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ORIGINAL RESEARCH

One of the promises of artificial intelligence (AI) for neu-
roimaging is its potential to automate the detection of 

abnormal findings at brain MRI, thereby reducing measure-
ment variability and perceptual errors. However, generaliza-
tion and portability of AI technologies across different health 
care practice settings, such as across hospital systems, patient 
populations, imaging technology manufacturers, and diseas-
es, is critical to the success of such technologies (1,2).

Well-tested AI algorithms may perform poorly on exter-
nal test datasets because of a mismatch between the distri-
bution of training data and external test data statistics. For 
example, performance on the external test dataset can suffer 
because of differences in prevalence of target classification 
outcomes (eg, disease states) between institutions (3). Data 
may be acquired at a different resolution, using different 
MRI parameters (eg, different echo or repetition times), or 
with different imaging hardware with unique artifacts (4). In 
addition, patient factors, such as differences in ethnic back-
ground, age, body habitus, genetics, or comorbidities, could 
affect the average imaging appearance of the same diseases 
across different populations at different institutions (5).

We recently reported an algorithm that detects and seg-
ments fluid-attenuated inversion recovery (FLAIR) abnor-
malities on MR images, regardless of underlying pathologic 
condition (6). This algorithm uses a three-dimensional (3D) 
U-Net architecture to detect abnormal FLAIR signal, which 
is a very sensitive marker of lesions in a variety of patho-
logic conditions, although it is not specific for any particular 
cause. The goal of developing this algorithm was to use it to 
detect and segment FLAIR signal abnormalities across mul-
tiple different clinical contexts, including when the disease 
process is unknown, rather than being limited to any specific 
pathologic condition. The algorithm was found to perform 
well across the 19 diseases tested. The purpose of this algo-
rithm is for lesion segmentation and volume quantification, 
information that may be directly clinically useful, for exam-
ple, in tracking lesion sizes over time. FLAIR lesion segmen-
tations have also been shown to be useful for diagnostic sup-
port if combined with other imaging processing techniques 
that offer a detailed description of the lesions (7,8).

The performance of the FLAIR U-Net (6), while tested 
across many pathologic conditions, was tested at only a 
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Purpose: To assess how well a brain MRI lesion segmentation algorithm trained at one institution performed at another institution, 
and to assess the effect of multi-institutional training datasets for mitigating performance loss.

Materials and Methods: In this retrospective study, a three-dimensional U-Net for brain MRI abnormality segmentation was trained on 
data from 293 patients from one institution (IN1) (median age, 54 years; 165 women; patients treated between 2008 and 2018) and 
tested on data from 51 patients from a second institution (IN2) (median age, 46 years; 27 women; patients treated between 2003 and 
2019). The model was then trained on additional data from various sources: (a) 285 multi-institution brain tumor segmentations, (b) 
198 IN2 brain tumor segmentations, and (c) 34 IN2 lesion segmentations from various brain pathologic conditions. All trained mod-
els were tested on IN1 and external IN2 test datasets, assessing segmentation performance using Dice coefficients.

Results: The U-Net accurately segmented brain MRI lesions across various pathologic conditions. Performance was lower when tested 
at an external institution (median Dice score, 0.70 [IN2] vs 0.76 [IN1]). Addition of 483 training cases of a single pathologic condi-
tion, including from IN2, did not raise performance (median Dice score, 0.72; P = .10). Addition of IN2 training data with hetero-
geneous pathologic features, representing only 10% (34 of 329) of total training data, increased performance to baseline (Dice score, 
0.77; P , .001). This final model produced total lesion volumes with a high correlation to the reference standard (Spearman r = 0.98).

Conclusion: For brain MRI lesion segmentation, adding a modest amount of relevant training data from an external institution to a pre-
viously trained model supported successful application of the model to this external institution.

Supplemental material is available for this article.
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tion 2 (IN2) from 2003 through 2019 served as the primary 
study sample, such that for each of the 17 diseases listed in 
the “Diseases” section, three patients with that disease were 
included. The patients were identified by searching the radi-
ology archives of our tertiary care university hospital for the 
diagnoses included in the study (see below). The convolutional 
neural network (CNN) was previously trained on MR images 
from 293 patients (median age, 54 years [range, 15–95 years]; 
165 women) treated at institution 1 (IN1) from 2008 through 
2018, as described previously (6). One experiment in the study 
used training data from an additional 198 patients from IN2 
with primary brain tumors (World Health Organization grade 
II–IV gliomas). Another experiment in the study used 285 pa-
tients’ open-source data from the 2018 Multimodal Brain Tu-
mor Segmentation challenge (BraTS) (9), which also included 
manual segmentations of white matter hyperintensities, as de-
scribed in Rudie et al (10).

Diseases
A total of 17 diseases were included in the test sample, with 
three patients for each disease. Given that our study was fo-
cused on overall performance of the algorithm across a wide 
range of diseases rather than on performance for any par-
ticular disease, a sample size of 51 patients was sufficient for 
detecting small differences in performance between models. 
The 17 diseases included in the test sample included: low-
grade glioma, high-grade glioma (glioblastoma), primary 
central nervous system lymphoma, metastatic disease, acute 
or subacute ischemia, small-vessel ischemic disease, mul-
tiple sclerosis, tumefactive multiple sclerosis, neuromyelitis 
optica, acute disseminated encephalomyelitis, adrenoleuko-
dystrophy, cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy, HIV enceph-
alopathy, progressive multifocal leukoencephalopathy, toxic 
leukoencephalopathy, posterior reversible encephalopathy 
syndrome, and migraine. These diseases encompass a large 
range of pathologic conditions causing FLAIR abnormalities 
on brain MR images, with variable size, shape, and extent of 
those abnormalities in individual patients. The diseases were 
chosen to match the diseases on which the original model 
(6) was trained, to enable a fair comparison of performance 
across institutions. Reference standard diagnoses were es-
tablished by chart review, using pathologic data if available 
(eg, for brain tumors) or otherwise using a combination of 
clinical and radiologic follow-up to ensure accurate diagno-
ses. Exclusion criteria for the study were identical to those 
of the prior study (6) and included lack of reference stan-
dard diagnosis, inadequate imaging (no FLAIR sequence or 
excessive imaging artifact making diagnostic interpretation 
impossible), multiple diagnoses or prior surgery causing 
FLAIR abnormality, and presence of all imaging findings 
outside of the cerebral hemispheres.

Training and Testing Assignments
For all initial experiments, the 51 study patients from IN2 
formed the test set for the FLAIR U-Net. The training set for 

single institution, which inherently calls into question its util-
ity beyond the institution at which it was trained. Although the 
algorithm was broadly trained on images created using a wide 
variety of imaging parameters from multiple different MRI ma-
chine vendors and models, these factors do not guarantee high 
performance at another institution. Were external test perfor-
mances of AI systems to be significantly lower than the reported 
performances of AI algorithms using internal test datasets, there 
would be substantial patient safety implications when deploying 
AI algorithms such as this one across hospital systems. Therefore, 
we sought to test the external validity of this particular neural 
network and evaluate strategies for improving interinstitutional 
portability. The goal of this work is to offer one specific practi-
cal strategy for portability of a deep neural network from one 
institution to another, which is to fine-tune the network using a 
manageable amount of training data from the target institution.

Materials and Methods

Patients, Data, and Models
This Health Insurance Portability and Accountability Act–
compliant retrospective study was approved by the institu-
tional review board of the University of California San Fran-
cisco, with a waiver for consent. A total of 51 patients (median 
age, 46 years [range, 3–83 years]; 27 women) treated at institu-

Abbreviations
AI = artificial intelligence, BraTS = Multimodal Brain Tumor 
Segmentation challenge, CNN = convolutional neural network, 
FLAIR = fluid-attenuated inversion recovery, IN1 = institution 1, 
IN2 = institution 2, IQR = interquartile range, M1 = model trained 
on IN1 patient data, M11B = model trained on IN1 patient data 
1 BraTS, M11B12T = model trained on IN1 patient data 1 BraTS 
1 data from IN2 patients with tumors, M112 = model trained on 
IN1 1 IN2 data, MFT (112) = model trained on IN1 with sequential 
fine-tuning with IN2, M2 = model trained on IN2 data, 3D = three 
dimensional, 2D = two dimensional

Summary
For a brain lesion segmentation model trained on a single institu-
tion’s data, performance was lower when applied at a second institu-
tion; however, the addition of a small amount (10%) of training 
data from the second institution allowed the model to achieve its full 
potential performance level at the second institution.

Key Points
 n A U-Net for detecting abnormal fluid-attenuated inversion recov-

ery (FLAIR) signal trained at one institution (IN1) had consistent-
ly lower performance when applied to a second institution (IN2) 
(median Dice score, 0.76 and 0.70, respectively; P = .001).

 n Addition of data with abnormal FLAIR signal from a single patho-
logic condition (primary brain tumors) from IN2 did not improve 
performance of the model at IN2 (Dice score, 0.72; P = .10).

 n Addition of IN2 data that included a variety of pathologic condi-
tions increased model performance on the IN2 test dataset (Dice, 
0.77; P , .001) despite representing only a small portion (10%) 
of the total training data.

Keywords
Neural Networks, Brain/Brain Stem, Segmentation
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eases [M112]); and (e) the same data 
as M112, except that sequential fine-
tuning was performed with IN2 (MFT 

(112)). A stratified threefold cross-val-
idation procedure was used wherein 
the folds were stratified by each of 
the 17 diagnoses, such that each fold 
consisted of two samples of training 
data from each disease (34 patients’ 
total training data in each fold) and 
one sample of test data from each 
disease (17 patients’ total test data in 
each fold, unique for each of the three 
folds) (Fig 1).

We also performed experiments 
to tease out the effects of IN1 and 
IN2 training data on IN1 and IN2 
test data performance. In one experi-
ment, we tested the effect of varying 
the amount of IN1 training data in 
M1 with either all 293 patients or 
with 204, 102, or 51 patients. These 
models were then tested on IN1 and 
IN2 test data. In another experiment, 
we varied the training data on M112 
in four ways: (a) 10.4% IN2 (293 
IN1 1 34 IN2 patients), (b) 14.3% 
IN2 (204 IN1 1 34 IN2 patients), 
(c) 25% IN2 (102 IN1 1 34 IN2 
patients), and (d) 40% IN2 (51 IN1 
1 34 IN2 patients) to assess the ef-
fect of the proportion of IN2 train-
ing data on the model performance 
on IN2 test data. These four models 
were compared with M1 and M2 on 
the same test datasets.

MRI Parameters and Manual 
Reference Segmentations
Only FLAIR imaging was used for 
this study, which was the only se-
quence used for manual and auto-
mated segmentations. Images were 
acquired with a variety of scanners 
from GE, Philips, Siemens, and 
Toshiba; scanner models are outlined 
in the Table. The MRI parameters 
that defined FLAIR imaging in the 
IN2 dataset varied substantially from 
those that defined the FLAIR imag-

ing in the IN1 training data (Table). Ground truth lesion 
segmentations were provided by a senior radiology resident 
(T.J.G.) and were verified and/or modified by an attending 
neuroradiologist with 3 years of postresidency experience 
(A.M.R.) using ITK-SNAP (version 3.8; www.itksnap.org) 
(11). Diagnoses were not available to the radiologist at the 
time of manual segmentation.

the U-Net varied between these experiments and consisted of: 
(a) IN1 data only (M1); (b) IN1 data and 285 BraTS brain 
tumor segmentations (M11B); (c) IN1 data, 285 BraTS brain 
tumor segmentations, and data from 198 IN2 patients with 
brain tumors that were previously manually segmented on 
FLAIR imaging for a different study (M11B12T); (d) IN1 data 
and data from 34 IN2 patients (two per disease for 17 dis-

Figure 1: Flow diagram demonstrates use of data from various institutions for training and testing. (A) Data 
from the 51 patients from institution 2 (IN2) formed the primary test set on which the previously trained model was 
tested. This dataset was then divided into three subsets of training data (n = 34) and independent test data (n = 17), 
forming a threefold cross-validation test sample. (B) The original model (M1) was trained on 293 patients’ data 
from one institution (IN1) and tested on both the same institution’s independent test data (replication of Duong et al 
[6]) and on IN2 data. Additional experiments were performed using training data composed of other data sources 
combined with the original dataset (BraTS [M1+B], IN2 brain tumor data [M1+B+2T], and IN2 training data [M1+2]). 
Fine-tuning with IN2 data (MFT (1+2)) was also explored in another set of experiments. BraTS = Multimodal Brain Tu-
mor Segmentation challenge, M1 = model trained on IN1 patient data, M1+B = model trained on IN1 patient data 
+ BraTS, M1+B+2T = model trained on IN1 patient data + BraTS + data from IN2 patients with tumors, M1+2 = model 
trained on IN1 + IN2 data, model MFT (1+2) = trained on IN1 with sequential fine-tuning with IN2, M2 = model 
trained on IN2 patient data.

http://radiology-ai.rsna.org
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ing data in any experiment in which a portion of IN2 data 
was used for additional training. The cross-validation approach 
allowed for calculation of a Dice score for each individual pa-
tient, with each patient falling within the test set once. Base-
line performance was defined as the Dice scores resulting from 
the original one-institution model as applied to the same in-
stitution, a replication of Duong et al (6). Results of all other 
trained models were compared with this baseline performance. 
Mann-Whitney U and Kruskal-Wallis H tests were used to 
compare median Dice scores for unpaired data (eg, IN1 vs 

Image Preprocessing
Brain extraction was performed directly on 
FLAIR images using our in-house CNN 
dedicated to skull stripping. Brain extrac-
tion performance was qualitatively assessed 
(A.M.R.) and found to be excellent. Because 
additional manual corrections of resulting 
brain masks did not significantly improve 
overall Dice scores, only the results using au-
tomated brain extraction are presented here. 
Similarly, N4 bias field correction (12) did 
not consistently improve performance; thus, 
all results are reported without this prepro-
cessing step. Images were normalized by the 
mean and standard deviation signal intensity 
to zero mean and unit standard deviations. 
All image volumes were resampled to 1-mm3 
isotropic image resolution via linear interpo-
lation. For training, elastic transformations 
were applied to the image volumes, including 
small random rotations, translations, scaling, 
and free-form deformations such that each 
image was augmented three times. Similar to 
Duong et al (6), we split the full-resolution 
augmented imaging volumes into 96 3 96 
3 96-mm cubes (“3D patches”) to fit within 
graphic memory processor constraints. To 
prevent sample imbalance during training, 
we sampled the same number of patches that 
included lesion voxels as that excluded lesion 
voxels. During testing, the brain volume was 
densely sampled with the same size cubes, us-
ing a step size of 32 mm in each direction. 
The overlapped segmentation predictions 
were averaged.

CNN Model Architecture
The 3D U-Net architecture used here was 
described previously (6) and was replicated 
without modification. Hyperparameters 
used for this U-Net included a kernel size 
of 3 3 3 3 3, cross-entropy loss function, 
and an Adam optimizer with learning rate of 
4 3 10−4, implemented using TensorFlow 2 
(https://www.tensorflow.org) (13) within the 
Python programming language. The network 
was trained for 30 epochs in each experiment described, with 
a batch size of 24 3D patches (96 3 96 3 96 mm each). The 
implementation was on a DGX-2 AI server (version 4.5.0; 
NVIDIA).

Statistical Analyses
The performance of the U-Net was tested against the manual 
segmentation reference standard using Dice coefficients (14) 
on the test data described in Figure 1. Threefold cross-valida-
tion was used to keep the test data independent from the train-

Heterogeneous Scanning Parameters Used for FLAIR Sequences from Pa-
tients from IN1 and IN2

Variable IN1 IN2

Total no. of patients 293 51
Imaging parameter
 TE (msec) 136 (86–396) 127 (94–149)
 TR (msec) 9000 (5000–12 000) 6000 (5000–11 000)
Field strength
 1.5 T 228 (77.8) 24 (47.1)
 3 T 65 (22.2) 27 (52.9)
Dimension
 2D 285 (97.3) 11 (21.6)
 3D 8 (2.7) 40 (78.4)
Manufacturer and model
 GE
  Discovery MR750 4 (1.4) 23 (45.1)
  Genesis Signa 20 (6.8) 1 (2.0)
  Optima MR450 15 (5.1) 0 (0.0)
  Signa Excite 20 (6.8) 1 (2.0)
  Signa HDx 0 (0.0) 7 (13.7)
  Signa HDxt 14 (4.8) 13 (25.5)
 Philips
  Achieva 0 (0.0) 2 (3.9)
  Intera 2 (0.7) 1 (2.0)
 Siemens
  Aera 14 (4.8) 0 (0.0)
  Avanto 38 (13.0) 1 (2.0)
  Espree 83 (28.3) 1 (2.0)
  Magnetom Essenza 9 (3.1) 0 (0.0)
  Skyra 8 (2.7) 0 (0.0)
  Symphony 4 (1.4) 0 (0.0)
  Symphony Tim 5 (1.7) 1 (2.0)
  Trio Tim 37 (12.6) 0 (0.0)
  Verio 16 (5.5) 0 (0.0)
 Toshiba
  Titan 4 (1.4) 0 (0.0)

Note.—Continuous variables are shown as median, with range in parentheses, and 
categorical variables are shown as numbers, with percentages in parentheses. Percent-
ages do not equal 100 due to rounding. FLAIR = fluid-attenuated inversion recovery, 
IN1 = institution 1, IN2 = institution 2, TE = echo time, TR = repetition time, 3D = 
three dimensional, 2D = two dimensional.

http://radiology-ai.rsna.org
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effect given training stochasticity, we trained the same architec-
ture on the same IN1 data five separate times, and we tested 
each of these training instances of M1 on IN1 and IN2 data. 
The performance on IN1 test data (median Dice score range, 
0.733–0.765) was consistently higher than on IN2 test data 
(median Dice score range, 0.693–0.733) across independently 
trained models (paired t test, P = .001), with the decrease in 
median Dice score ranging from 0.027 to 0.059 (mean, 0.042) 
when applied to the external (IN2) test dataset compared with 
the internal (IN1) test dataset.

We observed the same effect when using IN2 data only (n = 
34) to train the model. M2 demonstrated a median Dice score 
of 0.74 (IQR, 0.60–0.82) on IN2 test data and a median Dice 
score of 0.64 (IQR, 0.51–0.77) on IN1 test data (P , .001). 
Furthermore, training a model with all 51 IN2 patients resulted 
in a median Dice score of 0.60 (IQR, 0.50–0.74) when tested 
on IN1 test data, which was lower than the score from a model 
trained on the same number of IN1 training patients (n = 51) 
when tested on IN1 test data (median Dice score, 0.74 [IQR, 
0.51–0.84]; P , .001).

Addition of Brain Tumor Training Data (M1+B and M1+B+2T 
Models)
Owing to the commonality of FLAIR hyperintensities across 
many pathologic conditions, we attempted to improve porta-
bility across institutions by incorporating additional training 
data with FLAIR hyperintense lesions from other institutions 
(from the BraTS dataset [M11B]). Including this multi-insti-
tutional dataset in training did not yield a significant change 
in median Dice score from the initial model’s performance on 

IN2 test data). For any paired comparisons (eg, two different 
models tested on IN2 test data, with one pair of Dice scores 
per patient), Wilcoxon signed rank tests were used. Statistical 
significance was defined as P less than .05. Total lesion volume 
was calculated from the manual and predicted segmentation 
masks, and Spearman correlations were calculated.

Results

Differences in Data Acquisition Parameters between IN1 
and IN2
Differences in the MRI acquisition parameters and hard-
ware between IN1 and IN2 are presented in the Table. Most 
notably, the majority of images from IN1 (73%) were ac-
quired with Siemens MRI machines, while the majority of 
IN2 images (88%) were acquired with GE MRI machines. 
Furthermore, 78% of IN1 FLAIR images were acquired at 
1.5-T field strength, while only 47% of IN2 FLAIR images 
were acquired at 1.5 T. At IN1, 97% of FLAIR images were 
two-dimensional (2D) acquisitions, while only 22% of IN2 
FLAIR images were 2D acquisitions (with 78% being 3D 
acquisitions).

CNN-based FLAIR Lesion Segmentation Accuracy on 
External Institution Data
Lesion segmentation performance was marginally lower for the 
model trained on IN1 data (M1) when tested on IN2 data than 
when tested on IN1 data (median Dice score, 0.70 [interquar-
tile range {IQR}, 0.55–0.81] and 0.76 [IQR, 0.60–0.85], re-
spectively; P = .08) (Fig 2). To evaluate the consistency of this 

Figure 2: Segmentation accuracy (Dice scores) for five different versions of the convolutional neural network, with individual 
Dice scores for each patient indicated by a data point and median Dice scores indicated by horizontal black bars. The architecture 
and hyperparameters of the model remained identical, but training and testing cases varied. The horizontal dashed lined demon-
strates baseline performance of the model trained at one institution and applied to the same institution, with a median Dice score 
(0.76) for comparison to the four other models, which used various mixtures of interinstitutional training data. IN1 = institution 1, IN2 
= institution 2, M1 = model trained on IN1 patient data, M2 = model trained on IN2 data, M1+B = model trained on IN1 patient data 
+ Multimodal Brain Tumor Segmentation challenge data, M1+2 = trained on IN1 + IN2 data.

http://radiology-ai.rsna.org
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the IN2 test data (0.72 [M1+B] vs 0.70 [M1]; P = .1). Further 
addition of IN2 training data with only primary brain tumors 
as the pathologic feature (M11B12T) (total training, n = 776) 
resulted in a marginal but not significant increase in median 
Dice score compared with the original model tested on IN2 
data (0.73 [M11B12T] vs 0.70 [M1]; P = .06).

Addition of IN2 Training Data (M1+2 Model)
Compared with M1 applied to the IN2 test dataset, the M112 
model (addition of 34 IN2 training samples with various 
pathologic conditions, with threefold cross-validation across 
all IN2 data; 10% of total training sample from IN2 and 90% 
from IN1) yielded improved segmentation accuracy on the 
IN2 test dataset (median Dice score, 0.77 [M112] vs 0.70 [M1]; 
P , .001) (Fig 2). The addition of IN2 training data (M112) 
did not degrade performance on IN1 test data (median Dice 
score, 0.75 [M112] vs 0.76 [M1]; P = .47). The performance of 
M112 tested on IN2 data was similar to the performance of M1 

tested on IN1 data (median Dice score, 0.77 [M112 tested on 
IN2] vs 0.76 [M1 tested on IN1]; P = .45) (Fig 2).

Segmentation performance was good across the range of 
17 diseases tested (Fig 3), although inherently some inter-
disease variation in Dice scores existed. The degree of inter-
disease variation in Dice scores was qualitatively similar to 
IN1 test data results from M1 (Fig E1 [supplement]) and 
was similar to previously observed human interobserver 
variability (6).

Staged Addition of IN1 Training Data
To investigate the effects of the relationship between number 
of training cases and segmentation performance, we created 
models with subsets of IN1 data including either all 293 pa-
tients from IN1 (original M1) or with either 204, 102, or 51 
patients. In general, the addition of IN1 training data was 
helpful for performance on both IN1 and IN2 test data (Fig 
4). However, the addition of a small amount of IN2 training 

Figure 3: Representative single-section fluid-attenuated inversion recovery (FLAIR) images from 17 test samples using the final model (M1+2), which was trained using 
data from both institutions. Note the large variation in number, size, and extent of lesions. On the left of each pair is the original image, and on the right of each pair is the 
automated segmentation overlaid on the original FLAIR image. ADEM = acute disseminated encephalomyelitis, CNS = central nervous system, CADASIL = cerebral auto-
somal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, MS = multiple sclerosis, M1+2 = model trained on institution 1 + institution 2 data, PML = 
progressive multifocal leukoencephalopathy, PRES = posterior reversible encephalopathy syndrome.

http://radiology-ai.rsna.org
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data had a much greater effect than a large amount of IN1 
training data on IN2 test data performance. Similarly, remov-
ing portions of IN1 training data when IN2 training data 
were used had no measurable effect on performance of the 
model tested on IN2 data, unless all IN1 training data were 
removed (Fig 4B).

Transfer Learning versus Training on Combination of Data
We applied fine-tuning methods to test whether transfer 
learning starting with M1 and using IN2 data (MFT (112)) could 
result in performance improvements on IN2 test data similar 
to the performance improvements of training a model with 
a combination of the same IN1 and IN2 training data from 
scratch (M112). We performed multiple fine-tuning experi-
ments that involved separately fine-tuning the following lay-
ers: first layer, middle layers, last layer, first and last layers, all 
layers. The best-performing model was the model in which all 
layers were fine-tuned, demonstrating a median Dice score of 
0.78 (IQR, 0.67–0.85) on IN2 test data. Owing to consistent 
improvements in Dice score across the majority of patients in 
the test datasets, MFT (112) had higher performance than M112 
(median Dice score, 0.78 and 0.77, respectively; P , .001) 
(Fig E2 [supplement]).

Fine-tuning the original IN1-trained model resulted in 
substantial time savings, with fine-tuning taking 291 seconds 
per epoch, compared with 2374 seconds per epoch when 
training from scratch. Across 30 epochs, using our hardware, 
the time savings was more than 17 hours for training an in-
dividual model.

Lesion Volume Quantification and Its Effect on Segmentation 
Accuracy
Using the segmentation masks, total lesion volume could be 
directly calculated for each patient. Using manually delineated 
segmentation masks as the reference standard, the correlation 
between true total lesion volume and U-Net–predicted total 
lesion volume was very high, with a Spearman correlation of 
0.98 (P , .001) and a Pearson correlation coefficient of 0.90 
(P , .001) for M112 (Fig 5A). Performance was noticeably 
lower for patients with extremely high lesion volumes, which 
were far outside (.3 standard deviations) the range of lesion 
volumes in the training data.

Deviations of predicted lesion volume from true lesion vol-
ume were similar between the M112 model tested on IN2 and 
the M1 model tested on IN1 (Fig 5B). Interestingly, M112 had 
higher performance than M1 on small (,10 cm3) lesions (me-
dian Dice score, 0.81 [M112 on IN2 test data] vs 0.54 [M1 on 
IN1 test data]; P , .05) (Fig 5C).

Imaging Parameter Effects on Segmentation Accuracy
Scan parameters other than underlying disease cause or lesion 
volume may theoretically also have substantial effects on seg-
mentation performance. For example, differing MRI hardware 
may cause images to appear different and therefore cause vari-
able lesion segmentation performance. However, we found 
no difference in performance across different scanner models 
when M112 was tested on IN1 (one-way Kruskal-Wallis test of 
Dice across 10 scanner types, H = 6.83; P = .66) or manufac-
turers (one-way Kruskal-Wallis test across three manufacturers, 

Figure 4: Effect of adding institution 1 (IN1) training data on IN1 and institution 2 (IN2) test data performance. (A) Dice scores on IN1 (left panel) and IN2 (right 
panel) test data for models trained with various datasets, including different amounts of IN1 training data. Median Dice scores are indicated by horizontal bars. A small 
amount of IN1 training data (blue shading) was sufficient for high performance when tested on IN1 test data, while a small amount of IN2 training data (M2 or M1+2) im-
proved performance on IN2 test data. (B) IN2 test data performance for various models with incremental addition of IN1 training data (green shading) to a baseline M2 
model (yellow). Addition of IN1 training data had no effect on IN2-tested performance, while a small amount of IN2 data improved performance over the M1 baseline 
model (*** = P < .001, P = .06 where indicated). Statistical comparisons are to the bars in each panel indicated by “|” using Wilcoxon signed-rank test. M1 = trained on 
IN1 patient data, M2 = trained on IN2 data, M1+2 = trained on IN1 + IN2 data.
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H = 0.68; P = .71) (Fig 6A), although the lack of significance 
may be partially related to low numbers of patients in each 
category (total, n = 51 [Table]).

There was no obvious relationship between the number of 
training cases on a particular scanner model and the segmenta-
tion performance on that model during testing (Fig 6B). There 
was no effect of field strength on segmentation performance (P 
= .45) (Fig 6C). There was also no effect of imaging acquisition 
dimensionality (2D vs 3D acquisitions) on segmentation perfor-
mance (P = .69) (Fig 6C).

Discussion
The practice of radiology, including clinical neuroimaging, 
can be conceptually broken down into perceptual and cogni-
tive components. Most errors in radiology are perceptual (15), 
and much of neuroradiologists’ time is spent searching for and 
measuring lesions. With imaging volumes steadily increasing, 
thereby allowing less time for each imaging study, such ancil-
lary tasks could be relegated to automated algorithms. These 
automated algorithms have less bias, less variability, and are 
much faster than human search patterns. For those reasons, 
we had previously created and trained a 3D U-Net CNN for 
detection of abnormal FLAIR signal (6), a sensitive marker 
of disease types that often guides the description of abnormal 
MRI findings. This AI algorithm was previously found to gen-
eralize well across disease types and across different scanners at 
a single institution.

However, a major limitation to the use of AI technologies in 
the clinical setting has been a poor ability to generalize outside of 
single health care institutions. Just as external validity is critical 
for testing the generalizability of randomized clinical trial results 
(16), AI technologies must be proven to function beyond single 
institutions prior to clinical deployment. In our data, we found a 
decrease in performance when attempting to port the FLAIR U-
Net outside of the institution in which it was originally trained 

(M1 tested on IN1 vs IN2 [median Dice score, 0.76 and 0.70, 
respectively] and M2 tested on IN2 vs IN1 [median Dice score, 
0.74 and 0.64, respectively]), despite substantial heterogene-
ity in the initial training data, including variable MRI scanner 
manufacturers, imaging parameters (echo and repetition times), 
spatial resolution, and other factors.

The segmentation performance of the externally tested model 
recovered to internally tested performance with the addition 
of a very small amount (10%) of training data that closely ap-
proximates the external dataset in terms of lesion and imaging 
characteristics. This result suggests that only limited additional 
data are needed to recover performance and return it to levels 
that approach previously established human performance for 
this task (6). Clearly, the amount of local data that are needed 
to recover intrainstitutional performance will depend on initial 
generalizability of the model and on the statistical similarities 
between the data from the two institutions. Currently, no clear 
guidelines exist on the amount of data that are sufficient to guar-
antee portability to a new institution. However, it appears that 
it is not necessarily the quantity of data, but rather its relevance, 
that increases performance. Our experiments demonstrate that 
only training data from the same institution with similar dis-
ease pathologic features as the test set increased segmentation 
performance. The addition of only brain tumor segmentations, 
which have idiosyncratic FLAIR patterns, did not increase the 
algorithm’s portability to the new institution.

One major barrier to amassing the diverse dataset required 
for increasing generalizability is the concern for data privacy 
(17,18). The use of federated learning models, wherein network 
weights and parameters, rather than patient data, are shared be-
tween institutions, may help to appease these concerns (19,20). 
The results of our study support such efforts, as they demonstrate 
the potentially large gains from limited additional local training 
data. We demonstrate that the local data are used most efficiently 
when they are used to fine-tune the model, with an approximate 

Figure 5: Lesion volume estimates and volume effect on Dice score. (A) The correlation between true total lesion volume and predicted total lesion volume for M1+2 
model (white squares) was high (Spearman r = 0.98). Black circles represent data from M1 tested on institution 1 (IN1) data as a reference. (B) Bland-Altman plot dem-
onstrating the difference between predicted and true total lesion volume on the test set as a function of true total lesion volume in the range 0 to 500 cm3. Lines represent the 
mean (solid line) and ± 1.96 standard deviations (SD; dashed line) for M1 with IN1 test (black) and M1+2 with institution 2 (IN2) test (gray) models. Lesions larger than three 
SD above the mean training data lesion volume (n = 2) are excluded from this plot because they represent clear outliers. (C) Box plot of Dice score as a function of true 
total lesion volume for IN1-trained, IN2–fine-tuned model (MFT (1+2)). (*) indicates P < .05, (**) indicates P < .01. M1 = trained on IN1 patient data, M1+2 = trained on IN1 
+ IN2 data. 
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10-fold time savings and slightly increased segmentation perfor-
mance compared with combining the data from institutions and 
training from scratch. The alternative, to completely retrain a 
model at each new institution with its own training data, may 
result in similar performance but is extremely time-consuming 
and expensive owing to the effort required to curate high-quality 
labeled training data.

This study had several limitations. It tested the portability of 
a single AI algorithm to a single new institution on a modest 
dataset, and it is unclear whether the same results would hold 
true for other algorithms and other institutions, although we 
suspect that these are general principles for AI in radiology. The 
specific amount of local training data required before deploy-
ing to the new institution, however, will be both model- and 

Figure 6: Lesion segmentation performance of the bi-institutionally trained model according to various imaging parameters. (A) Dice score based on institution 2 (IN2) 
test data as a function of MRI machine model, grouped by MRI machine manufacturer. Dashed gray line represents median Dice score for the institution 1 (IN1)–trained, 
IN2–fine-tuned model (MFT (1+2)) tested on IN2 (0.78). There were no significant differences in median Dice score across 10 machine models (P = .66) or across three 
manufacturers (P = .71). (B) Dice scores in test data according to the number of training cases from the same machine model. (C) Dice scores as a function of field strength 
(left) and acquisition dimension (right). There was no effect of field strength (P = .45) or acquisition dimension (P = .69). Horizontal bars represent median Dice scores. All 
data shown are for MFT (1+2) tested on IN2 data using threefold cross-validation to ensure independent training and testing data. # = number of, 3D = three dimensional, 2D 
= two dimensional.
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institution-dependent and will need to be evaluated for any 
given model, including disease-specific models trained at one 
institution. For example, while initial external validation perfor-
mance of the FLAIR U-Net was lower than internal validation 
performance, the overall decrease in performance was relatively 
modest, likely owing to the image acquisition parameter diver-
sity of the original training dataset. The FLAIR U-Net itself also 
has limitations, including only being tested on the 17 specific 
disease entities included in this study, and not performing as well 
on small lesions (6) and extremely large lesions outside the range 
of training data.

Ongoing work aims to identify whether similar principles 
of fine-tuning allow efficient adaptation of segmentation algo-
rithms from one MRI sequence to another or from one disease 
(or set of diseases) to another, such as from primary brain tumors 
to metastases. Additionally, experiments are underway to exam-
ine whether it may be possible to apply generative adversarial 
networks using input from one institution to generate synthetic 
data outputs that more closely resemble the distribution of ac-
quisition parameters of another institution, thereby further miti-
gating the need for labeling external datasets.

In conclusion, we tested the interinstitutional portability of 
an AI algorithm for detection of FLAIR lesions at brain MRI. 
The AI algorithm performed well on its intended task of lesion 
segmentation across a variety of neurologic diseases. A model 
trained and tested at one institution had lower performance on 
data from an outside institution. However, with the addition of 
a small amount of highly relevant training data from the outside 
institution, full performance was recovered. These results suggest 
a means to AI algorithm portability from one institution to an-
other without requiring extensive new training data.
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