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ABSTRACT OF THE DISSERTATION

Physically Informed Estimation of Spatial Precipitation Extremes

By

Charlotte A. Love

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Irvine, 2022

Professor Amir AghaKouchak, Chair

Improving the analysis of the intensity and frequency of spatial extreme precipitation is

essential for regional hazard preparedness and infrastructure design. Extreme precipitation

events are highly variable across space and time, and current methods for analyzing extremes

are often based on simplifying assumptions. For example, the commonly used assumption

of spatial independence among extreme precipitation observations may be unrealistic for

non-localized events (e.g., hurricane precipitation, large stratiform rainfall events). This can

result in the misestimation of risk. Given the additional challenges of data records that are

relatively too short for adequately estimating the rarest of events, sparse sensor networks,

highly localized events, and integrating spatial data and their drivers across regions, methods

for estimating exceedance probabilities that enable the proper modeling of spatially varying

extreme marginal parameters and account for spatial dependence between sites need to be

explored and refined.

The overarching goal of this thesis is to improve the estimation of spatial extreme precipita-

tion by including information based on the physical processes that influence the generation of

storms. Here I outline the need for the inclusion of additional physically informed covariates

and improved methods for covariate selection that not only improve computation time, but

also automate the process to reduce the bias of a manual selection approach. Consideration

xii



should be given to incorporating assessments of relevant covariates and the spatial depen-

dence of extreme events within the methods used by practitioners to ensure the selection of

conservative estimates for infrastructure design.

Applying a latent variable modeling approach for analysis of annual maximum (AM) precip-

itation, I explore the benefits of including additional climatic covariates on regional model

performance across two climatically different regions and a region of overlap. These covari-

ates include temperature and dew point temperature, extending beyond what is classically

used in practice (geographic only) and within the literature (geographic and mean precipita-

tion). The results indicate that including additional physically informed covariates improves

estimates within relatively heterogeneous regions.

I introduce a framework for the selection of relevant geographic and climatic covariates for

spatially distributing marginal parameters using elastic-net regularization. Using two climat-

ically different regions, I demonstrate the application of elastic-net regularization for trend

surface development. This approach aids in automating the selection of relevant covariates

in a way that is less biased than manual selection, and that is computationally more effi-

cient than cross-validation using full model simulations for a large set of physically relevant

covariates.

To quantify the impact of assuming spatial independence, a max-stable process model that

accounts for inter-site dependence of the observed AM precipitation will be explored in two

climatically different regions. Estimation of areal-based exceedance probabilities is of critical

importance, and their calculation depends on properly modeling the spatial dependence

structure and the spatially varying generalized extreme value (GEV) marginal distributions.

A results comparison between the max-stable process model and a regional frequency analysis

is conducted. This comparison indicates that assessing the spatial dependence and the

characterization of the spatially varying marginal parameters are worth including to insure

conservative estimates.
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Chapter 1

Introduction

Climate extremes can profoundly impact society, natural systems, and infrastructure [Easter-

ling et al., 2000, Rocklöv and Forsberg, 2009, Handmer et al., 2012]. In many cases, extreme

events are interconnected and can have a multiplier effect that intensifies the risk to society

and the environment. Extreme events are rare and often the length of data collected is insuf-

ficient for estimating the rarest of these rare events since their interval of recurrence extends

beyond the data record. Therefore, statistical methods for estimating these rare events are

under ongoing scrutiny as studies attempt to improve upon past work. Understanding the

risks associated with spatial extremes at present and estimating their future occurrences,

requires more complicated, rigorous, and robust methods. Such methods must be able to

account for the spatial variability of distribution parameters, systematically take the cor-

relation structures between variables into account, and sufficiently deal with the inherently

small number of extremes. The incorporation of information into models that accounts for

the underlying processes that drive extreme events and/or events that collectively result in

extreme impacts is the main focus of recent climate extremes research.

Classically, univariate extreme value analysis (EVA) methods have been extensively used to

1



study the magnitude of extreme events and the frequency of their occurrence [Lang et al.,

1999, Katz et al., 2002, Katz, 2010]. Current indices use univariate methods to detect ex-

treme events and can be categorized into three main types: (1) daily, monthly, and/or annual

maxima/minima of a certain climate variable (e.g., temperature or precipitation); (2) dura-

tion of an extreme event (e.g., number of consecutive days in a year above a relative extreme

threshold, such as temperatures above the 90th percentile of the long-term climatology), and

(3) duration and/or frequency of an absolute extreme exceedance threshold (e.g., annual

number of frost days (minimum temperature below 0 ◦C) or number of consecutive frost

days per year)[Lang et al., 1999, Katz et al., 2002, Katz, 2010]. However, the modeling of

extreme events with multiple physical and geographic drivers that vary spatially is not as

straightforward.

Extending univariate EVA to the multivariate and spatial case requires appropriately mod-

eling the dependence among extreme observations and is an active and evolving area of

research [Coles et al., 1999, Schlather and Tawn, 2003, Heffernan and Tawn, 2004]. Multi-

variate extreme value (MEV) theory accounts for the tail dependence of multiple random

variables. Given that natural processes like rainfall or wind are climatological in nature,

capturing the spatial variability of their distribution parameters is essential when estimating

the statistics of their extreme occurrences [Cooley et al., 2007]. Several MEV methods can

be extended to this spatial case by including both the latent spatial process and the spatial

dependence [Cooley, 2009, Davison et al., 2012].

In the following sections both empirical and parametric multivariate methods that are used

for the EVA are presented. I then review the current methods used in practice and within

the literature for the spatial EVA in hydrology. I then identify areas that need further

investigation. While there are MEV methods reviewed herein that can be formulated to

incorporate non-stationary random variables, where the parameters of the joint distribution

vary as a function of time, the following discussion will focus primarily on the MEV methods

2



based on a stationary assumption.

1.1 Defining Extremes

In order to model extreme events, first we need to define what is meant by ”extreme”. In

extreme value theory (EVT), determing the shape of the upper (or lower) tail of a probability

distribution is focused on for determining the probability of rare, extremely large (or small)

values [Coles, 2001]. The extreme events that fall within the upper tail, or maxima, of the

distribution receive the most attention for modeling climate hazards since risk mitigation,

infrastructure design, and resources management all rely on the quantile estimates of large

climate events.

In the field of hydrology (and other climate sciences), risk assessments and infrastructure

design criteria are often centered around estimates of the frequency and intensity of extreme

events. In hydrology, these correspond to the return period and return level of, for example,

either a flood or extreme precipitation event. The return level is the quantile of the annual

maxima associated with the exceedance probability 1 − F (x). Here F (x) is the cumulative

distribution function (CDF) of the random variable X (e.g., annual maxima) and Fx(x)

is the non-exceedance probability of a single x ∈ X, which can be represented using the

notation of Stedinger et al. [1993] as

Fx(x) = Pr(X ≤ x). (1.1)

In turn, the return period T is the inverse of the exceedance probability. Given the relation-

ship T = [1 − Fx(x)]
−1, the return level associated with a specific return period of interest

(e.g., 100-year return period) can be calculated if F (x) has been estimated [Stedinger et al.,

1993]. Therein lies the challenge that extreme value analysis tries to address, the deter-
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mination of which extreme value distribution using which methods can best estimate F (x)

for a given extreme event type to reach the most appropriate quantile estimates for a given

region. As you will hear echoed throughout these review sections, some of the confounding

factors when estimating the distribution function of maxima revolve around the best way

to select truly extreme values, the ever-present lack of data for rare events, regional hetero-

geneity, variability of the dependence between data, variability of the distribution parameters

spatially or temporally, and computational limitations.

1.1.1 Block Maxima

The block maxima approach for characterizing extreme observations is a commonly used

method in extreme value analysis. The approach defines the series of maxima,max(X1, . . . , Xn),

as the single largest event during each block of time (e.g., annual maximum) whereX1, . . . , Xn

are independent and identically distributed (i.i.d.) random variables. This is also pointed

out as a caveat of the block maxima method given that the maxima are restricted to only

one event per block of time whether or not the event is truly extreme, and that selecting

only one maxima throws out other potentially useful extreme events.

The statistical modeling of these extremes is then based on the extremal types theorem, which

describes the limiting distribution of a series of maxima max(X1, . . . , Xn) that satisfies the

property of max-stability. Given that their marginal distribution function F has the upper

terminus xF = sup{x : F (x) < 1} and normalizing parameters an > 0 and bn as n → ∞

exist, then the distribution of the rescaled maxima converges to a non-degenerate limiting

distribution G [Coles, 2001], where

Pr

(
max(X1, . . . , Xn)− bn

an
≤ x

)
= F n (anx+ bn) → G(x). (1.2)
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If the non-degenerate limiting distribution G for the block maxima exists and satisfies

Gn(b′n + a′nx) = G(x) (1.3)

for x ∈ R, n ∈ N, and the sequences a′n > 0 and b′n then it is max-stable and falls within the

Generalized Extreme Value (GEV) family of distributions of the form [Coles, 2001]

G(x) =


exp

[
−
(
1 + ξ(x−µ)

σ

)− 1
ξ

]
, ξ ̸= 0

exp
[
−exp

{
−
(
x−µ
σ

)}]
, ξ → 0.

(1.4)

where µ, σ, and ξ are the location, scale, and shape parameters, respectively, with σ > 0.

The GEV family is made up of three distributions that vary by tail behavior, namely the

Gumbel (ξ → 0), the Fréchet (ξ > 0), and the Weibull (ξ < 0) distributions. The goal then

is to determine the best fitting parameters of G so that inferences can be made about the

maxima. Common methods used for parameter fitting for the GEV and other extreme value

distributions include maximum likelihood (ML) [Prescott and Walden, 1980], probability

weighted moments (PWM) [Greenwood et al., 1979], and L-moments [Hosking, 1990].

1.1.2 Threshold Exceedances

The threshold exceedance method, also known as peaks over threshold (POT) or partial

duration series, for modeling extremes defines the series of independent maxima as the events

that exceed a certain threshold (u). The POT approach has the advantage of being able to

capture all events that are extreme based on a selected threshold [Shane and Lynn, 1964,

Todorovic and Zelenhasic, 1970]. This means that years without events that are considered

extreme may not have any usable data points, while other years with many x > u will have

multiple maxima. Although this can result in a set of random variables that are no longer

i.i.d., Juncosa [1949] extended the limiting distribution results to the dependent case.
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The unique limiting distribution G′ of the random variable x exceeding the sufficiently large

threshold u is the Generalized Pareto Distribution (GPD) which was introduced by Pickands

[1981]. For x > u and {x : 1 + ξ(x− µ)/σ > 0}

G′(x) = 1− ξ

[
1 +

ξ(x− µ)

σ

]− 1
ξ

x>u

. (1.5)

where µ, σ > 0, and ξ are the location, scale (positive value), and shape parameters, respec-

tively [Coles, 2001]. Similar to the GEV distribution, the GPD shape parameter determines

the tail type where ξ < 0 is a bounded tail, ξ = 0 is a light tail, and ξ > 0 is a heavy tail.

Caveats to the POT method is that ”extreme” depends upon the chosen threshold, which can

be challenging to define within a multivariate scenario [Zheng et al., 2014]. If the threshold

is too low bias will be introduced since the model will no longer be following its asymptotic

basis. Conversely, if the threshold is too high the data will be too sparse leading to high

variance [Coles, 2001]. If the series of maxima are dependent, the POT method can allow

for the modeling of clusters of events that occur in succession that may have a larger impact

than a single extreme event through use of a compound Poisson process [Davison and Huser,

2015, Leadbetter, 1991]. Otherwise, the POT method may require extra analysis to confirm

that extreme events are not serially correlated, namely, that selected extremes are from

separate events in time [Coles, 2001].

1.2 Multivariate Extreme Value Theory

Multivariate extreme value (MEV) theory is used to model the probability of extreme events

due to multiple drivers across space and/or time. Statistical modeling methods are needed

that account for multiple variables with spatial and temporal dependence. Examples of

events that would require MEV methods include the associated flooding due to a hurricane
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or other large-scale storm (e.g., Katrina 2005, Sandy 2012, and Harvey 2017) during which

intense rainfall hits a large spatial region covering gauges at multiple sites. Another example

could be the combination of extreme high temperatures and low precipitation at a location

over time that led to the recent extreme events in Californian (2014), the central United

States (2012), Russia (2010), and Europe (2003). However, extension of univariate extreme

value theory to multivariate extreme values (MEV) is not immediately straightforward since

there is no natural ordering in higher dimension [Barnett, 1976, Tawn, 1988]. In the following

general overview, the discussion is restricted to the bivariate case where the variable of

interest is a vector.

1.2.1 Asymptotic Dependence

A joint density function describes the probability of a multivariate random variable given the

influence of its components, which involves characterizing their marginal distributions and

their dependence. In other words, a multivariate random variable is composed of a vector of

random variables [Coles, 2001]

X = [X1, . . . , Xn]
T (1.6)

wherein information about how the components Xi influence each other helps with the

specification of X. In the general case where the components Xi influence each other (aka,

dependence), the joint distribution function for X is [Coles, 2001]

F (x) = Pr {X1 ≤ x1, . . . , Xn ≤ xn} (1.7)

where {x : x1, . . . , xn} with the joint density function

f(x) =
∂nF

∂x1 . . . ∂xn
. (1.8)
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Then the joint marginal density function for a dependent (X1, X2) could then be obtained

by integrating out the other components

fX1,X2(x1, x2) =

∫
· · ·

∫ ∞

−∞
f(x1, x2, u3, . . . , un)dun . . . du3. (1.9)

Translating these concepts to a bivariate MEV context, the multivariate random variable

composed of an i.i.d. vector of random variables Zi(Xi, Yi)(1 ≤ i ≤ n) and

maxZi(1 ≤ i ≤ n) = (M1n,M2n) , (1.10)

where the dependent M1n = maxXi and M2n = maxYi provide information to help with the

specification of maxZi(1 ≤ i ≤ n). The limiting multivariate distribution G can be derived

using the joint distribution F of the random vector (X, Y ) and for suitable choices of the

constraints an,1, bn,1, an,2 and bn,2 []

Pr

(
Mx,n − bn,1

an,1
≤ x,

My,n − bn,2
an,2

≤ y

)
= Fn(an,1 + bn,1, an,2 + bn,2) → G(x1, x2). (1.11)

To isolate the dependence from the marginal distributions and for technical convenience, the

marginal distributions are transformed to the unit Fréchet distribution, which is classically

denoted as Φ where []

Φ(y) = exp
(
−y−1

)
fory > 0. (1.12)

Then in the general case, G can be expressed as

G(x) = exp {−l [−logG1(z1), . . . ,−logGn(xn)]} (1.13)

where l is the stable tail dependence function.
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The Pickands dependence function [Pickands, 1981] has been commonly used to describe the

dependence structure in the bivariate case, which can be defined as [Coles, 2001]

A(t) = l(1− t, t) or l(t, 1− t) = A(1− t) (1.14)

and can be viewed as the stable tail dependence function restricted to the unit simplex. The

Pickands dependence function uniquely determines the stable tail dependence function as

l(v1, v2) = (v1 + v2)A

(
v1

v1 + v2

)
. (1.15)

Then the max-stable multivariate distribution G can be characterized by the marginals G1

and G2 and the Pickands dependence function A as [Beirlant et al., 2006]

G(x1, x2) = exp

[
log(G1(x1)G2(x2)A

(
log(G1(x1))

log(G1(x1)G2(x2))

)]
. (1.16)

1.2.2 Asymptotic Independence

In the general case of Eq. 1.7, if the components Xi are fully independent, meaning that

their behavior does not influence the others, then their joint density function factorizes as

[Coles, 2001]

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fXi
(xi). (1.17)

This formulation for the joint density function is computationally more simple than Eq. 1.9,

which is a key reason why the assumption that the components are independent is often

made in MEV models.

However, the relationship between variables can vary at more extreme levels. When depen-
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dence between variables gradually disappears resulting in an increasing drift toward inde-

pendence it is called asymptotic independence [Beirlant et al., 2006, Bortot and Gaetan,

2014]. Standard MEV methods assume either asymptotic dependence or full independence

(like the above Eq. 1.17), which leads to the over-estimation of joint probabilities for asymp-

totically independent variables [Coles et al., 1999]. Therefore, the development of extreme

distributions that are capable of modeling both asymptotic dependence and asymptotic in-

dependence is important for avoiding miscalculations of risk.

One of the earlier methods for describing asymptotic independence within a GPD framework

was introduced by Ledford and Tawn [1996] wherein they define the joint survival function

of two Fréchet random variables X and Y as

P(X > r, Y > r) ∼ L(r)r−1/η as r → ∞ (1.18)

where L is a slowly varying function that provides the relative strength of the coefficient of

tail dependence, η, with a range 0 < η ≤ 1. The value of η is related to the following four

classes of extremal dependence for a d-dimensional variable: 1) asymptotically dependent

when η = 1, 2) near extremal independence η = 1
d
, 3) asymptotically independent with posi-

tive extremal dependence when 1
d
< η < 1, and 4) asymptotically independent with negative

extremal dependence when 0 < η < 1
d
[Ledford and Tawn, 1996]. This model is extended

in a more flexible form by Ledford and Tawn [1997] in their later work. However, the ex-

tremal dependence model is subject to limitations, such as difficulty in identifying a suitable

parameterization for L. Furthermore, under asymptotic independence, the simultaneously

large, observed components become increasingly unlikely as the dimension increases [Bortot

and Gaetan, 2014].

Coles et al. [1999] also presented a measure of dependence within a copula framework using

the χ coefficient. For the random variables X and Y with the transformed marginal U and
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V , the dependence between the extremes can be expressed as [Coles et al., 1999]

χ = lim
u→1

P (X > u|Y > u) (1.19)

After mathematical manipulation

χ(u) = 2− logP (U < u, V < v)

logP (U < u)
, and χ = lim

u→1
χ(u) (1.20)

where χ(u) is 0 for independent and is 1 for full dependence with 0 ≤ χ(u) ≤ 1.

When χ = 0, it means that the measure is not able to provide the relative dependence

information. To overcome this limitation, a second dependence measure of extremes is

defined as [Coles et al., 1999]

χ̄(u) =
2logP (U < u, V < v)

logP (U < u)
− 1 =

2log(1− u)

logC̄(u, u)
, and χ̄ = lim

u→1
χ̄(u) (1.21)

where −1 ≤ χ̄(u) ≤ 1 and −1 ≤ χ̄ ≤ 1.

To summarize, the pair (χ, χ̄) provides the summary of the extremal dependence. Asymp-

totic dependence is signified by (χ > 0, χ̄ = 1) and asymptotic independence by (χ = 0,

χ̄ < 1). In the case of asymptotic independence, as χ̄→ 1 it gives a measure of the strength

of dependence [Coles et al., 1999].

Several other studies have investigated methods for describing or testing for asymptotic in-

dependence. Coles and Pauli [2002] developed parametric copula models. Draisma et al.

[2004] extended the model by Ledford and Tawn [1997] with a bivariate second order regular

variation condition. Ramos and Ledford [2009] developed a new joint tail modeling approach

that yields proper joint probability distributions and also encompasses the asymptotic de-

pendence and independence within a single framework. Other efforts to accommodate the

modeling of asymptotic independence are the hidden regular variation and multivariate sec-
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ond order regular variation [Resnick, 2002, Maulik and Resnick, 2004, Heffernan and Resnick,

2005], which address the defect of the multivariate regular variation method in describing

the asymptotic dependence [Heffernan and Resnick, 2007].

1.2.3 Conditional Dependence

It often occurs that all the components of a multi-dimensional random variable are not

equally dependent or simultaneously extreme, thereby restricting the limit approach to only

a few dimensions for estimating the joint distribution [Heffernan and Tawn, 2004, Heffernan

and Resnick, 2007]. Heffernan and Tawn [2004] introduced a semi-parametric conditional

MEV approach that can be applied to many dimensions and is based on a POT approach.

They arrived at the limiting distribution G of the multi-dimensional random variable given

the Pr(X|Y > u) of the i.i.d. random variables X and Y with the condition that Y

is extreme [Heffernan and Resnick, 2007]. In more detail, given the transformed random

variables X ′ and Y ′ and assuming that the normalizaing functions a(Y ′) and b(Y ′) exist, the

non-degenerate distribution G is attained by

Pr

{
Y ′ − u,

X ′ − a(Y ′)

b(Y ′)
≤ z|Y ′ > u

}
→ exp(−y)G(z) fory > 0 as u→ ∞ (1.22)

For positively associated X ′ and Y ′, the normalizing functions take the form of a(Y ′) = αY ′

and b(Y ′) = Y β for which α ∈ [0, 1] and β ∈ (−∞0, 1) [Cheng and AghaKouchak, 2014].

The more complicated form for a negative association can be altogether avoided if a Laplace

transformation is used for X ′ and Y ′ [Keef et al., 2013]. The Laplace transformation results

in α ∈ [−1, 1] where α > 0 indicates positive association and α < 0 indicates negative asso-

ciation. Meanwhile, β indicates the variability of the dependence with increasingly negative

values representing decreasing variability [Cheng et al., 2014b]. While the advantage of a

conditional extreme model is that it provides flexibility whether the variables are asymp-
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totically dependent or asymptotically independent, the downside of the approach is that it

relies on semi-parametric methods since a simple closed-form distribution does not exist due

to the lack of a specific dependence structure [Cheng et al., 2014b].

1.3 Empirical Methods

Empirical (aka, non-parametric) methods, are methods that are based on observed data and

they have been widely implemented in univariate extreme value analysis to determine and

identify data behavior. Most of these empirical univariate methods can be extended for

multivariate analysis and for studying compound events. In the following sections, I review

several methods that can be used for extremes in hydrology and climate.

1.3.1 Counting Method

The counting method involves empirically counting the simultaneous occurrence of two or

more events at different periods. This approach requires an empirical threshold for defining

the extremes of each variable. The exceedances (or non-exceedances) above (or below) the

predefined threshold can then be used for studying compound extremes. However, defining

the term “extreme” and characterizing a multivariate threshold above (or below) which

events are considered to be extreme is not a straightforward task [Zheng et al., 2014].

For extreme thresholds, the reliability of the analysis can be impacted if the sample of com-

pound extreme events is not large enough. Therefore, it is important to check the sample

size for different thresholds to ensure the data is adequate for reliable statistical analysis

[Beniston, 2009, Hao et al., 2013, Mazdiyasni and AghaKouchak, 2015]. Studies that have

utilized this method include investigation by Beniston [2009] of joint extremes in precipita-

tion and temperature within Europe, the study by Fischer and Knutti [2013] provided future
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projections of combined humidity and temperature extremes using global wet-bulb temper-

atures during the hottest (top 1%) of days, Hao et al. [2013] examined global concurrent

precipitation and temperature extremes, and Mazdiyasni and AghaKouchak [2015] studied

changes in concurrent droughts and heatwaves from 1960-2010 within the U.S.

Another approach for empirical counting establishes multiple thresholds to define the varying

severity of a given variable and quantify the magnitude of the simultaneous occurrence of

the associated variables in question. Using this method, Chiang et al. [2018] quantified shifts

in temperatures associated with different extremes in drought severity.

1.3.2 Multivariate Index

A multivariate index is developed to communicate various metrics relevant for characteristics

and monitoring multiple and compound extremes. For example, the degree of clustering of

extremes, the average of multiple extremes (e.g., drought, precipitation, and temperature),

or the concurrence of extremes (e.g., temperature and relative humidity). These indices are

often used to assess the severity, onset, and recovery of compound extreme events. Indeces

that are in current use include the U.S. Climate Extremes Index (CEI) [Karl et al., 1996,

Gleason et al., 2008], the Heat Index defined by Steadman [1979, 1984], the Multivariate

Standardized Drought Index (MSDI) [Hao et al., 2013].

1.3.3 Structure Variable Method

The structure variable method is similar to the multivariate index method, but it focuses on

the system response/behavior to a certain combination of underlying variables of interest.
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The structure variable can be defined as [Coles, 2001]

Z = Φ(Mx,My) (1.23)

where Φ is the response/behavior function (e.g., minimum, maximum, sum, product) and

Mx and My are extremes (minima or maxima) of variables X and Y . The variable Z can

then be modeled with the standard univariate extreme value distribution for inferences (e.g.,

estimating return levels).

However, with this method, the justification for the GEV distribution is not strong, since

other combinations of the variables X and Y may generate larger values from the function

Φ than that from the component maxima [Coles, 2001]. Coles [2001] compared the structure

variable method with bivariate/multivariate extremes using annual maxima sea-level data.

Further limitations of this method are discussed by Hawkes [2008].

1.3.4 Empirical Bayesian Methods

Bayesian analysis assumes that it is possible to infer information about the parameters of

the probability distribution of a random variable without using the data directly [Coles,

2001]. The probability distribution of the parameters (θ) is called the prior distribution

(herein termed ”prior” for purposes of brevity) where the parameters are treated as random

variables. This is one of the benefits for application of Bayesian methods to extreme value

analysis since the distribution of the parameters provides an estimate of their uncertainty

leading to more robust uncertainty estimates for the maxima quantiles.

Bayes theorem describes the relationship of the prior f(θ) and the likelihood f(x|θ) for the

purpose of inferring the posterior distribution f(θ|x). Assuming that the elements xi of x are

independent allowing for the simplification f(x|θ) =
∏n

i=1 f(xi; θ), Bayes’ Theorem states
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[Coles, 2001]

f(θ|x) = f(θ)f(x|θ)∫
Θ
f(θ)f(x|θ)dθ

. (1.24)

The main computational hurdle for implementing Bayesian techniques is computing the de-

nominator of Eq. 1.24 when the likelihood is intractable. The two popular methods to

overcome this include approximate Bayesian computation (ABC) that avoids estimating

f(x|θ) using pseudosample simulation methods, and a modified version of ABC that incor-

porates an empirical likelihood Mengersen et al. [2013]. Mengersen et al. [2013] compared

the ABC method with their empirical Bayesian via empirical likelihood approach and noted

that using the empirical likelihood often resulted in reduced computation times. They also

note that the method may be suitable for models with more complex likelihoods.

Cheng et al. [2014b] applied this empirical Bayes via empirical likelihood approach for an

analysis of precipitation conditional on extreme temperatures with favorable results that

were consistent with results semi-empirical approaches.

1.3.5 Graphical Dependency Models

Graphical dependency models were introduced to represent a complex dependence structure

in high dimension [Hanea et al., 2015]. These models have recently gained popularity after

the generalization of the simple Markov trees to belief networks (Bayesian learning) and

influence diagrams (decision problems) [Bedford and Cooke, 2002].

Bayesian Networks

Bayesian Networks (BN) model a high dimensional joint distribution via a directed acyclic

graph (DAG). In the DAG, each node represents a variable, while each arc connecting two
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nodes represents their dependence relationship. The absence of an arc between nodes guar-

anties their (conditional) independence. The direct predecessors (successors) of a node is

called parents (children) [Hanea et al., 2015]. A marginal distribution is representative of

a node without parents. Otherwise, a conditional distribution is associated with each child

node, and it is a quantitative indication of the dependence between the variables involved.

Quantitative information can be retrieved from data or from an expert [Hanea et al., 2015].

Following the notation in Hanea et al. [2015], the joint density fi,...,n(xi, ..., xn) of the n-

variables modeled as a BN on n-nodes is

fi,...,n(xi, ..., xn) =
n∏
i=1

fi|Pa(i)
(
xi | xPa(i)

)
(1.25)

where fi|Pa(i)(xi | xPa(i)) is the conditional probability of the variable xi given its parents

xPa(i). If a node is without parents, then this simplifies to fi(xi).

BNs have been mostly applied to nodes representing discrete random variables. Non-

Parametric Bayesian Networks (NPBNs) have been developed for continuous random vari-

ables. The nodes of a NPBN do not require the assumption of a marginal distribution and

the arcs are modeled through one-parameter conditional copulas. The copulas on the arcs are

assigned based on the ordering of parent nodes. However, this ordering is not unique [Hanea

et al., 2015]. Studies that made use of NPBNs in order to incorporate multiple contributing

factors include the dam safety assessment by Morales-Nápoles et al. [2014] in Mexico and the

compound flooding assessment by Couasnon et al. [2018a] that included riverine and coastal

interactions in Texas.
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Influence Diagram

An influence diagram is a generalization of the BN Bayesian framework that addresses both

probabilistic inference and decision-making process. Leonard et al. Leonard et al. [2014]

used extreme impacts to define a compound event and proposed the influence diagram as a

general framework to define, map, analyze, model, and communicate the risk of such events.

This approach formalizes the process of identifying the impact-dependence variables (and

events) as well as the dependence structure between variables. It also describes the model

structure necessary for risk evaluation.

Vine Copula

For analysis of bivariate variables, a rich variety of copula families are available and well-

investigated [Joe, 1997]. However, the use of copulas is challenging in higher dimensions,

where dependency patterns become more complex and standard multivariate copulas suffer

from their rather inflexible structures [Dey and Yan, 2016]. To overcome such limitations,

Joe [1996] proposed vine copulas, which were further developed by Bedford and Cooke [2001,

2002] and Kurowicka and Cooke [2007]. Vines are a graphical model that describe multi-

variate copulas built using a cascade of (conditional) bivariate copulas, so-called pair-copula

constructions (PCCs) [Kurowicka and Cooke, 2007, Aas et al., 2009, Brechmann and Schep-

smeier, 2013]. Liu et al. [2018] highlight the application of vine copulas for evaluating condi-

tional relationships between variables and underlying physical factors involved in compound

extreme events.

The basic idea of PCCs is to decompose the d-dimensional multivariate density into d(d−1)/2

pair-copulas and conditional pair-copula densities or building blocks, which represents the

exact number in which d elements can be coupled where each pair-copula or conditional pair-

copula can be chosen independently from the others and are not restricted to any specific
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copula type [Joe, 1996, 1997, Bedford and Cooke, 2002, Schirmacher and Schirmacher, 2008,

Jäger and Nápoles, 2017]. Bedford and Cooke [2001, 2002] systemized PCCs using a tree

representation, called Regular vines (R-vines). Two subsets of R-vines are commonly applied,

Canonical vines (C-vines) and Drawable vines (D-vines). The decomposition of PCCs is

identified by choosing a specific non-unique order of variables (nodes) and consists of n− 1

linked trees Ti, i = 1, ..., n− 1. The order defines the sequence of conditioning in the PCCs:

first variable 1 is conditioned, then variable 2 and so on [Brechmann and Schepsmeier, 2013].

Each edge is labeled and modeled with the pair-copula of the variables that it represents.

The edges in level i become nodes for the next level i+ 1. An n-dimensional density of the

C-vine copula is given by [Czado et al., 2012]

f(x1, ..., xn) =
n∏
k=1

fk(xk)×
n−1∏
i=1

n−i∏
j=1

ci,i+j|1:(i−1) (F (xi|x1, ..., xi−1), F (xi+j|x1, ..., xi−1)) (1.26)

where f(x1, ..., xn) is the joint density function of n-dimensional random variables, fk for

k = 1, ..., n denotes the n marginal densities, and ci,i+j|1:(i−1) represents the bivariate cop-

ula densities. The vine copula’s use of product expressions makes the density numerically

tractable by reducing the number of dimensions that require integration, even for d > 2 [Dey

and Yan, 2016].

1.4 Parametric Methods

Parametric methods are used to model the behavior of variables, allowing for inference

of values not observed within the data. Many types of parametric subfamilies have been

proposed to provide a simpler representation of the MEV distribution and cover a wide

range of dependence at the same time [Bortot and Gaetan, 2014]. Some of the parametric

models for extremes include the logistic distribution [Tawn, 1988], Gaussian [Smith, 1990],

bilogistic [Joe et al., 1992], polynomial [Nadarajah, 1999] and Dirichlet models [Coles and
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Tawn, 1991]. A variety of parametric models for bivariate and multivariate extreme value

distributions have been reviewed by Kotz et al. Kotz et al. [2004], Beirlant et al. [2006],

Banerjee et al. [2014], Dey and Yan [2016], and others.

1.4.1 Bayesian Methods

Bayesian methods, as introduced earlier in Section 1.3.4, allow for the incorporation of prior

information for estimating parameters of the marginal (posterior) distribution. The priors

of the individual parameters θi are sampled using MCMC methods [Gilks, 1996], often using

a Gibbs or Metropolis-Hastings style sampler [Banerjee et al., 2014]. The specification of

priors (e.g. uniform, Gaussian) used to sample each parameter’s distribution differs based

on various information and assumptions. The mean value of the prior densities allows for

estimation of the posterior distribution f(θ|x) given Eq. 1.24. The inference based on the

posterior distribution afterward is relatively straightforward and estimates of the uncertainty

are easily acquired from the prior densities [Banerjee et al., 2014].

A couple of examples of the application of parametric Bayesian methods in extreme value

analysis include the approach by Tsionas [2001] for estimation of a MEV Poisson regression

model and by O’Brien and Dunson [2004] for a MEV logistic regression. Coles and Tawn

[1996] introduced using Bayesian methods for direct prior elicitation in terms of the annual

maximum rainfall quantiles, qp, based on the GEV distribution of the form

qp = µ+ σ
{
[−log (1− p)]−ξ

}
ξ−1. (1.27)

Translation of parametric Bayesian methods to spatial extreme value analysis follows a

Bayesian hierarchical modeling (BHM) approach similar to the one introduced in the fol-

lowing Chapter 2, the benefits of this approach for analysis of spatial extremes in hydrology
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application are covered in following Section 1.5.1. In short, the spatial BHM expands upon

the parametric Bayesian approach to include a second model layer that utilizes a regression

model to distribute the spatial variability of the model parameters.

1.4.2 Max-Stable Process Model

A max-stable process is the spatial analogue of the GEV distribution that takes into account

the spatial dependence between pairs of observation sites. A max-stable process Z is the

limit process of point-wise maxima taken over an infinite number of independent replicates

{Xi : i ∈ N} of a continuous stochastic process X defined on index set X. For suitable

normalizing sequences {an(x) > 0} and {bn(x) ∈ R},

Z(x) = lim
n→∞

maxi=1,...,nXi(x)− bn(x)

an(x)
, x ∈ X (1.28)

where the limiting process Z is either degenerate or it is a max-stable process [De Haan,

1984, Ribatet and Sedki, 2013b]. De Haan [1984] simplified characterization of a max-

stable process by using a spectral representation wherein a family of non-negative continuous

functions {f(x, y) : x, y ∈ Rd} exist such that

∫
Rd

f(x, y)dy = 1, ∀x ∈ Rd, K ⊂ X (1.29)

where
∫
Rd supx∈K f(x, y)dy < ∞ and the max-stable process Z, with unit Fréchet margins,

has the same distribution as

Z(x) = max
i=1,2,...

ζif(x, Ui), x ∈ X, (1.30)

where {ζi, Ui) : i ∈ N} are the points of a Poisson process on (0,∞) × Rd with intensity

measure dΛ(ζ, u) = ζ−2dζdu. Schlather [2002] later adjusted this characterization of Z to

21



enable the use of random functions. Incorporating functions with various characterization

of spatial dependence into Z leads to the current set of max-stable process families. These

models include the Smith process (aka, the Gaussian extreme value process) [Smith, 1990],

the Brown-Resnick process [Brown and Resnick, 1977], the Schlather process (aka, the ex-

tremal Gaussian process)[Schlather, 2002], and the extremal-t process [Opitz, 2013]. Ribatet

et al. [2016] visually illustrate the differences in the spatial patterns of these various MSP

families, while noting that the inflexibility of the Smith process produces artificial surfaces

within the MSP realizations.

Max-stable process models make use of an extremal coefficient function θ(h) as a measure

of the strength of dependence between the marginals over all spatial separations, where in

the bivariate case this would be the distance between pairs of gauged sites (covered in more

detail in Chapter 4) [Schlather and Tawn, 2003]. The value of θ(h) ranges in value from [1, d],

where 1 is full dependence and d is the number of sites and indicates near independence (e.g.,

for a pairwise comparison d = 2). However, values greater than d can occur and indicate a

negative dependence between sites [Smith, 1990]. Evaluating θ(h) explicitly is difficult with

d > 2, thereby limiting MSP to the bivariate case [Ribatet et al., 2016].

Since the MSP models require the use of a pairwise composite log-likelihood function [Padoan

et al., 2010] to keep the likelihood formulation tractable, computation can be cumbersome.

However, a main benefit of the method is that it produces continuous estimates, not point-

based, which allows for directly averaging over regions to produce areal estimates of return

levels.

Although max-stable processes are the asymptotic distribution of block maxima (i.e., GEV

distribution), Huser and Davison [2014] and Raillard et al. [2014] introduced threshold ex-

ceedance approaches that can incorporate max-stable processes. Reich et al. [2014] presented

a hybrid approach that uses a copula model for maintaining GPD margins, while also ac-

counting for temporal dependence using a transformed max-stable process.
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1.4.3 Copula

Copulas have the advantage of describing the correlation structure of multiple variables

independently of the marginal distribution. Based on Sklar’s theorem, the d-dimensional

joint cumulative distribution function F of the random variable vector x = (x1, . . . , xd) can

be expressed with copula C as [Sklar, 1959, Joe, 1997]

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (1.31)

where F1(x1), . . . , Fd(xd are the marginal distributions.

A variety of copula families, such as the Archimedean copula, have been commonly used

in hydrology and water resources for frequency analysis [Kao and Govindaraju, 2008, Van-

denberghe et al., 2011], precipitation simulation [Bardossy and Pegram, 2009, AghaKouchak

et al., 2010], and geo-statistical interpolation [Bárdossy, 2006]. Although there are a variety

of parametric copula models, using a non-extreme value distribution can lead to underesti-

mation of spatial dependence [Ribatet and Sedki, 2013a] making extreme distributions more

appropriate for the modeling of extreme events (e.g., extreme value copula) [Salvadori et al.,

2007, Salvadori and Michele, 2010]. The extreme copula satisfies the condition [Galambos,

1987] [Joe, 1997, Gudendorf and Segers, 2010, Davison et al., 2012]

C(um1 , . . . , u
m
d ) → Cm(u1, . . . , ud). (1.32)

In the bivariate case, the extreme value copula can be represented by the Pickands depen-

dence function [Pickands, 1981]. The bivariate copula C is an extreme value copula if there

exists a Pickands function A such that

C(u, v) = exp

{
log(uv)A

(
log(v)

log(uv)

)}
(1.33)
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where u and v are the marginal probabilities.

1.5 Spatial Analysis of Extremes in Hydrology

While many of the above MEV models can be used for modeling the joint distribution of

multiple variables at a single location, the modeling of the distribution over space is of

interest for risk assessment since natural hazards are often recorded across multiple sites due

to physical processes that are spatial. In spatial statistics, data is pooled within a region

allowing for better estimates of the marginal parameters. This is commonly referred to as

trading space for time. However, the challenge is identifying the best way to capture the

spatial variability of the extreme distribution parameters in a high-dimensional space while

also accounting for the spatial dependence, the miscalculation of which can lead to under-

or over-estimates of the associated risk [Davison et al., 2012, Ribatet et al., 2016].

Simplifying assumptions are often made to restrict the number of dimensions in MEV models

so that they can be used practically and with minimal computational burden. For example,

several models assume spatial independence between sites to simplify the formulation of the

likelihood and keep it tractable [Coles et al., 1999]. However, which simplifying assumptions

are acceptable and which ones negatively impact the estimation of risk is an ongoing area of

investigation. Moreover, with the ever increasing computational power of computers, there is

an increasing ability to include more covariables that help describe drivers of extreme events

within models and perhaps aid in improving estimates of the marginal parameter’s spatial

variability. Calls have been made by for updating the standard methods used in practice, as

outlined by Stedinger and Griffis [2008] in their call for updates to flood frequency analysis

guidelines in the U.S.
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1.5.1 Point-Based Methods

Point-based methods commonly discussed in flood frequency and extreme precipitation anal-

ysis include Regional Frequency Analysis (RFA) and Latent Variable Models (LVM). These

types of methods assume spatial independence between at-site observations to simplify esti-

mation of the spatial joint probability distribution [Renard, 2011].

The goal of point-based methods, as with any MEV analysis, is to characterize the distribu-

tion of extreme values. In the case of spatial MEV analysis for extreme precipitation, the

goal is to evaluate the largest point-wise rainfall depths over a region X ⊂ R2 by evaluating

the probability of the precipitation field Y (x)

Pr

{
sup
x∈X

Y (x) > z

}
(1.34)

where z > 0 is a given critical quantity [Ribatet et al., 2016].

Regional Frequency Analysis

Of the various RFA methods, the most popular method involves across-region averaging

since it minimizes potential bias due to correlation between stations [Cunnane, 1988]. This

method is based on an index flood approach [Dalrymple, 1960] that pools the data within

homogeneous subregions so that a single frequency distribuion curve (aka, growth curve) can

be fit for the region under an assumption of spatial independence [Hosking and Wallis, 1988].

A scaling factor is then applied to the fitted distribution to attain estimates for individual

sites. The four main steps to RFA are 1) checking the data for errors (although not unique

to RFA), 2) selection and validation of homogenious subregions, 2) determination of the

best fitting distribution for the subregion, and 3) estimation of the region’s distribution

parameters [Hosking and Wallis, 1993].
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By pooling the data of relatively homogeneous sites, better quantile estimates of the fre-

quency distribution are attained than would be possible using a single station’s data [Burn,

1990, Hosking and Wallis, 1993, 2005]. Several studies have focused on improving methods

for delineating these homogeneous subregions (aka, regionalization) since there are several

statistical methods and choices of regional characteristics that can be employed with varying

results [Ilorme and Griffis, 2013]. Hosking and Wallis [1993] outlined the use of L-moment

statistics [Hosking, 1990] within the RFA framework to aid in confirming both homogeneity

and fit for small to medium sample sizes, which have been applied in many precipitation fre-

quency studies since their introduction [e.g., NOAA Atlas 14, Fowler and Kilsby, 2003, Ilorme

and Griffis, 2013, Schaefer, 1990, Schaefer et al., 2008]. These methods are also applied in

practice for the National Oceanic and Atmospheric Administration (NOAA) Precipitation

Frequency Atlas, no. 14 (aka, NOAA Atlas 14) [NOAA Atlas 14], and are combined with a

region of influence approach [Burn, 1990] to regionalization wherein each gauge site has its

own region along with a potentially unique set of nearby sites. While the region of influ-

ence method does allow for smooth transitions across region boundaries, there are subjective

choices that must be made during the selection process [NOAA Atlas 14]. Although covari-

ates are not used within a RFA, Schaefer et al. [2008] used regression methods to improve

the spatial mapping of L-moment statistics that included latitude and mean annual precipi-

tation within their regional predictor equations in an effort to account for the spatial nature

of marginal distributions when selecting subregions.

In contrast to the spatial methods that I will discuss in the following sections, RFA has a

homogeneity requirement that can limit the benefit of pooling data when faced with a highly

heterogenous region since the resulting subregions may only include a small number of sites,

especially in regions with sparse sensor networks. For example, Schaefer et al. [2008] note

that in the highly heterogeneous Willamette River Basin of Oregon, some of the subregions in

their study only contained 7 sites despite the relatively dense sensor network. Such a limited

number of sites can be seen as problematic when the desire is to estimate the 100-year return
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level and beyond for infrastructure design. Additionally, the NOAA Atlas 14 documentation

notes that there are several stations where the regional approach do not perform well for

fitting the observed data requiring individual at-site fits for those sites [NOAA Atlas 14].

Renard [2011] points out many of these flaws of RFA and more, while also promoting the

use of a BHM framework.

RFA methods rely on regression models to interpolate at-site results to ungauged sites.

Grover et al. [2002] compared various regression methods including linear, nonlinear, and

nonparametric. While, NOAA Atlas 14 and Schaefer et al. [2008] used the Parameter-

elevation Regressions on Independent Slopes Model (PRISM) approach developed by Daly

et al. [1997] to spatially interpolate each site’s data series means as a base for estimating

their quantile grids.

Latent Variable Models

To account for the spatial nature of extreme precipitation, Latent Variable Models (LVM)

(e.g., Bayesian Hierarchical Models) have been developed that allow for the incorporation of

spatially varying geographic and climatic covariates for distributing extremal model param-

eters in space (i.e., trend surfaces) [Cooley et al., 2007, Renard, 2011, Banerjee et al., 2014,

Davison et al., 2012, Ribatet et al., 2012, Wikle et al., 1998].

Using LVM methods, the random variable Y (s) with spatially varying GEV paramters at

each gauged site s ∈ S represented as

Y (s) ∼ GEV µ(s), σ(s), ξ(s). (1.35)

The distribution parameters are estimated using a Gaussian process with a mean function

and a parametric covariance function Dyrrdal et al. [2014], Ribatet et al. [2016]. The mean
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function is based on physically relevant geographic or climatic covariates for the region. For

example, the spatially varying parameters µ(s), σ(s), ξ(s) within the BHM model that I use

in Chapter 2 take the form

µs = x⊤s θ
µ + τµs

κs = x⊤s θ
κ + τκs

ξs = x⊤s θ
ξ + τ ξs

τ νs ∼ GP (αν , λν) (1.36)

where κs = 1/σs to ensure that the scale parameter remains positive. The covariates are

represented by xs, the regression parameters are θν , and the spatial random effects terms

is denoted by τ νs with hyper-parameters αν and λν related to its covariance function, and

where ν ∈ {µ, σ, ξ}. In this way, LVMs are able to handle some heterogeneity, which reduces

the need to define homogeneous subregions [Cunnane, 1988].

In order to improve spatial estimates of extreme precipitation, it is important to account

for the processes that influence its generation [Maraun et al., 2010]. As detailed above,

latent variable models are able to address this through the inclusion of relevant covariates.

However, a common challenge is identifying the optimal covariates to include [Blanchet and

Davison, 2011, Davison et al., 2012, Ribatet, 2017]. Steinschneider and Lall [2015], developed

and incorporated an atmospheric river index as a variable within their latent variable model.

Cooley et al. [2007] performed a BHM analysis of extreme precipitation along the Front Range

in Colorado, wherein they determined that including covariates related to the climate of the

region (i.e., elevation and mean seasonal precipitation) provided improved representations of

the spatial variability of rainfall intensity compared with the traditionally used latitude and

longitude only. However, the majority of studies rely on using either geographic covariates

only (i.e., latitude and longitude) or at most will also include mean annual precipitation or

mean seasonal precipitation. However, as noted by Ribatet [2013], applying tend surfaces
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that are too simple can result in bias due to mischaracterization of the dependence structure.

BHM can be seen as an improvement over RFA methods due to the robust uncertainty

estimates and ease of including covariate information within the model. Additionally, by

incorporating stochastic processes, the prediction of quantiles at ungauged sites is simpler

[Davison et al., 2012]. However, while promoting the use of BHM over the classic RFA

methods, Renard [2011] notes that the assumption of spatial independence is still a flaw of

both methods. The covariates are related to the spatial dependence of the parameters, not

the spatial dependence in the data; these are two different processes.

Areal Reduction Factors

Since point-based methods are only capable of producing point-based estimates, the addi-

tional step of using Areal Reduction Factors (ARFs) is required to transform their quantile

estimates to an areal averaged depth estimate most often used for modeling rainfall-runoff

relationships and design storm estimates. In practice, the ARFs utilized are based on the

Technical Paper No. 29 (TP-29) guidelines [U.S. Weather Bureau, 1958] and are a function

of the area of the watershed and the precipitation duration, and assume that the ratio does

not vary with frequency. Therefore, the TP-29 ARFs are solely meant to serve as a ratio of

the average depth to the point depth of the annual maxima over a region (i.e., watershed)

with a maximum area of 1100 mi2 as follows

Pa = ARF × Pp (1.37)

where, for a given watershed and duration, Pa is the areal average precipitation depth,

Pp is the mean of the point precipitation depth, and ARF is the areal reduction factor

[U.S. Weather Bureau, 1958]. Leclerc and Schaake [1972] present a simplified approach for
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calculating the above ARF term as follows

ARF = 1− exp(−1.1t0.25) + exp(−1.1t0.25 − 0.01A) (1.38)

where t is the duration in hours and A is the area of the watershed in square miles.

Arguments against the above fixed area approach often point out that it does not account

for the frequency of the quantiles, the shape of the watershed, or the individual storm event

characteristics (e.g., how the size of the storm impacts correlation) [Asquith and Famiglietti,

2000, Olivera et al., 2008].

1.5.2 Areal Methods

Max-stable process models are the spatial analog of MEV analysis and incorporate a spatial

dependence component. By including spatial dependence, they are capable of producing

estimates that are continuous surfaces versus the point-based results of the previous section.

The ability to directly estimate areal exceedances without having to use ARFs is one of

the benefits from a design and planning perspective. Additionally, these models are also

capable of incorporating physically relevant covariates within their modeling frameworks for

describing the spatial variability of parameters.

The main impediment to the application of MSP models in practice is the computational

burden. While some of the MSP models have been around for a while, application of the

framework to spatial extreme value analysis was not popular until recently due to the lack

of a closed form likelihood, which resulted in heavy computational burdens [Ribatet et al.,

2016]. However, the introduction of a pairwise composite log-likelihood function [Padoan

et al., 2010], as mentioned earlier in Section 1.4.2, has allowed for the development of com-

putationally usable models.
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Fitting spatial series of maxima with a MSP model is usually broken into two stages wherein

the spatial dependence and the trend surfaces are fit separately. After which, the fitted

spatial dependence and trend surfaces are used together to produce realizations of the max-

stable process. This two staged modeling approach is demonstrated in Chapter 4 for this

dissertation.

MSP models have been applied in the literature by Coles and Tawn [1996] for areal rainfall

in southwest England, by Reich and Shaby [2011] for analysis of temperature maxima in the

southeast U.S., by Stephenson et al. [2016] for extreme rainfall for developing IDF curves, by

Westra and Sisson [2011] for detecting non-stationarity in extreme precipitation, and a few

others. The majority of the MSP literature (including most listed here) is based on demon-

strating improvements in methodology. Extensive use for applications based assessments has

not yet been established.

Copula have been adapted in several studies for the modeling of joint extremes [e.g. AghaK-

ouchak et al., 2010, Madadgar and Moradkhani, 2014, Mazdiyasni et al., 2017, Couasnon

et al., 2018b], and have been gaining in popularity over the years. Application of copula

methods have been made more accessible through the introduction of analysis tools like

MvCAT [Sadegh et al., 2017] and copula do not suffer from the same intractable likelihood

issues that slowed the adoption of MSP models.

Several copula can be extended to the spatial case given Kolmogorov’s extension theorem

[Kolmogorov], which defines how a collection of finite-dimensional distributions can define a

stochastic process. As noted by [Ribatet and Sedki, 2013a], Gaussian and Student copulas

are popular for the spatial case given the ease of replacing the Gaussian and Student random

vectors with processes. However, an extreme value copula should be used for modeling spatial

extremes to avoid improper characterizations of the tail dependence [Renard and Lang, 2007].

As an example of this, Renard and Lang [2007] demonstrated the underestimation of risk that

can occur when using copula that assume asymptotic independence (i.e. Gaussian copula)
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for extreme data that are dependent. Therefore, it is important to use a diagnostic measures

for determining the extremal dependence of the data for choosing the correct copula families

[Coles et al., 1999, Tootoonchi et al., 2021].

1.6 Improving Extreme Precipitation Estimation with

Physical Information

Due to the spatial nature of extreme climate events, the estimation of exceedance proba-

bilities for infrastructure design and hazard mitigation depends on properly modeling the

spatially varying marginal parameters and appropriately characterizing dependence. Recog-

nizing that simplifying assumptions can introduce under- or over-estimation of exceedance

probabilities, the goal of this dissertation is to challenge some of these assumptions using

recent methods in spatial extremes analysis.

In the following Chapter 2, I use a spatial Bayesian Hierarchical Model (BHM) framework

that includes a Bayesian Model Averaging (BMA) component to compare the spatial model-

ing of daily precipitation annual maxima for two climatically different regions, along with a

region of overlap between the two Love et al. [2020]. I compare posterior inclusion probability

(PIP) results produced via BMA for the individual parameters of the GEV distribution for

various models by region. I compare a wide range of models from relatively simple (location

covariates only) to rather complex (location, elevation, and monthly and seasonal mean pre-

cipitation, temperature, and dew point temperature). My results indicate that the inclusion

of dew point temperature and mean daily temperature is important for improving predictive

performance within a highly heterogeneous region. The results within the region of overlap

indicate that storm type should be considered in the regionalization of observed spatial pre-

cipitation data since the dominant storm type of the pooled data the regional models were
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based on impacted the predictive performance across all of the models, regardless of climatic

covariates employed. I outline which covariates were most influential across several models

for estimation of the GEV parameters based on each region’s PIP results.

In Chapter 3, I introduce a framework for the selection of proper geographic and climatic

covariates for the spatial analysis of extremes using elastic-net regularization. The elastic-

net regression allows for the exploration of relatively large sets of physically-based covariates

relevant to spatial extremes. I demonstrate the application of elastic-net regularization

within a block maxima approach and the Generalized Extreme Value (GEV) distribution

for spatial modeling. However, the approach is general and can be applied using other

probability distributions. I used two climatically different regions, northeastern Colorado

and the Texas-Louisiana Gulf Coast, with different dominant storm generating mechanisms.

My results show a good fit for the spatially varying location and scale parameters of the GEV

distribution in both regions when comparing calibration and validation data sets. The fit

for the spatially varying GEV shape parameter within the Gulf Coast region shows promise

since this parameter is known for being difficult to fit and, as a result, is often set to a fixed

value. The results have significant implications for the analysis of the recurrence intervals of

extreme events.

In Chapter 4, I present a comparison between max-stable process model results for two cli-

matically different regions within the coterminous United States and their NOAA Atlas 14

counterparts that are based on RFA methods. RFA assumes independence between sites

allowing for quicker computation times, this assumption is not reasonable in regions with

either dense station networks or large-scale dominant storm mechanisms (e.g., mesoscale

thunderstorms, tropical cyclones). Since we know that extreme events are often shared

across sites, ignoring inter-site dependence can lead to miscalculations in return levels with

the potential for devastating impacts on urban and agricultural areas that depend on in-

frastructure designed using such assumptions (e.g. Louisiana flooding, Boulder Colorado
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floods). The exception to this would be regions with a sparse number of sites and/or with

extreme precipitation events that are highly localized - but then you have a completely dif-

ferent model accuracy issue. My results provide insights into the impact of the inclusion of

spatial dependence within regions dominated by large-scale storms.
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Chapter 2

Integrating Climatic and Physical

Information in a Bayesian

Hierarchical Model of Extreme Daily

Precipitation

This chapter is based on the following published work:

Love, C. A., Skahill, B. E., England, J. F., Karlovits, G., Duren, A., & AghaKouchak, A.

(2020). Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of

Extreme Daily Precipitation. Water, 12(8), 2211. https://doi.org/10.3390/w12082211

2.1 Introduction

The ability to estimate the magnitude and frequency of extreme precipitation events is an

essential part of infrastructure planning and flood prediction [Gumbel, 1958, Luke et al., 2017,
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Stedinger and Griffis, 2008]. Extreme events directly affect infrastructure and residents of a

region, while also having an economic effect [Cheng and AghaKouchak, 2014, ?, Stedinger

and Griffis, 2008]. They are often localized and difficult to predict. Extreme precipitation

estimates are often required in regions where gauge data is sparse [Cooley et al., 2007]. In

regions that do have relatively dense observational networks integrating spatial information

(i.e., multiple extremes across space) for frequency is not straightforward [Cooley et al.,

2007].

Following the early contributions by Gumbel [1941], which expanded upon the work of Fisher

and Tippett [1928], frequency analysis became widely used for estimating rainfall or stream-

flow corresponding to different return periods [Bonnin et al., 2006, Davison and Smith, 1990,

England Jr. et al., 2015, Fowler and Kilsby, 2003]. The process generally involves fitting

a representative parametric distribution function (e.g., generalized extreme value distribu-

tion, Log-Pearson, exponential) to extreme values (e.g., exceeding 95th percentile) [Fisher

and Tippett, 1928, Gumbel, 1958, Hosking and Wallis, 1993, Jenkinson, 1955]. The fitted

distribution is then used to estimate the probability of occurrence of different events (e.g.,

precipitation and/or streamflow) [Coles, 2001]. The further out on the tail of the distribution

inference is made, the greater the uncertainty [Coles, 2001, Davison et al., 2012, Papalexiou

et al., 2018].

Precipitation is a spatial process and several methods have been developed to integrate

spatial information into frequency analysis [Cooley, 2009]. One approach for spatial ex-

treme precipitation analysis is spatial Bayesian Hierarchical Modeling (BHM)[Cooley et al.,

2007, Renard, 2011]. BHM distributes extremal model parameters in space using covariate

information pertaining to geographical and climatological factors that influence regional pre-

cipitation extremes [Banerjee et al., 2014, Davison et al., 2012, Ribatet et al., 2012, Wikle

et al., 1998]. The advantages of a BHM-based spatial analysis of extremes include (a) that

BHM does not require the decomposition of the study region into homogeneous subregions
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[Cooley et al., 2007]; (b) it is robust in the treatment of uncertainty [Banerjee et al., 2014,

Cooley et al., 2007]; (c) BHM can be easily adapted to accommodate treatments of non-

stationarity [Banerjee et al., 2014, Cheng et al., 2014a, Economou et al., 2014]; and (d) it

allows the inclusion of physical features (e.g., elevation) of the region and other relevant cli-

matic variables (e.g., temperature, moisture transport) [Cooley et al., 2007, Ahn et al., 2017].

Moreover, the Bayesian inference methodological framework readily supports the inclusion

of additional data types relevant to the analysis; for example, information derived via elici-

tation and climate indices [Coles and Tawn, 1996, Economou et al., 2014, Kwon et al., 2008,

Steinschneider and Lall, 2015]. A potential challenge with applying spatial BHM however, is

either locating or developing relevant covariate data to support its deployment. Past spatial

BHM extreme value studies incorporate covariate information from gridded model outputs

or interpolated data sets (i.e. ERA-Interim reanalysis data, VIC, ECHAM4.5, interpolated

data sets from the Spatial Climate Analysis Service, and the Hulme data set) [Cooley et al.,

2007, Ghosh and Mallick, 2011, Kwon et al., 2008, Najafi and Moradkhani, 2013, 2014, Sang

and Gelfand, 2008, Steinschneider and Lall, 2015].

In this study, we incorporate the Parameter-elevation Relationships on Independent Slopes

Model (PRISM) data set [Daly et al., 1994, 1997, 2008] as a source of covariate information

within a BHM framework that includes Bayesian model averaging (BMA) for each param-

eter’s general linear model. We consider a wide range of models from relatively simple

(location covariates only) to rather complex (location, elevation, and monthly mean climatic

variables). The climatic variables used include mean daily temperature and dewpoint tem-

perature, which goes beyond the inclusion of precipitation of previous studies in the western

U.S. [Bracken et al., 2016]. We compare model choice, complexity, and covariates in two

distinct regions in Oregon with different dominating rainfall generation mechanisms, and a

region of overlap. We apply BMA to account for model uncertainty and to access covariate

selection across models and domains. We analyze the posterior inclusion probabilities (PIP)

generated using BMA for the model covariates, model performance, and the contribution of
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the spatial random effects term to the parameter estimates. The overarching goal of this

paper is to determine the effectiveness of including BMA within a spatial BHM framework

across climatically varying regions.

2.2 Methods

In this study, I model annual maxima (AM) daily precipitation data from Oregon using

the generalized extreme value (GEV) family of distribution functions. The GEV family of

distribution functions are of the form [Coles, 2001]

G(x) =
{
−

[
1 + ξ

(x− µ

σ

)− 1
ξ
]}

(2.1)

defined on {x : 1+ξ(x−µ)/σ > 0} where {(µ, σ, ξ) : µ ∈ R, σ > 0, ξ ∈ R}. The location (µ),

scale (σ), and shape (ξ) parameters of the distribution specify the center of the distribution,

the size of the deviation around µ, and the tail behavior of the distribution, respectively. The

GEV family incorporates the three possible extreme value distributions which correspond to

ξ < 0 (Weibull), ξ = 0 interpreted as the limit as ξ −→ 0 (Gumbel), and ξ > 0 (Fréchet).

My spatial BHM extreme rainfall analysis was performed using the R software package ‘spa-

tial.gev.bma’ [Lenkoski, 2014]. The framework implements a Markov Chain Monte Carlo

(MCMC) sampling methodology to estimate the spatially dependent parameters of the GEV

distribution [Dyrrdal et al., 2014]. Additionally, the framework uses BMA to assess model

uncertainty related to the covariates employed [Dyrrdal et al., 2014]. The framework devel-

oped by Lenkoski [2014] assumes stationarity with time [Dyrrdal et al., 2014].

A mathematical overview of the framework is presented below, and it follows the exposi-

38



tion detailed by Dyrrdal et al. [2014]. Each GEV spatially dependent parameter is defined

by a general linear model (GLM) of the covariates plus a spatial random effects term (τ)

that accounts for residual spatial association not captured by the covariates. Ideally, if the

covariates sufficiently capture the latent processes, the τ term should be minimal. The pre-

cipitation AM for a specific location s is represented as yts (within the spatial region of study

S) and for a year t, where [Dyrrdal et al., 2014]

yts ∼ GEV (µs, σs, ξs), (2.2)

and

µs = x⊤s θ
µ + τµs

κs = x⊤s θ
κ + τκs

ξs = x⊤s θ
ξ + τ ξs

τ νs ∼ GP (αν , λν) (2.3)

where κs = 1/σs to ensure that the scale parameter remains positive. The covariates, regres-

sion parameters, spatial random effects terms are denoted by xs, θ
ν , and τ νs , respectively,

where ν ∈ {µ, σ, ξ}. The spatial random effects term is assumed to be a zero-centered Gaus-

sian spatial process defined by an isotropic exponential covariance function with a sill (αν)

and range (λν) [Dyrrdal et al., 2014]. In particular,

E(τ νst) = 0 (2.4)

cov(τ νst, τ
ν
sr) =

1

αν
exp

(
− dstsr

λν

)
, st, sr ∈ S, (2.5)
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where dstsr is the Euclidean distance between locations st and sr. The likelihood is given by

Pr(yo|{µs, σs, ξs}s∈So) =
∏
∈So

Ts∏
t=1

pr(yts|µs, σs, ξs), (2.6)

where yo denotes the entire set of block maxima observations. The likelihood definition does

imply that yts and yts′ are conditionally independent for anywhere s ̸= s′ [Dyrrdal et al.,

2014]. This independence assumption may influence our results, particularly in the denser

network of stations within the Willamette River Basin (WRB) where larger-scale winter

storms off the Pacific Ocean dominate the AM events. However, for the sparser network

of stations within the eastern Oregon region (EOR) where more localized thunderstorms

dominate several sites, this is less likely to influence performance.

Model inference is performed using Markov Chain Monte Carlo (MCMC) methods, wherein

the algorithm returns a chain of length N , where the nth iteration contains the set of elements

{
θν , τ νs s∈So

, αν , λν
}[n]

, (2.7)

for each ν ∈ {µ, κ, ξ} from which the joint posterior distribution is estimated after discarding

the initial burn-in period. The Gaussian proposal distributions are tuned using second-order

Taylor expansions of Eq. 7 [Dyrrdal et al., 2014]. The BMA feature within the framework

makes use of conditional Bayes factors and an MC3-within-Gibbs style of sampling to account

for model uncertainty (for a detailed formulation, please see [Dyrrdal et al., 2014]). For each

iteration a subset of model covariates is randomly sampled, let’s call this model subset M .

A conditional Bayes factor evaluation is used, where the full conditional probability of M is

compared with that of the proposal M ′. If the proposal M ′ is accepted, then the regression

parameters corresponding to each of the covariates used in M ′ are updated. If rejected, the
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previous M is used. Each time M is accepted, the covariates it contains are assigned a one;

conversely, each is assigned zero when rejected or not used within M . After all iterations

have completed, the posterior inclusion probability (PIP) can be calculated using the number

of times a covariate received a one out of the total post-burnin iterations.

The covariate information we employed for our models pertains to the geographical and

climatological factors that we assume influence regional precipitation extremes within the

study regions. To improve inference, as suggested by Dyrrdal et al. [2014], all covariates were

standardized prior to model simulation. We evaluated the predictive performance of each

model through application of leave-one-out cross validation (LOO-CV) and minimization

of the continuous ranked probability score (CRPS) and root mean squared error (RMSE).

RMSE was applied as

RMSE =

√√√√ 1

N

N∑
j=1

(
F (pj)obs − F (pj)pred

)2

(2.8)

where N is the site-specific number of AM events, and p is precipitation in inches. The

CRPS compares the predicted and observed cumulative distribution functions, and can be

defined as

CRPS =

∫ ∞

−∞

[
F (p)−H(p− pj)

]2
dp (2.9)

where p represents the predicted precipitation, and pj the observed precipitation [Gneiting

and Raftery, 2007]. For F (p), we used the median of the predicted GEV cumulative dis-

tributions (Eq. 2) across all iterations (post burn-in). H(p) is the Heaviside step function

where

H(p) =


0, p < 0

1, p ≥ 0.

(2.10)
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As the distributions become increasingly similar, the CRPS approaches zero [Hersbach, 2000].

As noted by Dyrrdal et al. [2014], a small (hundredths) change in CRPS corresponds with

a substantial difference in performance, which is why we chose to also use RMSE. For this

study, we used a derivation of CRPS, which can be written as

CRPS =
1

JK

J∑
j=1

K∑
k=1

[
F (pk)−H(pk − pj)

]2
(2.11)

where k is the number of predicted values, and j is the number of observed values.

2.3 Data

The Willamette River Basin (WRB) is located along the western part of Oregon (Figure 2.1).

The region is bounded by the Coastal Range to the west, the Columbia River to the north,

and the Cascade Range to the east. Extreme precipitation in the WRB primarily is a result

of winter storms that occur between October and March, and which typically account for 75-

80% of the region’s annual precipitation [Lee and Risley, 2002, Redmond and Koch, 1991].

Temperature fluctuations are relatively small due to the basin’s proximity to the Pacific

Ocean; however, elevation plays a major role in its variability [Lee and Risley, 2002, Melack

et al., 1997]. Elevations within the WRB range from near sea level along the Columbia

River to over 3,048 m in the Cascade Range [Daly et al., 1994]. The orographic effect of

the Cascade Range results in relatively high amounts of precipitation along the Columbia

River Gorge [Daly et al., 1994]. Overall, the Pacific northwest region experiences warm,

dry summers due to intensification of the Pacific subtropical high, and cool, wet winters as

the polar jet stream dips southward bringing storms from the Gulf of Alaska [Mock, 1996].

We also focus on eastern Oregon (EOR), which encompasses the region east of the Cascade

Range crest-line, the high desert of southeastern Oregon, north-central Deschutes–Umatilla

Plateau, and the Blue Mountains in the northeast. We chose this additional region since
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Figure 2.1: Study regions with location reference numbers, and Annual Maxima (AM) clima-
tology where a) is the count of AM events by month for the Willamette River Basin (WRB)
and b) is the count of AM events by month for the eastern Oregon (EOR) study region.
Within the study region map, the purple markers indicate locations included exclusively
within the WRB, while green markers indicate those within the EOR. The yellow markers
are the locations that were included within both study regions.
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it varies climatically from the WRB. In general, EOR is drier than western Oregon with

approximately four times less precipitation falling east of the Cascade Range than to the

west [Bond and Vecchi, 2003]. During the early summer months, areas within the EOR

region often experience increases in precipitation due to thunderstorms which develop as

cool marine air pushes inland east of the Cascade Range and interacts with warmer inland

air [Harris and Hubbard, 1983, Melack et al., 1997, Mock, 1996]. As the summer months

progress, decreases in precipitation are widespread as the Pacific subtropical high continues

to increase in intensity and extent while the polar jet stream shifts northward, with a few

localized exceptions due to thunderstorms [Mock, 1996].

The time series of Annual Maxima (AM) data for the WRB and EOR regions was produced

for the Oregon Department of Transportation (ODOT) by Schaefer et al. [2008], which was

conducted due to the lack of a National Oceanic and Atmospheric Administration (NOAA)

precipitation atlas update for the region [Bonnin et al., 2006]. The data set is comprised of

24-hour annual precipitation maxima for 128 stations throughout Oregon, where annual is

defined as the period between January 1st and December 31st [Schaefer et al., 2008]. The

length of record for each station ranges from 10 to 66 years, with a combined 2,912 AM

for the WRB, and 1,620 AM for EOR. We used the stations which fall within our specific

study regions; 68 stations fall within the WRB region, while 41 stations fall within the

bounds of EOR (Figure 2.1). Six of the stations (along the Columbia River Gorge and

east of the Cascade Range crest) were included in both the WRB and EOR regions for

additional model comparison. The remaining stations from the original data set fall within

the Umpqua and Rogue River watersheds, which were not included in this analysis. Schaefer

et al. [2008] performed quality checks on the station records for errors, incomplete records,

and any anomalous precipitation amounts relative to neighboring gages. They also checked

the station data for stationarity and temporal independence using a null hypothesis of zero

slope and zero serial correlation, respectively; they could not reject the null hypothesis at

a significance level of 0.05. Based on the dominance of larger scale winter storms across
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the WRB, there is likely some spatial dependence between stations. However, the spatial

dependence across the EOR region should be less since there are fewer stations spread over

a larger region with several dominated by local convective storms.

The covariates we employed include the site-specific geographical information of longitude,

latitude, elevation, and climatological information including monthly and annual precipi-

tation, mean temperature, and mean dew point temperature from the PRISM Norm81m

long-term (1981-2010) mean monthly gridded data set [Daly et al., 2008]. The covariates

were selected based on the literature on the impacts of physical information (e.g., elevation,

climatology) on local extreme precipitation [Oki et al., 1991, Javier et al., 2007, Papalexiou

et al., 2018]. Temperature and dewpoint temperature were included since their interaction

with precipitation extremes, primarily because of rainfall-temperature thermodynamic rela-

tions, have been recognized in previous publications [Trenberth and Shea, 2005, Zhao and

Khalil, 1993, Adler et al., 2008].

The PRISM data set not only has the advantage of being extensively peer-reviewed, but

also has a relatively fine spatial resolution across the contiguous United States (∼800m)

[Daly et al., 2008]. From the PRISM data set we also derived the seasonal mean (November-

March and April-October means) of the climatological variables monthly precipitation (P ),

monthly mean daily temperature (T ), and monthly dew point temperature (Td) for use in

our models. Our choice of specific covariate data used for each of the models varies from

simple (longitude and latitude; model XY) to more complex (longitude, latitude, elevation,

monthly P , monthly Td, and monthly T ; model XYZPT6) (Table 2.1).
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Table 2.1: Model Acronyms and Covariates Employeda

Acronym Model Covariates
XY Longitude, Latitude
XYZ Lon., Lat., Elevation
XYZPT1 Lon., Lat., Elevation, PA
XYZPT2 Lon., Lat., Elevation, P ∗, T ∗

d , T
∗

XYZPT3 Lon., Lat., Elevation, PA, TdA, TA
XYZPT4 Lon., Lat., Elevation, P ∗, T ∗

d , T
∗, P c, T cd , T

c

XYZPT5 Lon., Lat., Elevation, P1,..., P12, TdA, TA
XYZPT6 Lon., Lat., Elevation, P1,..., P12,Td1,..., Td12,T1,..., T12,
aPrecipitation, dewpoint temperature, and mean daily temperature
are denoted as P , Td, and T , respectively. Numbered subscripts
denote month (e.g., 1 for January, 12 for December). An asterisk
denotes the mean across wet season months (November-March),
while a superscript “c” denotes the mean across dry season months
(May-April). Annual means (January-December) are denoted with
a subscript “A”.

2.4 Results

2.4.1 Model Selection

The selection of the best performing models for each region was based upon the comparison

of the mean, median and spread of the CRPS and RMSE across sites (Figures 2.2 and

S1). Additionally, I inspected individual location predicted CDFs (Figure 2.10) and mapped

model performance to determine whether there was any noticeable difference between models

(Figure 2.11). The results of the LOO-CV analysis suggest that from the eight models tested

for each region, XYZPT2, XYZPT4, XYZPT5, and XYZPT6 were the top performing models

for the WRB (Figure 2.2b), while XYZPT1 and XYZPT3 were the top for EOR (Figure 2.2a).

I argue that these top performing models within a given region are equally good since their

mean and median scores and their spatial distributions are similar. Therefore, the choice

for the best model is the simplest model out of the top performing models for each region.

For the WRB, the simplest top-performing model includes location, elevation, and mean
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Figure 2.2: Comparison of mean and median CRPS and RMSE for a) the WRB region and
b) the EOR region. The top performing 3 or 4 models are closely clustered where one may
perform better with respect to CRPS, while another may have a slightly better RMSE. The
top performing models across both mean and median results in a) are XYZPT2, XYZPT4,
XYZPT5, and XYZPT6, while the top performing in b) are XYZPT1 and XYZPT3.

wet-season P , T , and Td as covariates (model XYZPT2); while the simplest for the EOR

contains location, elevation and mean annual P (model XYZPT1).

We also performed a spatial GEV analysis for each model to assess model fit, which is

commonly used to fine-tune covariate selection when cross validation and/or BMA are not

used. The GLM for each parameter contained the full set of covariates for each model. The

Takeuchi information criterion (TIC)[Takeuchi, 1976] for each model was assessed relative to

model complexity (Figure 2.3). The results confirm our selection of best model, and that the

inclusion of climatic covariates greatly improves model fit. For the WRB, model XYZPT2

has a lower TIC relative to XYZPT1 and XYZPT3. For the EOR region, model XYZPT1

has a lower TIC relative to XYZPT2 and is close to the TIC result for the more complex

XYZPT3. While XYZPT6 has the lowest TIC, we chose not to use it to avoid overfitting.
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Figure 2.3: Spatial GEV model fit for both regions. Grey dashed line represents TIC, while
the solid orange line represents the number of model covariates.

2.4.2 Posterior Inclusion Probability by Region

As noted previously, the methodology used here includes a BMA functionality that provides

an estimate of the posterior inclusion probability (PIP) for the linear terms of each GEV

parameter. While most model covariates have a non-negligible PIP, mean wet-season pre-

cipitation (November-March) has the greatest influence on the location parameter, µ, of the

GEV distribution for both regions (Figure 2.4). Longitude (x), latitude (y), and elevation

(z) have slightly greater µ PIP for the WRB models than for the EOR models, which could

be due to the greater variability in elevation and mean precipitation across the relatively

small WRB region.

Precipitation and longitude have the largest PIP for the inverse-scale parameter, κ, across the

simpler models for both regions (Figure 2.4), with longitude appearing to be more important

for the EOR models relative to the WRB models. Mean daily temperature (T ) has a slightly

higher κ PIP in the WRB models, relative to EOR, with wet-season T receiving a higher κ

48



Figure 2.4: Posterior inclusion probability for the GEV location, inverse scale, and shape
parameters (µ, κ, ξ) for the three simpler models. Model XYZPT3 for a) the WRB and b)
EOR, model XYZPT2 for c) the WRB and d) EOR, and model XYZPT4 for e) the WRB
and f) EOR. For all models and regions, the uppermost color (pink) represents µ, the middle
color (orange) displays the results for κ, and the bottommost color (purple) shows the results
for ξ.
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PIP than dry-season T . The climatic difference between the regions can also be seen when P

is separated into wet- and dry-seasons (Figure 2.4e, 2.4f), with the WRB showing a greater

κ PIP for wet-season P and the EOR displaying similar PIPs for both seasons (dry-season P

displaying a slightly higher κ PIP). The κ PIP results nicely echo the AM climatology of both

regions, with precipitation in the WRB being driven by large synoptic systems originating

from the Pacific during winter months, while precipitation in the EOR is generally driven

by convective systems resulting in short duration, high intensity events in the early summer.

Latitude consistently has one of the lowest κ PIP across models and regions.

For the WRB, elevation (z) appears to have the most influence on the shape parameter, ξ,

of the simpler models (Figure 2.4a, 2.4c, 2.4e). However, this is not the case for the simpler

EOR models where ξ does not depend on any single covariate for the region’s top performing

models (XYZPT1, and XYZPT3 shown in Figure 2.4b); it is only seen with model XYZPT6

(Figure 2.5b), which did not perform as well within the EOR region.

In the more complex models, XYZPT5 and XYZPT6, PIP results mostly reflect those of

the simpler models, although in finer detail given that the covariates are on a monthly scale

(Figure 2.5). Again, XYZPT5 and XYZPT6 where both among the top preforming stations

for the WRB region, however, they were not among the top performing for the EOR region.

In the WRB model XYZPT5 (Figure 2.5a), February precipitation (P2) dominates µ PIP;

while for the EOR XYZPT5, January and November precipitation (P1 and P11) dominate

µ PIP (Figure 2.5b). For the WRB XYZPT6 (Figure 2.5c), February µ PIP remains the

highest with December, January, and March µ PIP following close behind. For the EOR

XYZPT6 (Figure 2.5d), January and November precipitation still stand out with the highest

µ PIP.

Within these more complex models, the κ PIP results again reflect the differences in each

region’s primary storm mechanism. For both XYZPT5 and XYZPT6 in the WRB region,

January precipitation is among the covariates with the highest κ PIP. In the WRB XYZPT6
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Figure 2.5: Posterior inclusion probability for the GEV parameters (µ, κ, ξ) for the two most
complex models. Model XYZPT5 for a) the WRB and b) EOR, and model XYZPT6 for c)
the WRB and d) EOR. For both models and regions, the uppermost color (pink) represents
µ, the middle color (orange) displays the results for κ, and the bottommost color (purple)
shows the results for ξ.

model, August dewpoint temperature (Td,8) and June mean daily temperature (T6) have the

highest κ PIP, exceeding that of the January precipitation. In the EOR XYZPT5 model

(Figure 2.5b), longitude and June precipitation have the highest κ PIP; while for the EOR

XYZPT6 model (Figure 2.5d), January and June precipitation standout with the highest κ

PIP. Latitude has one of the lowest κ PIP for both WRB models in Figure 2.5, which reflects

the κ PIP results of the simpler WRB models in Figure 2.4. Both EOR models display a

relatively higher κ PIP for latitude compared with the models in Figure 2.4.

Most noticeable of all, is the difference in the ξ PIP of the more complex models in comparison

with those of the simpler models. While the simpler models had negligible to near-negligible ξ

PIP, these more complex models display higher ξ PIP with more variability across covariates.

For model XYZPT5 (Figure 2.5a, 2.5b), it generally appears that precipitation of wet-season

months tends to have a higher ξ PIP for both regions; the exception to this being the May

precipitation ξ PIP of the WRB XYZPT5 model. Model XYZPT6 (Figure 2.5c, 2.5d) mirrors
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Figure 2.6: The contribution of the spatial random effects term relative to the general linear
model (GLM) term for each GEV parameter and model. The dashed horizontal line is placed
at one, representing a 1:1 ratio of the spatial random effects term to GLM.

the ξ PIP results for monthly P seen in XYZPT5 for the WRB region and has the same

distribution but with higher PIPs for the EOR region. The EOR XYZPT6 model (Figure

2.5d), unlike the better performing EOR models, has a relatively high ξ PIP for elevation,

Td, and T .

The contribution of the spatial random effects (τ) term relative to the general linear model

(GLM) component of each GEV parameter (Figure 2.6), when used in combination with PIP

results, can provide additional insight into relevant model covariates. While the inclusion

of climatic covariates decreases the τ term contribution for the location parameter of both

regions, the inclusion of monthly T and Td further greatly reduces τ across the majority of

sites. This is demonstrated by the sizeable decrease in τ seen for model XYZPT6 relative to

the other models (Figure 2.6a). For the WRB, comparison of models XYZPT5 and XYZPT6

reveals that winter and fall monthly P along with monthly T and Td reduces the τ term

contribution more than winter P only. For the EOR region, the inclusion of winter monthly

P , monthly T and Td, and elevation reduce the contribution of τ more than winter monthly

P alone.

For the scale parameter (Figure 2.6b), most sites in the EOR region have a smaller τ term

than sites in the WRB, with the exception of a few EOR outliers where the τ term is similar
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in contribution or larger (southwestern-most site near Crater Lake) than the GLM term.

Although the WRB sites have a higher contribution from the τ term relative to EOR, none

of the sites have a τ term that contributes more than the GLM term. There is a slight

reduction in the τ term contribution with the inclusion of climatic covariates for the scale

parameter, but the change is less noticeable relative to the results for the location parameter.

The inclusion of the monthly T and Td of model XYZPT6 appears to increase some of the

τ term contributions for the WRB. The main differences, when comparing PIPs for models

XYZPT5 and XYZPT6 (Figure 2.5a, 2.5c), are a higher PIP for TA relative to Td,A seen for

the XYZPT5 model that is not seen for XYZPT6. Additionally, model XYZPT6 gave the

highest PIPs to August Td and June T , even higher than January P that had a relatively

high PIP in both models. For the EOR, the τ term contributions of both models XYZPT5

and XYZPT6 are very similar with the exception of the outliers (Figure 2.6b). The τ term

contribution of the EOR region’s largest outlier’s decreases by an order of magnitude with

the inclusion of monthly T and Td. The main differences, besides T and Td, between the two

models in PIP for the EOR region is the reduced PIP of longitude and the increased PIP of

elevation for model XYZPT6 relative to XYZPT5 (Figure 2.5b, 2.5d).

The τ term contribution to the shape parameter for the EOR sites is much lower than that

of the WRB sites (Figure 2.6c). For the majority of the WRB sites, the contribution of the

τ term exceeds that of the GLM term, in some cases by a large proportion (y-axis in log

scale). This could indicate that there are additional covariates not included in this study that

influence the shape of the GEV distribution within the WRB. The main difference in shape

parameter PIP results between model XYZPT6 and the other models, for both regions, is

the large increase in the contribution of T and Td. The XYZPT6 model had the lowest

τ contribution of all the models for the WRB with a median contribution less than 1:1,

indicating that including monthly T and Td was beneficial. However, in the EOR region, the

XYZPT6 model has a greater median τ term contribution to the shape parameter relative

to all other models. This is the only potential indication of a term contribution link with
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the EOR predictive performance results where XYZPT6 was among the worst models.

2.4.3 Model Performance at Stations within Region of Overlap

For the locations east of the Cascade Range, which were included in both regions (hereafter

referred to as ‘overlapping stations’), the AM temporal distribution of each station appears

to correspond well with which region’s models performed best at that location (Figure 2.7).

This could be due to the different storm climatology; in the WRB winter storms dominate

and most AM events occur during November-February, while in the EOR early summer

(May-June) thunderstorms are also prominent. The WRB models performed better than

the EOR models at stations 31 and 47 (Figure 2.7a-2.7b, also station 30 in Figure 2.13),

which have more AM events occurring between December and January and resemble the AM

temporal distribution for the pooled WRB data (Figure 2.1a). The EOR model performed

better at stations 54 and 55 (Figure 2.7c-2.7d, also station 33 in Figure 2.13), which also

have a relatively large number of AM falling between May and June (in addition to the ex-

pected winter storms of the Pacific Northwest region) and correspond with the AM temporal

distribution for the pooled EOR data (Figure 2.1b). These results suggest that accounting

for the dominate storm mechanisms that influence the AM temporal distribution within the

pooled station data of the model may improve predictive performance.

Since dominant storm climatology appears to influence model performance among the over-

lapping stations, we also checked relative model performance at stations that were not in-

cluded within the overlapping stations (Figure 2.8). Stations within each region were cate-

gorized as “WRB-like AM” if their January and December AM count was greater than their

May and June AM count, and “EOR-like AM” if their May and June AM count was greater

than or equal to their January and December AM count (Figures 2.15-2.16). Our results

indicate that the median RMSE across EOR-like AM stations is lower (better median perfor-
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Figure 2.7: Comparison of the best model results at the overlapping stations. Each row of
plots represents a single station, where row a) is station 31, row b) station 47, row c) station
54, and row c) station 55, as indicated by the map insets. Each includes, from left to right,
the CDF of predicted versus observed annual maxima GEV distributions, CRPS and RMSE
of each region’s model, the location’s AM climatology, and the location’s spatial placement
within the study region.
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mance) than the median RMSE across WRB-like AM stations within the EOR region (Figure

2.8e). However, the CRPS results are not as conclusive (Figure 2.7a), which could be due to

a bias in CRPS (Figures 2.17-2.18) introduced by normalizing by length of record. We were

unable to duplicate this comparison within the WRB region since all the non-overlapping

stations have WRB-like AM distributions (Figures 2.8c, 2.8g). Looking at the difference in

performance between the EOR XYZPT2 model (best set of covariates for the WRB) and

the EOR XYZPT1 model (best set of covariates for EOR) (Figure 2.12), we see that using

the EOR model that makes use of the same set of covariates that worked best in the WRB

region is not sufficient on its own to improve performance for the EOR locations which have

a WRB-like AM temporal distribution. The predominance of region-based performance can

also be seen when the CDF results of all climatic models (XYZPT1-XYZPT6) for both re-

gions at the overlapping stations are plotted together (Figure 2.14), showing how the WRB

models group together and are clearly different from the EOR model results despite using

the same sets of covariates. Additional analysis of the relationship between spatial perfor-

mance and covariate values was conducted (Figures 2.17-2.18), as well as a comparison of

the contribution of the spatial random effects term of the best models at the overlapping

sites (Figure 2.19); see Appendix A for more detail.

2.5 Conclusions

A limitation of existing precipitation frequency analysis methods is that integrating informa-

tion on extremes across space (i.e., different observations) is not straightforward. Here, we

addressed this through the application of a Bayesian hierarchical model (BHM) framework

for the spatial analysis of 24-hour precipitation annual maxima (AM) data. The spatial

BHM framework utilized in this study includes Bayesian model averaging (BMA) to account

for model uncertainty related to the covariates employed, and also allows for analysis of co-

56



Figure 2.8: Comparison of station specific CRPS (a-d) and RMSE (e-h) versus AM temporal
distribution by region. EOR (a and e) and WRB (c and g) display the quantiles of station-
specific model performance when stations (excluding overlapping stations) are categorized
by EOR-like or WRB-like AM temporal distributions. EOR Overlap (b and f) and WRB
Overlap (d and h) display the same performance versus categorization for the overlapping
stations only, using the EOR and WRB models’ results, respectively.

variate posterior inclusion probability (PIP). To gain further insight into relevant covariates,

we analyzed the contribution of the spatial random effects (τ) term to the linear models of

the generalized extreme value (GEV) distribution parameters in combination with the PIP

results. We explored a wide range of models using physically-based information pertaining

to geographical and climatological factors that influence precipitation extremes across two

regions in Oregon with different dominating rainfall generation mechanisms, and a region of

overlap.

The top performing models for each region were determined by comparing mean and median

model predictive performance of the LOO-CV results, wherein we compared site-specific pre-

dicted versus observed GEV distributions using continuous ranked probability score (CRPS)

and root mean squared error (RMSE). Out of the top performing models for each region,

one was chosen as the best model based on both performance metrics and model simplicity.

Our choice of best model was also checked against a spatial GEV fit of the models. The
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best model for the Willamette River Basin (WRB) included location, elevation, and mean

wet-season precipitation, daily mean temperature, and dewpoint temperature; while the best

model for the eastern Oregon (EOR) region included location, elevation, and mean annual

precipitation. The improvement in model predictive performance with the inclusion of mean

temperature and dewpoint temperature for the WRB is understandable given the variability

in climate and topography of the WRB over a much smaller area relative to EOR, in addition

to its proximity to the Pacific Ocean.

Including BMA may improve results over non-BMA models as demonstrated by Dyrrdal et

al. [Dyrrdal et al., 2014], however we found that careful model selection remains an important

component of tuning model performance. For example, the most complex model (XYZPT6)

containing geographic and monthly climatic information (precipitation, P ; dewpoint tem-

perature, Td; and mean daily temperature, T ) was among the top performing models for the

WRB region, while it performed among the worst in the EOR region despite the use of BMA.

However, useful information can be gleaned from the posterior inclusion probability (PIP)

results provided through BMA. Across the simpler models, mean wet-season P displayed

the highest PIP for µ (GEV location parameter) within both the WRB and EOR. The κ

(GEV inverse scale parameter) PIPs reflect the regional differences in storm climatology of

the pooled data, with wet-season P and T , and longitude displaying higher κ PIP for the

WRB region, and wet-season P , longitude, and dry-season P displaying higher κ PIP for the

EOR region. Additionally, wet-season T stands out within the WRB κ PIP results, more

so than dewpoint temperature. Elevation has a higher PIP for ξ (GEV shape parameter)

within the WRB models, however, apart from model XYZPT6, this was not the case for the

EOR models. PIP results of the more complex models generally reflect those of the simpler

models, just in higher resolution and with higher ξ PIP across the climatic covariates for

both regions. Additionally, the most complex model (XYZPT6) had the lowest overall τ

term contribution relative to the general linear model (GLM) term for the GEV location

parameter for both regions, indicating that the inclusion of monthly T and Td information
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improved location parameter estimates. However, inclusion of monthly T and Td resulted

in an increased contribution of the τ term for the scale parameter in both regions. For the

shape parameter, inclusion of monthly T and Td information reduced the median τ term

contribution for the WRB, while it increased the τ term contribution for the EOR region.

Results from the overlapping stations indicate that the AM temporal distribution within

the pooled calibration data may improve model predictive performance for locations with a

similar AM temporal distribution, even more so than specific covariate selection. Although

the stations in the region of overlap are well outside of the geographical WRB, the WRB

model had better skill at the stations that have a similar AM temporal distribution as those

within the WRB. The same can be seen for stations with a similar AM temporal distribution

as the EOR region, the EOR model performs better at those stations relative to the WRB

model. Most likely, this is linked to the storm climatology of the different regions; wherein

the WRB is dominated by winter storms from the Pacific Ocean, while the EOR region ex-

periences thunderstorms during the early warm-season and receives less precipitation during

the cold-season than the WRB. Based on these results, we suggest exploring the inclusion of

AM temporal distribution within the spatial BHM framework further, possibly through the

inclusion of relevant covariates that can differentiate the dominate storm for each site.

2.6 Appendix A

This supporting information provides additional details regarding model predictive perfor-

mance, region-based results at all overlapping stations, individual station annual maxima

(AM) temporal distributions, and Pearson correlation coefficients of performance and sta-

tion information for both regions.
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Table 2.2: WRB Model Performancea

WRB CRPS RMSE
Acronym Model

Covariates
Mean St.Dev. Median Mean St.Dev. Median

XY Longitude,
Latitude

0.151 0.048 0.143 0.153 0.101 0.129

XYZ Lon., Lat.,
Elevation

0.148 0.046 0.141 0.146 0.097 0.119

XYZPT1 Lon., Lat.,
Elevation, PA

0.138 0.038 0.132 0.112 0.072 0.102

XYZPT2 Lon., Lat.,
Elevation,
P ∗, T ∗

d , T
∗

0.137 0.037 0.131 0.104 0.066 0.089

XYZPT3 Lon., Lat.,
Elevation,
PA, TdA, TA

0.139 0.039 0.133 0.113 0.073 0.105

XYZPT4 Lon., Lat.,
Elevation,
P ∗, T ∗

d , T
∗,

P c, T cd , T
c

0.136 0.037 0.131 0.104 0.064 0.091

XYZPT5 Lon., Lat.,
Elevation,
P1,..., P12,
TdA, TA

0.137 0.039 0.130 0.102 0.065 0.092

XYZPT6 Lon., Lat.,
Elevation,
P1,..., P12,
Td1,..., Td12,
T1,..., T12

0.136 0.037 0.129 0.101 0.065 0.090

aModels considered for the WRB listed with each model’s mean, standard
deviation, and median CRPS and RMSE across stations. Subscripts and su-
perscripts are as follows: ( )A = mean annual; ( )1 = mean January; ( )2 =
mean February; . . . ; ( )12 = mean December; ( )∗ = mean [November, March],
( )c = mean [April, October].

60



Table 2.3: EOR Model Performancea

EOR CRPS RMSE
Acronym Model

Covariates
Mean St.Dev. Median Mean St.Dev. Median

XY Latitude,
Longitude

0.158 0.057 0.143 0.186 0.137 0.129

XYZ Lat., Lon.,
Elevation

0.148 0.044 0.136 0.171 0.116 0.152

XYZPT1 Lat., Lon.,
Elevation, PA

0.131 0.029 0.126 0.104 0.068 0.087

XYZPT2 Lat., Lon.,
Elevation,
P ∗, T ∗

d , T
∗

0.133 0.032 0.128 0.108 0.069 0.085

XYZPT3 Lat., Lon.,
Elevation,
PA, TdA, TA

0.131 0.030 0.128 0.102 0.070 0.079

XYZPT4 Lat., Lon.,
Elevation,
P ∗, T ∗

d , T
∗,

P c, T cd , T
c

0.132 0.031 0.131 0.110 0.066 0.092

XYZPT5 Lat., Lon.,
Elevation,
P1,..., P12,
TdA, TA

0.131 0.030 0.129 0.107 0.062 0.093

XYZPT6 Lat., Lon.,
Elevation,
P1,..., P12,
Td1,..., Td12,
T1,..., T12

0.133 0.033 0.127 0.109 0.063 0.099

aModels considered for the EOR listed with each model’s mean, standard
deviation, and median CRPS and RMSE across stations. Subscripts and su-
perscripts are as follows: ( )A = mean annual; ( )1 = mean January; ( )2 =
mean February; . . . ; ( )12 = mean December; ( )∗ = mean [November, March],
( )c = mean [April, October].
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Figure 2.9: Distribution of station performance by model, where models are listed in order
(left to right) by increasing complexity.
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Table 2.4: Spatial GEV Model Fit

Model TIC, WRB TIC, EOR
XY 8756 2422
XYZ 8639 2190
XYZPT1 7355 1587
XYZPT2 7265 1600
XYZPT3 7345 1584
XYZPT4 7251 1561
XYZPT5 7240 1508
XYZPT6 7195 1477

Figure 2.10: Examples of observed versus simulated distributions for the WRB and EOR
models which include PRISM-based covariates. These CDFs are included to give examples
of stations were predictive performance was good (sites 13, 87), moderate (sites 60, 84), and
poor (sites 12, 47).
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Figure 2.11: Maps of CRPS (circle markers) and RMSE (diamond markers) for the top
models for each region (model complexity increases from left to right). The outline in the
northwestern part of Oregon delineates the Willamette River watershed. Models displayed
for the WRB are the simplest of the top performing XYZPT2 (a, c), and the most complex
of the top performing XYZPT6 (b, d). Both top performing models are displayed for EOR;
XYZPT1 (e, g) and XYZPT3 (f, h).
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Figure 2.12: The difference in predictive performance between EOR models XYZPT2 and
XYZPT1 at the EOR stations which have WRB-like AM. Using the best performing model
for the WRB does not guarantee an improvement in performance for all EOR stations that
have a WRB-like AM temporal distribution. A few show a slight improvement (purple),
while the performance at others worsens (orange). More factors are involved than simply
which set of covariates are used.

65



Figure 2.13: Performance at all overlapping stations. Example of how a small (hundredths)
change in CRPS has a noticeable difference in CDF. Station 54’s EOR result has a CRPS
of 0.08 and the simulated CDF is similar to the observed. Whereas, the WRB result has a
CRPS of 0.11 and performs poorly relative to the EOR model.
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Figure 2.14: CDFs at the overlapping stations for models XYZPT1-XYZPT6 for both the
WRB and EOR regions compared with CDF of observed. These models include both geo-
graphic and climatic information. The models for each region tend to group together, such
that all the models (which include climatic information) from the region that performed best
are generally better than those of the other region.
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Figure 2.15: AM temporal distribution by station for the WRB study region, excluding the
six overlapping stations. Fill color indicates AM type, Fill color indicates AM type, where
purple indicate WRB-like AM. None of the non-overlap stations in the WRB have an EOR-
like AM.
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Figure 2.16: AM temporal distribution by station for the EOR study region, excluding the
six overlapping stations. Fill color indicates AM type, where green represents EOR-like AM
and purple indicates WRB-like AM.
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Figure 2.17: Statistically significant (α = 0.05) Pearson correlation coefficients for the top
WRB model’s predictive performance and covariates, as well as mean AM and record length.
The moderate negative correlation between CRPS and record length is due to normalizing
CRPS by record length. The weak correlation between latitude and RMSE is most likely
due to the stations at the northern end of the Coastal Mountains which display poorer
model predictive performance across all models. The worst of the aforementioned stations
has a relatively short record length and could be the reason for the equally weak negative
correlation between RMSE and record length.
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Figure 2.18: Statistically significant (α = 0.05) Pearson correlation coefficients for the top
EOR model’s predictive performance and covariates, as well as mean AM and record length.
The moderate negative correlation between CRPS and record length is due to normalizing
CRPS by record length. The EOR region covers a large area that includes stations with
WRB-like AM, this could be the reason for the weak correlations between performance,
mean annual maximum, and annual precipitation.
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Figure 2.19: The relative contribution of the spatial random effects (τ) term at the over-
lapping stations for both regions’ best models is shown above. There does not appear to
be any indication that the contribution of the τ term of the WRB-based model versus the
EOR-based model is linked with the difference in site-specific predictive performance.
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Chapter 3

An Effective Trend Surface Fitting

Framework for Spatial Analysis of

Extreme Events

3.1 Introduction

The ability to estimate the magnitude and frequency of extreme events is an essential part

of infrastructure planning and hazard mitigation [Gumbel, 1958, Luke et al., 2017, Stedinger

and Griffis, 2008]. Given that many extreme climatic events are spatial processes, model

development has been focused on addressing the challenge of integrating spatial information

within extreme value analysis methods [Cooley, 2009, Davison et al., 2012].

Regional Frequency Analysis (RFA) methods are the industry standard for estimating the

intensity, duration, and frequency of extreme events. RFA methods rely on geographic and

climatological factors to assist in the delineation of subregions wherein the parameters of

the underlying marginal distribution can be assumed to be acceptably homogeneous [Coles,
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2001]. However, marginal parameters are often spatially heterogenous. Therefore, Latent

Variable Models (LVM) (e.g., Bayesian Hierarchical Models) and Max-Stable Process (MSP)

approaches have been developed that allow for the integration of geographical and climatic

covariates within trend surfaces for distributing extremal model parameters in space [Cooley

et al., 2007, Renard, 2011, Banerjee et al., 2014, Davison et al., 2012, Ribatet et al., 2012,

Wikle et al., 1998].

A common challenge with utilizing these methods for spatial extreme value analysis is identi-

fying the optimal set of spatial covariates [Blanchet and Davison, 2011, Davison et al., 2012,

Ribatet, 2017]. Poor trend surface characterizations can complicate the dependence param-

eterization since these models often make use of a log-likelihood formulation [Blanchet and

Davison, 2011, Ribatet, 2017]. For example, when working with a max-stable process model

that uses a pairwise log-likelihood, there are 2n possible models that involve subsets of n pre-

dictors [James et al., 2013]. If n = 10/100, then there are 1, 024/1.267651e30 possible models

to be considered for a single marginal parameter trend surface. Therefore, we introduce the

addition of elastic-net regression during trend surface development to automate covariate

selection and to reduce the computation time needed for the log-likelihood stage of spatial

model development. While the methods in this study focus on using the generalized extreme

value (GEV) family of distributions based on a block maxima approach, these improvements

to trend surface modeling can be applied to models that utilize other distributions.
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3.2 Methods

The linear trend surfaces used within the latent variable and max-stable process approaches

are commonly of the form

µ(covµ) = ηµ,0 + ηµ,1covµ,1 + ...+ ηµ,nµcovµ,nµ

σ(covσ) = ησ,0 + ησ,1covσ,1 + ...+ ησ,nσcovσ,nσ

ξ(covξ) = ηξ,0 + ηξ,1covξ,1 + ...+ ηξ,nξ
covξ,nξ

(3.1)

where η·,i, cov·,i, and nµ, nσ, nξ are the parameters, covariates, and number of non-zero

covariates for the GEV distribution’s location (µ), scale (σ), and shape (ξ) parameters,

respectively. Our process for trend surface model selection involves two stages. First, the

elastic-net regression is run using k-fold cross validation to select the best fitting general

linear models for each GEV parameter independently (Eq. 3.1-3.3). For the second step, a

sampling of the best fitting models for each parameter are selected based on the elastic-net

results and then run in combination within a spatial GEV framework to determine the best

trend surface for the region.

Elastic-net regularization is a hybrid of ridge and lasso regression methods that uses cyclical

coordinate descent [Friedman et al., 2010]. The elastic-net penalty was originally intro-

duced by Zou and Hastie [2005] as a compromise between ridge [Hoerl and Kennard, 1970,

Tikhonov, 1943] and lasso [Tibshirani, 1996] regression. Given observations yi, i = 1, . . . , n,

an n×m matrix of normalized covariates X and an assumed linear model

yi = η0 + η1xi,1 + ...+ ηmxi,m, (3.2)
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the elastic net minimizes

1

2n

n∑
i=1

(yi − η0 − ηxTi )
2 + λ

m∑
j=1

[
1

2
(1− α)η2j + α|ηj|

]
, (3.3)

where λ is a non-negative regularization parameter that is tuned to weight the overall

strength of the penalty and α ∈ [0, 1] is specified to control the penalty term to vary from

ridge regression at α = 0 to lasso regression at α = 1 [Friedman et al., 2010]. While ridge

regression yields smooth solutions that include all the predictors, lasso regression results in

automatic variable selection (i.e., sparse, much more easily interpretable solutions) [James

et al., 2013]. As α increases from 0 to 1 for a fixed λ, the number of zero-valued ηj increases

from 0 to the sparsity of the lasso [Friedman et al., 2010]. In this study, variable selection

was desired in the interest of adherence with the principle of parsimony, therefore α was

specified close to 1 for numerical stability [Friedman et al., 2010]. With α specified close

to 1, the elastic net performs much like lasso regression while retaining ridge regression’s

capacity to collectively shrink the coefficients for any highly correlated covariables [Fried-

man et al., 2010, Hastie et al., 2009]. Exploiting extreme value theory, each independent

elastic-net application used univariate at-site GEV estimates as the observations. Employing

the ‘glmnet’ R package [Simon et al., 2011], k-fold cross validation (CV) was employed to

ensure that the minimizing value for λ was properly located for each elastic-net application.

The minimizing model (λmin) is the one with the lowest mean squared error (MSE), while

the best regularizing model λreg is defined as having the largest λ value within one standard

error of λmin [Friedman et al., 2010, Hastie et al., 2016, 2009].

For the second step of the trend surfaces modeling, spatial GEV models were fitted and

evaluated using the ‘SpatialExtremes’ R package [Ribatet, 2020]. A sampling of the best

performing trend surfaces (e.g., top ten) from the elastic-net CV for µ, σ, and ξ from the

range [λmin, λreg]∪ (λreg, λmax), where λmax corresponds with the intercept only model, were
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selected and simultaneously fitted. For example, if there were ten top models for each GEV

parameter and an intercept only model, then there would be 113 = 1331 spatial GEV models

to be fitted. The log-likelihood of the spatial GEV model used is given by

l(ηµ, ησ, ηξ) =

nsite∑
i=1

nobs∑
j=1

{
−logσi−

(
1+ξi

yi,j − µi
σi

)−1
ξi −

(
1+

1

ξi

)
log

(
1+ξi

yi,j − µi
σi

)}
, (3.4)

where µi, σi, and ξi are the GEV parameters for the ith site (i = 1, ..., nsite) with ξi assumed

non-zero, and yi,j is the j
th observation for the ith site [Ribatet, 2009]. The spatial GEV mod-

els were evaluated using information criterion scores (i.e., Takeuchi Information Criterion)

[Takeuchi, 1976] and quantile-quantile comparisons of the spatial GEV model parameter

estimates with their at-site counterparts [Blanchet and Davison, 2011, Ribatet, 2009].

3.3 Results

Two regions with distinct geographic and climatic drivers for the dominant storms observed

within each region were selected for study (Fig. 3.1). These regions include northeastern

Colorado (NECO) and the Texas-Louisiana (TXLA) Gulf Coast. The Front Range region of

Colorado is dominated by localized thunderstorms during the summer months, while the Gulf

Coast region is dominated by tropical storms and hurricanes. Observed daily precipitation

data was retrieved from the NOAA Global Historical Climatology Network-Daily (GHCN-

Daily) dataset [Menne et al., 2012a,b] for both NECO and TXLA. The 24-hr duration annual

maxima (AM) time series were produced using sites with at least 40 years of data available

with no more than 10% missing data in any given year. The covariates explored for both

regions are based on the impacts of physical information (e.g., elevation, climatology) on

local extreme precipitation [Oki et al., 1991, Javier et al., 2007, Papalexiou et al., 2018], and

the rainfall-temperature thermodynamic relationship recognized in previous literature [Zhao
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Figure 3.1: Study regions and sites associated with the observed AM data. The regions are
(a) northeastern Colorado and (b) the Texas-Louisiana Gulf Coast. Purple markers indicate
calibration sites, while orange markers indicate validation sites.

and Khalil, 1993, Trenberth and Shea, 2005, Adler et al., 2008]. The covariate data selected

includes longitude, latitude, their product, elevation, and relevant monthly climatological

information (i.e., precipitation, dewpoint temperature, maximum/minimum/mean temper-

ature, and maximum and minimum vapor pressure deficit) from the PRISM Norm81m long-

term (1981-2010) mean monthly gridded data sets at 30 arc second resolution [Daly et al.,

2008]. These covariates and their squares constituted the entire set of covariables (190 in

total) considered to build each trend surface within both study regions. Each respective

elastic-net application was performed using 20 separate iterations of k-fold cross-validation

(CV) for each GEV parameter with a k of 10 and an α of 0.95 for both regions. An of

0.95 was selected to achieve an α value that would favor the parsimonious lasso regression,
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Figure 3.2: Elastic-net cross-validation (CV) summary plots for the NECO (top row) and
TXLA (bottom row) that demonstrate the results for (a, d) µ(covµ)), (b, e) σ(covσ)), and
(c, f) ξ(covξ). The x-axis is the natural logarithm of λ, the y-axis is the mean squared error
(MSE), the top of the plot indicates the number of non-zero covariates as λ varies, the red
markers are the CV derived MSE with error bars indicating one standard error, and the
dotted vertical lines indicate the locations of the CV identified λ-value that minimizes the
MSE (λmin) and the defined best regularizing model (λreg).

while still incorporating ridge regression’s ability to reduce the coefficients for any highly

correlated covariables [Friedman et al., 2010]. After narrowing down the models to the best

performing run out of the 20 iterations, a sampling of the models was made over [λmin, λreg]

along with the intercept. The results for each region’s parameters are displayed in Figure

3.2 with the λmin and λreg models indicated by dashed vertical lines.

In the second step of the trend surface modeling, the goal is to test all possible combinations

of the sampled location, scale, and shape models to find the best single combined set within a

spatial GEV framework. Table 3.1 details the non-zero covariates of the spatial GEV models

with the lowest TIC by region that were selected from this iterative process. The QQ-plots
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for the best of the top models for each regions’ trend surfaces can be seen in Figure 3.3.

The location and scale parameters fit relatively well at both the calibration and validation

sites (Figure 3.3, columns 1-2). While the standard practice for the shape parameter is

to set it to a fixed value, the variability in the shape parameter indicates this would not

be the best option given the data within these regions (Figure 3.3, far right column). Of

particular interest is that the increased number of covariates for the TXLA’s model achieved

an improved fit of the shape parameter’s spatial variability without compromising the model’s

performance at the validation sites. Had we not introduced the elastic-net regression step

within our trend surface modeling, we likely would not have chosen to use those covariates

and would have settled for a worse fitting trend surface unknowingly. While some regions

may require additional covariates to capture the spatial variability of the shape parameter,

the results for the NECO region indicate that this is not the case for every region.

3.4 Conclusions

Due to the spatial nature of extreme climate events, the estimation of exceedance proba-

bilities for infrastructure design and hazard mitigation depends on properly modeling the

spatially varying marginal parameters. In a block maxima approach, the selection of trend

surfaces to properly capture the spatially varying generalized extreme value (GEV) marginal

parameters can be non-trivial when a large set of relevant covariates are available. I intro-

duced elastic-net regularization as a simple and effective means by which to systematically

identify optimal trend surfaces for the modeling of extreme events. The 190 covariates

explored for both regions were selected based on the rainfall-temperature thermodynamic

relationship and the impact of physical information (e.g., elevation, climatology) on local

extreme precipitation. I demonstrated the method for modeling the trend surfaces using

extreme 24-hr duration precipitation in two climatically distinct regions. This simple effec-
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Table 3.1: The non-zero covariates for each region’s selected trend surface modelsa

µ(covµ) σ(covσ) ξ(covξ)
NECO X, Y , PMar, PMay,

PJun, POct, P 2
May,

P 2
Jul, P 2

Aug, P 2
Dec,

TD,Apr, TD,May,
Min. T 2

Oct,
Max. V PDJul,
Min. V PDJun,
Max. V PD2

Jul,
Min. V PD2

Mar,
Min. V PD2

Nov

Z, PMar, P 2
May,

P 2
Jul, P

2
Dec, TD,Nov,

Mean T 2
Mar,

Min. V PD2
May,

Min. V PD2
Oct,

Max. V PDAug,
Min. V PD2

Mar,
Min. V PD2

Dec

Mean T 2
Mar,

Min. V PDDec

TXLA Z, PMay, PJul,
P 2
Jan, P

2
Oct, TD,Jan,

Mean TJul,
Min. V PDJan,
Max. V PD2

Jul,
Max. V PD2

Sep,
Min. V PD2

Jun,
Min. V PD2

Jul

Z, PSep, PNov,
P 2
May, P

2
Oct, TD,Jul,

T 2
D,Dec, Max. T 2

Jan,
Max. T 2

Dec,
Min.V PD2

Jul

Z, P 2
Apr, P 2

Oct,
Mean TAug,
Mean T 2

Aug,
Max. V PDDec,
Min. V PDMar,
Min. V PDMay,
Min. V PDJul

aCovariates X, Y , Z are longitude, latitude, and elevation, respectively.
Covariates in the table also include monthly precipitation (P ), monthly
mean and minimum temperature (MeanT , Min. T ), monthly dewpoint
temperature (TD), and monthly minimum and maximum vapor pressure
deficit (Min. V PD, Max. V PD).
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Figure 3.3: QQ-plots of the modeled trend surface versus MLE of AM data. Plots (a-c) are
for the NECO region’s (a) location, (b) scale, and (c) shape, while plots (d-f) are for the
TXLA region’s (d) location, (e) scale, and (f) shape. Black markers represent the calibration
sites and red markers represent the validation sites.
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tive approach for trend surface development is not specific to extreme precipitation analyses

but can be applied to trend surfaces for other extreme event types and can be implemented

within various modeling approaches. Further, spatial trend surfaces and more reliable anal-

ysis of spatial extremes can also improve downscaling and disaggregation schemes [Wilby

and Wigley, 1997, Papalexiou et al., 2018].
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Chapter 4

Areal Estimation of Extreme

Precipitation Using Max-Stable

Processes Across Climatically

Different Regions

4.1 Introduction

Engineering hydrology needs credible mean areal estimates of extreme precipitation for plan-

ning analysis of critical infrastructure (e.g., roads, culverts, floodplain management). Of

interest, is understanding to what extent the assumption of inter-site independence, which

is currently used in practice, impacts areal-based exceedance results that are necessary for

infrastructure design and management.

Precipitation is a spatial process and several methods have been developed to integrate

spatial information into frequency analysis [Cooley, 2009]. Regional Frequency Analysis
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(RFA) [Cunnane, 1988] is the most common methodology used to compute point estimates

of extreme precipitation by practicing engineers. However, it is based on an index flood

approach that is an engineered solution methodology that pools the data of neighboring

stations, within homogeneous subregions, allowing for better quantile estimates of the fre-

quency distribution than those based on at-site data alone [Hosking and Wallis, 1993, 2005].

Irrespective of the known difficulties with its implementation due to homogeneity require-

ments, it does not formally comply with extreme value theory, nor does it directly provide

areal estimates. The additional step of using Areal Reduction Factors (ARFs) is required to

transform point-based estimates to an areal averaged estimate [U.S. Weather Bureau, 1958].

In spatial extreme value analysis methods that make use of block maxima, the assumption is

made that the distribution of the maxima at all locations in a region follow the Generalized

Extreme Value (GEV) family of distributions where some (or all) of its parameters vary

spatially, i.e. trend surfaces. This approach borrows strength spatially through the pooling

of data, either over the whole region or within smaller subregions. Latent Variable Models

(LVMs) provide an alternative to RFA that is able to handle some heterogeneity and incor-

porate geographic and climatalogical information within their models. While this approach

is extremely useful for modeling point-wise return levels and exceedance probabilities, it

does not allow for asymptotic dependence among neighboring locations. The simplifying as-

sumption of spatial independence does not hold up well in regions dominated by large-scale

storms and/or regions that contain dense sensor networks.

One draw-back in common between both RFA and LVMs is that they assume inter-site in-

dependence to simplify their likelihood formulation. However, this assumption can result

in under- or over-estimation of exceedance probabilities in regions where either sensor net-

works are dense or large-scale storms dominate. The spectral representation of a Max-Stable

Process (MSP) introduced by De Haan [1984] has resulted in the subsequent development

of usable parametric models for spatial extreme value analysis that account for both the
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regional processes and the spatial dependence between sites.

To transform RFA and LVM results from point-based to areal estimates requires the use of

Areal Reduction Factors (ARFs). ARFs make simplifying assumptions that place restrictions

on their usability (e.g., watershed size). In cases where the desire is to estimate areal

exceedance probabilities, a method that accounts for dependence and produces a continuous

estimate can be useful. Max-Stable Process (MSP) models provide estimates that are a

continuous surface, meaning that areal-based estimates can be reached by averaging the

results within the desired watershed or subbasin. While MSP models have come a long

ways in their development, computational burdens of fitting a max stable process model do

still remain. Therefore, incorporating new methods that incrementally assist in speeding up

computation (like the one introduced in Chapter 3 of this dissertation) help to improve the

broader adoption of MSP methods.

In this study, I present areal exceedance estimates of 24-hour extreme precipitation for two

climatically different regions that include northeastern Colorado and the Texas-Louisiana

Gulf Coast region. For each region I compare the MSP model results with the standard

practice (i.e., RFA) method results that do not account for spatial dependence within the

model. My results underscore the importance of correctly characterizing the dependence

among the extreme data given the dominant storm generating mechanism of the region.

4.2 Data

For this study, I selected two regions from within the U.S. that have different geographic and

climatic drivers for the dominant storms observed within each region (Figure 4.1). These

regions include northeastern Colorado (NECO) and the Texas-Louisiana Gulf Coast (TXLA).

The northeastern Colorado (NECO) region includes the Front Range toe the west and the
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Great Plains to east. The region is dominated by localized convective storms that develop

either from solar insolation or as the result of warm, moist subtropical air transported from

the Gulf of Mexico meeting the cold, dry air of the Rockies [Greenland, 1989, McNulty,

1995]. The coastal Texas-Louisiana (TXLA) coastal region sits along the Gulf of Mexico,

which is the predominant source of moisture for the region, in addition to the Atlantic Ocean

[van der Wiel et al., 2017]. The region is dominated by thunderstorms, tropical cyclones,

and hurricanes, occurring predominantly in the summer and fall seasons [NOAA Atlas 14,

Keim and Faiers, 1996]. The Great Plains to the north are the main source of cold air [Hobbs

et al., 1990].

I retrieved observed daily precipitation data from the NOAA Global Historical Climatology

Network-Daily (GHCN-Daily) dataset [Menne et al., 2012a,b] for both regions. Sites within

each region were checked first for duplicate records. Any duplicates station names were

compared to confirm that they had the same geographical coordinates, or not. None of the

sites used had duplicate stations, therefore no merging of records was necessary. Next the

data was filtered for completeness by checking that the number of missing days at a given

station did not exceed 10% of days within the year. To check for stationarity, I used the

Mann-Kendall test with an α = 0.05. Any sites that were non-stationary were removed.

Anomalously high values (i.e., an order of magnitude greater then the next three highest

values) were also removed since they are often due to a recording error or typo. For better

comparison between my MSP estimates and the NOAA Atlas 14 estimates, I used only the

sites with at least 40 years of data since record length impacts estimation of the GEV shape

parameter, as demonstrated by Papalexiou and Koutsoyiannis [2013].

For the trend surface modeling, I used geographical information (i.e., longitude, latitude,

elevation) and the extensively peer-reviewed climatological information from the PRISM

Norm81m long-term (1981-2010) mean monthly gridded data sets (∼800m resolution)[Daly

et al., 2008] and their squares. The PRISM data sets include the following: daily precip-
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Figure 4.1: Maps of both the a) NECO and b) TXLA study regions. The watersheds (black
lines) within the three study regions are delineated and station locations (markers) for the
annual maxima precipitation data are displayed. Purple markers indicate calibration sites,
while orange markers indicate validation sites. The watersheds in map a) that are shaded
with gray do not have a complete NOAA Atlas-14 counterpart and were omitted from the
results comparison.

88



itation; mean, minimum, and maximum daily temperature; mean dew point temperature;

and minimum and maximum vapor pressure deficit. These covariates were selected given the

impacts of physical processes on the local precipitation [Oki et al., 1991, Javier et al., 2007,

Papalexiou et al., 2018] and the rainfall-temperature thermodynamic relationship recognized

in previous literature Zhao and Khalil [1993], Trenberth and Shea [2005], Adler et al. [2008].

For the NOAA areal depth estimates, I retrieved ASCII grids from the NOAA Atlas 14

24-hour duration annual maximum precipitation frequency estimates for 2, 5, 10, 25, 50,

and 100-year return periods [NOAA Atlas 14]. The ARF method I used to convert these

point-based estimates to area averaged depths is based on the TP-29 method [U.S. Weather

Bureau, 1958], which is detailed in the Methods section to follow. I used the U. S. Geological

Survey (USGS) level 10 Watershed Boundary Dataset (WBD) for 2-digit Hydrologic Units

08, 10, and 12 which span the NECO and TXLA study regions [USGS, 2020a,b,c]. The level

10 watersheds satisfy the area restrictions imposed by the TP-29 ARF method.

4.3 Methods

Max-stable processes are the spatial analogue of multivariate extreme value models. A max-

stable process Z is the limit process of point-wise maxima taken over an infinite number of

independent replicates {Xi : i ∈ N} of a continuous stochastic process X defined on index

set X. For suitable normalizing sequences {an(x) > 0} and {bn(x) ∈ R},

Z(x) = lim
n→∞

maxi=1,...,nXi(x)− bn(x)

an(x)
, x ∈ X (4.1)

where the limiting process Z is either degenerate or it is a max-stable process [De Haan,

1984, Ribatet and Sedki, 2013b]. By way of univariate extreme value theory, the cumulative

distribution function of the pointwise distribution of Z are generalized extreme value (GEV)
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distributions if Z is non-degenerate [de Haan and Ferreira, 2006], given by

Pr{Z(x) ≤ z} = exp
{
−

[
1 + ξ

(z − µ

σ

)− 1
ξ
]}
, 1 + ξ

(z − µ

σ

)
> 0, x ∈ X. (4.2)

where {µ ∈ R}, {σ > 0}, {ξ ∈ R} are the location, scale, and shape parameters of the GEV

distribution, respectively [Fisher and Tippett, 1928]. In order to simplify calculations for

fitting the spatial dependence, the GEV marginals can be transformed via standardization of

Z(x) to unit Fréchet marginals without loss of generality, which has the distribution function

Pr{Z(x) ≤ z} = exp
(
− 1

z

)
, z > 0, x ∈ X. (4.3)

Since the above näıve approach requires a very large n to ensure good approximations and its

convergence is slow, a more efficient approach was introduced by De Haan [1984] that makes

use of the spectral representation for Z. It states that there exists a family of non-negative

continuous functions {f(x, y) : x, y ∈ Rd} such that

∫
Rd

f(x, y)dy = 1, ∀x ∈ Rd, K ⊂ X (4.4)

where
∫
Rd supx∈K f(x, y)dy < ∞ and the max-stable process Z, with unit Fréchet margins,

has the same distribution as

Z(x) = max
i=1,2,...

ζif(x, Ui), x ∈ X, (4.5)

where {ζi, Ui) : i ∈ N} are the points of a Poisson process on (0,∞) × Rd with intensity

measure dΛ(ζ, u) = ζ−2dζdu. Schlather [2002] storm profile model is a characterization of the

spectral representation of Z that allows for the use of random functions, wherein there exists

a non-negative stochastic process Y with continuous sample paths such that E{Y (x)} = 1
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for all x ∈ Rd and for which

Z(x) = max
i=1,2,...

ζiYi(x), x ∈ X, (4.6)

where Yi are independent copies of Y , and {ζi : i ∈ N} are the points of a Poisson process

on (0,∞), and are sorted in decreasing order as i→ ∞, with intensity dΛ(ζ) = ζ−2dζ. The

joint distribution is

Pr{Z(x1) ≤ z1, ..., Z(xk) ≤ zk} = exp
[
− E

{
max
j=1,...,k

Y (xj)

zj

}]
, k = 1, ..., K (4.7)

for a finite set of locations {x1, ..., xk ∈ X} and for fixed values {z1, ..., zk > 0} for K ∈ N

[Schlather, 2002]. Replacing either f(x, Ui) of Equation 4.5 or Yi(x) of Equation 4.6 with a

different probability density function leads to the current set of MSP families that include

the Smith process [Smith, 1990], Schlather process [Schlather, 2002], and their respective

generalizations; the Brown-Resnick process [Brown and Resnick, 1977, Kabluchko et al.,

2009] and the extremal-t process [Opitz, 2013].

The extremal coefficient θ(h), which is incorporated into the bivariate density function for-

mulation, is a measure of the strength of dependence between the margins and can be

summarized as

θ(h) = −zlogPr
{
Z(x+ h) ≤ z, Z(x) ≤ z

}
= E

[
max{Y (x+ h), Y (x)}

]
, (4.8)

where Pr{Z(x + h) ≤ z, Z(x) ≤ z} = exp{−θ(h)/z} for {z > 0} and for all spatial sep-

arations between pairs of locations {h ∈ Rd} [Schlather and Tawn, 2003]. The value of

θ(h) ranges in value from [1, d], where 1 is full dependence and d is the number of sites and

indicates full independence (e.g., for pairwise comparison d = 2). However, values greater

than d can occur and indicate a negative dependence between sites [Smith, 1990]. Since the

variogram for a max-stable process often does not exist, the F -madogram is instead used for
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assessing spatial dependence. The F -madogram can be defined as

ν(h) =
1

2
E|F{Z(x+ h)} − F{Z(x)}|, (4.9)

where F is the cumulative distribution function of Z(x) [Cooley et al., 2006]. The relationship

between the F -madogram and the extremal coefficient can be shown using the max-stability

of Z and the relation |x− y| = 2max(x, y)− x− y, which results in the equality

θ(h) =
1 + 2νF (h)

1− 2νF (h)
. (4.10)

Since the likelihood formulation becomes intractable numerically as k increases (i.e., on the

order of the kth Bell number), the use of composite likelihoods that are linear combinations

of individual log-likelihood components are the most common way to attain asymptotically

unbiased estimating equations [Padoan et al., 2010]. The weighted pairwise composite log-

likelihood function is given by

ℓP (ψ; z) =
k−1∑
i=1

k∑
j=i+1

ωi,jlogf(zi, zj;ψ) (4.11)

based on the data z at locations i and j, with weights set such that {ωi,j > 0},
∑

i,j ωi,j = 1,

and f(·, ·;ψ) is the bivariate density function with k = 2 [Padoan et al., 2010]. Similar to

the usage of an ordinary maximum likelihood estimator, a maximum composite likelihood

estimator (MCLE) can be used to provide an estimate of the parameter ψ, where

ψ̂P = argmax
ψ∈Ψ

ℓP (ψ; z) (4.12)

92



satisfies

√
n
(
ψ̂P − ψo

)
→ N

{
0, Ī(ψ)

}
, n→ ∞ (4.13)

Ī(ψ) = H−1(ψo)J(ψo)H
−1(ψo) (4.14)

where Ī(ψ)) is the sandwich information matrix withH(ψo) = −E[∇2ℓP (ψ; z)] and J(ψo) =

V ar[∇ℓP (ψ; z)]. Padoan et al. [2010] notes that while MCLE is asymptotically unbiased, it

results in a loss of efficiency (related to Ī(ψ))) relative to ordinary MLE methods.

The development of an MSP model is often performed as a two-stage procedure to overcome

the computational burden of fitting both stages simultaneously [Ribatet, 2013]. The first

stage accounts for spatial heterogeneity of the marginals through development of a trend

surface model, while the second stage involves incorporating the spatial dependence through

fitting a simple MSP model. In the first stage, a process-based spatial GEV analysis can be

used to fit general linear models to each GEV parameter across the observed sites to build

the trend surface model. For modeling the spatial dependence, the selection of the best

fitting MSP model and covariance function is performed using unit Fréchet marginals. The

models selected from these two steps are subsequently combined to inform a general MSP

model wherein the marginal parameters and the dependence parameters are simultaneously

fit.

The linear trend surfaces of a max-stable spatial process are of the form

µ(covµ) = ηµ,0 + ηµ,1covµ,1 + ...+ ηµ,nµcovµ,nµ

σ(covσ) = ησ,0 + ησ,1covσ,1 + ...+ ησ,nσcovσ,nσ

ξ(covξ) = ηξ,0 + ηξ,1covξ,1 + ...+ ηξ,nξ
covξ,nξ

(4.15)

where η·,i, cov·,i, and nµ, nσ, nξ are the parameters, covariates, and number of non-zero co-
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variates for the GEV distribution’s location (µ), scale (σ), and shape (ξ) parameters, respec-

tively. Our process for trend surface model selection involves two stages. For building the

trend surface models, I used the site-specific geographical information of longitude, latitude,

elevation, longitude*latitude, and their squares. I also included monthly climatological infor-

mation from the PRISM Norm81m long-term (1981-2010) mean monthly gridded data sets

(∼800m resolution) [Daly et al., 2008] and their squares, which includes the following: pre-

cipitation; mean, minimum, and maximum daily temperature; mean dew point temperature;

and minimum and maximum vapor pressure deficit.

I randomly separated the sites for each region into calibration (80%) and validation (20%)

sets (Figure 4.1). At-site MLE fits of the observed AM were fitted to obtain GEV param-

eters for both calibration and validation sites. Using the calibration sites only, elastic-net

regularization with repeated k-fold cross validation (CV) was run to select the best sets of

general linear models for each GEV parameter individually given the set of covariates used

from the PRISM data set, thus automating the covariate selection process (see Chapter 3

for more detail). The k-fold CV was repeated 20 times with a k of 10.

While it is possible to use the trend surfaces for determining quantile predictions at any new

site in the domain, the spatial dependence has not yet been accounted for via selection of

an appropriate max-stable model. As noted earlier, there are several MSP models to choose

among that have different dependence structures. They all follow the spectral characteri-

zation of a MSP as introduced by De Haan [1984](Eq. 4.5) and later refined by Schlather

[2002](Eq. 4.6), with variations among the models arising through the use of different prob-

ability density functions for either the f(x, Ui) or for Yi(x). Therefore, selection of the best

fitting MSP model is based on its ability to capture the spatial dependence structure of

the extreme data. The Takeuchi Information Criteria (TIC)[Takeuchi, 1976] was used for

assessing the fit of the MSP models due to its compatibility with the pairwise log-likelihood

formulation used within these models.
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The best fitting model for both regions based on the TIC results was the extremal-t model.

Opitz [Opitz, 2013] presented the extremal-t model as the max-stable limit of a t random

process which is a generalization of the extremal t distribution. The extremal-t model uses

Yi(x) = cνmax{0, ϵi(x)}ν , (4.16)

with extremal-t process cν =
√
π2−0.5(ν−2)Γ[0.5(ν + 1)]−1] and {ν > 0} degrees of freedom,

where ϵ is a standard Gaussian process with correlation function ρ, and Γ is the Gamma func-

tion [Opitz, 2013, Ribatet and Sedki, 2013b]. Leading to a bivariate cumulative distribution

used by the extremal-t model of

Pr {Z(x1) ≤ z1, Z(x2) ≤ z2} = exp

[
−Tν + 1

z1

{
−ρ(x1 − x2)

b
+

1

b

(
z2
z1

) 1
ν

}
−

Tν + 1

z2

{
−ρ(x1 − x2)

b
+

1

b

(
z1
z2

) 1
ν

}
, (4.17)

where Tv is the cumulative distribution function of the Student’s t-distribution with ν > 0

degrees of freedom and b2 = {1− ρ(x1 − x2)
2}/(ν + 1) [Ribatet and Sedki, 2013b].

For comparison with the results of the MSP model outlined above, I selected to use the

NOAA Atlas-14 precipitation frequency estimates [NOAA Atlas 14] since they are derived

using RFA methods that assume spatial independence, and they are widely used in practice

within the U.S. However, the NOAA Atlas-14 precipitation frequency estimates are point-

based. In order to compare these point-based estimates to the MSP areal depth estimates,

conversion using areal reductions factors (ARFs) is required for each watershed. The ARF

method I used is based on the approach outlined by Technical Paper No. 29 (TP-29) of

the U.S. Weather Bureau [U.S. Weather Bureau, 1958]. Note that the TP-29 ARF method

does not account for frequency, it only uses duration and area. The basic ARF formula is as
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follows

ARF =
Pa
Pp

(4.18)

where, for a given watershed and duration, Pa is the average precipitation depth, Pp is the

average of the point-based precipitation estimates, and ARF is the areal reduction factor

that varies with the duration and the area of the watershed [U.S. Weather Bureau, 1958].

For the ARF term, I used the simplification presented by Leclerc and Schaake [1972] as

follows

ARF = 1− exp(−1.1t0.25) + exp(−1.1t0.25 − 0.01A) (4.19)

where t is the duration in hours and A is the area of the watershed in square miles. For this

study, t is 24 hours and the A was determined using the USGS WBD level 10 watersheds

[USGS, 2020a,b,c] given that Eq. 4.19 only holds for a watershed size ≤ 1100 square miles.

Given that the NOAA precipitation frequency grids are by return period, I then applied Eq.

4.19 to each watershed by return period. Meaning that for each watershed the average of

the point-based estimates (Pp) for a given return period were multiplied by the ARF for

that watershed to produce the corresponding areal depths (Pa). This is one noted downside

of the TP-29 ARF method, namely, that the reduction factor ignores frequency [Asquith

and Famiglietti, 2000, Olivera et al., 2008]. By omission, the TP-29 approach assumes that

the storm sizes of higher frequency events match that of lower frequency events which could

be inaccurate given the varying storm types within a region (e.g. thunderstorms versus

hurricanes).
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4.4 Results

Despite the often localized nature of thunderstorms in the NECO region, spatial dependence

between pairs of sites does exist as demonstrated in Figure 4.2, which illustrates how the

extremal coefficient θ(h) varies with distance h for both regions. While the NECO spatial

dependence does drop off more quickly than the TXLA region, at shorter distances it is still

present. Individual extremal coefficient plots for each region are shown in more detail within

Figure 4.6 and include F -madogram results for the data.

Translating the concept of spatial dependence into physical terms, a large precipitation event

over a region with a relatively dense sensor network would be observed at multiple gauged

sites. Therefore, by accounting for spatial dependence the return level associated with a

single storm event would be more rare than a method following the assumption of spatial

independence, which would count each observation of the event across the network of gauges

as separate events. Following this logic, the NECO return level results are to be expected

for a region that does have spatial dependence among its data. Figure 4.3 summarizes the

difference between the NOAA and MSP return level results for both regions. The MSP-

based return levels are consistently lower than the NOAA RFA-based results at 5-year and

higher return periods (Figure 4.3a). Therefore, for this region, a MSP analysis method likely

is not necessary given the conservative estimates of the NOAA RFA results. These results

are demonstrated in more detail in Figure 4.4, where return level results for a sampling of

watersheds across both regions are displayed. To illustrate the difference between the RFA

results and the MSP results from a return period perspective, the NECO watershed results

in Figure 4.4d indicate that an event with an areal precipitation depth of approximately

3.5 inches has approximately a 25-year return period based on the RFA results (black line),

while that same event has roughly a 50-year return period based on the MSP results (purple

line).
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Figure 4.2: Extremal coefficient for both NECO (orange line) and TXLA (blue line) for
comparison.

98



Figure 4.3: Return level differences between RFA estimates and MSP estimates for the a)
NECO and b) TXLA regions. y-axis values > 0 indicate that the RFA values are greater
than the MSP, while < 0 indicate the converse.

The median of the differences between the RFA results and the MSP results follow a similar

increasing trend from 2-year through 100-year return periods in TXLA as seen in NECO

(Figure 4.3b). However, there are several watersheds where the RFA results underestimate

return levels relative to the MSP results (i.e., difference < 0) across all return periods.

This could indicate that not accounting for the spatial dependence between sites leads to

the underestimation of return levels within some areas of the TXLA region. Further, it

could indicate that the RFA methods are not capturing the same spatial variability of the

distribution parameters since there is also a noticeable increase in the return level differences

of less frequent events at the 50 and 100-year return periods (see Chapter 3, Table 3.1 and

Figure 3.3 for the TXLA trend surface covariates and fits). Figure 4.5 displays a sampling

of watershed results for the region to provide more detail. The results displayed in Figures

4.5c,d,e are for watersheds where the RFA results underestimate return levels relative to the

MSP results. Focusing specifically on Figures 4.5c,e the increasing difference between the two

methods as the return levels increase indicates that the RFA methods are likely estimating

smaller values for the shape parameter. While in these plots this may look like a small

difference at first glance, note that the scale of the y-axis in the TXLA figures is larger than
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Figure 4.4: NECO areal return levels for a sampling of watersheds across the region. The
purple line and ribbon display the MSP results and uncertainty, while the black line and
ribbon are the NOAA results.

that of the NECO region. Therefore, the visually small differences in TXLA results indicate

a difference of several inches in areal precipitation depths. Meanwhile, the watersheds in

subplots a, b, and f of Figure 4.5 mirror the differences between models similar to those

shown for the NECO region. The RFA and MSP results in Figures 4.5e,h show minimal

difference.

Overall, there is much greater variability in the differences between the methods across the

TXLA region than what is seen in the NECO region. Again, these two regions were selected

to demonstrate differences in return level estimates when taking into account the spatial

dependence within geographically and climatically different regions.
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Figure 4.5: TXLA areal return levels for a sampling of watersheds across the region. The
purple line and ribbon display the MSP results and uncertainty, while the black line and
ribbon are the NOAA results.

4.5 Conclusions

Extreme precipitation is naturally a spatial process with physical drivers. Therefore, when

modeling the frequency and intensity of extreme events, we need to account for both the spa-

tial dependence of the extreme data and the drivers which vary depending on the geography

and storm types that dominate a given region. While a Regional Frequency Analysis (RFA)

may be a good approach within regions that are more homogeneous, have less dense station

networks, and have more localized storms, other regions may benefit from accounting for

spatial dependence. Namely, regions with dense station networks and that are dominated

by large-scale storms. To minimize spatial dependence when using a model that does not

account for it, the current practice is to filter the number of stations used to reduce the
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chances of repeating the same storm reading multiple times and/or to expand the uncer-

tainty bounds of the estimates to compensate for spatial dependence that is present. The

former means that the estimates rely on fewer stations and less data, while the later leans

heavily on large uncertainty bounds and assumes that they are sufficient.

Recognizing that simplifying assumptions can introduce under or over-estimation of ex-

ceedance probabilities, I explored the application of a Max-Stable Process (MSP) model

that accounts for spatial dependence and allows for the inclusion of spatially varying geo-

graphic and climatic information. I compared the MSP model results with the NOAA Atlas

14 results that are estimated using RFA methods. To further compare the performance

of these two methods, I compared their results from two regions with different dominant

storm generating mechanisms. Northeastern Colorado (NECO) is a region where the Great

Plains meet the Rockies and is dominated by localized thunderstorms during the warm sum-

mer months with occasional larger scale thunderstorms. The Texas-Louisiana (TXLA) Gulf

Coast region is dominated by tropical moisture from the Gulf of Mexico and cold air from

the Great Plains to the north that creates large thunderstorms, and the region is susceptible

to hurricanes and tropical storms from the Atlantic Ocean.

I included several physically relevant covariates for modeling the spatial variability of each

region’s Generalized Extreme Value (GEV) parameters (i.e., trend surfaces). To automate

the selection process and reduce computational burden, I employed elastic-net regression to

select the most helpful set of covariates for each region’s trend surfaces (discussed in Chapter

3). These trend surfaces where combined with the MSP model that also accounts for each

region’s spatial dependence. The end result is a continuous surface (spatial process) that

facilitates the estimation of areal-based exceedance probabilities without the use of the areal

reduction factors (ARFs) which RFA methods require for transforming point precipitation

depths into areal depths.

The areal return level results displayed more variability in the differences between the RFA
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and MSP methods across the TXLA region compared with what is seen in the NECO re-

gion. While the NECO MSP return levels were consistently lower than the RFA return

levels, the TXLA region shows a mix of relative under and over-estimation with differences

in return levels of several inches. Again, these two regions were selected to demonstrate

differences in return level estimates when taking into account the spatial dependence within

geographically and climatically different regions. These results indicate that capturing the

spatial variability of the extreme distribution parameters in a high-dimensional space while

also accounting for the spatial dependence could further benefit the estimates of areal ex-

ceedances for some regions. Therefore, consideration should be given to incorporating this

kind of assessment into the methods used by practitioners to improve the selection of more

conservative estimates for infrastructure design.

4.6 Appendix B

This supporting information provides additional details regarding the fit of the extremal

coefficients, examples of max-stable process simulations with unit Frechet margins, and the

trend surface rasters for both regions.
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Figure 4.6: Extremal coefficient fit for a) NECO calibration sites, b) NECO validation sites,
c) TXLA calibration sites, and d) TXLA validation sites. θ(h) is the extremal coefficient, h
is the distance between pairs of sites in meters. Gray markers are the F-madogram of the
sites.
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Figure 4.7: Examples of the max-stable process simulations with unit Fréchet margins for
NECO (a-c) and TXLA (d-f). For each region 500 of these simulations were generated. Each
simulation takes hours to complete.

Figure 4.8: Trend surfaces for NECO (a-c) and TXLA (d-f).
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Chapter 5

Conclusion

The ability to estimate the intensity and frequency of extreme precipitation is an essential

part of infrastructure planning and flood prediction. Understanding the risks associated with

spatial extremes at present and estimating their future occurrences, requires more compli-

cated, rigorous, and robust methods. Extreme precipitation events are highly variable across

space and time, and current methods for analyzing spatial extremes often involve significant

simplifying assumptions. Additionally, these extreme events are infrequent and data records

are often inadequate for estimating the rarest of these events considering that their recurrence

interval extends beyond the length of record. Estimates of extreme precipitation are often

required in regions where gauge data is sparse and storm events are localized making ex-

treme events difficult to predict. Even in regions that do have relatively dense observational

networks and large-scale storms, integrating the spatial data for extremes and their drivers

is not straightforward. Given these challenges, methods for estimating exceedance probabil-

ities that enable the proper modeling of spatially varying extreme marginal parameters and

account for spatial dependence between sites need to be explored and refined.

Given that miscalculating the spatial variability of extreme distribution parameters in a
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high-dimensional space can lead to under or over-estimation of exceedance probabilities, in

Chapter 2 I explored the benefit of incorporating additional climatic covariates relevant to

the physical drivers for modeling 24-hour annual maximum precipitation beyond what have

been used within previous studies. Based on my results, I would recommend exploring the

inclusion of additional climatic covariates, such as mean temperature and dew point temper-

ature, for regions with a heterogeneous climate and topography to improve model predictive

performance. In addition to these covariate results, my results within the overlapping region

indicate that predictive performance improves when the dominant extreme storm type of the

pooled data for the model matches that of the prediction sites despite differences in their

mean annual precipitation.

Based on the computational load of running a full Bayesian hierarchical model with Bayesian

model averaging repeatedly with leave-one-out cross validation from Chapter 2, I introduced

the application of elastic-net regularization with k-fold validation in Chapter 3 to reduce the

time and effort required to narrow down the topmost relevant covariates for trend surface

development out of a relatively large set. This automated approach to covariate selection

provided a noticeable improvement in computational time and helped to reduce the bias of

manually selecting covariates based on assumptions.

The trend surfaces that I developed in Chapter 3, were used within the Max-Stable Process

(MSP) models of Chapter 4. After exploring the improvements in predictive performance due

to incorporating additional covariates in the previous chapters, in Chapter 4 I explored the

impact of also accounting for spatial dependence by comparing the MSP results with regional

frequency analysis results. Again, two distinct climate regions with different dominate storms

mechanisms where used as study regions. My results indicate that capturing the spatial

variability of the distribution parameters in a high-dimensional space while also accounting

for the spatial dependence could further benefit the estimates of areal exceedances for some

regions.
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The results presented in this dissertation highlight the need for the inclusion of additional

physically-informed covariates and improved methods for covariate selection that not only

improve estimation of extreme precipitation but also improve the computation time and

automate the process to reduce the bias that traditional manual selection introduces. Con-

sideration should be given to incorporating assessments of relevant covariates and spatial

dependence within the methods used by practitioners to ensure the selection of conservative

estimates for infrastructure design.
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