Generally, the emittance is higher than predicted by the preliminary model. For example,

the emittance of an approximately 700pC beam was approximately 20 mm mrad in each

dimension, while the simulated RMS normalized projected emittance was approximately 9

mm mrad in x and 17 mm mrad in y. There are several possible reasons for this discrepancy,

which are discussed, along with sources of error, in the following paragraphs.
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Figure 3.14: Example solenoid scans at multiple charges with GPT predictions overlaid.

Measured on X101 (see Fig. 4.3).

Figure 3.15: Downstream beam second order moments with GPT predictions for an approx-

imately 100pC beam (left) and an approximately 700pC beam (right). Measurements were

taken at X108, X109 and X111 (see Fig. 4.3).
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3.3.4 Discussion

A preliminary GPT model of FAST is presented. While the model generally qualitatively

matches the behavior observed in experiment, there are still discrepancies that will continue

to be improved.

For example, the a scan of the bucking solenoid does not yield the same dynamics as the

model indicates. A bucking solenoid scan at constant charge and main solenoid setting was

taken on X101. While it shows a similar beam size to what would be expected in simulation,

the behavior as the solenoid is increased does not match.

This could suggest several issues, including that the main solenoid position is closer to

the cathode, or that the X101 position has been incorrectly fit. However, these positions

allow the model to match the downstream behavior of the beam. Additionally, the presence

of quadrupole focusing is evident in the solenoid scan data, but is not included in the model,

and could have some effect on the bahavioral discrepancy.

This asymmetry could be one of the main reasons for a larger emittance value in the

experiment than in simulation. A skew quadruople would increase the projected emittances.

In the future, these quadrupoles in the solenoid will be incorporated into the model, as

will CC2, which was inoperative for the majority of these tests. Additional survey data would

greatly help in finalizing the model. Additionally, absolute calibration of integrating current

transformers measuring the beam charge should be confirmed. Relative charge calibration

has been confirmed using beam image intensities.

3.4 Conclusion

Physics-based models are generally useful to a class of diagnostics and control problems

in beam physics. Despite their slower speed than other tools available, they are reliable

and versatile. This can lead to numerous applications, some of which are showcased in

this section, including for control, as at FAST and for understanding underlying physics, as
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shown at HiRES, Pegasus (simulation) and in the future, FAST for photocathode studies.

Notably, for MCMC, the effect of the slowness of the physics-based models was mitigated

by using surrogate models for rapid execution, as MCMC is a sample-inefficient method. The

tradeoff is that MCMC gives more information about the underlying probability distribution

than other methods. Of course, the use of a surrogate model also has its tradeoffs; the price

to be paid for using these surrogate models is that the working range of simulation must be

defined in advance, and as such is not as general as working on the simulation itself.

This chapter focused on matching these physics models to the real behavior of the beam-

line. This was accomplished by MCMC and coarser methods for FAST. One of the main

goals is the same: to have a model high-fidelity physics model, complimentary to the exper-

imentally driven models shown in the other chapters of this thesis.
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CHAPTER 4

Modeling in the Presence of Fluctuations

4.1 Motivation & Background

As described in previous chapters, accelerator models can be particularly useful for improving

diagnostics: both offline for data interpretation and analysis (see Chapter 3) and online

for virtual diagnostics (see Chapter 2). In this chapter, modeling toward control and its

augmentation with model-independent methods for further automation are discussed.

In general, models for control guide the accelerator settings needed in order to obtain

certain beam properties. Note that this problem is the inverse of most physical models, in

which accelerator settings yield beam properties. In general, for most simulation codes, a

solution to the inverse problem must be found. These solutions include optimization, but

could also include sampling techniques such as MCMC, as shown in the previous chapter.

This chapter attempts to automate and improve control processes in a realistic space,

where existing models of a more idealized system — where fluctuations are not fully taken

into account — are used to predict a real system, which is laden with such fluctuations.

These models can be used for optimization to find the accelerator parameters need to produce

certain beam properties (model-based control). Any differences between the desired beam

and the beam resulting from model-based control is compensated by model-independent

techniques, which are techniques that optimize the beam without using physical knowledge

of the system. Since physics-based simulations are generally slow to execute, fast fluctuations

necessitate a faster online modeling approach. Thus, ML-based, fast surrogate models are

beneficial.
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However, the price to be paid for using such a fast tool is the limitation in the range of

possible parameters. While ML models are generally faithful to the true behavior inside the

span of parameter space of the training data, the problem of extrapolation under so-called

distribution shift is an open research question. Solutions including a “soft landing” [60, 81]

outside the span of the training set have been proposed.

In this work, a so-called “warm start” approach is shown, where a ML-based surrogate

model is trained on experimental data, but due to anticipated system drift around the

boundaries of the training set and untracked machine fluctuations, the model is treated only

as an approximate guide. The predictions are used as an approximate solution, something

nearby to the true solution in parameter space that can be found quickly using online model-

independent tools.

In the first part of this chapter, the optimization of the round-to-flat beam transform

(FBT) at Pegasus is discussed. At the time of this experiment, Pegasus had numerous

short- and long-term fluctuations, including in RF and magnet systems, which have since

been mitigated through major hardware overhauls, including the replacement of the LLRF

systems with a digital clock and the entire RF amplification chain with a state-of-the-art

solid-state modulator and klystron. Further improvements to software, magnet alignment

and data logging have made operations more consistent. Other improvements include the

introduction of a Bergoz integrating charge transformer and beam charge monitor and an X-

band linearizer [113]. The work toward FBT in the previous, fluctuation-laden environment

will be described in the following sections, leading to the need for compensation with model-

independent methods. This chapter borrows heavily from [107] and in-preparation materials.

In the second part of this chapter, work toward automating the electron beam setup

for UED in a dynamic environment at HiRES is shown, further demonstrating the utility

of model-independent optimization techniques for the “warm start” approach. This section

borrows from [114].
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4.2 Flat Beam Transform at Pegasus

4.2.1 Flat Beam Theory

While maximizing 4-D or 6-D (discussed in Chapter 1) beam brightness is often critical, for

certain cases, maximizing 2-D beam brightness is sufficient. This can be accomplished by

minimizing the emittance in one transverse plane at the expense of the other, leading to

asymmetric projected emittances. Applications of a beam with large 2-D brightness include

slab-geometry dielectric laser acceleration [115], as the acceptance in one spatial dimension

is small, while the acceptance in the other dimension is orders of magnitude larger. Other

applications of flat beams include those that require intense line foci, such as those in electron

microscopy with certain sample geometries or lithography.

There is a fundamental, physical reason to minimize the 2-D beam brightness associated

with Gromov’s Non-Squeezing Theorem [116]. This theorem states in symplectic transfor-

mations, such as those of linear beam transport, there is a limit to the minimum emittance

in any dimension. Indeed, the eigenemittances are a second set of invariants for beam trans-

port, beyond the phase space volume [117, 118]. Thus, the eigenemittance is the lowest limit

of the projected emittance corresponding to any spatial dimension. It is the goal of the FBT

to minimize one such eigenemittance (at the expense of the other) and then to retrieve it as

the projected emittance in a preferential direction.

Eigenemittances are defined as follows from the beam matrix (see Eq. 1.11) [93, 119]:

ϵ1 =
1

2

√
−Tr[(Σ4DJ)2] +

√
Tr2[(Σ4DJ)2] − 16 det[(Σ4D)] (4.1)

ϵ2 =
1

2

√
−Tr[(Σ4DJ)2] −

√
Tr2[(Σ4DJ)2] − 16 det[(Σ4D)], (4.2)
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Figure 4.1: Analytical scaling of large and small projected emittances following the proper-

ly-optimized FBT with respect to the applied magnetic field at the photocathode and the

MTE characteristic of the photocathode.

where J is the symplectic matrix,

J =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 . (4.3)

In order to make one eigenemittance small, the beam is born in a longitudinal magnetic

field on the photocathode. This magnetic field gives the beam angular momentum, is pre-

served as canonical angular momentum during transport. A beam born from a magnetized

cathode has a beam matrix as follows:

Σ4D =


σ2
c 0 0 L

0 σ′2
c + L2

σ2
c

−L 0

0 −L σ2
c 0

L 0 0 σ′2
c + L2

σ2
c

 (4.4)
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where σc is the RMS beam size on the cathode, σ′
c represents the initial angles in the beam

due to the photocathode MTE in the absence of a magnetic field and

L =
eBc

2γβmc
σ2
c =

L

γβ
(4.5)

is proportional to the angular momentum of the beam, where Bc is the magnetic field on

the cathode, and γ and β are the relativistic factors. L is also proportional to the angular

momentum of the beam.

By inserting Eq. 4.4 into Eqs. 4.1 and 4.2, it can be shown that the two normalized

eigenemittances, hereafter referred to as ϵ+ and ϵ− are given by [33]:

ϵ± =
√
ϵ2th + L2 ± L (4.6)

where

ϵth =

√
MTE

mc2
σ2
c (4.7)

where ϵth is the normalized thermal emittance of the cathode and depends on the Mean

Transverse Energy (MTE) of the photoemission process at the cathode.

As such, if the magnetic field at the cathode is sufficiently large, L >> ϵu and

ϵ− ≈ MTE

eBcc
(4.8)

and

ϵ+ ≈ 2L + ϵ−. (4.9)

Equation 4.8 shows that a flat beam has a small eigenemittance that is independent of the

initial spot size; in fact, it only depends (approximately) on the MTE of the photocathode

and the magnetic field Bc that is applied to the photocathode. See Figure 4.1 to see how the

large and small projected emittances following the optimized FBT scale with the Bc. Given

the progress on advanced photocathodes that have very low MTE [120], one can thus obtain

extremely small eigenemittances.

The last step of the FBT is to retrieve these eigenemittances as the projected emitt-

tances in either the vertical or horizontal dimension. This is accomplished by tuning a skew
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Figure 4.2: From simulation: minimum optimized small projected emittance as a function of

charge. Comparison with a round beam of equal emittance to the small projected emittance

in the zero-charge limit; the virtual cathode limit of such a beam is denoted in black.

quadrupole triplet to remove the angular momentum from the beam and suppress the cou-

pling terms in the beam matrix shown in Equation 4.4. For the purposes of this chapter, FBT

is a multidimensional optimization problem in a jittering environment. Thus, the remainder

of the chapter will focus on this last step of the FBT: the tuning of the skew quadrupoles

to find optimal values such that a flat beam is produced at the exit of the skew quadrupole

triplet. Since the theory presented above is matrix-based and assumes zero charge, for a

beam of a given energy, it can be used to solve for the three skew quadrupole currents.

These assumptions generally do not hold for the real system. In fact, as shown in Figure

4.2, the minimal small emittance value changes as a function of charge, as do the optimal

FBT quadrupole values as beam charge is increased. Thus, optimization that was already

necessary because of drift, noise and incomplete knowledge of beam parameters at all times,

becomes even more necessary at higher charge.

However, despite the requirement for optimization, the charge scaling for the 2-D beam

brightness is generally better than a round beam, and makes it an attractive option. Figure

4.2 shows the scaling of the small projected emittance with charge from particle tracking

simulation [56] for Pegasus with 400 meV MTE and 3.375 kG peak solenoid field, parameters
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Figure 4.3: Model of the Pegasus Beamline at UCLA with selected distances. The elements

are as follows: 1) Permanent magnet mounted on actuator to introduce a magnetic field on

the cathode, 2) 1.6 cell RF gun, 3) Emittance compensation solenoid, 4) Booster linac (not

used in this experiment), 5) Dipole spectrometer, 6) Flat beam adapter comprised of a skew

quadrupole triplet, 7) normal quadrupole triplet for focusing, 8) TEM grids and pepperpots

for emittance measurement, 9) Diagnostic screens

which are relevant for the experimental work discussed later. Without the FBT, to generate

a round beam with an equivalent emittance, one would have to keep the laser RMS spot

size on the cathode to less than 5.4 µm. The extracted charge for a beam this small would

be limited by the high charge density. In Fig. 4.2, the vertical line indicates the virtual

cathode limit [22, 121] for such a beam in the pancake regime at approximately 59 fC, given

experimental phases. As can be seen, it is advantageous to maximize 2-D beam brightness

with a flat beam compared to a round beam.
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4.2.2 Experimental Setup

The three-skew-quadrupole approach for the FBT [34, 32, 33, 37, 35, 36, 38] at the Pegasus

beamline in the ultralow charge regime is presented. At the Pegasus beamline (shown in Fig.

4.3), 800-nm-wavelength laser light is frequency-tripled and 266-nm-wavelegnth and 100-fs-

rms laser pulses are incident on an adjustable iris. That iris is imaged onto the photocathode.

The transverse spot size of the laser on the cathode can be controlled in the range 50-400 µm

rms. The intensity of the light, and therefore the charge of the resulting electron beam, is

adjustable using a polarizer. The beam charge was kept below 1 pC in this experiment. The

emitted electron beam is accelerated in a 1.6 cell UCLA/SLAC/BNL type radiofrequency

photoinjector (2.856 GHz) to approximately 3.65 MeV. A 35 mm x 35 mm x 17.4 mm

neodymium (N38) permanent magnet is mounted directly behind the photocathode on an

actuator with approximately 10 cm range of motion. When the permanent magnet is closest

to the emitting surface of the photocathode, the maximum magnetic field is approximately

0.3375 T; when the magnet is farthest from the photocathode, the magnetic field is negligible

— on the order of 10 Gauss. A plot of the on-axis field measurements is shown in Fig. 4.4.

Per guidance given by particle tracking simulations using General Particle Tracer (GPT) [56],

the emittance-compensation solenoid is set to focus the beam near the entrance of the skew

quadrupole triplet that is located approximately 2.8 m from the photocathode. The skew

quadrupoles used for the flat beam adapter have an effective length of 10.5 cm, a gradient

of approximately 0.484 T
A m

and are followed by normal quadrupole triplet. These normal

quadrupoles have an effective length of 7.68 cm and a gradient of approximately 0.45 T
A m

.

The beam was measured on two screens 4.46 m and 4.545 m downstream of the cathode. A

focusing quadrupole triplet (not skew) followed the flat beam adaptor and a screen between

the quadrupole triplets was used to quide optimization.

4.2.3 Optimization Considerations

To identify properly a flat beam, one must know the determinants (emittance squared) of

the three unique blocks of the 4-D beam matrix, which contains all of the second-order
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Figure 4.4: Magnetic field on the front face of the cathode as a function of distance from

the front face of the nyodymium magnet. Inset (left to right): Gun with magnet actuator

assembly, schematic of the magnet against the back of the cathode (green), schematic of the

magnet positioned far from the cathode (green).

moments of the beam distribution function (see Eq. 1.11). In practice, one must find

each of the second-order moments in order to find these determinants. Techniques that

can reconstruct the 4-D beam matrix are well-developed. One such technique is the multi-

shot, two-quadrupole scan [92]. The two-quadrupole scan is a multi-shot technique, which

requires enough shots that it is impractical to use as an objective function for an optimizer,

but can be used to validate the objective function. See Figure 4.5 for an image of the

flat beam taken after skew quadrupole settings were chosen by a neural network, along

with example quadrupole scan fits for ⟨xx⟩, ⟨xy⟩, and ⟨yy⟩ for an actual quadrupole scan.

The normal quadrupoles that follow the skew quadrupole triplet are used for this multi-

shot, two-quadrupole scan. Another emittance measurement technique is the mask-based

emittance reconstruction: that is, to insert grids or pepperpots [122] into the beamline and

perform a single-shot measurement downstream [93]. Generally, the single-shot, grid-based

or pepperpot method is not well suited for a flat beam, as TEM grids or pepperpots are

symmetric in the two dimensions and a flat beam by definition has a large emittance ratio;
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(a) Image of flat beam
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(b) Example ⟨xx⟩ fit
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(c) Example ⟨yy⟩ fit
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(d) Example ⟨xy⟩ fit

Figure 4.5: a) Image of the resulting flat beam, and measured normalized projected emit-

tances after NN optimization. b) Example quadrupole scan fit for ⟨xx⟩. c) Example

quadrupole scan fit for ⟨yy⟩. d) Example quadrupole scan fit for ⟨xy⟩

the angles in one spatial dimension are much larger than the other. Generally, the flat beam

can be measured in one dimension, but not the other with grids or pepperpots. For example,

see Fig. 4.6 for an image of a flat beam as measured by the grids. In this case, the grid

dimensions and beam transport are set such that the small emittance can be measured, but

not the large dimension.

Thus, direct measurement of the emittance ratio of the flat beam is infeasible as an

objective function for optimization. As such, it was necessary to find a suitable alternative.

Using GPT [56] simulations as a guide, it was found that the optimal flat beam resulted from

adjusting the skew quadrupoles to bring the beam to a tight focus a few cm downstream

of the triplet. The beam is then divergent by the time it reaches the downstream screens.

As such, a hallmark of a beam with a large emittance ratio is the large spot size in one

transverse dimension (x or y) and small in the other. Thus, the chosen objective function is:

f(σ1, σ2) =
σ1

σ2

(4.10)

where σ1 is the user’s choice of σx and σy, the one that is to be minimized, and σ2 remaining

of σx and σy. f(σ1, σ2) is the objective function and is to be minimized.

The suitability of the objective function was confirmed in simulation. The contours of

the objective function and the minimum emittance following the FBT is shown in Figure
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Figure 4.6: Left: Flat beam passing through TEM grids. Right: Projection of the flat beam

image along the x-axis.

(a) Normalized Projected Emittance (b) Objective Function

Figure 4.7: Comparison of the objective function and the minimum projected emittance as

a function of quadrupole current in the first two quadrupoles in the skew quadrupole triplet.

The currents in the solenoid and the third quadrupole are held to their optimal values. The

minimum of the objective function is denoted in red, and the minimum of the small projected

emittance is denoted in black in (a). These points are the same.
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Figure 4.8: Comparison of the predicted minimum projected emittance by the objective

function and the minimum projected emittance (in simulation). The percentage by which

the predicted minimum emittance is greater than the true minimum is shown as a function

of current in quadrupole 3 and solenoid setting. The white dot indicates the optimal settings

for the third quadrupole and the solenoid.

4.7 as a function of the first two quadrupoles. To make this figure, the third quadrupole in

the triplet is held constant at its optimal value, as it had the smallest impact on the final

emittance, per GPT [56] simulation. The solenoid is also held at its optimal value, and the

maximum magnetic field is placed on the photocathode.

The validity of the objective function was also tested in simulation for non-optimal values

of the solenoid and the third quadrupole. For each combination of solenoid setting and

quadrupole 3 current, the other two quadrupoles are optimized based on 1) the spot size

ratio (experimental objective function) and 2) the flat beam condition. In Fig. 4.8, the

percent difference between the projected emittance using the two objective functions are

shown. Up to a 25% variation from their optimal values in simulation for both the solenoid

and final skew quadrupole were explored, which more than covers the spread of values used
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in experiment. As can be seen, within this range in parameter space, using the chosen, spot-

size-based objective function consistently picks a point that is within 30 % of the minimum

in terms of its projected emittance.

4.2.4 Online Modeling & Distribution Shift

In order to build a fast, online, ML-based surrogate model of the system, approximately

57000 experimental measurements were taken of the transverse spatial second order mo-

ments of the beam distribution function (σx, σy, σxy), as a function of upstream accelerator

parameters. These parameters included the phase and amplitude of the RF in the gun and

the electron optics downstream (dipole kicker magnets, emittance compensation solenoid,

skew quadrupole triplet). A feed-forward neural network with 7 hidden layers each with a

tanh activation function was trained to predict the final beam properties based on the up-

stream properties. These data points were taken over the course of three days, when coarse

parameter scans were taken and the RF naturally varied each day.

Once the model was trained, multi-objective genetic optimization was used to optimize

the model and provide Pareto-optimal solutions to maximize σy and minimize σx, thus finding

solutions to Eq. 4.10, but also offering the ability to view the trade-off between the objectives.

For this optimization, the other inputs were fixed to the experimental parameters. This

last point deserves a bit more emphasis, as the determination of the “proper” experimental

settings is not trivial in a fluctuating system. In general, fluctuations are another justification

for using the “warm start” procedure as discussed below. Predictions are not expected to

be perfect, as the optimal solutions are fluctuating with the system fluctuations. Fig. 4.9

shows the fluctuations during train and test sets.

The first test of the model was performed the following day after training. While there

were fluctuations in both the training and the test sets, note that the distribution drifted

outside the span of the training set during the test sets. This problem of “distribution shift”

led the model to extrapolate slightly. See Fig. 4.9 for more details. As such, predictions were

not expected to be optimal, but considering that the distribution shift was small, the optimal
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Figure 4.9: Recorded variation for some of the input parameters between training data set

(over several days) and testing. The first test was done a day after recording the initial

training data, and the second test was conducted about 5 months later. The pixel intensity

sum and laser spot sizes are notable because these are correlated with changes in the charge

of the beam.
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Figure 4.10: Left: Example beam produced from optimization over NN model one day after

the last set of training data was obtained. Right: example beam produced 5 months later

using the same procedure, under the distribution shift shown in Fig. 4.9.

parameters should be nearby. In particular, after more than five months of parameter drift,

and with different slightly different input parameters (see Fig. 4.9), the model gave even

worse predictions, despite still looking like a poorly optimized flat beam. See Fig. 4.10 for

an example, where the beam appears to be a “rotated” flat beam on the screen. Considering

that the surrogate model was predicting outside its training set, this is a relatively interesting

result, as it suggests that the model could be used to give solutions nearby to the global

optimum.

Assuming that the global optimum is the closest local minimum in the space, one can use

local optimization to find the global optimum. As such, local, model independent techniques

were used for such a “warm start” approach. Extremum seeking (ES) [123, 124, 125] is a

powerful, model-independent optimization routine that can be applied to optimize quickly

and control particle accelerators. It has myriad uses for particle accelerators, including

optimizing an electron beam via automatic tuning of accelerator parameters [126] to tuning

the latent space of a convolutional neural network-based surrogate model of the accelerator
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Figure 4.11: Starting from a “warm start” using a NN model trained 5 months earlier,

ES solutions are compared to Gaussian Process-Bayesian Optimization (GP-BO) and hand

tuned solutions.

to make it more robust to drifting parameters [59]. This work seeks to use ES to build a

tool for adaptive, on-line control of accelerators.

In this case, ES was able to give an equivalent solution to hand tuning in an automated

way. While the hand tuning approach with a well-trained operator was faster than ES, the

ES approach is more repeatable, as it is fully automated. See Fig. 4.11 for an example of

the “warm start” approach.

Note that — although not the focus of this chapter — Gaussian Process-Bayesian Opti-

mization (GP-BO) also shows similar results. GP-BO is a tool that shows much promise for

accelerators, as the sample efficient method builds a model of the system while optimizing.

However, to keep the second part of the “warm start” prescription fully generalizable to sys-

tems that cannot be modeled beyond the initial, coarse NN model, due to fast, unmeasured

jitter, model-independent methods such as ES are more the focus of this chapter.
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4.2.5 Flat Beam Measurement and Discussion

A simple verification for the flat beam adapter was qualitatively carried out using the method

of the three screens. Quantitative measurements were hindered by the large point spread

functions of the screens used for this measurement. The scaling with the initial angular

momentum was verified changing the laser spot size on the cathode (see Fig. (4.12)). As can

be seen from Eqs. (4.6) and (4.7), the large emittance increases as the square of the initial

laser spot size on the photocathode. Consequently, for constant beta functions at the screen,

the large electron spot size varies approximately linearly with the laser spot size, since:

σlg,screen =
√

ϵ+β (4.11)

while the small electron beam spot size should stay constant as a function of the initial laser

spot. The emittance of the beam was measured using two techniques: the two-quadrupole

Figure 4.12: Flat beam rms spot sizes as a function of laser rms radius on the photocathode

scan [92] and the TEM grid method [93]. The two-quadrupole scan is based on varying the

normal quadrupoles after the flat beam adapter and measuring the corresponding second

order moments of the beam distribution at the detector using the procedure discussed in the

previous chapter, in particular Eq. 3.8.

After a sufficient number of measurements, it is possible to fit all ten unique beam matrix
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elements for the flat beam. The two-quadrupole scan technique is a multishot measurement

which suffers from machine fluctuations and has a limited resolution on the small emittance

value. The large emittance was found in very good agreement with the predictions (see Fig.

(4.13)). In order to resolve the small emittance, the TEM grid [93] (see Fig. (4.6)) recon-

Figure 4.13: Flat beam emittances as measured by a quadrupole scan as a function of RMS

laser spot size on the photocathode

struction technique was employed. As discussed above, the However, a 2-D reconstruction

can be used for the small projected emittance.

The emittance measured using TEM is still larger than theory predicts by an order of

magnitude. There are numerous reasons why the measured emittance would be larger than

predicted in linear theory, or by simulations:

1. An erroneous quadrupole moment in the gun and/or solenoid [127], in which case,

simulations suggest that a quadrupole coupling corrector [128, 129] could be used to

retrieve the smallest eigenemittance as the normalized projected emittance.

2. Other nonlinear effects, such as chromatic aberrations in the quadrupoles, that are

not incorporated in the linear theory of the flat beam transport, and not included in

simulation.
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3. A systematic error in the emittance measurements

4. Charge and RF jitter make it impossible to reach the optimum, as the optimal settings

keep changing

While not an exhaustive list, any combination of the above factors could explain the larger

emittance in measurement than in simulation or in analytical theory.

4.3 Model Independent Tuning at HiRES

The utility of a model-independent tuning approach was further demonstrated at HiRES. In

order to optimize the real- and inverse-space resolution of the UED measurement, a tradeoff

must be found between focusing the beam at the sample plane (EX in Fig. 2.1) and at the

detector plane (DD). The beam is focused by the three magnets in the second quadrupole

triplet in the UED line (Q2). The first and third quadrupoles in Q1 are constrained to

minimize the dispersion and its derivative after the dogleg, leaving the second quadrupole

in Q1 as a free parameter to tune the vertical beam size (due to symmetry, the beam must

be approximately at a focus in the horizontal dimension at the second quadrupole plane, so

this quadrupole has little effect in the horizontal dimension).

In a quadrupole tuning problem — similar to the FBT optimization — toward automa-

tion, ES was applied toward a solution to the above problem in a system with significant

fluctuations. To demonstrate the utility to a problem such as the above, where there is a

tradeoff between two parameters and therefore no overall best solution in all cases, ES was

tested using a changing cost function.

For example, often, when operating an accelerator, it is necessary to change modes of

operation. At HiRES, ES was demonstrated to be able to follow a moving cost function. In

this example, data was taken on VS2 (as shown in Fig. 2.1). The quadrupoles in Q1 were the

parameters on which ES was optimizing. To find a starting point, a coarse grid quadrupole

scan was performed and interpolated using a four-layer feed-forward neural network. Inputs

were the three quadrupole settings. Outputs were the root-mean-square transverse beam
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sizes. Minimization of the NN of the following cost function was performed:

f(q1, q2, q3) = |xrms| + |yrms| + |xrms − yrms| (4.12)

to find the optimal quadrupole settings to make a small, round beam. Using the resultant

point as a starting point, a sinusoidally varying cost function was introduced, as shown in

Fig. 4.14. As can be seen, ES keeps the cost function low by varying the beam size as

necessary. This shows the “warm start” approach in a case where the user-desired changes

can be made automatically.

Figure 4.14: ES minimizing a variable cost function: RMS beam sizes and corresponding

targets. Inset: cost function minimization

Another situation that often requires operator expertise is the compensation of large

parameter drifts. In fact, severe enough drifts for a static, ML-based system will require

operator intervention, if the system drifts outside of the range of the training set. As a

trial, at HiRES, such a severe drift was induced by moving upstream parameters and was

compensated by means of the ES algorithm. The data for this experiment were acquired

using a PI-MAX 4 intensified camera at approximately 2 Hz on DD (see Fig. 2.1). The

second quadrupole of the first quadrupole triplet in the dogleg (Q1 in Fig. 2.1) was varied in

a sinusoidal pattern. As can be seen from Fig. 4.15, ES was able to keep the cost function

(Eq. 4.12) minimized by only varying the three quadrupoles in the second triplet. The
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nominal case of keeping the three quadrupoles constant is also shown. It is worth noting

that beam sizes in the both dimensions remained small, so long as the rate of change of the

drift was sufficiently small.

Figure 4.15: ES minimizing a static cost function (Eq. 4.12) in variable, drifting conditions.

Top: Cost function with and without ES feedback. Middle: RMS beam size in y-dimension

with and without ES. Bottom: RMS beam size in x-dimension with and without ES. Note

that the feedback does not sacrifice beam size in x to make y smaller.
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ES is shown to be a powerful tool for automatic, model-independent optimization of a

changing system, in two cases: 1) if the system needs to change, and 2) if the system changes,

but the objective stays the same. As such, this will be a powerful tool for automatic control

after a “warm start” approach in the presence of system fluctuations.

Preliminary tests of four-quad, two-objective optimization using ES are underway, using

a virtual diagnostic for the screen at the sample plane. In the future, this could be a powerful

tool for automated adaptive control of beam parameters for UED, particularly in the face

of drift and jitter. Currently, drift and jitter are ignored for hours at a time for UED

measurements, but adaptive control could lead to more consistent beams throughout a UED

measurement.

4.4 Conclusion

Accelerator models are a powerful tool for control. With a high-fidelity model, in an ideal

environment, choosing the proper accelerator settings becomes a simple optimization or

inversion problem. This chapter, however, details some of the work when the model is

imperfect — in particular, when there are fluctuations that are not captured in the model.

In this case, assuming that the fluctuations are small enough, the model can predict a solution

nearby in parameter space to the true optimum and other model-independent methods can

be used to compensate, in a fully-automated procedure.

The overall procedure is not that different from the current state-of-the-art, where in

general, when a user of a particle accelerator requests a beam of a certain set of parameters,

an operator will consult some model, whether a physics model or even a mental model, and

select parameters that are nearby to the optimum. From there, the operator must rely on

intuition and hand tuning to select the optimum. With a skilled operator, this approach

has good results, but can lack reliability, repeatability, speed, and requires an operator of

sufficient skill. Generally, this can also take dedicated time during an experiment, while

the fully-automated methods discussed in this chapter can be used passively during an

106



experiment.

In this chapter, two examples of the “warm start” followed by automated tuning were

shown: 1) tuning of the FBT at Pegasus and 2) tuning of the UED setup at HiRES. Both

performed well in an environment laden with fluctuations. At Pegasus, the FBT was tuned

automatically in an environment with relatively large fluctuations. At HiRES, upstream

parameter drift was simulated and automated tuning was shown to follow. In the future,

this approach has the potential to lead to far more reliable and less invasive tuning than

current operator-based hand tuning.
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CHAPTER 5

Conclusion

5.1 Model Typology and Convergence

This thesis details the use of high-performance (fast and accurate) accelerator models to

improve controls and diagnostics for high brightness beams. In general, the typology of

such accelerator models is quite varied. One way to characterize models is to divide them

into online and offline models, depending on whether they are suitable for use during an

experiment. Online and offline models are complimentary and are generally used for different

purposes. Example uses for online models appeared in Chapter 2 and Chapter 4, examples

of the use of offline models were presented in Chapter 3.

Meanwhile, another distinction is physics-based models vs. data-driven models. Physics-

based models are generally better suited to be offline models due to their execution time,

but data-driven models are used in both. Data-driven models are discussed in all chapters,

while physics-based models are discussed in Chapter 3 and Chapter 4. ML surrogate models

occupy an interesting space, as they are data-driven models based on physics-based models

and bridge the gap between the capabilities of a physics-based model and a ML model, at

least within a predetermined range within parameter space. This was discussed in detail in

Chapter 3.

In the future, this gap between physics-based and data-driven models may become even

narrower. Efforts to inject more physics into ML models are underway, for example by

using differentiable simulations [130], or by injecting information into the latent space of an

autoencoder [60]. Additionally, physics-informed neural networks and physics-constrained

neural networks inject physics directly into the neural network structure [131, 132, 133].
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Further, to bridge the gap between offline and online ML models, transfer learning has been

employed on surrogate models trained on simulation data in order to match more carefully

the real outcomes [134].

5.2 Summary

In Chapter 2, a ML-based virtual diagnostic was trained using experimental data to be

an online prediction tool for the electron beam time of arrival. The models shown ranged

from the age-old linear regression model to the state-of-the-art ML forecasting model: the

temporal fusion transformer. These models showed the ability to reduce the uncertainty in

beam TOA due to drift to the level of the shot-to-shot fluctuations, showing potential to

greatly enhance the resolution of long UED measurements.

In Chapter 3, offline, physics-based models were matched to experimental data to produce

higher fidelity models. This was accomplished by using Markov chain Monte Carlo analysis

at HiRES, and as a model-based reconstruction technique, has the potential to have even

lower uncertainty in the matched parameters by injecting information about the fluctuations

into the technique. This was demonstrated in a simulation study at Pegasus. Further, coarse

matching of a model of FAST was discussed. This chapter sought to show a bit of “how the

sausage is made” with regard to making high-fidelity models.

In Chapter 4, a common accelerator problem — large fluctuations — while working

with an online model was discussed at HiRES and Pegasus. At Pegasus, the fluctuations

made it challenging to optimize the flat beam transform, while at HiRES, transverse and

— as discussed in Chapter 2 — longitudinal fluctuations can affect UED measurements.

In particular, when optimizing an online model, a “warm start” solution was proposed.

Methods for finding the optimum using model-independent methods were also discussed at

HiRES and Pegasus.

An astute reader of this thesis will note the broad applicability of these techniques.

Indeed, work was shown at HiRES (LBNL), Pegasus (UCLA) and FAST (Fermilab) on
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three state-of-the-art photoinjectors. The points contained herein are even more general

than these examples might suggest. While some of the applications listed in this thesis

were specific, such as UED or the flat beam transform, the concepts are general. A virtual

diagnostic was shown to work for UED, but time & energy stamping are general concepts in

accelerator physics — even static emittance measurements require knowledge of the beam

energy (e.g. [92, 93, 91]). The applicability of virtual diagnostics has been shown numerous

times, as discussed in Chapter 2. Any beamline can make use of a physics-based model

that matches real behavior and the MCMC and coarse matching methods can be applied

anywhere. Finally, the “warm start” solution was shown to work at two very different

beamlines for two different tasks, but is not limited only to these two. Applying these

techniques was shown to help the problems shown in this thesis, but has greater applicability

to numerous other problems.

In fact, for an ideal beamline, the work in each of these chapters could be applied to

compliment each other. In general, the use of online, ML-based virtual diagnostics com-

pliments having physics-based models to inform control policy. Online, ML models based

on experimental data and surrogate models based on the physics-based simulation can be

used for control and optimization. The surrogate model would have more range, while the

experimentally-driven model likely would have higher fidelity. Finally, working with these

models in a fluctuation-laden environment is a harsh reality of accelerator physics, and the

work shown in the final chapter could be of use. In the future, greater application of these

techniques has potential to improve even further controls and diagnostics for high brightness

beams in experiment.
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[32] R. Brinkmann, Y. Derbenev, and K. Flöttmann, “A low emittance, flat-beam electron
source for linear colliders,” Physical Review Special Topics-Accelerators and Beams,
vol. 4, no. 5, p. 053501, 2001.

[33] K. Kim, “Round-to-flat transformation of angular-momentum-dominated beams,”
Physical Review Special Topics-Accelerators and Beams, vol. 6, no. 10, p. 104002, 2003.

[34] Y. Derbenev, “Adapting optics for high energy electron cooling,” University of Michi-
gan, UM-HE-98-04, 1998.

[35] A. Burov, S. Nagaitsev, A. Shemyakin, and Y. Derbenev, “Optical principles of beam
transport for relativistic electron cooling,” Physical Review Special Topics-Accelerators
and Beams, vol. 3, no. 9, p. 094002, 2000.

[36] A. Burov, S. Nagaitsev, and Y. Derbenev, “Circular modes, beam adapters, and their
applications in beam optics,” Physical Review E, vol. 66, no. 1, p. 016503, 2002.

113

https://www.sciencedirect.com/science/article/pii/0168900289906888
https://link.aps.org/doi/10.1103/PhysRevE.55.7565
https://link.aps.org/doi/10.1103/PhysRevE.55.7565


[37] P. Piot, Y.-E. Sun, and K.-J. Kim, “Photoinjector generation of a flat electron beam
with transverse emittance ratio of 100,” Physical Review Special Topics-Accelerators
and Beams, vol. 9, no. 3, p. 031001, 2006.

[38] Y.-E. Sun, P. Piot, K.-J. Kim, N. Barov, S. Lidia, J. Santucci, R. Tikhoplav, and
J. Wennerberg, “Generation of angular-momentum-dominated electron beams from a
photoinjector,” Physical Review Special Topics-Accelerators and Beams, vol. 7, no. 12,
p. 123501, 2004.

[39] B. E. Carlsten and K. A. Bishofberger, “Simple algorithm for designing skew-
quadrupole cooling configurations,” New Journal of Physics, vol. 8, no. 11, p. 286,
2006.

[40] W. K. H. Panofsky and W. A. Wenzel, “Some Considerations Concerning the
Transverse Deflection of Charged Particles in Radio-Frequency Fields,” Review of
Scientific Instruments, vol. 27, no. 11, pp. 967–967, 12 2004. [Online]. Available:
https://doi.org/10.1063/1.1715427

[41] J. T. Moody, P. Musumeci, M. S. Gutierrez, J. B. Rosenzweig, and C. M. Scoby,
“Longitudinal phase space characterization of the blow-out regime of rf photoinjector
operation,” Phys. Rev. ST Accel. Beams, vol. 12, p. 070704, Jul 2009. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevSTAB.12.070704

[42] K. Floettmann and V. V. Paramonov, “Beam dynamics in transverse deflecting rf
structures,” Phys. Rev. ST Accel. Beams, vol. 17, p. 024001, Feb 2014. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevSTAB.17.024001

[43] A. H. Lumpkin and K. P. Wootton, “High-resolution longitudinal profile diagnostics for
ultralow charges stored in a ring,” Phys. Rev. Accel. Beams, vol. 24, p. 072806, Jul 2021.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.072806

[44] A. Scheinker, S. Gessner, C. Emma, and A. L. Edelen, “Adaptive model tuning studies
for non-invasive diagnostics and feedback control of plasma wakefield acceleration at
facet-ii,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 967, p. 163902, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S016890022030396X

[45] C. Emma, A. Edelen, M. Hogan, B. O’Shea, G. White, and V. Yakimenko, “Machine
learning-based longitudinal phase space prediction of particle accelerators,” Physical
Review Accelerators and Beams, vol. 21, no. 11, p. 112802, 2018.

[46] O. Convery, L. Smith, Y. Gal, and A. Hanuka, “Uncertainty quantification for virtual
diagnostic of particle accelerators,” Physical Review Accelerators and Beams, vol. 24,
no. 7, p. 074602, 2021.

114

https://doi.org/10.1063/1.1715427
https://link.aps.org/doi/10.1103/PhysRevSTAB.12.070704
https://link.aps.org/doi/10.1103/PhysRevSTAB.17.024001
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.072806
https://www.sciencedirect.com/science/article/pii/S016890022030396X


[47] V. Yakimenko, L. Alsberg, E. Bong, G. Bouchard, C. Clarke, C. Emma, S. Green,
C. Hast, M. Hogan, J. Seabury et al., “Facet-ii facility for advanced accelerator ex-
perimental tests,” Physical Review Accelerators and Beams, vol. 22, no. 10, p. 101301,
2019.

[48] A. Hanuka, C. Emma, T. Maxwell, A. S. Fisher, B. Jacobson, M. J. Hogan, and
Z. Huang, “Accurate and confident prediction of electron beam longitudinal properties
using spectral virtual diagnostics,” Scientific Reports, vol. 11, no. 1, pp. 1–10, 2021.

[49] A. Scheinker and S. Gessner, “Adaptive method for electron bunch profile prediction,”
Physical Review Special Topics-Accelerators and Beams, vol. 18, no. 10, p. 102801,
2015.

[50] R. J. England, Longitudinal shaping of relativistic bunches of electrons generated by an
RF photoinjector. University of California, Los Angeles, 2007.

[51] P. Denham and P. Musumeci, “Space-charge aberrations in single-shot time-resolved
transmission electron microscopy,” Phys. Rev. Appl., vol. 15, p. 024050, Feb 2021.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.15.024050

[52] M. Borland, “Elegant: A flexible sdds-compliant code for accelerator simulation,”
Argonne National Lab., IL (US), Tech. Rep., 2000.

[53] A. Adelmann, P. Calvo, M. Frey, A. Gsell, U. Locans, C. Metzger-Kraus, N. Neveu,
C. Rogers, S. Russell, S. Sheehy et al., “Opal a versatile tool for charged particle
accelerator simulations,” arXiv preprint arXiv:1905.06654, 2019.

[54] H. Grote and F. Schmidt, “Mad-x-an upgrade from mad8,” in Proceedings of the 2003
Particle Accelerator Conference, vol. 5. IEEE, 2003, pp. 3497–3499.

[55] K. Flottmann, S. Lidia, and P. Piot, “Recent improvements to the astra particle track-
ing code,” Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States),
Tech. Rep., 2003.

[56] “General particle tracer,” http://www.pulsar.nl/gpt/.

[57] R. Huang, C. Mitchell, C. Papadopoulos, H. Qian, M. Venturini, J. Qiang,
D. Filippetto, J. Staples, Q. Jia, and F. Sannibale, “Off-axis beam dynamics in rf-gun-
based electron photoinjectors,” Phys. Rev. Accel. Beams, vol. 19, p. 113401, Nov 2016.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.113401

[58] S. Li, S. Alverson, D. Bohler, A. Egger, A. Fry, S. Gilevich, Z. Huang,
A. Miahnahri, D. Ratner, J. Robinson, and F. Zhou, “Ultraviolet laser
transverse profile shaping for improving x-ray free electron laser performance,”
Phys. Rev. Accel. Beams, vol. 20, p. 080704, Aug 2017. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.080704

115

https://link.aps.org/doi/10.1103/PhysRevApplied.15.024050
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.113401
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.080704


[59] A. Scheinker, “Adaptive machine learning for time-varying systems: low dimensional
latent space tuning,” Journal of Instrumentation, vol. 16, no. 10, p. P10008, 2021.

[60] A. Scheinker, F. Cropp, and D. Filippetto, “Adaptive autoencoder latent space
tuning for more robust machine learning beyond the training set for six-dimensional
phase space diagnostics of a time-varying ultrafast electron-diffraction compact
accelerator,” Phys. Rev. E, vol. 107, p. 045302, Apr 2023. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.107.045302

[61] D. Filippetto, P. Musumeci, R. Li, B. J. Siwick, M. Otto, M. Centurion, and J. Nunes,
“Ultrafast electron diffraction: Visualizing dynamic states of matter,” Reviews of Mod-
ern Physics, vol. 94, no. 4, p. 045004, 2022.

[62] K. Siddiqui, D. Durham, F. Cropp, F. Ji, S. Paiagua, C. Ophus, N. Andresen, L. Jin,
J. Wu, S. Wang et al., “Relativistic ultrafast electron diffraction at high repetition
rates,” arXiv preprint arXiv:2306.04900, 2023.

[63] P. Musumeci, J. Moody, and C. Scoby, “Relativistic electron diffraction at the ucla
pegasus photoinjector laboratory,” Ultramicroscopy, vol. 108, no. 11, pp. 1450–1453,
2008.

[64] B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. D. Miller, “An atomic-level view
of melting using femtosecond electron diffraction,” Science, vol. 302, no. 5649, pp.
1382–1385, 2003.

[65] G. Mourou and S. Williamson, “Picosecond electron diffraction,” Applied Physics Let-
ters, vol. 41, no. 1, pp. 44–45, 1982.

[66] A. Ischenko, V. Golubkov, V. Spiridonov, A. Zgurskii, A. Akhmanov, M. Vabischevich,
and V. Bagratashvili, “A stroboscopical gas-electron diffraction method for the inves-
tigation of short-lived molecular species,” Applied Physics B, vol. 32, pp. 161–163,
1983.

[67] O. Bostanjoglo, R. Tornow, and W. Tornow, “Nanosecond transmission electron mi-
croscopy and diffraction,” Journal of Physics E: Scientific Instruments, vol. 20, no. 5,
p. 556, 1987.

[68] F. Sannibale, D. Filippetto, C. Papadopoulos, J. Staples, R. Wells, B. Bailey, K. Bap-
tiste, J. Corlett, C. Cork, S. De Santis et al., “Advanced photoinjector experiment pho-
togun commissioning results,” Physical Review Special Topics-Accelerators and Beams,
vol. 15, no. 10, p. 103501, 2012.

[69] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Op-
tics communications, vol. 55, no. 6, pp. 447–449, 1985.

[70] C. Scoby, P. Musumeci, J. Moody, and M. Gutierrez, “Electro-optic sampling at 90 de-
gree interaction geometry for time-of-arrival stamping of ultrafast relativistic electron
diffraction,” Physical Review Special Topics-Accelerators and Beams, vol. 13, no. 2, p.
022801, 2010.

116

https://link.aps.org/doi/10.1103/PhysRevE.107.045302


[71] M. Othman, A. Gabriel, M. Hoffmann, F. Ji, E. Nanni, X. Shen, E. Snively, and
X. Wang, “Terahertz driven compression and time-stamping technique for single-shot
ultrafast electron diffraction,” in Int. Particle Accelerator Conf.(IPAC’21), Campinas,
SP, Brazil. JACOW Publishing, 2021.

[72] F. Cropp, L. Moos, A. Scheinker, A. Gilardi, D. Wang, S. Paiagua, C. Serrano,
P. Musumeci, and D. Filippetto, “Virtual-diagnostic-based time stamping for ultra-
fast electron diffraction,” Physical Review Accelerators and Beams, vol. 26, no. 5, p.
052801, 2023.

[73] T. Van Oudheusden, E. De Jong, S. Van der Geer, W. t Root, O. Luiten, and B. Siwick,
“Electron source concept for single-shot sub-100 fs electron diffraction in the 100 kev
range,” Journal of Applied Physics, vol. 102, no. 9, 2007.

[74] T. Van Oudheusden, P. Pasmans, S. Van Der Geer, M. De Loos, M. Van Der Wiel, and
O. Luiten, “Compression of subrelativistic space-charge-dominated electron bunches
for single-shot femtosecond electron diffraction,” Physical review letters, vol. 105,
no. 26, p. 264801, 2010.

[75] J. Maxson, D. Cesar, G. Calmasini, A. Ody, P. Musumeci, and D. Alesini, “Direct
measurement of sub-10 fs relativistic electron beams with ultralow emittance,” Physical
review letters, vol. 118, no. 15, p. 154802, 2017.

[76] T. P. Wangler, RF Linear accelerators. John Wiley & Sons, 2008.

[77] L. Zhao, Z. Wang, C. Lu, R. Wang, C. Hu, P. Wang, J. Qi, T. Jiang, S. Liu, Z. Ma
et al., “Terahertz streaking of few-femtosecond relativistic electron beams,” Physical
Review X, vol. 8, no. 2, p. 021061, 2018.

[78] D. Durham, K. Siddiqui, F. Ji, J. G. Navarro, P. Musumeci, R. Kaindl, A. Minor, and
D. Filippetto, “Relativistic ultrafast electron diffraction of nanomaterials,” Microscopy
and Microanalysis, vol. 26, no. S2, pp. 676–677, 2020.

[79] K. M. Siddiqui, D. B. Durham, F. Cropp, C. Ophus, S. Rajpurohit, Y. Zhu, J. D.
Carlstrom, C. Stavrakas, Z. Mao, A. Raja et al., “Ultrafast optical melting of trimer
superstructure in layered 1t’-tate2,” Communications Physics, vol. 4, no. 1, pp. 1–7,
2021.

[80] F. Ji, D. B. Durham, A. M. Minor, P. Musumeci, J. G. Navarro, and D. Filippetto,
“Ultrafast relativistic electron nanoprobes,” Communications Physics, vol. 2, no. 1,
pp. 1–10, 2019.

[81] A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “An adaptive
approach to machine learning for compact particle accelerators,” Scientific
Reports, vol. 11, no. 1, p. 19187, Dec. 2021. [Online]. Available: https:
//www.nature.com/articles/s41598-021-98785-0

117

https://www.nature.com/articles/s41598-021-98785-0
https://www.nature.com/articles/s41598-021-98785-0


[82] F. Sannibale, D. Filippetto, H. Qian, C. Mitchell, F. Zhou, T. Vecchione, R. K. Li,
S. Gierman, and J. Schmerge, “High-brightness beam tests of the very high frequency
gun at the advanced photo-injector experiment test facility at the lawrence berkeley
national laboratory,” Review of Scientific Instruments, vol. 90, no. 3, p. 033304, Mar.
2019. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5088521

[83] G. Huang, L. R. Doolittle, Y. L. Xu, and J. Yang, “Low noise digitizer design for lcls-ii
llrf,” in North American Particle Accelerator Conf.(NAPAC’16), Chicago, IL, USA.
JACOW Publishing, 2016, p. 3.
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W. Ackermann, E. Arévalo, E. Gjonaj, W. F. O. Müller, S. Schnepp, T. Weiland,
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