Lawrence Berkeley National Laboratory

Recent Work

Title

BIS (PENTAMETHYLCYCLOPENTADIENYL) YTTERBIUM (II) AS A LEWIS ACID AND AN ELECTRON-TRANSFER LIGAND; PREPARATION, CRYSTAL STRUCTURE, AND SOLUTION DYNAMICS OF [Yb(C5Me5)2(u-OC)2Mo-(CO) (C5H4)]2

Permalink https://escholarship.org/uc/item/6364x5tw

Authors Boncella, J.M. Andersen, R.A.

Publication Date

1986-08-01

BL-21985

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBL-21983

Bis(Pentamethylcyclopentadienyl) Ytterbium(II) as a Lewis Acid and an Electron-Transfer Ligand; Preparation, Crystal Structure, and Solution Dynamics of $[Yb(C_5Me_5)_2(\mu-OC)_2Mo-(CO)(C_5H_4R)]_2$

James M. Boncella and Richard A. Andersen*

Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California Berkeley, California 94720

Address correspondence to this author at Chemistry Department, UCB.

Abstract

The divalent ytterbium metallocene, $Yb(C_5Me_5)_2(OEt_2)$, reacts with the metal-metal bonded compound $(RC_5H_4)_2Mo_2(CO)_6$, to give dimers of composition $Mo_2(C_5H_4R)_2(CO)_6Yb_2(C_5Me_5)_4$, where R is H or Me_3Si . X-Ray crystallographic studies on the Me_3Si complex show that the molecule is a centrosymmetric dimer with the $C_5H_4SiMe_3$ groups on the molybdenum atoms <u>trans</u>-disposed. The space group is $P2_1/n$ with a = 13.771(1)Å, b = 15.294(2), c = 15.607(1), β = 93.434(8)°, V = 3294Å³, and Z = 2. Variable temperature ¹HNMR spectroscopic studies show that in toluene solution the compound exists in an equilibrium between <u>trans</u> and <u>cis</u> isomers, and the activation energy for interconversion is <u>ca</u>. 20 kcal mol⁻¹. The mechanism for the interconversion is shown by cross-over studies to be intermolecular. Related intermolecular exchange processes have been discovered in the $M_2(C_5H_4R)_2(\mu-CO)_4Yb_2(C_5Me_5)_4$ dimers, where M is Fe or Ru and R is Me or SiMe_3.

In a previous paper, we described the synthesis and X-ray crystal structure of $Yb_2(C_5Me_5)_4(MeC_5H_4)_2Fe_2(\mu-CO)_4$ ^{1a} which is structurally similar to the dimeric form of the electronically equivalent $Yb_2(C_5Me_5)_4(\mu-CO)_4Mn_2(CO)_6$.^{1b} The motivation of these studies was crystallographic characterization of the tight ion-pair molecules, which were derived from electron-transfer to the neutral transition metal carbonyl dimers, so that the structural ramifications of coordination and electron transfer could be elucidated. In addition, we wanted to address the question of solution properties, i.e., what, if any, ion-pair equilibria are involved in hydrocarbon solution and how this compares with equilibria in ether solvents of the alkali-metal transition metal carbonyl anions.² The ytterbium-transition metal complexes are particularly convenient molecules for study since the complexes are tight ion-pairs of known composition in the solid state and they are soluble in aliphatic hydrocarbon and ether solvents. In a continuation of these studies we decided to make $Yb_2(C_5Me_5)_4(RC_5H_4)_2Mo_2(\mu-CO)_4(CO)_2$, which is electronically equivalent to the manganese and iron complexes referred to above and presumably structurally similar with them. The ytterbium-molybdenum complex, however, could be rather more interesting than either the manganese or iron complexes since it can exist as <u>cis</u> or <u>trans</u> isomers as does the parent $Cp_2Mo_2(CO)_6$.³ The isomerization reaction could provide us with an observable spectroscopic handle that we could use to study solution dynamic properties of these ion-pairs.

35

16

Synthetic Studies. The complexes of composition

 $Yb_2(C_5Me_5)_4Cp_2Mo_2(CO)_6(I)$ and $Yb_2(C_5Me_5)_4(MeSiC_5H_4)_2Mo_2(CO)_6(II)$ were prepared by reaction of $Yb_2(C_5Me_5)_4(OEt_2)$ and the single metal-metal bonded compound $(RC_5H_4)_2Mo_2(CO)_6$, where R is H or Me_3Si , in toluene at room temperature followed by crystallization of dark purple crystals on cooling. The C_5H_5 complex (I) also was isolated in very low yield from the reaction of

-3-

 $Yb_2(C_5Me_5)_2(OEt_2)$ and the molybdenum-molybdenum triply-bonded compound $Cp_2Mo_2(CO)_4$. Methyl iodide reacts with I in toluene to give mainly $CpMo(CO)_3Me$ and a small amount (<u>ca</u>. 5%) of $CpMo(CO)_3I$, as judged by the infrared spectrum of the reaction product after extraction into pentane. The infrared spectra of I and II (Table I) in cyclohexane show three absorptions in the C-O stretching frequency region, one of which is at low energy, <u>ca</u>. 1680 cm⁻¹, indicating that Mo-CO-Yb interactions are present.¹ Theory predicts that the <u>trans</u> isomer (Ia or IIa) of idealized C_{2h} symmetry will have

(See illustration, next page)

three infrared active CO stretches and the <u>cis</u>-isomer (Ib or IIb) of idealized C_{2v} symmetry will have six infrared active CO stretches. The observation of three CO-absorptions in cyclohexane or toluene is consistent with the existence of only one isomer of C_{2h} symmetry present in solution. This analysis is deceptively simple as shown by the ¹HNMR spectroscopic study, see below.

<u>X-Ray Crystallographic Study of IIa</u>. An ORTEP diagram is shown in Figure I, in which one of the <u>trans</u>-disposed $Me_3SiC_5H_4$ groups on a molybdenum atom has been replaced by Cp1 for clarity. Positional parameters are in Table II and crystal data are in Table IV. Thermal parameters and structure factors are in Supplementary Material. Some bond lengths and bond angles are in Table III.

The molecule crystallizes in the monoclinic crystal system with space group P2₁/n. The structure consists of centrosymmetric dimers. The four metal atoms (two molybdenum and two ytterbium) in the molecule are coplanar as imposed by the inversion center and the molecule has idealized C_{2h} symmetry as

-4-

П о П р

> Ia, R=H b, R=SiMe₃

-4a-

suggested by the solution infrared spectrum. Two of the carbonyl groups on each molybdenum atom form essentially linear Mo-CO-Yb bridges to the ytterbium atoms since the averaged Mo-C(30,31)-O(1,2) and C(30,31)-O(1,2)-Yb angles are 177.5 \pm 0.1° and 172.8 \pm 3.0°, respectively. The dihedral angle formed by the intersection of the Yb₂Mo₂ and YbO(1)O(2') planes is 1.6° and between the Yb₂Mo₂ and MoC(3')C(3) planes is 1.9°, indicating that the twelve-membered Yb₂Mo₂C₄O₄ ring is nearly planar. The angle between the centroids of the Me₃SiC₅H₄ rings and the Mo₂Yb₂ plane is 56°. The Me₃SiC₅H₄ rings are canted so that the Me₃Si group fits into the slot between the two staggered Me₅C₅ rings attached to the ytterbium atoms.

The coordination geometry about each ytterbium atom is pseudotetrahedral if the Me_5C_5 ring centroids are considered to occupy a coordination site. The centroid-Yb-centroid angle is 140° and the O(1)-Yb-O(2) angle is 88.3(1)°. The averaged ytterbium to ring centroid distance is 2.30Å, the averaged Yb-C distance is 2.58 ± 0.01Å, and the Yb-O distance is 2.245(3)Å. These parameters are similar to those of the Yb-Mn^{1a} and Yb-Fe^{1b} complexes described earlier.

The feature of most interest in the structure of IIa is the terminal Mo-C and bridging Mo-C distances and their corresponding C-O distances. These are listed in Table V along with bond distances in related molecules. By comparing the first two entries it is apparent that reduction of the metal-metal bond in the dimer, $Cp_2Mo_2(CO)_6$, to give the separated ion-pair, $[Bn_4^N][CpMo(CO)_3]$ shortens the Mo-C bond by 0.07 Å and lengthens the C-O bond by 0.03 Å. In molecules that contain terminal Mo-CO and bridging Mo-CO-M bonds, it is informative to compare the Mo-C distances within the same molecule. The Mo-C distance associated with the bridging carbonyl group is shortened by 0.04 to 0.10 Å and the C-O bond is lengthened by 0.03 to 0.06 Å

-5-

relative to the Mo-CO terminal bond. The molybdenum-ytterbium complex is not an exception to this trend. Thus, coordination and electron-transfer into the l.u.m.o. of a carbon monoxide ligand results in stretching the C-O bond, shrinking the Mo-C bond since the l.u.m.o. is CO antibonding and M-C bonding.^{3b} This may be expressed by the valence-bond structures shown below.

(See illustration, next page)

The molybdenum-ytterbium complex can be thought of as a metallacetonylacetonate complex,⁶ <u>i.e</u>., the two [(Me₅C₅)₂Yb(III)] groups are bridged by the two [(RC₅H₄)Mo(CO)(μ -CO)₂] groups, affording the twelve-membered ring structure.

<u>Solution Studies</u>. The solution infrared spectra of I in cyclohexane and tetrahydrofuran are quite different, as shown in Table I. The number of absorptions is the same but the middle absorption increases by <u>ca</u>. 100 cm⁻¹ and the lowest energy absorption decreases by 55 cm⁻¹ on going from the hydrocarbon to the ether solvent. A similar pattern is observed in $Cp_4Ti_2(MeC_5H_4)_2Mo_2(CO)_6$, whose molecular structure and infrared spectrum in Nujol is similar to II, Table I. Further, the infrared spectrum of the titanium-molybdenum compound in tetrahydrofuran is similar to I in tetrahydrofuran. The crystal structure of the C_5H_5 -titanium-molybdenum complex, crystallized from tetrahydrofuran, shows that only one of the carbonyl groups of $CpMo(CO)_3$ is bridging and the tetrahydrofuran ligand is coordinated to the titanium atom, $Cp_2Ti(thf)(\mu-OC)Mo(CO)_2Cp$.⁴f It is reasonable to postulate that a similar bridge splitting reaction occurs between I and tetrahydrofuran, <u>i.e.</u>, the ether is a strong enough base to cleave the dimer into monomeric

-6-

units giving $(Me_5C_5)_2Yb(thf)(\mu-OC)(CO)_2MoCp$, but not strong enough to give the completely solvent-separated ion-pair, $[(Me_5C_5)_2Yb(thf)_x][CpMo(CO)_3]$. Similar cleavage reactions of ytterbium-isocarbonylmetal bonds were noted earlier.¹

¹<u>HNMR Spectroscopy</u>. The ¹HNMR spectra at 25°C of I and II appear to be contradictory. The spectrum of I (C_5H_5) consists of two resonances at $\delta 32.8$ and 8.16 in area ratio 10:60 due to C_5H_5 and C_5Me_5 resonances, respectively. This is consistent with the presence of a single isomer in solution, a result that is consistent with the infrared spectrum in cyclohexane. However, the ¹HNMR spectrum of II(Me₃SiC₅H₄) at 25°C indicates the presence of two complexes, tentatively identified as trans and cis isomers, IIa. and IIb, in the approximate ratio of 55:45, since each $Me_3SiC_5H_{4}$ group shows three broadened (v $_1$ is <u>ca</u>. 30 Hz) single resonances (at 250 MHz) due to the AA'BB'X_Q spin system at \$34.80, 33.50, 25.58 and 34.63, 32.05, and 29.30 in area ratio of 1.76:1.76:7.92 and 2.00:2.00:9.00, respectively. This gives the 45:55 area ratio of the two isomers. The resonances associated with the Me_5C_5 protons appear as three broadened (v $\frac{1}{4}$ is <u>ca</u>. 60 Hz) singlets at 68.98, 7.55 and 8.27 in an area ratio of 13.2:13.2:30. As the <u>trans</u>-isomer (IIa) has idealized C_{2h} symmetry and therefore chemically equivalent Me_5C_5 rings (assuming free rotation about the pseudo-five fold Me_5C_5 -ring to ytterbium rotation axis) and the <u>cis</u>-isomer (IIb) has idealized C_{2v} symmetry and chemically inequivalent Me_5C_5 rings, we conclude that the isomer in greater abundance (55% at 25°C) is the trans-isomer. The isomer population does not appear to change on cooling, but on warming the resonances coalesce at 130°C (the chemical shifts are linear in T^{-1}) and $\Delta G^{\neq}(T_c)$, assuming an equal population two site exchange model is valid, is ca. 20 kcal mol.⁻¹ The chemical shift difference, δv at Tc, is determined by plotting the chemical shift as a function of $T^{-1}(K)$ in the slow exchange region and extrapolating to the coalescence temperature, Tc.⁷ The

activation energy is not very accurate since it was assumed that the equal population two-site exchange model is valid and only one set of $Me_3SiC_5H_4$ protons could be used in determining Tc. This is due to the fact that the temperature dependence of the chemical shift for all of the other resonances in the complex is such that the difference in the chemical shift between each set of peaks decreases as the temperature is raised. Eventually the chemical shift difference for each set of protons in each pair of isomers becomes unobservable and the resonances accidentally overlap before they broaden and coalesce due to equilibration of the trans and cis isomers do so only because their chemical shift difference increases, rather than decreases as observed for the AA'BB' protons, as the temperature is raised so that they broaden and coalesce as expected for a system undergoing chemical exchange.

The presence of two isomers in solution in the Me₃SiC₅H₄ complex that undergo chemical exchange with a substantial activation energy barrier caused us to examine more closely the ¹HNMR spectral results on the C₅H₅ system. Lowering the temperature to -58°C causes the room temperature resonance at $\delta 32.8$ to split into two new resonances at $\delta 44.8$ and 43.6, $v_{\frac{1}{2}}$ are <u>ca</u>. 50 Hz, and the Me₅C₅ resonance to move upfield to $\delta 11.1$, $v_{\frac{1}{2}} = 87$ Hz. The observation of a <u>trans</u> \ddagger <u>cis</u> equilibrium in II and the apparent lack of such a process in I is perplexing, since it seems unreasonable to suggest that the activation barrier's for the two complexes are so different, <u>ca</u>. 10 kcal mol⁻¹. The key to this apparent dicotomy is that I does not behave like a chemically exchanging system since the two C₅H₅ resonances at -58°C do not broaden and coalesce as the temperature is raised but they move into each other and move to a lower frequency due to the temperature dependence of their

-8-

chemical shifts, <u>not</u> because they are undergoing chemical exchange. Hence the C_5H_5 system is best rationalized by postulating that two isomers are present in solution and the chemical shift difference for the Me_5C_5 protons in the two isomers is smaller than the observed line width, $v_{\frac{1}{2}} = 87$ Hz at 25°C.

The infrared spectral results, which indicate that only the <u>trans</u>-isomer of I and II is present in solution need to be rationalized. This is not a time scale problem since the infrared time scale is shorter than the NMR one⁸, but could indicate that the frequencies of the absorptions due to the <u>cis</u> (six absorptions) and <u>trans</u> (three absorptions) isomers are very close in energy so that the absorptions are not resolved and/or some of the absorptions are weak. Similar apparent spectroscopic contradictions have been observed in the parent complex $Cp_2Mo_2(CO)_6$.^{3a} In the latter case observation of the infrared spectrum in a variety of solvents of different dielectric constant helped yield an internally consistent explanation. We can not do such a study since solvents such as tetrahydrofuran cleave the dimeric units.

It is of some interest to speculate on the mechanism of $\underline{\text{trans}} \div \underline{\text{cis}}$ isomerization in II.⁹ An intramolecular process in which none of the Yb-O bonds cleave, seems unlikely since the molybdenum atoms are so far apart and the Me₅C₅ groups cause considerable steric congestion above and below the molybdenum-molybdenum vector. An intermolecular process is more appealing and the high activation energy barrier is consistent with this notion. A crossover experiment will delineate the difference between these two extreme mechanisms.¹⁰ Equimolar quantities of I and II were stirred in toluene for 24h. Evaporation of the toluene and dissolution in benzene-d₆ gave a ¹HNMR spectrum at 25°C that showed resonances due to <u>cis</u> and <u>trans</u> I and II, as well as new resonances that are consistent with the cross-over products. The spectrum is very complex since there are two geometrical isomers for I, II, and for the

-9-

cross-over compound. This complexity precludes quantitative study. Further, we cannot say whether the intermolecular process leads to $\frac{\text{trans}}{\ddagger} \frac{\text{cis}}{\ddagger}$ isomerization, all the cross-over experiment says is that I and II undergo intermolecular exchange at room temperature during the course of 24 hours.

These studies suggested that a careful examination of the ytterbium-iron system, $(RC_5H_4)_2Fe_2(\mu-CO)_4Yb_2(C_5Me_5)_4$, might reveal some hidden exchange processes.¹ This system is relatively straight forward to study since no isomerization of the ligands is possible. Mixing equimolar amounts of $(MeC_5H_4)_2Fe_2(\mu-CO)_4-Yb_2(C_5Me_5)_4$ (III) and $(Me_3SiC_5H_4)Fe_2(\mu-CO)_4Yb_2(C_5Me_5)_4$ (IV) in PhMe-dg shows that statistical cross over occurs within \underline{ca} . 10 minutes. The room temperature ¹HNMR spectrum is shown in Figure II. The single resonances due to the AA'BB'X₃ spin system of (III) appear at δ 44.2, 40.3, and 38.5, respectively, and the AA'BB' X_q spin system of (IV) appear at 650.2, 32.3, and 19.5, respectively.¹ The other six singlets can be assigned to the cross-over product, $(MeC_5H_4)(Me_3SiC_5H_4)Fe_2(\mu-CO)_4Yb_2(C_5Me_5)_4$. Integration shows that the area ratio of III:IV:III/IV is 1:1:2. Heating the sample to 164° results in only one (MeC₅H_{μ})Fe and one (Me₃SiC₅H_{μ})Fe environment which means that the cross-over equilibrium is fast at this temperature. A simple two site exchange approximation gives values of $\Delta G^{\pm}(Tc)$ for all six resonances that coalesce at 164°C that range from 19.0 to 19.8 kcal mol^{-1} with an averaged value of 19.4 kcal mole⁻¹. The similarity of the $\Delta G^{\star}(Tc)$ values in the iron-ytterbium case, (I) and (II), suggests but does not prove that cross-over in the latter system leads to isomerization and that these processes proceed by a common mechanism.

Two mechanistic postulates are shown in the Scheme (see next page) in which the Fe-Yb is used as a symbol for the Fe-CO-Yb unit. In pathway a, the complex completely dissociates into monomeric fragments FeYb and Fe'Yb and

-10-

then these combine to give the cross-over product. In pathway b, one Yb-O bond of the dimer breaks to give the opened dimer fragments FeYb₂Fe and Fe'YbYbFe' which can then undergo cross-over. This mechanistic problem is similar to that for bridge-terminal exchange in $Me_{\mu}Al_{2}(\mu-Me)_{2}^{11}$. In principal, it is possible to tell the difference between these two pathways by measuring the rate of cross-over since the method of initial rates predicts that the order for each reactant in a is 0.5 and the order for each reactant in b is 1. Unfortunately the overlapping of the resonances in the ¹HNMR spectrum does not allow us to determine the concentration of the species reliably. In order to separate the resonances farther apart we mixed equal molar amounts of $(Me_3SiC_5H_{\parallel})_2Fe_2(\mu-CO)_{\parallel}Yb_2(C_5Me_5)_{\parallel}$ and its ruthenium analogue.¹ Cross-over does indeed occur but, the low solubility at low temperature renders signal integration unreliable. This is unfortunate but the key point is that these dimers are undergoing intermolecular exchange in hydrocarbon solution. This is perhaps expected since lanthanide ions are labile ions in aqueous and non-aqueous solution.¹² Further, the transition metal carbonyl anion fragment in these lanthanide complexes can be viewed as alkoxide ligands with electron withdrawing substituents and metal alkoxides undergo rapid ligand exchange processes in solution.¹³

Experimental Section. All operations were carried out under nitrogen. Microanalyses were performed by the Microanalytical Laboratory of this department. Infrared spectra were recorded on a Perkin-Elmer 597 instrument; solid spectra were measured on Nujol mulls and solution spectra were measured in matched NaCl cells. The ¹HNMR spectra were measured at 250 MHz and the chemical shifts are expressed in δ -units, relative to Me₄Si at δ =0 with positive values to high frequency.

-11-

{[(Me₅C₅)₂Yb(III)][C₅H₅Mo(CO)₃]}₂

Bis(pentamethylcyclopentadienyl)ytterbium(II) diethyletherate (0.53g, 0.0010 mol) in toluene (30 mL) was added to a solution of $[(C_5H_5)Mo(CO)_3]_2$ (0.25g, 0.00051 mol) in toluene (10 mL). The reaction mixture turned dark purple upon mixing. After stirring for ca. 12 h the solution was filtered, concentrated to ca. 5 mL, then ca. 5 mL pentane was added. The resultant solution was then cooled to -70°C. The dark purple prisms (0.36 g, 51%) were collected and dried under reduced pressure, Mp. 335°C (dec). Anal. Calcd. for $C_{28}H_{35}MOO_{3}Yb$: C, 48.8; H, 5.12. Found: C, 49.0; H, 5.14. ¹H NMR (25°C) $\delta 8.16(v_{\frac{1}{2}} = 62 \text{ Hz}, 30 \text{ H}) \delta 32.85(v_{\frac{1}{2}} = 10 \text{ Hz}, 5\text{H})$. Ir (Nujol): 3110brw, 2730w, 2030w, 1942vs, 1931vs, 1730brs, 1680brs, 1609s, 1165w, 1110w, 1057w, 1022w, 1005m, 783s, 725w, 640w, 615m, 584m, 503s, 482m, 470sh, 390m, 321s, 268sh cm^{-1} . Methyl iodide (0.00017 mol) was added to a solution of {[$(Me_5C_5)_2Yb$][$C_5H_5Mo(CO)_3$]}₂ (0.10g, 0.000072 mol) in toluene (30 mL). The solution was stirred for ca. 12 hr, and the solvent was removed under reduced pressure. The residue was extracted into pentane and the ir spectrum of the pentane extract showed bands attributable to $C_5H_5Mo(CO)_3Me$ and $C_5H_5Mo(CO)_3I$. The concentration of the latter was estimated to be ca. 5% on the basis of relative band area.

{[(Me₅C₅)₂Yb(III)][Me₃SiC₅H₄Mo(CO)₃]}₂

The ether complex of Bis(pentamethylcyclopentadienyl)ytterbium(II) (0.79g, 0.0015 mol) in toluene (60 ml) was added to trimethylsilylcyclopentadienylmolybdenumtricarbonyl dimer (0.48g, 0.00076 mol) in toluene (15 ml). The reaction mixture was stirred for <u>ca</u>. 12 hr. The purple solution was filtered, and the filtrate was concentrated under reduced pressure to <u>ca</u>. 20 ml. Cooling to -10° C afforded purple prisms of product. The product was

-12-

collected, and dried under reduced pressure. The mother liquors were concentrated to <u>ca</u>. 2 ml and cooled to -10° C, producing another crop of crystals. The combined yield was 0.87 g (76%), Mp. 300-310° (dec). <u>Anal</u>. Calcd. for $C_{62}H_{86}O_{6}Si_{2}Yb_{2}Mo_{2}$: C, 48.9: H, 5.70. Found: C, 48.3: H, 5.79. ¹HNMR (250 MHz, 25°C); δ 34.8, (1.76H); 34.63, (2.0 H); 33.50, (1.76 H); 32.05, (2.0 H); 25.58, (7.92 H); 25.30, (9 H); 8.98, (13.2 H); 8.27, (30 H); 7.55, (13.2 H).

X-Ray Crystallography

Purple crystals of $[(Me_5C_5)_2Yb(Me_5SiC_5H_4)Mo(CO)_3]_2$ were obtained by slow cooling of a toluere solution to -10°C. They were mounted in thin walled quartz capillaries in an argon filled dry box, and then were flame sealed. Preliminary precession photographs indicated monoclinic (2/m) Laue symmetry and yielded preliminary cell dimensions. Examination of the 0k0, and h01 zones showed systematic absences 0k0 hź2n+1; h01, 1+hź2n+1 consistent only with space group P2₁/n (non-standard setting of P2₁/c).

The data crystal was then mounted on an Enraf-Nonius CAD4 automated diffractometer (for details of the CHEXRAY facility see ref. 1), and centered on the beam. Automatic peak search and indexing yielded the same unit cell as did the precession photographs, and confirmed the Laue symmetry. Accurate cell dimensions and orientation matrix were determined by a least-squares fit to the setting angles of the unresolved MoKa components of 24 symmetry related reflections with 20 between 24 and 30°. The results are given in Table I along with the parameters used for data collection.

The 4709 raw intensity data were converted to structure factor amplitudes and their esd's by correction for scan speed, background, and Lorentzpolarization effects. Analysis of the azimuthal scan data showed a small variation in the average relative intensity $(I_{min}/I_{max} = .927)$ curve. An

-13-

empirical absorption correction using the average relative intensity curve of the azimuthal scan data was performed because of the irregular shape of the crystal.

Rejection of systematically absent and redundant data yielded a unique set of 4293 data which were used to solve and refine the structure. Analysis of a three-dimensional Patterson map revealed the positions of the ytterbium and molybdenum atoms. The remaining atoms in the structure were found using the standard Fourier techniques, and the structure was refined using standard least-squares techniques. Hydrogen atoms were placed in idealized positions having fixed thermal parameters, and were included in structure factor calculations, but were not refined.

The final residuals for 335 variables refined against the 3327 data for which $F^2 > 3\sigma(F^2)$ were R = 2.07%, wR = 2.59%, and GOF = 1.74. The R value for all 4293 data was 4.35%.

The quantity minimized by the least-squares program was $\sum w(|F_0|-|F_c|)^2$, where w is the weight of a given observation. The p-factor, used to reduce the weight of intense reflections, was set to 0.015 in the final stages of refinement. The analytical forms for the scattering factor tables for the neutral atoms were used and all non-hydrogen scattering factors were corrected for both the real and imaginary components of anomalous dispersion.

Inspection of the residuals ordered in ranges of $\sin\theta/\lambda$, $|F_0|$, and parity and value of the individual indexes showed no unusual features or trends. There was evidence of secondary extinction in the low-angle, high-intensity data, and a correction for secondary extinction was applied. The largest peak in the final difference Fourier map had an electron density of .384 e⁻/Å³ near the Mo atom.

-14-

<u>Acknowledgment</u>. This work was supported by the director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract DE-AC03-76SF00098. We thank Dr. F.J. Hollander, staff crystallographer of the U.C. X-ray facility (CHEXRAY) for his help with the crystallographic study, and Professors R.E. Connick and H.L. Strauss for helpful discussions. The CHEXRAY facility was set up by a departmental grant from the NSF.

<u>Supplementary Material</u>. Structure factor tables, General Temperature Expressions, Amplitudes of Thermal Vibration, and carbon-carbon bond lengths and angles (22 pages).

REFERENCES

- 1(a) Boncella, J.M.; Andersen, R.A. <u>Inorg. Chem.</u>, previous paper in this issue.
 (b) Boncella, J.M.; Andersen, R.A. <u>Ibid</u>. 1984, <u>23</u>, 432.
- 2(a) Darensbourg, M.Y.; Darensbourg, D.J.; Burns, D.; Drew, D.A. J. Am. Chem. Soc., 1976, 98, 3127. (b) Pannell, K.H.; Jackson, D. <u>Ibid</u>. 1976, 98, 4443. (c) Darensbourg, M.Y.; Jiminez, P.; Sackett, J.R.; Hanckel, J.M.; Kump, R.L. <u>Ibid</u>. 1982, <u>104</u>, 1521, and references therein.
- 3(a) Adams, R.D.; Cotton, F.A. <u>Inorg. Chem. Acta</u> 1973, 7, 153. (b) Adams, R.D.; Collins, D.M.; Cotton, F.A. <u>Inorg. Chem</u>. 1974, 13, 1086. (c) Jackman, L.M.; Cotton, F.A. eds. "Dynamic Nuclear Magnetic Resonance Spectroscopy" 1975, Academic Press, New York, Chapter 12.
- 4(a) (a) McVicker, G.B. <u>Inorg. Chem</u>. 1975, <u>14</u>, 2087. (b) Ulmer, S.W.; Skarstad, P.M.; Burlitch, J.M.; Hughes, R.E. <u>J. Am. Chem. Soc</u>. 1973, <u>95</u>, 4469. (c) Blackmore, T.; Burlitch, J.M. <u>J. Chem. Soc. Chem. Comm</u>. 1973, 405. (d) Merola, J.S.; Campo, K.S.; Gentile, R.A.; Modrick, M.A.; Zentz, S. <u>Organometallics</u> 1984, <u>3</u>, 334. (e) Merola, J.S.; Gentile, R.A.; Ansell, G.B.; Modrick, M.A.; Zentz, S. <u>Ibid</u>. 1982, <u>1</u>, 1731.
- 5(a) Crotty, D.C.; Corey, E.R.; Anderson, T.J.; Glick, M.D.; Oliver, J.P. <u>Ibid.</u> 1977, <u>16</u>, 920. (b) Hamilton, D.M.; Willis, W.S.; Stucky, G.D. <u>Ibid.</u> 1981, <u>103</u>, 4255. (c) Sartain, W.J.; Selegue, J.P. <u>Organo-</u> <u>metallics</u>, 1984, <u>3</u>, 1922. (d) Horwitz, C.P.; Shriver, D.F. <u>Adv.</u> <u>Organomet. Chem.</u> 1984, <u>23</u>, 219. (e) Longato, B.; Martin, B.D.; Norton, J.R.; Anderson, O.P. Inorg. Chem. 1985, <u>24</u>, 1389.
- 6. Lukehart, C.M. Acc. Chem. Res. 1981, <u>14</u>, 109.
- 7. Pignolet, L.H.; Lewis, R.A.; Holm, R.A. Inorg. Chem. 1972, 11, 99.
- 8. Muetterties, E.L. <u>Inorg. Chem</u>. 1965, <u>4</u>, 769. (b) Bryant, R.G. <u>J. Chem.</u> <u>Ed</u>. 1983, <u>60</u>, 933.
- 9. For a review of Fluxionality in organometallic carbonyl systems, including bridge-terminal exchange, see "Comprehensive Organometallic Chemistry" Wilkinson, G.; Stone, F.G.A. <u>eds</u>. Pergamon Press, Oxford, 1984, Chapter 20 and, ref. 3c.
- 10(a) Bergman, R.G. <u>Acc. Chem. Res.</u> 1980, <u>13</u>, 113. (b) Hersch, W.H.; Bergman, R.G. J. Am. Chem. Soc., 1983, 105, 5846.
- "Organometallic Reaction Mechanisms" Matteson, D.S. Academic Press, New York, 1974, p. 36.
- 12(a) "Mechanisms of Inorganic Reactions" Basolo, F.; Pearson, R.G. 2nd edition, John Wiley, New York, 1967, P. 145. (b) Pisaniello, D.L.; Helm, L.; Meier, P.; Merbach, A.E. J. Am. Chem. Soc. 1983, 105, 4528.
- 13. "Metal Alkoxides" Bradley, D.C.; Mehrotra, R.C.; Gaur, D.P. Academic Press, New York, 1978.

Table I

Infrared Spectra of $(RC_5H_4)Mo(CO)_3X$ Complexes

Compound	Medium	<u>vCO in cm⁻¹ Re</u>	ference
Cp ₂ Mo ₂ (CO) ₆	cyclohexane	1966s, 1922s	3a
	tetrahydrofuran	2014s, 1959m, 1916w	3a
NaCpMo(CO) ₃	tetrahydrofuran	1899s, 1796s, 1743m	2a
КСрМо(СО) ₃	tetrahydrofuran	1897s, 1798s, 1748m	2a
PPNCpMo(CO)3	tetrahydrofuran	1896s, 1780s	2a
$Mg(thf)_{4}[CpMo(CO)_{3}]_{2}$	tetrahydrofuran	1912s, 1815s, 1680s	4a
Mg(ру) ₄ [СрМо(СО) ₃] ₂	Nujol	1918s, 1828s, 1667s	4ъ
Mn(ру) ₄ [СрМо(СО) ₃] ₂	Nujol	1905s, 1808s, 1650s	4c
Cp ₄ Ti ₂ [MeC ₅ H ₄ Mo(CO) ₃] ₂	Nujol	1920, 1755, 1710	4d
	tetrahydrofuran	1920s, 1830s, 1650s	4e
(Me ₅ C ₅) ₄ Ti ₂ [CpMo(CO) ₃] ₂	Nujol	1925s, 1835s, 1610s	4e
(Me ₅ C ₅) ₄ Yb ₂ (CpMo(CO) ₃] ₂	cyclohexane	1940s, 1730s, 1680s	this
	tetrahydrofuran	1927s, 1828s, 1625s	work
$(Me_5C_5)_4Yb_2[(Me_3SiC_5H_4)Mo(CO)_3]_2$	cyclohexane	1944s, 1730s, 1682s	this
	toluene	1935s, 1730s, 1685s	work

Table II

Positional Parameters

Atom	×	<u>у</u> _	Z	.2 B(A)
Atom YB1 MO1 SI1 O2 O3 C1 C2 C3 C4 C5 C6 C7 C8 C11 C12 C13 C14 C15 C16 C17 C18 C19 C221 C223 C24 C25 C26 C27 C28 C17 C18 C19 C221 C22 C23 C24 C25 C24 C17 C18 C19 C221 C22 C23 C24 C25 C24 C17 C18 C19 C221 C22 C23 C24 C25 C24 C17 C18 C17 C18 C17 C18 C17 C18 C17 C18 C17 C18 C17 C18 C17 C18 C17 C12 C23 C14 C12 C23 C24 C25 C26 C17 C18 C17 C18 C17 C12 C27 C28 C17 C18 C17 C12 C27 C28 C17 C17 C18 C17 C12 C27 C27 C27 C27 C27 C27 C27 C2	x Ø.12175(1) Ø.25049(3) Ø.3476(1) Ø.0363(2) Ø.1578(3) Ø.2652(3) Ø.2997(4) Ø.3524(3) Ø.4143(4) Ø.3978(5) Ø.3288(5) Ø.3288(5) Ø.3288(5) Ø.3288(5) Ø.2216(6) Ø.4192(5) Ø.2216(6) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2195(3) Ø.2287(3) Ø.1465(4) Ø.0751(5) Ø.2287(3) Ø.1475(4) Ø.0751(5) Ø.2287(3) Ø.1475(4) Ø.0682(4) Ø.0991(4) Ø.3308(5) Ø.1436(7) -Ø.0338(5) Ø.1436(7) -Ø.0338(5) Ø.2664(6) -Ø.02595(4) Ø.2595(4) Ø.2595(4) Ø.2478	y Ø.ØØØ93(1) Ø.Ø1518(3) Ø.Ø168(1) -Ø.ØØ33(2) Ø.ØØ31(2) -Ø.1868(3) Ø.137Ø(4) Ø.Ø64Ø(4) Ø.Ø386(5) Ø.Ø922(6) Ø.0922(6) Ø.0922(6) Ø.0922(6) Ø.094Ø(5) Ø.094Ø(5) Ø.016Ø(6) Ø.Ø16Ø(6) Ø.0854(5) -Ø.1423(3) -Ø.1531(3) -Ø.1531(3) -Ø.1516(4) -Ø.1516(4) -Ø.1516(4) -Ø.197Ø(4) -Ø.197Ø(4) Ø.1374(3) Ø.1652(3) Ø.1363(4) Ø.1386(3) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.1386(4) Ø.188(4) -Ø.188(4	z Ø.3Ø177(1) Ø.62661(3) Ø.8538(1) Ø.3294(2) Ø.4434(2) Ø.6312(3) Ø.712Ø(3) Ø.712Ø(3) Ø.7449(3) Ø.6794(4) Ø.6273(4) Ø.6273(4) Ø.8559(5) Ø.8854(5) Ø.9298(4) Ø.8559(5) Ø.8854(5) Ø.9298(4) Ø.3227(3) Ø.241Ø(3) Ø.2454(3) Ø.2208(5) Ø.3255(3) Ø.22069(5) Ø.4064(4) Ø.2208(5) Ø.4064(4) Ø.22078(3) Ø.3297(5) Ø.4218(4) Ø.2297(5) Ø.4218(4) Ø.2297(5) Ø.4218(4) Ø.2297(5) Ø.4218(4) Ø.2297(5) Ø.4218(4) Ø.2297(5) Ø.4218(4) Ø.2297(5) Ø.4218(4) Ø.2873(5) Ø.1133(4) Ø.1381(5) Ø.5141(3) Ø.5141(3) Ø.7422	$\begin{array}{c} .2\\ B(A)\\ \hline \\\\ 2.735(4)\\ 3.838(9)\\ 5.21(4)\\ 4.58(1)\\ 4.58(8)\\ 4.45(7)\\ 8.4(1)\\ 5.8(1)\\ 4.9(1)\\ 8.8(2)\\ 9.1(2)\\ 14.6(2)\\ 9.1(2)\\ 14.4(3)\\ 11.5(3)\\ 8.3(2)\\ 4.8(1)\\ 4.2(1)\\ 1.2(2)\\ 8.2(2)\\ 1.2(2)\\ $
H31	Ø.4572	-Ø.Ø1Ø6	Ø.68Ø9	1Ø.Ø**
H41	Ø.4235	Ø.Ø941	Ø.5569	1Ø.Ø**
H51	Ø.2984	Ø.2Ø48	Ø.5964	1Ø.Ø**
H61	Ø.3971	-Ø.1216	Ø.9Ø82	15.Ø**
H62	Ø.3612	-Ø.1314	Ø.8129	15.Ø**
H63	Ø.4642	-Ø.Ø943	Ø.8366	15.Ø**
H71	Ø.2173	-Ø.ØØ58	Ø.94Ø4	12.Ø**
H72	Ø.1975	Ø.Ø768	Ø.8847	12.Ø**
H73	Ø.1813	-Ø.Ø154	Ø.8452	12.Ø**
H81	Ø.4199	Ø.Ø633	Ø.9881	8.Ø**
H82	Ø.4873	Ø.Ø894	Ø.9164	8.Ø**
H83	Ø.3956	Ø.1448	Ø.9319	8.0**

.

Table II

Positional Parameters

Ø.3299

Ø.35Ø8

H151

H152

H153	Ø.2752	-Ø.1426	Ø.4496	8.5**
H161	Ø.3615	-Ø.1535	Ø.1884	8.5**
H162	Ø.3282	-ø.ø6ø7	Ø.1594	8.5**
H163	Ø.3772	-Ø.Ø748	Ø.25Ø1	8.5**
H171	Ø.1424	-Ø.1667	Ø.Ø668	8.5**
H172	Ø.Ø633	-Ø.Ø965	Ø.Ø799	8.5**
H173	Ø.1711	-Ø.Ø688	Ø.Ø741	8.5**
H181	-Ø.Ø288	-Ø.2391	Ø.2Ø14	8.5**
H182	-Ø.Ø658	-Ø.175Ø	Ø.269Ø	8.5**
H183	-Ø.Ø539	-Ø.1433	Ø.1761	8.5**
H191	Ø.Ø779	-Ø.2584	0.4104	8.5**
H192	Ø.1Ø6Ø	$-\emptyset.1716$	Ø.4567	8.5**
H193	Ø.ØØ72	-Ø.1794	Ø.4Ø42	8.5**
H251	Ø.3627	Ø.1898	Ø.3218	10.0**
H252	Ø.3324	Ø.1234	Ø.39Ø1	10.0**
H253	Ø.368Ø	Ø.Ø9Ø3	Ø.3Ø37	10.0**
H261	Ø.156Ø	Ø.263Ø	Ø.4226	10.0**
H262	Ø.Ø84Ø	Ø.1899	Ø.4455	10.0**
H263	Ø.1953	Ø.1746	Ø.4588	10.0**
H271	-Ø.Ø4Ø4	Ø.2545	Ø.2764	10.0**
H272	-Ø.Ø816	Ø.1621	Ø.2552	10.0**
H273	-Ø.Ø479	Ø.1859	Ø.3486	10.0**
H281	Ø.Ø378	Ø.1785	Ø.Ø819	12.Ø**
H282	Ø.Ø624	Ø.Ø798	Ø.Ø76Ø	12.Ø**
H283	-Ø.Ø286	Ø.1Ø97	Ø.122Ø	12.Ø**
H291 ·	Ø.2868	Ø.1572	Ø.1131	12.0**
H292	Ø.3247	0.0718	Ø.1569	12.0**

-Ø.2Ø79

-Ø.1Ø85

Ø.3939

Ø.388Ø

8.5**

8.5**

* -* -- Atoms refined with isotropic ther ** -- Atoms included but not refined. therm parameters. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: 2 (4/3) * [a *B(1,1) + b *B(2,2) + c *B(3,3) + ab(cos gamma)*B(1,2)

+ ac(cos beta)*B(1,3) + bc(cos alpha)*B(2,3)]

Table III

Bond Lengths and Bond Angles

Intramolecular Distances

ATOM	1	ATOM	2	DISTANCE
YB1		01		2.245(3)
YB1		02		2.245(3)
YB1		Clø	•	2.581(4)
YB1		C11		2.596(4)
YB1		C12		2.597(4)
YB1		C13		2.581(4)
YB1		C14		2.565(4)
YB1		C111		2.295(1)
YB1		C2Ø		2.565(4)
YB1		C21		2.578(4)
YB1		C22		2,592(4)
YB1		C23		2.587(4)
YB1		C24		2.600(4)
YB1		C112		2.296(1)
MO1		C1		2,369(4)
MO1		C2		2.377(4)
MO1		C3		2.383(4)
MO1		C 4		2.377(6)
MO1		C 5		2.387(5)
MO1		CIØ1		2.054(1)
MO1		C3Ø		1.890(4)
MO1		C31		1.88Ø(4)
MO1		C32		1.928(5)
C3Ø		01		1.185(4)
C31		02		1.196(4)
C32		03		1,169(5)

Intramolecular Angles

ATOM 01 01 02 02 C111	1	ATOM YB1 YB1 YB1 YB1 YB1 YB1 YB1	2	ATOM 02 C111 C112 C111 C112 C112 C112	3	ANGLE 88.26(1Ø) 1Ø5.Ø2(6) 1Ø4.89(6) 1Ø2.55(6) 1Ø3.47(6) 14Ø.56(1)
C3Ø C3Ø C3I C31 C31 C32		MO1 MO1 MO1 MO1 MO1 MO1		C31 C32 C1Ø1 C32 C1Ø1 C1Ø1	٩	83.21(15) 89.33(17) 129.53(1Ø) 88.43(17) 128.81(11) 123.84(13)
YB1 YB1 MO1 MO1 MO1		01 02 C3Ø C31 C32		C3Ø C31 O1 O2 O3		178.8(3) 166.8(3) 177.8(3) 177.3(3) 179.9(3)

Space Group	$\frac{P2_1/n}{2}$
a, Å	13.771(1)
b, Å	15.294(2)
c, Å	15.607(1)
ß, deg	93.434(8)
v, Å ³	3294
Z	2
ſw	1520.70
d(calcd), g cm^{-3}	1.535
μ (calcd), cm ⁻¹	32.5
size, mn	0.24 x 0.32 x 0.20
reflens, collected	4709
reflens, unique	4293
reflcns, $F_0^2 > 3\sigma(F_0^2)$	3327

R, %

R_w, %

monochromator

scan range, type

scan width, deg

scan speed, deg min⁻¹

radiation

GOF

2.07

2.59

1.74

Table IV

Crystal Data (25°C) for $(Me_5SiC_5H_4)_2Mo_2(CO)_2(\mu-CO)_4Yb_2(C_5Me_5)_4$

 $\Delta \theta = 0.55 + 0.347 \tan \theta$

highly oriented graphite

MoKa ($\lambda = 0.71073$ Å)

3° ≤ 20 ≤ 45°

0.69 - 6.7

Table V

Mo-C(Å) Mo-C(Å) C-O(Å) C-O(Å) Ref. Compound (terminal) (bridging) (terminal) (bridging) Cp2Mo2(CO)6 1.977(9) 1.148(2) 3a $[Bu_{4}^{n}N][CpMo(CO)_{3}]$ 1.176(6) 1.909(8) 5a $[Mg(py)_{4}][CpMo(CO)_{3}]_{2}$ 1.886(2) 1.947(3) 1.157(3) 1.189(3) 4ъ 1.152(1) $Ti(C_5Me_5)_2MeCpMo(CO)_3$ 1.944(2) 1.875(4)1.212(5) 5b ZrCp2MeCpMo(CO)3 1.93(3) 1.847(3) 1.236(4) 1.16(1) 5e TiCp₂(thf)CpMo(CO)₃ 1.925(5) 1.874(7)1.152(2) 1.210(8) 4c $Ti_2Cp_{\downarrow}[CpMo(CO)_3]_2$ 1.92(2) 1.880(7) 1.180(5) 1.208(3) 4d $2r_2(NEt_2)_4(Et_2NH)_2[CpMo(CO)_3]_2$ 1.96(2) 1.86(2) 1.15(2) 1.20(3) 5c

Molybdenum-Carbon and Carbon-Oxygen Bond Lengths

ORTEP Diagram of $(Me_5SiC_5H_4Yb_2(\mu-OC)_4Mo_2(CO)_2(C_5H_4SiMe_3)_2$. The $Me_5SiC_5H_4$ ligand on Mo(1) is removed and replaced by the symbol CP1 for clarity. The labelled atoms are related to their identical unlabelled atoms (noted by a prime, in text) by inversion.

Figure II

¹HNMR Spectrum of $(MeC_5H_4)_2Fe_2(\mu-CO)_{4}Yb_4(C_5Me_5)_4$ and $(Me_3SiC_5G_4)_2Fe_2(\mu-CO)_{4}Yb_4(C_5Me_5)_4$ at 25°C.

-22Ъ-

Supplementary Material for Bis(Pentamethylcyclopentadienyl) Ytterbium(II) as a Lewis Acid and an Electron-Transfer Ligand; Preparation, Crystal Structure, and Solution Dynamics of $[Yb(C_5Me_5)_2(\mu-OC)_2Mo-(CO)(C_5H_4R)]_2$

James M. Boncella and Richard A. Andersen

Structure Factors, carbon-carbon bond distances and bond angles, general temperature expressions and amplitudes of thermal vibration

Name	B(1,1)	B(2,2)	B(3,3)	B(1,2)	B(1,3)	B(2,3)	Beqv
YB1	2.696(7)	2.635(7)	2.871(7)	-Ø.Ø75(8)	Ø.136(6)	Ø.Ø35(8)	2.735(4)
MO1	2.69(2)	5.75(2)	3.ØØ(2)	-Ø.77(2)	-Ø.17(1)	-Ø.Ø6(2)	3.83Ø(9)
SI 1	4.81(7)	6.75(9)	3.91(6)	Ø.13(7)	-1.Ø7(6)	-Ø.1Ø(7)	5.21(4)
01	3.1(1)	4.2(1)	6.3(2)	-Ø.2(1)	Ø.9(1)	-Ø.2(1)	4.5Ø(8)
02	5.9(2)	3.9(1)	3.3(1)	-Ø.3(1)	-1.Ø(1)	Ø.2(1)	4.45(7)
03	9.3(3)	7.Ø(2)	9.1(3)	2.9(2)	Ø.9(2)	1.3(2)	8.4(1)
C 1	5.7(3)	6.4(3)	5.1(3)	-2.7(2)	-1.5(2)	Ø.1(2)	5.8(1)
C2	3.Ø(2)	7.9(3)	3.8(2)	-1.1(2)	-Ø.5(2)	-1.1(2)	4.9(1)
C 3	2.7(2)	16.1(5)	5.1(3)	-1.8(3)	-Ø.4(2)	-2.4(3)	8.Ø(2)
C4	6.8(3)	20.5(6)	4.8(3)	-7.9(3)	1.1(3)	-1.9(4)	10.6(2)
C5	11.2(4)	10.1(3)	5.6(3)	-8.Ø(3)	-2.5(3)	2.3(3)	9.1(2)
C6	23.6(9)	9.4(5)	9.2(5)	6.1(5)	-6.2(5)	-1.3(4)	14.4(3)
C7	6.5(4)	21.9(8)	6.1(4)	-2.6(4)	Ø.7(3)	3.8(4)	11.5(3)
· C8	9.2(4)	10.8(4)	4.6(3)	-2.1(4)	-1.1(3)	-1.2(3)	8.3(2)
C1Ø	4.0(2)	3.4(2)	4.4(2)	1.1(2)	-Ø.6(2)	-Ø.7(2)	4.Ø(1)
C11	3.6(2)	3.6(2)	5.6(3)	-Ø.Ø(2)	1.3(2)	-1.4(2)	4.2(1)
C12	5.8(3)	3.3(2)	3.6(2)	Ø.2(2)	Ø.3(2)	-Ø.6(2)	4.2(1)
C13	3.8(2)	3.1(2)	5.9(3)	Ø.Ø(2)	-Ø.9(2)	-1.2(2)	4.3(1)
C14	4.2(2)	2.8(2)	5.1(2)	Ø.3(2)	1.6(2)	Ø.1(2)	4.Ø(1)
C15	8.Ø(4)	6.4(3)	9.2(4)	3.7(3)	-3.6(3)	-2.6(3)	8.Ø(2)

.

τ

Table of General Temperature Factor Expressions - B's

-24-

÷

\$

Name	B(1,1)	B(2,2)	B(3,3)	B(1,2)	B(1,3)	B(2,3)	Beqv
C16	5.9(3)	5.2(3)	13.4(5)	-Ø.3(3)	4.2(3)	-2.8(3)	8.Ø(2)
C17	15.9(6)	6.5(3)	4.1(3)	Ø.3(4)	-Ø.4(4)	-1.5(3)	8.9(2)
C18	4.1(3)	5.8(3)	14.5(5)	Ø.1(2)	-1.5(3)	-3.8(3)	8.2(2)
C19	11.2(4)	4.Ø(3)	8.3(4)	Ø.7(3)	4.3(3)	1.3(3)	7.7(2)
C2Ø	3.4(2)	3.4(2)	6.1(3)	-Ø.7(2)	-Ø.Ø(2)	Ø.5(2)	4.3(1)
C21	7.2(3)	2.6(2)	3.9(2)	Ø.3(2)	-Ø.8(2)	Ø.4(2)	4.6(1)
C22	4.Ø(2)	3.Ø(2)	7.7(3)	Ø.5(2)	1.4(2)	1.7(2)	4.8(1)
C23	6.4(3)	4.1(2)	4.6(3)	-1.2(2)	-1.3(2)	1.7(2)	5.1(1)
C24	6,5(3)	3.3(2)	5.1(3)	-Ø.6(2)	2.5(2)	Ø.5(2)	4.9(1)
C25	5.7(3)	4.8(3)	19.6(7)	-1.2(3)	-3.6(4)	1.9(4)	10.2(2)
C26	20.2(7)	3.8(3)	5.5(3)	1.0(4)	2.0(4)	-Ø.2(3)	9.8(2)
C27	5.8(3)	5.3(3)	19.6(7)	1.6(3)	3.2(4)	4.3(4)	10.2(2)
C28	17.5(6)	7.9(4)	8.7(4)	-4.2(4)	-7.7(4)	3.4(3)	11.7(2)
C29	17.Ø(5)	5.5(3)	12.Ø(4)	-1.1(4)	10.4(3)	Ø.Ø(3)	11.1(2)
C 3Ø	3.9(2)	3.Ø(2)	3.4(2)	-Ø.2(2)	-Ø.3(2)	-Ø.3(2)	3.4(1)
C31	3.4(2)	3.6(2)	3.6(2)	-Ø.Ø(2)	Ø.1(2)	Ø.1(2)	3.5(1)
C32	4.0(3)	7.2(3)	5.1(3)	1.4(2)	-Ø.2(2)	Ø.8(3)	5.5(1)
The fo	rm of the an 2 2 .25(h a* B(1)	isotropic t 2 2 ,1) + k b*	hermal para 2 B(2,2) + 1	meter is: 2 c* B(3,3)'	+ + 2hka*b*B(1,2) + 2hla	*c*B(1,3)

 Table of General Temperature Factor Expressions - B's (Continued)

+ 2klb*c*B(2,3))] , where a*,b*, and c* are reciprocal lattice constants.

•

-25-

Table of Root-Mean-Square Amplitudes of Thermal Vibration in Angstroms.

Atom	Min.	Int'med.	Max.	Atom	Min.	Int'med.	Max.
YB1	Ø.181	Ø.186	Ø.191	C15	Ø.2Ø7	Ø.261	Ø.44Ø
M01	Ø.173	Ø.2Ø1	Ø.274	C16	Ø.212	Ø.256	Ø.442
SI1	Ø.196	Ø.272	Ø.293	C17	Ø.2Ø6	Ø.3Ø2	Ø.452
01	Ø.192	Ø.23Ø	Ø.285	C18	Ø.212	Ø.246	Ø.456
02	Ø.191	Ø.221	Ø.29Ø	C19	8.214	Ø.27Ø	Ø.417
03	Ø.249	Ø.334	0.384	C2Ø	Ø.185	Ø.222	Ø.282
Ċ1 (Ø.184	Ø.26Ø	Ø.344	C21	Ø.173	Ø.219	Ø.311
Č2	Ø.169	Ø.231	Ø.325	C22	Ø.176	Ø.215	Ø.326
C3	Ø.166	Ø.252	Ø.461	C23	Ø.182	Ø.233	Ø.326
C4	Ø.199	Ø.241	Ø.554	C24	Ø.179	Ø.229	Ø.318
C5	Ø.181	Ø.245	Ø.5Ø2	C25	Ø.222	Ø.258	Ø.522
C.6	Ø.276	Ø.32Ø	Ø.6Ø6	C26	0.215	Ø.26Ø	Ø.5Ø7
Č7	0.242	Ø.291	Ø.543	C27	Ø.217	Ø.266	Ø.517
C.8	0.219	Ø.334	Ø.394	C28	Ø.218	Ø.284	Ø.563
CIØ	Ø.178	Ø.211	Ø.273	C29	Ø.219	Ø.271	Ø.55Ø
c11	Ø.181	Ø.213	Ø.288	C3Ø	Ø.185	Ø.2Ø6	Ø.23Ø
C12	Ø.19Ø	Ø.226	Ø.272	C31	Ø.2Ø5	Ø.211	Ø.217
C13	Ø.179	Ø.211	Ø.295	C32	Ø.2Ø3	Ø.259	Ø.315
C14	Ø.185	Ø.2Ø3	Ø.276				

.

.

-26-

Intramolecu	lar Distances	Intramo	olecular	Angles	
ATOM 1 ATO YBI O1 YBI O2 YBI C1# YBI C11 YBI C11 YBI C12 YBI C13 YBI C14 YBI C13 YBI C14 YBI C14 YBI C14 YBI C14 YBI C14 YBI C14 YBI C14 YBI C24 YBI C24 YBI C14 YBI C14	M 2 DISTANCE 2.245(3) 2.245(3) 2.591(4) 2.597(4) 2.597(4) 2.581(4) 2.565(4) 1 2.2565(4) 1 2.565(4) 2.578(4) 2.578(4) 2.597(4) 2.597(4) 2.597(4) 2.597(4) 2.597(4) 2.600(4) 2.296(1)	ATOM 1 C2 C2 C5 C6 C7 S11 S11 C1 C1 C2 C3 C4 C5	ATOM 2 SI1 SI1 SI1 SI1 SI1 SI1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	ATOM 3 C6 C7 C8 C7 C8 C1 C3 C3 C4 C3 C4 C2 C1 C2	ANGLE 118 - 2(3) 189 - 71(23) 189 - 12(23) 118 - 8(4) 189 - 8(3) 188 - 8(3) 126 - 6(4) 127 - 6(4) 189 - 6(6) 188 - 9(6) 188 - 9(6) 188 - 6(5)
M01 C1 M01 C2 M01 C3 M01 C5 M01 C18 M01 C31 M01 C32 C39 01 C31 02 C32 03	2.369(4) 2.377(4) 2.383(4) 2.377(6) 2.387(5) 1.2.854(1) 1.898(4) 1.928(6) 1.185(4) 1.196(4) 1.169(5)	C14 C18 C11 C12 C13 C15 C15 C16 C16 C16 C16 C17 C17 C17 C18 C18 C19 C19	C18 C11 C12 C13 C14 C18 C18 C18 C11 C11 C12 C12 C13 C13 C13 C14 C14	C11 C12 C13 C14 C10 C11 C14 C10 C12 C12 C11 C13 C12 C12 C14 C10 C13 C13	189.1(4) 188.4(4) 187.3(4) 187.6(4) 187.6(4) 123.5(5) 125.1(5) 125.2(5) 125.6(5) 127.7(5) 124.4(5) 127.6(5) 124.4(5) 125.8(5) 126.6(5)
C1 C2 C1 C5 C2 C3 C3 C4 C4 C5 S11 C2 S11 C6 S11 C7 S11 C8	1.412(6) 1.434(7) 1.426(6) 1.383(9) 1.387(9) 1.858(4) 1.821(6) 1.834(6) 1.831(5)	C28 C21 C22 C23 C24 . C24 . C24 C21 C28	C21 C22 C23 C24 C28 C28 C28 C28 C28	C22 C23 C24 C28 C21 C25 C25 C25 C25	188.6(4) 188.5(4) 186.6(4) 187.8(4) 188.5(4) 125.8(5) 126.3(5) 127.6(5) 127.6(5)
C18 C11 C18 C14 C11 C12 C12 C13 C13 C14 C14 C15 C11 C12 C13 C14 C14 C15 C11 C16 C12 C17 C13 C18 C14 C19 C28 C21 C22 C23 C23 C24 C21 C26 C22 C23 C23 C28 C23 C28 C23 C28 C24 C29	1.369(5) 1.391(5) 1.409(5) 1.409(6) 1.517(5) 1.504(6) 1.504(6) 1.512(6) 1.385(6) 1.385(6) 1.385(6) 1.417(6) 1.490(6) 1.501(6) 1.507(6)		C22 C22 C23 C23 C24 C24	C27 C27 C28 C28 C29 C29	127.5(6) 123.7(5) 126.6(6) 126.3(6) 126.3(6) 124.9(6) 126.5(6)

-4

£

-27-

Values of 18*Fobs and 18*Fcalc

 ø

ß ø

н к L Fobs Fcalc SigF HKL Fobs Fcalc SigF Fobs Fcalc SigF Fobs Fcalc SigF нкг HKL A 9 9 7 9 7 11 7 13 7 14 24*8* 9 Ø 11 10 Ø 11 11 Ă ø ø 9 652 *8* 621 557 ß 8 Ø 12 ø Ø 12 8 18 8 12 s 9 Ø 12 7 7 ø 8 12 253 ø 8 14 1.0 B 61.0 8 12 Å 0 12 2.8 4 2.9 ø 8 12 592 ø 7 9 9 8 7 8 12 571 9 8 3Ø33 4 12 ø 8 12 1.8 7 *0* 259 835 562 ø 4 14 õ 9 5 7 153 Ø 13 ø à Ø 13 737 2 3 ß ₿ Ø 13 1Ø89 8 13 186 8 ø *0* 1*0* Ø 13 34Ø 1Ø Ø 13 a ø 7 ġ ø ø 1.086 12 11 8 8 1 13 11 24 6 7 7 ø 5ø8 8 14 ø 1Ì g 8 14 2Ø6 ø 9 Ø 14 5 18 5 11 5 13 5 15 6 8 6 1 6 2 6 3 6 4 8 14 2 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2 10 2 12 2 14 2 15 322 263 211 785 187 ø 1*8* 8 9 11 9 42 5 1 *Ø* 5 7 Ø14 Ø14 368 *8* 12 14 ŝ ø 4478 544 2891 5 283 399 9 Ø 14 ø Ø 15 1Ø 4 6 1Ø 13 9 ø 2112 ø 9 Ø15 765 3 ₿ 15 8 1819 483 8 18 ø 22Ø3 Ø 15 1Ø36 ø 1.0 Ø 15 ø 137ø g ø 91Ø *8* 7 ø ø 87Ø A ø 8 16 ß 7 7 ß 2 15 6 8 16 ø ø 8-15 0 10 5.02 Ø-13 7 9 8 6 18 11 5 8 67Ø 8 18 ø -9 1Ø 13 13 ø 6 12 0 10 ø -7 ø ø 6 13 6 14 2Ø9 229 225 Ø −5 Ø −3 ø 8 18 8 18 23Ø 3 3 ø ø ø 4
11
7 1148 7 3Ø 8 18 12 7.85 ø -1 ø 0 11 75Ø ø 2Ø ø 3 ø 7 ø ø 27ø ø 0 11 ø ø 3 11 ø 0 11 1.078 ø 1Ø 3Ø2 675 232 ø 3 13 ø 8 11 8 11 7 ø

;

7

4Ø1

ø

ø

8

Ø 11

Page

7.08

ø

Ø 13

Values of 10*Fobs and 10*Peale

Page 2

H	к L 	Fobs	Fcalc	Sigf	H	ĸ	Ļ	Fobs	Fcalc	SigF	H	ĸ	L -	Fobs	Fcalc	SigF	H	ĸ	Ļ	Fobs	Fcalc	SigF
1	<i>B</i> 15	625	681	7	1	2	11	769	769	8	1	4	6	236	238	7	1	6	3	2799	2884	11
1	1-14	264	265	11	1	2	12	197	213	14	1	- 4	7	190	2.01	8	· 1	6	4	4.01	396	5
1	1-12	1822	1029	1.0	1	2	13	61.8	617	7	1	4	8	388	393	6	1	6	5	2293	2244	12
1	1-10	2248	2221	13	1	2	15	668	662	7	1	- 4	9	1354	1340	12	1	6	6	187	216	1.0
1	1 - 8	981	914	1.9	1	3.	-16	198	284	17	1	- 4	11	787	779	8	1	6	7	420	4.84	6
1	1 -7	292	3Ø4	5	1	3.	-14	527	521	7	1	- 4	12	3Ø7	292	1.0	1	6	8	494	518	6
1	1 - 6	1774*	1797	1.0	1	3.	-13	156	148	17	1	- 4	13	755	756	7	1	6	9	15Ø7	1499	14
1	1 -5	401	426	4	1	3.	-12	1845	1066	11	1	- 4	15	586	613	8	1	6	11	728	736	8
1	1 -4	1872	1856	8	1	3.	-18	1407	1438	14	1	- 4	16	191	187	17	1	6	13	462	474	8
1	1 - 2	1486	1375	6	1	3	-9	285	239	9	1	- 5	-14	411	394	8	1	6	15	381	374	1.Ø
1	1 -1	27Ø	281	3	1	3	-8	358	338	5	1	- 5	-12	936	933	9	1	7.	-15	212	215	16
1	1 Ø	2368	2486	21	1	3	-7	186	114	12	1	- 5	-11	191	194	13	1	7.	-14	328	333	11
1	1 1	267	265	2	1	Э	-6	1185	1186	- 11	1	5	-10	1498	15Ø3	15	1	7.	-13	219	214	13
1	12	1939	1914	6	1	3	-5	265	259	5	1	- 5	-8	314	328	7	1	7.	-12	883	857	8
1	13	189	169	5	1	3	+4	1483	1492	9	1	- 5	-7	374	381	5	1	7 ·	-11	226	221	12
1	1.4	4.82	383	- 4	1	Э	-3	343	355	- 4	1	- 5	-6	1617	1642	12	1	7.	-10	1352	1329	14
1	15	159	171	7	1	3	-2	636	639	7	1	- 5	~5	287	291	5	1	7	-9	2.05	189	12
1	16	2801	2845	1.0	1	3	-1	595	594	6	1	5	-4	1785	1798	18	1	7	-8	599	597	6
1	17	219	226	6	1	3	ø	618	643	6	1	5	- 3	333	333	5	1	7	-7	357	364	6
1	18	1781	1788	12	1	3	1	142	136	7	1	5	-2	2138	2072	1.9	1	7	-6	967	972	9
1	19	176	143	1.8	1	3	2	467	456	4	1	- 5	-1	571	589	6	1	7	-5	3200	33Ø	6
1	1 18	175	163	11	1	3	3	535	529	5	1	5	ø	2786	269Ø	9	1	7	-4	1768	1776	12
1	1 11	124	98	18	1	Э	- 4	1112	1113	1.0	1	- 5	1	161	171	7	1	7	-3	255	272	6
1	1 12	153	144	17	1	3	6	2698	2665	18	1	- 5	2	668	7Ø8	7	1	7	-2	1819	1843	11
1	1 13	134	95	28	1	3	7	121	112	11	1	5	3	143	155	9	1	7	- 1	400	413	5
1	1 14	219	2Ø1	12	1	3	8	1864	1875	12	1	- 5	- 4	895	853	9	1	7	ø	2021	2014	11
1	1 16	633	634	8	1	Э	9	299	311	7	1	- 5	5	484	391	5	1	7	1	192	213	7
1	2-15	617	623	7	1	Э	18	53.0	53Ø	6	- 1	- 5	6	2444	2446	12	1	7	2	951	931	1Ø
1	2-13	512	507	7	1	3	12	224	253	13	1	- 5	7	230	23Ø	8	1	- 7	3	182	2,02	8
1	2-12	2ø9	2.05	13	1	3	14	300	281	1.0	1	- 5	8	1894	1889	13	1	7	- 4	749	745	7
1	2-11	318	300	8	1	3	16	7.91	694	8	1	5	1.0	255	229	1.0	1	- 7	6	2844	2841	13
1	2-1Ø	168	165	11	1	- 4-	-15	551	546	8	1	- 5	13	245	26Ø	11	1	7	7	165	157	12
1	2 - 9	19ø5	1880	13	1	- 4 -	-13	522	525	7	1	- 5	14	213	2,82	13	1	7	8	1393	1356	12
1	2 - 7	2125	2131	11	1	- 4-	-18	172	134	12	1	5	15	166	156	19	1	- 7	9	152	138	17
1	2 - 5	578	544	6	1	- 4	-9	1824	1817	13	1	6	-15	589	5ø3	9	1	- 7	1Ø	259	255	11
1	2 -4	231	245	5	1	- 4	- 8	476	467	5	1	6	-13	535	531	7	1	7	11	166	153	17
1	2 - 3	537	512	5	1	- 4	-7	2041	2825	12	1	6	-18	286	225	13	1	7	14	286	286	12
1	2 -1	1007	975	6	1	- 4	-6	123	119	1.0	1	6	-9	1565	1572	14	1	7	15	2Ø1	174	16
1	2 Ø	594	617	6	1	- 4	-5	32.00	324	5	1	6	-8	356	346	6	1	8-	-13	344	328	1.Ø
1	2 1	668	658	6	1	4	-4	584	688	6	1	6	-7	1968	2000	13	1	8	-12	268	280	11
	2 2	376	394	4	1	4	-3	791	733	8	1	6	-6	253	25Ø	. 7	1	8	-11	3Ø9	299	9
- 1	2 3	37.03	3724	33	1	4	-1	2190	2134	8	1	6	-5	638	638	6	1	8	-9	1226	1222	12
	2 4	182	161	6	1	4	ø	949	95 <i>0</i>	9	1	6	-4	683	668	7	1	8	-8	245	235	1Ø
	25	2928	2921	9	1	4	1	563	573	6	1	6	- 3	198	2Ø1	7	1	8	-7	1455	1426	14
	2 /	762	718	7	1	4	3	3059	3055	9	1	6	-1	178	189	7	1	8	-6	370	363	7
	28	162	140	9	1	4	4	72,0	741	8	1	6	ø	854	877	8	1	8	-5	669	667	7
1	29	1880	1854	12	1	- 4	5	2521	25Ø7	1.0	1	6	1	159Ø	1569	1Ø	1	8	-4	5 <i>Ø</i> 3	51 <i>8</i>	5

-29-

as of 1	Ø*Fobs	and 18	*Fcalc													Pa	ige 3	
K L 	Fobs	Fcalc	StgF	H K L	Fobs	Fcalc	SigF	H	K L	Fobs	Fcalc	SigF	H -	K L	Fobs	Fcalc	SigF	
8 - 3	333	323	6	1 10 -6	255	254	18	1	12 9	594	611	8	2	Ø - 6	2425	2424	18	
8 - 2	383	324 779	6	1 10 -5	551	26	6	1	12 11	613	582	8	2	Ø -4	3656	3714	35	
8 8	919	916	1.0	1 19 -3	292	266	á	i	13-10	191	189	16	2	8 B	2729	2671	25	
8 1	1478	1467	12	1 18 -2	164	178	12	i	13 -7	167	161	16	2	8 2	1304	13.02	- 7	
82	156	139	10	1 10 8	783	7.07	.7	1	13 -6	358	388	.9	2	8 4	294	239	. 4	
84	528	519	5	1 18 3	1748	1748	14	1	13 -4	126	101	2.0	2	<i>8</i> 8	2039	2378	10	
8 5	1681	1713	13	1 18 4	622	612	6	i	13 -3	193	192	14	2	8 12	1615	1599	15	
8 7	317	284	8	1 18 5	1488	1407	13	1	13 -2	1215	1197	12	2	0 14	1137	1134	11	
8 9	1184	1184	12	1188	335	326	1.0	1	13 -1	230	227	13	2	1-15	160	165	17	
8 11	7.01	712	.,	1 18 11	671	665	7	i	13 2	130	152	2Ø	2	1-11	551	534	6	
8 12	372	378	9	1 18 12	365	381	11	i.	13 4	517	513	8	2	1 - 9	1868	1.048	1.0	
813	519	522	8		576	564	9	1	13 6	1828	1.058	1.0	2	1 -8	155	156	19	
9-13	244	253	13	1 11-12	794	818	8	i	13 18	319	282	12	5	1 -6	1938	325	11	
9-12	721	741	8	1 11 -8	249	256	11	i	14 -7	888	889	8	2	i -5	918	91.0	9	
9-11	153	127	16	1 11 -7	161	163	16	1	14 -6	145	147	21	2	1 -4	115	127	1.0	.1
9 - 9	288	299	11	1 11 -6	212	198	12		14 -5	649	513	10	2	1 - 3	1382	1336	8	30
9 - 8	441	439	•••	1 11 -4	954	979	1.0	i	14 -3	239	216	12	2	1 0	376	387	4	Ť
9 - 7	187	188	13	1 11 -3	230	212	11	1	14 -1	318	298	1.0	2	1 1	2566	2562	24	
9-6	266	785	7	1 11 -2	1872	1043	11	1	14 Ø	383	377	9	2	1 2	132	128	7	
9 -4	882	899	8	1 11 0	1142	1132	12	- i	14 3	881	91.0	Â	2	1 4	314	315	1	
9 - 3	337	34Z	6	1 11 1	281	193	12	i	14 4	266	263	12	2	1 5	1015	965	1.0	
9 - 2	821	838	8	1 11 2	452	468	7	1	14 5	687	633	.7	2	1 6	184	174	?	
9 g	1241	1241	11		1/10	459	14	1	14 8	312	287	11	2	1 4	2129	2147	13	
9 Î	266	274	;	1 11 5	145	132	19	i	15 -4	566	569	8	ž	1 11	1571	1569	14	
92	713	676	7	1 11 6	1305	1314	13	1	15 -3	175	154	17	2	1 13	280	284	10	
9 J 9 J	3/5	388	6	1 11 8	1120	11.03	11	1	15 -2	888	784	8	2	1 15	499	522	8	
9 6	1536	1516	15	1 11 10	378	341		i	15 3	185	172	16	2	2-14	98ø	991	10	
97	199	179	13	1 12 -9	784	7.82	7	1	15 4	345	334	1.0	2	2-12	376	375	8	
98	1208	1225	13	1 12 -7	1842	1849	10	1	15 6	665	788	8	2	2-10	255	263	9	
9 1Ø	458	471	11	1 12 -6	245	258	12	i	16 - 3	322	287	22	2	2 - 6	198	1979	19	
9 11	274	276	11	1 12 -4	441	426	8	i	16 Ø	336	314	ii	2	2 -5	286	3.86	ŝ	
9 13	145	132	22	1 12 -3	431	411	8	1	16 1	659	651	8	2	2 -4	2810	2800	9	
0-13 A-12	258	25.8	13	1 12 8	428	4.05	8	1	16 3	649	659	8	2	2 - 3	434	462	4 7	
0-11	183	199	15	1 12 3	1367	1405	14	2	8-14	86Ø	851	9	ź	29	1698	1684	7	
Ø~9	1869	1068	11	1 12 4	358	358	9	2	Ø-12	163	183	16	ž	2 1	337	341	4	
19-8 19-7	2.03	189	13	1 12 5	1010	1013	1.0	2	Ø-1Ø	379	394	,7	2	2 2	684	653	7	
	1214	1234	12	1 12 8	291	205	11	2	<i>w</i> -8	101	178	110	4	∠ 3	/ 4 5	/ 36	đ	

* t

ξ ζ

Values of	1ø*Fobs	s and 18	Fcalc														Pa	ge 4
H K L	Fobs	Fcalc	SigF	н	K L	Fobs	Fcalc	SigF	н	κL	Fobs	Fcalc	SigF	H	κι	Fobs	Fcalc	SigF
2 2 4	1852	1976	•	2	4 -1	584	589	5	2	6 -5	229	242	7	2	8 -6	1282	1270	12
2 2 5	318	328	5	2	i i	283	299	Ă	2	6 -4	2618	2624		2	8 -5	350	315	16
2 2 6	2361	2355	1.8	2	à Ĩ	298	382	5	2	6 -2	1929	1918		2	8 -4	1461	1466	13
2 2 7	134	133	18	2	1 2	524	524	š	2	6 -1	492	588	5	2	8 -3	330	339	
2 2 8	2342	2281	12	2	4 3	282	383	5	2	6 8	847	853	š	2	8 - 2	382	393	5
2 2 9	188	196	18	2	4 4	588	485	5	2	6 2	834	822	ă	2	8 -1	599	597	6
2 2 11	131	89	18	2	4 5	384	318	5	2	6 3	681	688	6	2	8 Ø	917	945	9
2 2 12	1518	1582	13	2	4 6	2286	2243	11	ž	6 4	547	567	5	2	8 1	314	322	6
2 2 14	1214	1190	12	2	4 7	361	385	6	2	6 5	518	537	5	2	8 2	671	658	7
2 2 16	282	187	15	2	4 8	2190	2192	13	2	66	1719	1716	13	2	83	763	782	8
2 3-15	141	125	19	2	4 9	357	366	7	2	67	27.0	276	8	2	8 4	938	95 <i>0</i>	1.6
2 3-14	123	81	20	2	4 11	149	132	17	2	68	1517	1500	14	2	85	517	515	6
2 3-13	866	867	9	2	4 12	1315	13:6	14	2	69	355	342	8	2	86	1475	1511	14
2 3-12	19ø	161	14	2	4 14	1095	1119	1.5	2	6 10	276	192	1.0	2	87	419	434	7
2 3-11	593	587	6	2	4 16	256	281	13	2	6 11	279	27.9	11	2	88	1136	1139	12
2 3-18	246	231	9	2	5-15	136	128	22	2	6 12	1884	1895	1.0	2	89	27 <i>8</i>	256	11
2 3 -9	775	777	8	2	5-14	272	255	19	2	6 13	255	257	11	2	8 1 1	332	325	1.8
2 3 -7	1558	1609	12	2	5-13	778	758	8	2	6 14	946	951	9	2	8 12	871	857	8
2 3 -5	732	748	7	2	5-11	468	478	7	2	7-14	226	219	14	2	8 13	239	246	14
2 3 -4	319	328	5	2	5-10	337	359	8	2	7-13	734	728	7	2	8 14	895	880	1.0
Z 3 -3	824	856	8	2	5 -9	830	84.0	8	2	7-11	757	763	8	2	9-14	181	193	18
2 3 - 2	147	113	7	2	5 -7	1683	1709	12	2	7-10	515	527		2	9-13	561	562	8
2 3 -1	1688	1677	8	Z	5 -6	379	411	5	2	7 -9	885	9.02		2	9-11	766	754	8
238	482	494	5	4	5 - 5	688	694		ž	7 -8	213	211	1.0	ž	9-18	426	422	
2 3 1	1401	13/6	8	2	5 - 3	116/	11/3	110		1-1	1413	1424	14	2	9 - 9	332	993	1.0
232	2/5	293	5		2 -2	364	386		ź	1 - 5	399	412	2		9 - /	983	998	10
233	1/25	100/	9		5 -1	1305	2583	10	5	7 - 5	405	4/4		2	9 - 0	527	511	5
2 3 4	100	617	ç		5 1	1305	13/3	10		7 - 3	1049	10//	12	5	9 - 0	390	394	
235	440	446	0	5	5 2	231	201	2	5	1 - 1	2042	2046		2	0 - 2	100	521	11
2 3 0	695	677		5	5 3	120	100		2	7 -1	1620	1622		2	9 - 3	400	521	5
239	1714	1726	12	2	5 6	494	469	5	2	; ;	1020	1032	11	2	9 -1	1654	1644	13
2 3 1	1494	1469	13	5	5 6	429	422	5	5	2 2	761	798	7	5	ái	1227	1220	12
2 3 13	453	459	13	2	5 7	651	649	2	5	7 4	161	126	\ ía	2	á 2	430	427	.5
2 3 15	392	379	ĕ	2	s á	157	119	12	5	7 5	207	216		2	a a	688	682	š
2 4-16	831	854	á	2	5 9	1677	1685	14	2	7 6	151	177	12	2	95	388	392	7
2 4-14	949	956	าต์	2	5 18	188	179	13	2	7 7	738	751		2	9 6	344	333	ŝ
2 4-12	516	516	.,	2	5 11	1296	1386	13	2	7 9	1590	1584	15	2	9 7	475	481	7
2 4-18	488	484	6	2	5 13	389	380	8	2	7 18	250	229	12	2	9 9	1378	1369	15
2 4 -9	212	194	ē	ž	5 14	197	153	14	2	7 11	1226	1235	13	2	9 1.0	150	151	18
2 4 -8	336	337	6	2	6-14	807	8.83	8	2	7 13	34.0	313	.9	ž	9 11	11.04	1105	1.0
2 4 -7	218	200	8	2	6-13	233	222	12	2	8-14	745	740	ź	2	9 13	370	368	10
24-6	1842	1869	11	2	6-12	375	373	9	2	8-12	293	298	1.0	2	18-12	358	357	1Ø
24-5	242	254	6	2	6-10	369	375	8	2	8-11	128	115	2.0	2	10-10	2Ø7	2Ø9	13
2 4 -4	2382	2426	18	2	6 ~ 9	231	232	11	2	8 - 9	346	331	9	2	18 -9	224	218	12
2 4 -3	2.89	185	6	2	6 - 8	264	282	8	2	8 ~ 8	315	318	9	2	1Ø -8	33Ø	325	9
2 4 -2	2400	2372	9	2	6 - 6	1905	1913	12	2	8 - 7	236	252	1ø	2	18 -7	128	143	21

· · · · · · · · ·

٢

-31-

Values o	of 10+Fob	s and li	8*Fcalc																Pa	ge 5
н к 	L Fobs	Fcalc	SigF	H -	K L 	Fobs	Fcalc	SigF	H -	ĸ	Ļ	Fobs	Fcalc	Sigf	H	к -	L	Fobs	Fcalc	SigF
2 18 -	6 1122	1153	11	2 1	12 8	648	665	7	3	ø	5	224 <i>8</i>	2248	1.0	3	2	7	821	886	8
2 10 -	5 272	281	9	21	12 9	259	256	13	3	0	7	543	531	5	3	2	8	323	352	6
2 10 -	4 1,223	1234	13	2 1	3-18	301	281	12	3	ø	9	297	297	7	3	2	9	724	711	7
2 19 -	3 165	171	13	21	13 -9	589	589	8	3	8	11	1301	1273	13	3	2	11	1320	1291	13
2 18 -	2 861	853	8	21	3 -7	544	564	8	3	8	13	411	412	8	3	2	12	189	199	15
2 18 -	-1 518	522	6	2 1	3 -3	693	689	. 7	3		15	915	9.07	1.0	3	2	13	282	289	1Ø
2 10	10 3.05	268	8	2 1	3 -2	165	163	17	3	1-	16	885	884	9	3	2	15	947	943	1.0
2 10	1 207	239	8	~ ~ !	1 - 1	1195	1145	12	3		14	1981	19/0	11	3	3-	10	823	821	9
2 10	2 618	012	b c	21		133	135	2.0	3	- !-	12	245	228	12	3	3-	14	1003	1003	1.0
2 18	4 701	771		21	13 1	274	201		3	1-	- 0	1983	1830	14	3	3-	11	129	121	19
2 10	5 220	227		2 1	3 2	5/0	525	3	3		- 5	1934	1998	12	3	3-	10	1552	1549	14
2 18	6 1228	1258	13	21	3 5	278	256		3	1	-6	330	596	5	2	3		100	1262	12
2 1.0	7 338	336	18	2 1	3 7	532	522		2	- 1	-6	469	434	5	2	2	-6	646	667	13
2 1.0	8 1149	1188	iĩ	2 1	12 6	740	782	ě	2	- 1		665	552	Ĕ	2	2		941	911	2
2 19	9 302	297	18	21	14 - R	432	489	ă	3	÷	-3	169	176	2	3	2	-3	246	255	6
2 1 9 1	2 684	688	8	2 1	4 -6	744	755	8	3	i	-2	1835	1822	8	3	3	-2	725	725	7
2 11-1	1 496	495	ā	2 1	4 -4	721	759	7	3	ī	-1	97	73	1.6	3	3	-ī	111	83	เต่
2 11-1	8 258	242	11	2 1	4 -2	598	689	7	3	ī	ġ	1091	1876	B	3	3	ø	2032	1993	Ĩ
2 11 -	9 889	798	8	21	4 -1	328	295	9	3	Ĩ	ī	415	414	Ă	3	3	1	289	290	5
2 11 -	7 859	867	8	21	1 1	130	85	19	3	1	2	2783	2725	8	3	3	2	2488	2424	9
2 11 -	6 275	291	1.0	21	4 2	475	478	8	3	1	3	264	278	5	3	3	3	7.87	73.0	7
2 11 -	5 348	352	9	21	14 3	361	351	9	3	1	4	2232	2221	9	3	3	4	1775	1831	1.0
2 11 -	3 351	322	8	21	4 4	768	734	7	3	1	6	188	87	7	3	3	5	159	164	8
2 11 -	2 178	182	13	21	14 5	3ø6	272	11	3	1	8	968	924	1.0	3	3	6	579	534	6
2 11 -	1 1266	1263	13	21	4 6	769	771	8	3	1	18	393	393	7	3	3	8	122	127	13
2 11	1 1856	1063	11	21	4 8	413	458	1.8	3	1	12	796	8.#1	8	3	3	1Ø	48Ø	48.0	6
2 11	2 3.02	266	9	21	15 -3	488	415	9	3	1	14	1092	1103	11	3	3	11	183	152	14
2 11	3 688	565	6	2 1	5 -2	198	195	16	3	1	16	345	345	1.0	3	3	12	1255	1265	12
2 11	5 217	212	13	2 1	5 -1	789	81.0	8	3	2-	15	289	277	11	3	3	14	1155	1158	12
2 11	0 223	215	13	21	5 1	/26	718		3	2-	13	1269	1283	13	3	4-	15	3.03	3.07	11
2 11	/ 428	43/		21	5 2	27.0	235	12	3	2-	11	120%	1549	15	3	- - -	13	1169	1133	11
2 1 1	a 166	934		2 1		434	421		2	~	- 9	423	419	p p	3	4-	12	1200	191	10
2 11 1	1 741	751	10	2 1	6 - 7	193	200	17	3	5	16	440	440	5	3		1	1300	1421	14
2 12-1	A 152	143	10	21	6 -1	194	104	17	3	5	-0-	239	232		3	1	-9	292	201	4
2 12 -	8 336	319	13	21	6 2	274	261	14	2	5		401	501	0	3	1	- 7	203	291	
2 12 -	6 1888	1897	12	21	6 3	161	168	20	2	5		1625	1688	5	2	1	-6	276	267	ŝ
2 12 -	4 1433	1462	14	3	M-13	1198	1153	11	3	5	-2	284	288	5	2	7	- 5	751	766	2
2 12 -	2 1898	1872	18	3	Ø-11	1694	1710	15	3	5	-1	2777	2777	9	2	- 2	-4	651	692	7
2 12 -	1 324	331	1.0	3	8 -9	811	833	8	3	2	â	288	177	ĕ	3	Ā	-3	1178	1194	1.07
2 12	2 584	574	7	3	8 -7	657	663	7	3	2	ĩ	866	909	ě	3	Ā	-1	319Ø	3205	. õ
2 12	3 386	389	1.0	3	Ø -5	933	914	9	3	2	ź	517	525	5	3	-i	ø	161	183	7
2 12	4 978	968	1.0	3	Ø - 3	817	773	8	3	2	3	1832	988	9	3	4	1	990	1001	1.0
2 12	5 222	218	13	3	Ø -1	3213	3152	27	3	2	4	451	48.0	Ā	3	4	2	245	243	5
2 12	6 1.028	1838	18	3	<i>B</i> 1	1656	1615	8	3	2	5	1841	1835	1.8	3	4	3	129Ø	1312	1Ø
2 12	7 23,6	234	12	3	ø 3	1262	. 1293	9	3	2	6	318	312	5	3	4	4	482	397	4

*

• .

ş ş

-32-

Valu	85	of	1 <i>8</i> °Fobs	and 18	PFcalc																	Pa	ge	6
H -	K -	L -	Fobs	Fcalc	Sigf	H	К -	L -	fobs	Fcalc	SigF	H -	к -	L -	Fobs	Fcalc	SigF	H H	ĸ	L	Fobs	Fcalc	S 1 g	₽F
3	4	5	1683	1655	11	3	6	4	569	578	' 6	3	8	1	842	87 <i>0</i>	9	3	18	3	47 <i>8</i>	5ø3		7
3	4	_ ?	1031	1031	1.0	3	6	5	1689	1596	12	3	8	2	19ø	208	9	3	10	4	33Ø	34Ø		9
3	4	8	478	467	6	3	6	6	294	311	7	3	8	3	342	333	6	3	1Ø	5	1.032	1007	1	11
. 3		. 9	782	799	, 7	3	6	?	982	928	8	3	8	4	288	287	7	3	10	6	209	198	1	13
3	4	11	998	1013	1.6	3	6	8	454	465		3	8	5	1130	1093	11	3	18	?	965	931		9
3	1	12	2/8	293	11	3	6	. 9	453	4/8		3	8	6	323	311	8	3	1.0	8	5.09	496		8
3	1	13	289	198	13	3	þ	11	1 10	/ 319	.:	3	8		862	868	9	3	1.0	. 9	/44	/65		!
3		15	862	808	8	3	Č.	12	257	242		3	8	E E	562	562	4	3	18	11	6.05	611		
3	5	- 1 4	260	270		3	6	13	190	194	14	3	8		717	7.00		3	1.0	12	329	342	1	· 1
2	5.	-19	1229	1222	12	3	2_	15	140	141	21	3		12	220	207	19	3		- 10	155	290		.4
2	5	- 0	255	265	12	2		13	740	762	21	3		.12	100	100	16	2			100	109		· 6
2	5	- 8	1563	1587	14	2		12	176	102	16	2		. 1 1	224	252	12	2	- 11	-7	201	200	,	
3	š	- 7	465	464	.5	2	- 7-	11	341	222	12	2		1.4	254	075	19		- 11	-6	070	.250		. 10
ž	5	-6	772	799	Å	2	5-	ia	1178	1163	12	2		-0	274	269	1.47		- 11	- 6	266	204	,	
3	š	- 5	579	599	š	2	7	- a	270	276	ំឆ្ន	2	á	_ 0	1 493	1110	12	2	- 11	- 4	747	785	•	7
3	5	-4	726	699	7	2	÷	- 6	1385	1396	13	2	á	- 7	449	497		3	- 11	- 7	164	162	,	ιć.
3	š	-3	244	241	Ś	3	÷	- 7	419	425	6	3	á	-6	644	638	7	3	- 11	-2	512	522	•	7
3	š	-2	1291	1252	18	3	ż	-6	987	982	1.0	3	á	-5	492	413	7	3		-1	285	276	1	í á
3	5	-1	547	578	5	3	ż	-5	543	556	6	3	á	-4	418	484	6	. 3	ii	Å	835	825	•	Â.
3	5	ġ	1432	1425	1.8	3	7	-4	491	465	5	3	ā	-3	331	325	7	3	11	ĩ	162	154	1	15
3	5	1	183	196	7	3	ż	-3	219	196	2	3	ģ	-2	298	281	ż	3	ii	ż	1429	1436	ī	13
3	5	2	2496	2514	1.0	3	7	-2	131	121	- 11	3	ģ	-ī	403	429	6	3	- 11	3	187	185	ī	15
3	5	- 4	1694	1787	11	ž	7	-1	689	657	7	3	9	8	1111	1124	12	3	ii	Ā	1189	1171	ī	íī -
3	5	5	338	34.0	6	ã	7	ġ	1273	1288	12	3	- ē	ĩ	234	216	. 8	3	11	5	221	230	i	iā.
3	5	6	221	210	8	3	7	ĩ	171	179	8	3	9	2	1681	1684	13	3	11	6	410	482		8
3	5	7	288	289	7	3	7	2	2888	2828	12	3	ġ	3	344	347	7	3	11	7	164	158	1	17
3	5	8	281	263	8	3	7	3	506	515	5	3	ġ	4	1420	1409	14	3	11	8	196	168	1	14
3	5	1Ø	373	377	8	3	7	4	1809	1833	13	3	9	5	286	2.08	12	3	11	9	240	228	1	12
3	5	12	1832	1841	1.0	3	7	5	247	232	8	3	9	6	454	437	7	3	11	1Ø	441	4.85		9
3	5	14	957	959	18	3	7	6	232	22Ø	9	3	9	7	347	331	9	3	11	11	171	171	1	19
3	6-	-15	197	199	16	3	7	7	430	423	7	3	9	8	234	232	13	3	12	-11	710	735		8
3	6.	-13	991	988	1.0	3	7	8	477	489	7	3	9	18	454	44Ø	8	3	12	-9	418	414		9
3	6 -	-12	166	143	16	3	7	9	174	16Ø	15	3	9	11	388	295	11	3	12	-8	218	228	1	13
3	6-	-11	1313	13Ø3	13	3	7	1ø	486	488	8	3	9	12	748	756	8	3	12	-5	833	838		9
3	6-	-18	156	147	16	3	7	12	782	771	7	3	10	-13	668	679	8	3	12	-4	288	283	1	ø
3	6	- 9	52.0	533	6	3	7	14	754	749	8	3	10	-12	161	150	18	3	12	-3	1266	1267	1	13
3	6	-8	368	341	7	3	8-	13	836	84.0	8	3	10	-11	873	887	9	3	12	- 1	13Ø9	133ø	1	12
3	6	-7	496	505	5	3	8-	11	1868	1072	11	3	1Ø	- 9	494	499	7	3	12	ø	216	22Ø	1	13
3	6	~5	929	93 <i>8</i>	9	3	8	-9	516	52 <i>0</i>	7	3	1Ø	- 8	178	185	15	3	12	1	591	582		7
3	6	-4	377	387	5	3	8	-8	313	3Ø4	9	3	10	~7	213	195	12	3	12	2	176	174	1	16
3	6	-3	1308	1298	11	3	8	-7	164	171	14	3	10	-5	517	523	7	3	12	3	152	177	1	18
3	6	-1	2976	2938	11	3	8	-5	673	676	1	3	10	-4	323	344	8	3	12	4	373	371		9
3	6	ų	332	334	5	3	8	-4	311	317		3	10	-3	782	764	8	3	12	5	869	882	1	Ø
3	6	Ĭ	15.08	1464	11	3	8	-3	1856	1076	11	3	10	-1	1476	1507	14	3	12	7	868	863	1	Ø
3	6	2	426	416	5	3	8	-1	1799	1803	12	3	10	ø	323	312	8	3	12	8	294	267	1	11
3	6	3	765	773	8	3	8	ø	356	339	6	3	1Ø	1	59 <i>0</i> /	6.04	6	3	12	9	529	495		8

· · ·

•

Values of 18"Fobs and 18"Fcalc

1

.

*

-33-

.

Values of 1	l#*Fobs	and 18	Fcalc																Pa	ge 7
HKL	Fobs	Fcalc	Stgf	H	ĸL	Fobs	Fcalc	SigF	н	ĸ	L	Fobs	Fcalc	SigF	н	ĸ	ι	Fobs	Fcalc	SigF
3 13 -9	138	67	20	-	1-13	526	629		-	2	-7	1944	1959	12	-	6 -		1219	1225	12
3 13 -8	767	778	- 7	Ã	1-11	1232	1231	12		3	-6	257	227			5-	19	417	435	
3 13 -7	321	328	11	Ã	.1 -9	336	349		- 1	3	-5	2516	2583	11	1	5	- 9	374	372	Ř
3 13 -6	868	858	ġ	Ā	1 - 7	2289	2244	12		3	-3	1342	1311	18	1	5	- 7	2847	2827	13
3 13 -5	368	338	á	Ă	1 -6	223	221		ĩ	3	-2	668	647			5	-6	292	293	.,
3 13 -4	466	468	B	Ă	1 -5	2626	2643	រឆ	1	3	-1	135	124	8	i i	5	-5	2638	2588	12
3 13 -3	138	186	18	Å	1 -3	5.87	5.08	5		3	ġ	127	137	ġ	i i	5	-4	122	128	iī
3 13 -1	283	260	1.0	Å	1 -2	342	36#	Ā	i i	3	ĩ	187	77	เต	i i	5	-3	1292	1279	ii
3 13 Ø	682	677	7	4	1 -1	148	155	7	4	3	2	233	247	6	4	5	-2	485	467	5
3 13 2	918	934	9	4	1 8	133	146	8	4	3	3	518	499	5	4	5	-1	120	1.04	1.8
3 13 4	882	982	9	4	1 1	154	184	7	4	3	4	186	182	7	- 4	5	ø	248	238	6
3 13 5	142	123	19	4	12	248	218	5	4	3	5	2515	2589	11	4	5	1	425	4.82	4
3 1 3 6	354	339	9	4	1 3	917	857	9	- 4	3	7	2384	2365	12	4	5	2	511	496	5
3 1 3 8	158	186	28	4	14	263	261	5	- 4	3	9	25 <i>8</i>	2Ø9	9	- 4	5	3	51Ø	5Ø7	5
3 14 -8	242	227	14	4	15	2282	2338	11	- 4	3	11	624	638	6	4	5	5	2030	2844	12
3 14 -5	599	6ø3	8	4	16	211	208	7	- 4	3	13	7ø1	784	7	- 4	5	6	412	422	6
3 14 -4	259	229	12	4	17	1996	2862	12	4	3	15	494	495	9	4	5	7	1944	19Ø7	13
3 14 -3	828	817	8	4	1 10	117	187	18	4	4	-14	2.03	218	. 14	4	5	10	16Ø	169	16
3 14 -1	868	892	9	- 4	1 11	751	. 747	8	4	- 4 -	-13	145	137	18	4	5	11	648	635	7
3 14 Ø	141	156	19	4	1 13	700	711	7	- 4	- 4·	-12	287	323	11	4	5	13	67 <i>8</i>	657	7
3 14 1	4.08	426	8	4	1 15	392	391	9	4	4	-11	134	131	28	4	5	14	228	2.08	15
3 14 4	166	181	17	4	2-14	168	145	16	4	4	-10	1137	1113	11	4	5	15	477	482	9
3 14 5	471	486	9	4	2-12	275	275	11	4	- 4	-9	120	115	18	4	6-	14	158	168	28
3 14 7	68.0	664	8	4	2-18	1283	1284	13	4	4	-8	1806	1799	13	4	6-	12	3.82	3.07	19
3 15 -6	564	542		4	2 -8	1975	1994	13			-6	290	64.0	6	4	6-	11	302	284	1.0
3 15 -5	213	214	15		2 -1	308	389	6		- 1	-5	249	248			2-	10	10//	1001	
3 13 -4	180	1/6	10		2 -0	/53	740	ĉ		- 1		1041	1943	10	•	2	-8	1825	1828	14
3 13 -1	666	208	14	4	2 - 5	220	1164	1 0	:	- 1	- 3	101	199	14		2	-4	315	331	
2 15 2	622	536	0	;	2 - 9	244	1134	10		- 7	- 4	1240	1937	10		2	-0	004	002	, ,
3 16 4	557	567		2	2 - 3	2422	2000	5		- 7		1246	1201	12		6		247	265	7
3 15 5	139	124	23	Å	2 4	1717	1665	á		- 7	;	1831	1926	18	- 7	ĕ	-2	1395	1382	12
3 16 -1	580	587	23	Ĩ	2 1	556	566	6	- 1	- 7	2	367	376		1	6	-1	469	588	5
3 16 1	273	288	13	Ă	2 2	2818	2882	ă	- 1		Ă	1656	1661	51	1	6	Å	1245	1229	12
4 8-18	1378	1405	12	Ă	2 3	150	145	8		Ā	5	360	358	5	i i	6	ĩ	112	114	12
4 9 - 8	2712	2685	12	Ă	2 4	1908	1988	1.0	i i	Â	6	560	543	5	i i	6	2	1448	1438	12
4 Ø -6	857	806		Å	2 5	324	327	5	À	Ā	7	382	358	6	i i	6	3	671	691	- 7
4 8 -4	1478	1373	เต	Ă	2 6	651	668	7	i	À	ŝ	1824	1803	13	i i	6	Ā	1899	1061	11
4 6 - 2	1996	1993	9	- i	2 8	2127	2111	13	4	4	ğ	183	169	12	i.	6	5	3Ø8	318	
4 8 8	1786	1731	9	Á	2 10	1.032	1018	19	i.	4	18	881	916	9	4	6	6	623	633	7
4 8 2	1493	1403	ģ	4	2 12	341	347	9	4	- 4	11	319	316	9	4	6	7	316	311	8
4 8 4	1667	1593	1.8	4	2 14	213	190	13	4	- 4	12	363	377	9	4	6	8	1617	1634	15
4 Ø 6	8ø5	78Ø	8	4	3-15	541	535	8		- 4	13	168	164	16	4	6	1.0	879	89Ø	8
4 ø 8	2460	2431	12	4	3-13	741	754	7	4	- 4	14	236	226	13	4	6	11	379	393	9
4 8 18	1866	1.054	1.0	4	3-11	1237	1225	12	- 4	5	-15	5ø8	5Ø1	8	- 4	6	12	3ø6	319	1ø
4 9 12	194	193	13	4	3-10	231	200	11	- 4	5	-14	256	23Ø	12	4	6	13	249	264	13
4 1-15	381	385	1.0	4	3 - 9	233	218	9	- 4	5	-13	573	59 <i>8</i>	7	- 4	7-	14	294	282	12

.

.

• .

۴.

۲

-34-

																						90 U
H -	к L 	Fobs	Fcalc	SigF	H -	ĸ	L -	Fobs	Fcalc	SigF	H	ĸ	£	Fobs	Fcalc	SigF	H	ĸ	L -	Fobs	Fcalc	SigF
4	7-13	589	517	8	4	9	-7	1154	1147	11	4	11	5	1248	1253	13	4	15	4	174	129	18
- 4	7-11	755	75 <i>8</i>	8	- 4	9	-6	451	451	7	- 4	11	6	284	191	14	5	ø	-15	958	1008	9
- 4	7-18	327	338	9	- 4	9	-5	1376	1361	13	- 4	11	7	1082	1#82	11	5	ø	-11	89 <i>ø</i>	899	9
4	7 -9	121	81	19	4	9	- 3	719	729	7	- 4	11	9	219	212	14	5	ø	-9	1110	1130	13
4	1 -7	1468	1467	14	4	9	-2	745	737	8	- 4	11	11	263	3.84	14	5	ø	-7	1716	1657	12
4	7 -6	418	43Ø	6	4	9	ø	262	276	8	- 4	12-	1.0	668	677	8	5	ø	-5	2Ø73	2030	11
4	/ -5	2.026	2031	13	4	9	1	232	221	8	4	12	-8	988	912	9	5	8	-3	1929	19Ø1	18
	1 -3	1108	1115	11	4	9	2	572	562	6	4	12	-6	5.86	496	7	5	ø	-1	1753	1723	1.0
	4 - 4	588	592	5		Ä	3	628	613		4	12	-4	343	353		5	. 10	1	3243	3243	1.0
1	· · ·	239	229			ž	4	327	338			12	-2	988	1990	10	5		3	1246	1247	1.0
- 1	7 2	663	641 645	5	- 2		2	21431	1417	13	- 1	12	-1	321	1902	.,,	2	0	27	209	254	D C
- 1	7 5	1610	1404	12	- 7	~	2	1242	1247	12		12	2	1110	1033	1	5	2	6	309	270	2
7	7 6	416	437	13	- 1	2	14	243	219	13	- 1	12	4	426	455		5	â	11	1202	1261	12
1	7 7	1188	1183	12		á	11	332	329	14	1	12	6	261	255	11	5	ä	12	1195	1174	11
- i	7 18	257	269	11	- 1	á	13	538	548	. จั	- 1	12	7	234	229	12	5	ã	15	199	168	14
4	7 11	482	479	8	- Ā	18-	12	389	297	11		12	à	658	69.0	8	5	- ĩ -	-16	239	228	14
4	7 13	626	615	8	4	18-	-11	138	188	21	4	12	1.0	56.0	548	9	5	- i -	-14	1.071	1.079	10
4	8-14	159	114	18	4	18-	1.0	961	947	9	4	13	-7	641	656	7	5	1-	-12	85Ø	847	8
4	8-13	138	161	22	4	1.0	-8	1268	1258	13	4	13	-6	190	161	14	5	- i -	-1ø	436	427	7
4	8-12	428	421	8	4	18	-6	453	464	7	- 4	13	-5	1055	1076	1.Ø	5	1	~8	964	943	1.0
- 4	8-11	292	284	1.0	- 4	10	-5	183	175	14	- 4	13	-3	985	978	9	5	1	-6	644	628	6
- 4	8-1.0	1.083	1090	11	- 4	18	-4	391	419	8	- 4	13	-2	372	345	9	5	1	-5	2.05	189	7
4	8 - 8	1369	1375	13	- 4	1Ø	- 3	17Ø	173	14	- 4	13	-1	419	41.0	8	5	1	-4	1649	1641	11
4	8 - 7	176	179	14	- 4	10	-2	929	949	18	- 4	13	1	236	194	11	5	1	-3	421	431	4
	8 - 6	594	591	6	4	18	-1	348	338	8	4	13	2	345	332	9	5	1	-2	3915	4.018	1.0
4	8 -5	236	233	9	4	18	8	1084	10/8	11	4	13	3	627	612	7	5	1	-1	467	485	5
1	8 -4	529	523	6		10	1	220	226	11	4	13	5	825	824	8	5	1	ø	1446	1427	10
	8 - 3	32.0	321			1.0	Z.	883	892	ä		13	0	204	195	12	5	1	1	654	554	
- 2	0 - 2	11/2	11//	12		10		04/	000	.:		13		620	6.06		2		4	1028	1023	9
- 1	9 a	1221	1210	11	:	10	7	2/10	225	11	- 1	11	-0	101	193	17	2	-	3	4.0.0	411	
	A 1	349	261	6	- 1	10	6	1124	1110	11	- 1	11		231	2/10	14	5	-	2	353	265	11
1	8 2	1194	1287	12		1.0	18	822	824	1.		17	-1	198	214	15	5	1	7	122	134	13
- À	8 3	382	296		1	18	11	215	192	15	1	17	à	878	872		š	- 1	á	956	974	1.4
i.	8 4	824	816	Ŕ	1	1.6	12	450	447	. õ	1	14	ĩ	213	286	14	5	î	เต	1400	1432	13
4	8 5	241	242	18	i i	11-	-11	530	549	8	- À	14	ż	668	654	- 7	5	ī	11	162	152	16
4	86	5.02	515	7	4	11-	1.0	255	255	12	4	14	4	273	278	12	5	i	12	453	425	7
4	87	286	26Ø	` 1 <i>0</i>	4	11	-7	938	936	Ø	4	14	6	241	239	14	• 5	1	14	763	78Ø	8
4	88	1445	1442	14	4	11	-6	3Ø1	294	1.0	- 4	14	7	28/5	170	16	5	2.	-15	997	99ø	10
4	8 1Ø	972	961	9	- 4	11	~5	14Ø1	1420	14	- 4	15	-5	531	552	9	5	2-	-12	233	228	13
4	8 11	298	291	11	- 4	11	- 3	1015	1003	1Ø	- 4	15	-3	5Ø1	481	9	5	2.	-11	8Ø3	814	8
4	8 12	447	445	9	- 4	11	-2	· 502	492	7	- 4	15	-2	322	31.0	11	5	2.	-10	223	184	11
4	9-13	513	488	8	- 4	11	-1.	311	291	9	- 4	15	-1	226	198	14	5	2	-9	878	861	9
4	9-11	560	553	7	- 4	11	1	384	289	9	4	15	1	278	261	12	5	2	-8	148	147	12
4	9-10	273	266	1.0	- 4	11	2	439	441	8	4	15	2	219	216	15	5	2	-7	1237	1242	11
4	a - 8	179	17Ø	15	- 4	11	3	774	750	8	- 4	15	3	529	514	9	5	2	-5	1785	1811	11

.

.

· · · ·

Values of 18*Fobs and 18*Fcalc

2

.

Page 8

¥

6

-35-

.

Values of 18°Fobs and 18°Fcalc

Fobs Fcalc SigF HKL Fobs Fcalc SigF нкг Fobs Fcalc SigF H K L Fobs Fcalc SigF н к L - 3 3Ø9 8 12 б б - 1 5 5 5 8 13 6 11 9-12 6 13 9-11 3.07 7-14 9-18 ิล 1.03 4 11 7-12 -9 4 13 7-11 9 -8 ž 5-15 7-10 ź õ -7 7 -9 9 -5 5-14 1.0 5 2 9 5 2 1Ø 5-13 7 -8 9 -4 9 -3 9 -2 9 -1 5-12 5 2 11 5 2 13 7 -5 7 -4 5-11 5-18 5 -8 5 -7 -3 13 7 444 3-14 *8* 1*9* 9 9 9 9 9 9 9 ø 7 -2 3-12 *8* 259Ø 257Ø 1 2 3-10 5 -5 -1 3 -8 66ø ø 3 - 7 -3 57Ø 9 9 9 9 9 3 -4 5 - 2 3 - 3 5 5 5 11 8 8 -1 1*9* 7 ,7777 3 - 2 ø 4.07 ø B 9 1*0* 9 11 9ø6 2 5 71Ø 871 9 12 5 10-12 5 7 12 5 10-11 29Ø 8-13 5 10 -9 8-12 18 -8 3 8 5 18 8-11 5Ø1 5 10 -7 1Ø 3 10 5 12 iī -9 Ā 5-18 -5 1*8* 7 5 5 3 11 5 14 - 8 5 18 -4 LØ 13 7 3 12 6-13 -7 5 18 -3 8 -6 5 10 -1 3 14 6-12 8 -5 8 -4 5 10 4-15 6-11 a 4-11 5 10 6 - 9 -1 4 -9 4 -8 4 -7 6 - 8 -3 5 10 6 - 7 -1 5 18 1Ø 6 - 5 5 ø 5 10 4 -6 -4 5 18 8Ø5 4 -5 6 - 3 5 10 4 -4 5 10 -1 ß 4 -3 13 6 6 6 6 6 8 8 7 5 10 4 -1 5 5 18 11 Ø 1 2 š 338 5 11-11 7 67Ø 7 5 11-10

 5 11 -8

t

ł

Page 9

. 36-

Values of	18*Fobs	and 18	Fcalc													Pa	ge lø
H K L	Fobs	Fcalc	SigF	нк	L Fobs	Fcalc	SigF	H	к -	L Fobs	Fcalc	Sigf	н -	к I 	Fobs	Fcalc	SigF
5 11 -7	347	327	9	5 14 -	5 533	525	8	6	2-1	4 785	797	8	6	4 -E	1.842	1842	11
5 11 -6	155	131	17	5 14 -	3 327	329	16	6	2-1	2 1345	1327	13	6	4 -7	211	283	1.0
5 11 -5	289	214	13	5 14 -	1 289	292	11	6	2-1	1 194	188	15	6	4 -6	1566	1582	13
5 11 -4	864	848	8	5 14	<i>b</i> 198	182	14	6	2-1	Ø 37Ø	394	8	6	4 -5	196	185	8
5 11 -3	218	192	13	5 14	1 645	661		6	2 -	8 1257	1255	12	6	4 -4	1010	1013	1.0
5 11 -2	1221	155/	14	5 14	3 789	/#5		, p	2 -	6 1664	1993	13	6	4 - 3	2/8	298	
511.0	372	926		5 14	4 221	210	12	0 ć	2 -	4 851	837	9	6	4 - 2	1243	12/5	12
5 11 2	233	230	12	5 14	3 4/8	432		6	5 -	3 239	1207		2		600	131	10
5 11 4	650	641	13	5 15 -	3 163	152	29	6	2 -	1 125	100	19	۵ ۵	1 1	116	139	12
5 11 5	238	224	12	5 15 -	2 739	744	20	5	2	a 862	983		6		976	953	10
5 11 6	773	757	• • •	5 15	8 558	538	â	6	2	2 779	785	Ŕ	6	1 3	286	295	;
5 11 7	368	343	ģ	5 15	1 162	176	28	6	2	4 2529	2588	12	- 6	1 1	2587	2583	12
5 11 8	755	759	ē	5 15	2 153	146	21	6	2	5 189	176		6	4	209	216	· 9
5 11 10	582	567	8	5 15	3 205	195	16	Ğ	2	6 1831	1838	13	6	4 6	1912	1941	14
5 12 -9	520	517	8	6 Ø-1	4 733	724	8	6	ž	7 148	146	13	6	4 7	145	150	15
5 12 -8	3Ø3	293	11	6 #-1	2 1359	1361	15	6	2	8 334	349	8	6	4 E	348	345	8
5 12 -7	856	848	8	6 Ø-1	Ø 471	464	7	6	21	2 175	198	15	6	4 11	252	248	11
5 12 -5	838	848	9	69-	8 1464	1473	14	6	21	4 768	778	7	6	4 12	2 189	214	14
5 12 -4	178	164	15	6 Ø -	6 2886	1953	12	6	3-1	5 41Ø	489	1.0	6	4 13	2Ø9	179	14
5 12 -3	517	535	7	69-	4 715	786	7	6	3-1	4 145	146	21	6	4 14	746	77.8	8
5 12 -1	487	482	7	6 # -	2 1275	1236	11	6	3-1	3 176	195	15	6	5-14	171	158	18
5 12 1	1053	1069	11	6 Ø	Ø 1285	1298	11	6	3-1	1 1374	1367	14	6	5-13	216	195	13
5 12 3	1864	1854	12	6 Ø	2 586	611	6	6	3-1	Ø 188	195	14	6	5-11	1243	1231	12
5 12 4	273	264	11	69	4 2203	2215	11	6	3 -	9 1437	1450	13	6	5-16	215	230	13
5 12 5	616	613		6 Ø	6 1449	1469	13	6	3 -	8 236	283	1.0	6	5-9	1555	1550	15
5 1 2 8	285	166	15	6 10	8 155	131	13	6	3 -	7 329	336		6	5-1	632	622	6
5 12 9	299	383	12	6 6 1	2 204	214	13	D C	3 -	6 J86	3/3	Č,	b c	5 -6	393	411	Č,
5 13 -0	2.00	221	15	6 1 - 1	4 /20 E E /2E	720		ĉ	3 -	D 310	311	e e	6	5 - 5	301	35/	2
5 13 -6	205	220	17	6 1-1	.a 383 1 1322	1225	14	2	3-	4 30/	358	5	2 2	5 - 3	243	£14 610	ć
5 13 -5	237	234	13	6 1 -	9 1766	1725	- 17	6	3 -	1 1391	1359	11	6	5 -1	1327	1342	12
5 13 -4	741	756	.,	6 1 -	7 555	533	5	6	3	a 321	384	5	6	5 1	2536	2524	12
5 13 -3	191	179	14	6 1 -	4 226	289	7	6	3	1 2659	2548	11	6	5 2	585	612	5
5 13 -2	1163	1174	12	61-	3 652	635	ż	6	3	2 419	428	5	6	5 3	1998	1958	13
5 13 -1	169	138	16	61-	2 228	25.8	6	6	3	3 2227	2211	12	6	5 5	286	289	7
513Ø	8.04	816	9	61-	1 1374	1372	11	6	3	5 413	437	5	6	5 6	543	564	6
·5131	28Ø	268	1.0	61	Ø 2Ø7	224	6	6	3	6 185	195	1.0	6	57	1418	1413	13
5 13 2	244	245	11	61	1 2882	2911	11	6	3	7 1636	1634	14	6	5 9) 756	746	8
5 13 3	241	259	12	61	2 208	281	7	6	3	9 752	744	8	6	5 16	y 481	5.02	7
5 13 4	362	366	9	61	3 2148	2184	11	6	3 1	1 566	589	7	6	5 11	492	495	7
5 13 5	169	141	17	61	5 558	556	5	6	31	3 669	675	7	6	5 13	54.0	526	8
5 13 6	649	641	8	6 1	7 1713	1762	13	6	4-1	4 745	764	8	6	6-14	655	649	. 8
5 13 7	229	2.09	14	6 1	9 692	711	7	6	4-1	3 128	130	21	6	6-12	1.064	1069	11
5138	6.07	592	8	6 1 1	J 216	196	12	6	4-1	2 1230	1267	12	6	6-11		305	10
5 14 -7	000	646	.8	6 1 1	1 503	49/	/	6	4-1	U 548	533		6	0-16	7 4/5 0 000	4/4	8
3 14 -0	109	128	13	011	.J 065	65/		6	- 4 -	a 122	147	10	Ó	0 - E	, 033	039	d

J ≪

.

.

-37-

• 5

Valu	162	of	18*Fobs	and 18	*Fcalc																	Pa	ge 11
H -	K -	L -	Fobs	Fcalc	SigF	H -	к -	L -	Fobs	Fcalc	Sigf	H	к -	L _	Fobs	Fcalc	SigF	H -	к -	ι -	Fobs	Fcalc	SigF
6	6	-7	153	176	16	6	8	8	422	396	. 6	6	11-	1.0	191	197	17	7	Ø-1	11	517	535	7
6	6	-6	1463	144Ø	14	6	8	1	388	285	8	6	11	-9	959	967	9	7	8	- 9	1417	1375	13
6	6	-5	218	215	9	6	8	2	434	424	7	6	11	-7	621	628	7	7	Ø -	-7	876	883	8
6	6	-4	1192	1199	12	6	8	- 4	1288	1281	13	6	11	-6	267	254	11	7	ø -	-5 '	1485	1437	13
6	6	- 3	425	423	6	6	8	5	218	185	12	6	11	-4	127	83	2.0	7	Ø -	- 3	3112	316Ø	12
6	6	- 2	1387	1379	13	6	8	6	1ø69	1892	1.0	6	11	-3	379	366	9	7	Ø -	-1	1627	1599	12
6	6	-1	242	236	7	6	8	7	152	131	17	6	11	-2	477	478	8	7	8	1	3ø7	273	5
6	6	. Ø	619	61.8	6	6	8	8	388	319	10	6	11	-1	1888	987	1.0	7	ø	3	641	616	6
6	6	1	355	357	6	6	8	12	277	294	12	6	11	1	1295	13Ø7	13	7	ø	5	164	171	10
6	6	2	487	476	5	6	9.	-11	846	835	8	6	11	2	349	326	9	7	ø	7	1748	1711	14
6	6	3	275	247	8	6	9.	-18	165	176	17	6	11	3	1.017	1019	1.0	7	ø	9	1438	1415	13
, e	D	4	1562	155/	14	6	9	-9	1941	1885	18	6	11	6	339	323	1.0	7	ø	11	329	317	9
è	, p	Š	269	282	. 9	6	à	-8	264	263	11	6	11	7	695	723	?	7	ø	13	433	424	9
, P	2	0	1220	1255	11	6	ä	-/	561	56.0		6			631	616	8		1-	14	238	287	-13
Č,	2	۰ ،	199	133	14	, e	3	-0	398	191		, e		1.6	261	244	13		1-	13	14/	89	17
۵ د	6		202	230	11	, D	3	-4	225	105		, P	12	-8	349	3/5	1.0		1-	1Z	258	25/	12
5	2	12	120	120	22	Č,		- 3	1/3	150	14	2	12	~ 0	803	868	9		1.	-8	1005	1029	14
6	7	-11	1956	1941	23	6	2		000	512	14	, C	12	28	201	267	10				2017	2550	13
ĕ	÷	- 4	1311	1392	12	6	3	- 1	1456	1445	12	6	12	- 3	231	207	10	4			13/10	1313	13
6	ż	- 8	193	211	14	6	á	;	244	250	13	ž	12	-2	120	160	16	4		- <u>c</u>	733	130	
6	7	- 7	721	728	• •	6	á	3	1999	1113	11	Å	12	2	447	454	19	÷	1	2	321	320	5
6	ż	-6	318	345	Å	6	á	5	172	164	15	Š.	12	7	979	976	ă	;	÷	2	137	120	
6	7	-5	134	135	16	6	á	6	366	346		6	12	6	893	882	å	ź	÷	4	1391	1429	12
6	7	-ž	468	478	6	6	á	7	991	997	าต์	6	12	2	290	270	12	'	÷	Ē.	143	147	15
6	7	-1	1839	1079	1.0	6	9	ġ	721	719		6	12	à	341	318	11	2	-i	6	1784	1721	13
6	7	- i	1667	1698	14	6	9	1.0	225	289	14	6	13	-7	533	534		;	i	7	156	128	14
6	7	2	512	513	6	6	9	11	559	565	8	6	13	-6	27.0	243	12	2	ī	8	286	314	9
6	7	3	1194	1179	11	6	1.8-	-18	191	193	16	6	13	-5	141	113	28	7	ī	ġ.	305	31.0	9
6	7	5	29Ø	275	9	6	10	-9	215	238	13	6	13	-3	331	333	1.0	7	- i - :	ıø –	1389	1401	14
6	7	6	426	428	7	6	18	- 8	744	744	7	6	13	-2	312	321	1.8	7	1	11	156	172	15
6	7	7	1156	1139	11	6	10	-7	212	202	13	6	13	-1	823	820	8	7	1	12	1068	1866	11
6	7	9	761	769	8	6	18	-6	1149	1146	12	6	13	1	785	814	8	7	1	14	230	214	14
6	- 7	10	378	371	9	6	10	-5	217	2Ø1	12	6	13	2	253	246	12	7	2-	15	521	538	9
6	- ?	11	522	543	8	6	18	-4	748	758	7	6	13	3	58 <i>8</i>	582	7	7	2-	13	435	433	8
6	- 7	13	439	443	9	6	10	-3	329	331	9	6	13	6	384	285	12	7	2-	12	2ø9	224	13
6	8	-12	820	803	9	6	10	-2	698	782	7	6	13	7	474	477	9	7	2-	11	6Ø8	617	7
6	8	-11	158	148	17	6	10	-1	124	99	2Ø	6	14	-6	575	582	9	7	2 -	Ø	233	213	12
6	8	-9	265	265	11	6	1.0	ø	25Ø	296	11	6	14	-5	157	143	2Ø	7	2 .	-9	1186	1210	12
6	9	-8	855	820	8	6	1Ø	1	257	27.0	11	6	14	-4	691	687	8	7	2	-7	615	613	6
b	8	-7	221	225	12	6	1.0	2	590	592	7	6	14	-3	192	159	16	. 7	2	-5	1248	1241	1,1
0	8	~6	1139	1161	11	6	10	4	1464	1486	14	6	14	-2	6.05	599	8	7	2	-4	191	2.05	8
5	8	-5	325	323	. 8	6	10	6	1251	1232	12	6	14	2	313	3.07	11	7	2	-3	2509	2515	12
e e	8	-4	961	966	18	6	10	7	266	278	12	6	14	4	6.05	616	8	7	2.	-1	1246	1258	12
6	0	- 3	315	332	8	6	110	8	360	359	1.6	6	15	-1	615	6.03	8	7	2	1	125	1.03	11
6	0		103/	1026	18	6	18	. 9	1/9	188	17		<i>1</i> 9-	15	557	547	9		2	2	214	204	.7
0	a	-1	205	205	9	ь	10	11	148	133	21		<i>1</i> 9 -	13	354	358	1.0	7	2	3	15Ø	148	1Ø

• .

.

r

,

.

Ŧ

-38-

Values of 18*Fobs and 18*Fcalc Page 12 HKL Fobs Fcalc SigF HKL Fobs Fcalc SigF нкг Fobs Fcalc Sigf HKL Fobs Fcalc SigF ----------------------------2 2 *8* 5-14 -6 1.0 ,7777 5-12 5-11 7 ē -4 9 9 9 -3 12 7 5-11 7 5 -8 7 5 -7 7 5 -6 7 5 -4 7 5 -3 7 5 -2 2 11 , 7 7 3Ø1 -2 2 13 -1 3-14 ; 7 ø 1Ø36 3-12 3-1ø 3 -8 3 -7 3 -6 9 1.0 -1 9 11 1Ø 7 10-11 -5 1. 11.06 7 10 -9 -4 1Ø 7 10 -8 -2 :8 7 10 -7 -1 1.0 7 10 14 7 10 -5 ø 7 7 10 -4 1Ø 7 10 -3 7 12 87Ø 136Ø 8~12 7 10 -1 7 5 18 7 5 12 8-11 7 1.0 ø 18ø2 8 - 9 7 1.0 -5 6-13 4.08 8 - 8 7 18 1Ø 6-11 8 -7 1Ø 7 10 7 6-9 7 6-9 7 6-8 7 6-7 7 6-5 7 6-5 7 6-4 7 5-3 7 6-1 8 -5 8Ø6 7 10 7. 7 ğ 38Ø 8 -4 7 10 787 3 1.0 8 - 3 8 - 1 7 10 3 11 3 12 1Ø 7 11 -8 1.6 ø 28Ø 7 11 -7 4-13 7 7 11 -6 1ø33 1.0 4-11 7 11 -4 7Ø2 4 -9 7 ø . 7 7 11 -3 4Ø2 4 -8 4 -7 4 -5 7 11 -2 7 11 -1 1ø62 7 11 Ø 79Ø 4 -4 4 -3 3Ø8 3ø6 1Ø 7 11 2Ø 1Ø 7 11 2 -1 8 11 7 11 ø 9-12 7 11 - 4 ż 9-11 7 11 - 5 9 - 8 7 11 6 Å. 7 6 11 7 9 - 7 7 12 -8 7 6 12 7 6 13 26Ø - 6 23Ø 9 - 6 7 12 -7 2Ø5 - 5 7 12 -5 4 7 4 9 4 11 4 12 7 7-12 7 7-11 -4 7 12 -4 113ø - 3 7 12 -3 1ø33 1.0 138 7-1*9* 7 -8 7 12 -1 7 12 Ø -2 9Ø3 -1 1Ø

7 12 1

7 4 13

1.0

7 7 - 7

7 9 8

.

ون

э

Values of	1#*Fobs	and 18	Fcalc																	Pa	ge 13
H K L	Fobs	Fcalc	SigF	H	. K	L -	Fobs	Fcalc	Sigf	H	K -	L -	Fobs	Fcalc	SigF	H -	к -	L -	Fobs	Fcalc	SigF
7 12	287	186	14	8	2-	1.0	897	886	9	8	4	4	123	126	17	8	6	1.6	738	742	7
7 12 5	462	455	9	8	2	-9	164	181	17	8	4	5	200	222	11	8	6	12	762	763	8
7 12 7	694	785	8	8	2	-8	366	361	8	8	- 4	6	489	429	8	8	7.	-11	253	273	13
7 13 -6	7.01	722	8	8	2	-6	484	4.83	7	8	4	7	284	219	13	8	7.	-1ø	188	162	14
7 13 -4	59 <i>8</i>	589	8	8	2	- 4	889	881	8	8	- 4	8	487	412	8	8	7	-9	154	134	16
7 13 -3	212	217	15	8	2	-2	962	966	10	8	- 4	9	247	254	11	8	7	-7	429	432	8
7 13 4	517	533	8	8	2	8	2483	2421	13	8	- 4	1.0	766	772	8	8	7	-6	257	268	12
/ 13 1	269	245	12	8	Z	1	182	81	16	8	4	12	911	899	18	8	2	-5	922	92Ø	. 9
/ 13 2	716	685		8	2	2	1840	1822	13	6	5.	13	77.0	769	8	8	7	-3	1743	1753	15
7 13 3	247	242	13	8	Z	4	117	94	15	8	- 5-	-11	230	239	13	8	7	-2	312	3.06	9
/ 13 4	64.9	642	8	8	2	6	523	5.85	6	8	5	-9	165	1/4	16	8	7	-1	934	927	19
7 13 0	388	407	1.6	8	ž		358	358	9	8	5	-!	4.86	386	8	8	<u> </u>	1	31.6	316	
/ 14 -4	289	191	15	8	ž	10	826	821	8	8	2	-6	321	311	ä	8		2	252	264	1.0
7 14 -3	715	/29	8	8	ž	12	1928	1.844	18	8	2	- 5	854	878	8	8	- 1	3	944	917	10
7 14 -1	////03	212			3-	13	849	829		8	2	- 3	1929	1393	14		4	2	784	769	
7 14 5	231	217	14		3-		1/6	100	15		2		239	224	10	ä	4	2	248	219	12
9 9 1 1 2	377	331			3	- 7	300	312	10		2	-1	920	921	1.9		- 4		011	299	
9 4-14	0/10	042	9		3	-' <u>-</u>	4/3	271	\ <i>a</i>		-	5	433	- 416			4		170	1/3	14
8 8 - 18	200	363			3	-0	230	765	2		2	5	1210	410			- 4	10	201	202	
8 4 -6	500	503	6	8	2	- 3	1011	1020			2	2	1319	1297	13		<i>.</i>	1.2	510	50/	10
8 9 -4	1247	1276	12		3	-3	1011	1039	13		5	2	240	240				14	707	747	7
8 9 - 2	677	602	12		3		733	720	15		5	7	527	5.00	1.0			_0	200	222	1 4
	25.04	2495	12	0	2	- I	1170	1102	12		5	6	100	171	16	0		_0	5.00	522	10
8 4 2	2025	2919	12	0 0	3	2	269	269	12		5	8	627	625	13			- 7	201	222	12
8 9 6	741	728	1.3	å	3	2	1721	1720			2	1 9	. 259	302	á			-6	452	474	
8 8 8	417	426	7	9	3	5	089	973	14		5	11	152	122	1.9	0		-6	267	369	å
8 9 19	845	812	Å	ă	3	6	266	265		Ă	6.	.13	266	245	13	ă	ă	-4	479	486	ด์
8 8 12	1112	1193	11	Ř	3	7	659	688	é	Ř	6.	12	742	737		, a	Ř	-3	363	363	Å
8 1-13	924	929	â	Ř	2	à	881	884	ă	Ä	6.	. î î	132	138	28	Ř	Ř	-2	721	715	ĕ
8 1-12	140	135	19	Ř	ă	1.9	147	131	17	Ă	6.	10	836	842	รัต	Ř	Ř	-1	239	225	11
8 1-11	281	291	ii.	Ā	3	11	232	226	12	8	6	-9	291	283	1.07	8	8	ø	1573	1585	16
8 1 - 6	127	100	19	ŝ	3	13	854	878	9	8	6	-8	713	729	.7	8	8	ĩ	291	268	9
8 1 - 7	292	323	9	8	A-	12	936	924	9	8	6	-7	281	27.0	1.0	8	8	ž	1262	1242	12
8 1 -5	951	945	ģ	8	4-	10	9ø6	913	ĝ	8	6	-6	753	744	8	8	8	3	179	174	16
8 1 - 3	2451	2422	13	8	4	-9	176	17Ø	15	8	6	-4	759	745	7	8	8	4	215	227	13
8 1 - 2	132	85	12	8	4	- 8	582	574	7	8	6	-3	197	212	12	8	8	5	2Ø5	2.02	13
8 1 -1	1536	1536	13	8	4	-7	316	308	9	8	6	-2	763	742	7	8	8	6	334	328	9
8 1 1	573	595	6	8	4	-6	56Ø	531	6	8	6	ø	1812	1839	14	8	8	8	456	459	8
8 1 3	1436	1468	13	8	4	-5	183	172	12	8	6	1	266	268	9	8	8	9	163	1.05	18
8 1 5	82.07	822	8	8	4	-4	68Ø	652	7	8	6	2	14.02	1384	13	8	8	1ø	675	678	8
8 1 7	676	677	7	8	4	- 3	369	368	7	8	6	3	168	153	14	8	9.	-11	237	235	14
8 1 9	937	943	9	8	4	-2	1019	991	10	8	6	4	170	157	14	8	9.	-1Ø	231	243	13
8 1 11	253	261	11	8	4	ø	218Ø	2166	13	8	6	5	377	36ø	8	8	9	-9	231	2ø1	13
8 1 1 3	863	861	9	8	4	1	269	283	8	8	6	6	446	455	8	8	9	-7	527	528	7
8 2-12	919	938	1.0	8	4	2	1589	1614	14	8	6	8	57 <i>8</i>	566	7	8	9	-6	343	341	9
8 2-11	149	155	17	8	4	3	111	98	17	8	6	9	240	23Ø	12	8	9	-5	762	769	8

<u>ب</u> ۲

· Ve 1... d 1885aala # 1885-L

.

÷

.

-40-

•

•

•

. .

alues of	1#"Fobs	and 14	Fcalc															Pa	ige
H K L	Fobs	Fcalc	Sigf	H -	K L	Fobs	Fcalc	Sigf	H -	<u>к г</u>	Fobs	Fcalc	Sigf	H -	к -	L	Fobs	Fcalc	S
8 9 - 3	1294	1299	13	8	12 1	194	177	14	9	28	261	281	11	9	5	9	241	233	
8 9 - 2	276	267	11	8	12 2	744	739	8	9	29	784	78 <i>8</i>	8	9	5	10	276	272	
8 9 -1	760	753	7	8	12 3	185	170	16	9	2 11	623	623	7	9	6	-9	989	917	
8 9 19	158	174	17	8	12 5	235	214	14	9	3-12	832	814	9	9	6	-8	2.07	226	
8 9 1	346	326	. 9	8	12 6	331	310	11	9	3-10	1085	1084	11	9	6	-7	1352	1378	
0 9 2	384	29/	1.0	8	13 -5	200	584	a a	9	3 - 8	260	254	11	9	6	-5	674	693	
8 9 3	210	179	12		13 -3	261	245	12	2	3 -0	745	/54	8	9	č	-4	295	31.0	
8 9 5	791	789	12	8	13 -2	201	240	14	2	3 - 2	162	172	14	9	2	- 3 a	167	130	
8 9 6	418	425	6	ă	13 2	174	174	1.6	9	3 - 2	977	870	12		6	1	383	381	
8 9 7	545	529	7	8	13 3	616	688	ĩă	9	3 8	1283	1248	13	á	6	5	177	181	
8 9 9	479	465	ġ	ē	8-13	662	660	8	9	3 2	993	958	iø	ő	6	3	1463	1469	
8 18-18	628	635	8	ģ	8-11	156	158	17	9	3 4	374	365	7	9	6	- Ă	197	171	
8 10 -9	253	239	12	9	8 -9	1159	1167	12	9	36	1376	1387	14	9	6	5	1343	1332	
8 10 -8	473	453	8	9	Ø -7	1664	1693	15	9	38	815	800	8	9	6	8	161	169	
8 1.07 - 7	211	218	13	9	Ø~5	655	645	6	9	39	246	236	11	9	6	9	6.06	688	
8 10 -6	259	233	11	9	Ø - 3	111	59	17	9	3 10	236	226	11	9	6	11	585	589	
8 10 -5	263	265	11	9	Ø -1	191	228	18	9	4-13	587	5.05	9	9	7-	-10	896	904	
8 10 -4	192	192	14	9	8 1	2.02	198	9	9	4 -9	1144	1166	12	9	7	-8	347	354	
8 18 -3	328	351	9	9	83	1710	17.05	14	9	4 -8	234	243	13	9	?	-7	224	211	
8 19 -2	696	6/5	.,	9	85	1754	1/89	15	9	4 -7	1473	1481	14	9	7	-6	519	516	
0 10 0	1323	1330	13			243	231	11	2		213	213		ä	4	-5	1/9	187	
8 18 2	1997	1992	11	2	a 11	547	1000	10	2	4 - 4	220	220	1 4		4		216	194	
8 18 3	199	202	14		1-12	932	635	6	,		223	239	10	2	5	-3	210	208	
8 18 4	171	166	15 .	á	1-19	1385	1266	12	á	1 2	289	204	11	á	2	ā	1858	1084	
8 18 6	340	338	1.0	é	1 -8	466	456	ĥ	9	4 3	1515	1533	15	á	7	ĩ	264	243	
8 1.07 7	235	233	13	ģ	1 -6	868	859	ğ	9	4 5	1565	1562	15	9	7	2	803	801	
8198	4.84	384	1.0	9	1 -4	1851	1075	11	9	4 9	595	598	7	ģ	7	4	489	476	
8199	217	198	16	9	1 -2	968	995	1.0	9	4 11	563	578	8	9	7	5	412	489	
8 11 -7	469	474	9	9	1 Ø	1409	1424	14	9	5-12	692	7Ø8	8	9	7	6	1454	1425	
8 11 -6	195	285	16	9	1 1	159	י 51	12	9	5-11	183	200	16	9	7	7	243	233	
8 11 -5	684	673	7	9	1 2	1328	1327	12	9	5-10	1006	1008	1.9	9	?	8	882	862	
8 11 -3	968	982	1.0	9	1 4	547	559	6	9	5 -8	390	399	8	9	?	9	227	191	
8 11 -1	5/4	568		9	1 5	178	148	13	9	5 -7	159	180	18	9	- 7	1.0	341	348	
8 11 18	151	138	17	Š	1 6	1857	1863	15	ä	5 - 6	527	525		9	8	-9	761	751	
0 11 1	208	204	1.0		1 8	943	954	18	ä	5 - 5	289	185	12	ä	8	-8	228	227	
9 11 2	2/10	237		3	2-12	103	570	10		5	160	161	, ,	9	0		1020	1030	
8 11 4	120	145	24	2	2-13	1246	1267	12		5 - 3	776	743	15	3	8		492	246	
8 11 5	771	756	20	2	2 - 7	1551	1557	15	9	5 0	975	992	្រា		8	- a	461	472	
8 11 6	582	478	ğ	9	2 -5	466	458	13	ģ	5 1	162	169	14	9	ä	ĩ	595	685	
8 11 7	413	415	เต	ģ	2 -3	116	94	17	ő	5 2	745	772	•7	á	ลั	2	124	29	
8 12 -7	224	218	iš	é	2 1	413	431	6	9	5 4	474	472	ż	é	8	3	1483	1410	
8 12 -6	361	369	iī	9	2 3	1743	1727	14	ğ	5 5	169	152	16	9	8	4	334	345	
8 12 -2	579	575	8	9	2 4	190	168	12	9	5 6	1448	1428	14	9	8	5	1262	1281	
8 12 Ø	872	890	9	9	2 5	1783	1766	15	9	5 8	817	819	8	Q	8	7	149	124	

.

ž

9

-41-

18*Fcalc	
pue	
1.0°* fobs	
of	
Values	

ge 15	Staf	17	œ	8	- 2	. ~	Ξ	8	16	æ	Ξ	5	::	100	8	16	80	2	19	21	<u>n</u> a	1	. @	10	1.8	8	<u> </u>	2 2	;~	=	=	12	5	2 -	- a	19	60	12	2	æ (20 a	15
đ,	Fcalc	181	845	862	184	546	262	47.8	185	832	248	848	2	669	821	191	48.0	614	173	1165	1/1	283	473	323	284	823	822	22	138	283	1336	233	784	C12	164	294	4.02	24.6	71.6	738	0 7 7 7 7 7 7 7 7 7	205 205
	Fobs	168	837	2/2	155	535	259	457	164	848	257	832	226	696	818	162	483	610	148	1167	1 2 4	267	477	312	3.63	198	258	202	74.8	267	1331	236	754	2017	457	289	4.03	253	669	747	28.0	188
		ñ	۰ ہم ۱	G	a -	• •	10	-	s	ø	~	•		; ŋ		9	ŝ	ñ	27		9 -	• ~	n 1	ഗ	~	م ز	9	n a	م	Ŷ	7	ñ	<u>م</u> -	X	•	. m	4	ഹ	ø	æ (ית ייי	- ua 1 1
	Кι	9	9	0 4	9 4	9 49	9	9	و	9	6	w w	a v	~	~	~	~	~	~	~ '	~ ~	~ ~	~	~	~	~		0 a	0 00	80	80	œ	œ (9 a	a 0) co	80	œ	80	œ (סת	n on
	Ξı	1.6	8	9 9		8	1.6	10	18	18	8	81		9	1.0	18	1.8	18	9	9		9	81	19	19	a 1		6 G	9	1.0	1.0	1.0	9	0 G	2	9	1.0	1.0	1.0	91		91
	Staf	1	5	14	9	91	=	2	13	15	σ	<u>0</u> r	- a	~	1.6	80	12	E1	σ,	æ ?	2	2 -	6	16	~	2	יים	- 4	9 10	1.8	12	Q	on (10 ~	- 8	91	9	11	16	58		16
	Fcalc	687	196	5.	112	1 8 8 8	961	271	2.85	148	922	1665	365	428	295	4.8.8	227	230	385	855	1191	318	423	185	642	137	126	100	677	277	1.055	624	325	4 4 4	163	275	93.0	292	179	132	968	1659
	Fobs	678	E/1	5991	15.6	1016	947	271	215	167	166	1613	25.2	449	297	4.62	221	213	3.68	828	15.0	311	434	189	618	11	116	000	969	269	1.871	62.8	31.0	766		295	83.8	386	176	131	176	1663
	י ג	m	•	n v	"		1	12	1.0	ŝ	ہے ۱	•		• 69	-	~	m	4	ഹ	•	D 0	. 8	=	10	ŝ	<u>م</u> ،		2	'n	Ň	7	-	~ ~	י ני) (~	6	1.0	ŝ	~ `	<u>ب</u> م	n 4
	ж і	e	m 0	ה ר	n 1) m	ŝ	4	-	-	-	•	• •	-	-	4	-	+	4	-	• •	• •	1 CO	å	ŝ				n in	ò	م	ŝ	s u	n u	.	ی ו	ŝ	ę	۰		0 4	o o
	Ξı	1.6	8	0		91	81	1.0	1.0	1.0	8	8		9	1.8	1.0	81	91	8	81.		9	1.0	1.0	91	81		9 9	9	1.0	19	8	8	9 9	1	9	18	1.0	1.0	9	9	91
	SigF	12	م :	<u> </u>	• ~	. 00	8	1.0	12	6	='	.	19	9	7	6	17	15	6 (<u> </u>	• -		13	=	=	23	9	r i		9	و و	13	a , <u>j</u>	2 2		. 89	~	80	15	~ 0	<u>م</u>	;~
	fcalc	255	868	1061	695	6.0.8	365	979	1258	416	868	124	1871	182	675	946	133	1456	864	182		572	236	1.078	1.94	295	155	1767	8.9.4	533	552	22.8	623	1188	373	474	671	869	154	466	1 2 5 2	742
	Fobs	243	968	887	112	832	371	975	1218	415	363	120	1.857	167	675	928	141	1473	866	186	890	578	661	1877	1095	287	878	1776	68.9	538	563	21.0	196	071	381	161	657	869	173	478	1212	727
	 (80	<u>ہ</u>	•	1 69	2	-	g	œ	1.0	<u> </u>	- 0	5	. va	ŝ	ñ	ñ	ĩ	-	~ ~	n 4	<u>م</u> ہ	~	6	1	21			Ņ	8	~	-	o r	~ a	9	1	6	~	è	ņ	" -	•
	ы	6 0 i	59 (6 4	9 09	- 50	9	58	8	9	- .		••••	6 cm4)	-			-	~	-	• •	• •=		ant	-		1	• •	10	~	2	N	~ ~	n n	1	ιų	m	m	m i	m (י ז רי	י הי
	3 (18			91	1.6	16	1.6	18	18	9	9 9		81	1.0	1.0	91	91	8	9	9 5	9	1.0	1.8	8	9		9	9	1.6	8	9	9	9 6	8	81	91	1.0	1.0	9	9 0	
*Fcalc	SigF	12	æ (• _	: 2	8	8	8	8	1.8	σ, (• =		·~	13	80	15	æ	8	B) 4		9 00	6	Ξ	1.0	12	æ <u>;</u>	1	16	7	6	61	a 0 0	2	29	15	6	80	61	80 C	2	1 00
and 18	Fcalc	262	161	571	2.82	51.0	754	4.05	818	265	877	130	665	778	272	563	215	823	461	469	264	429	917	287	972		619 192	685	193	547	383	123	674	122	157	215	425	672	194	900	****	48.6
tarfoba	Fobs	28.8	164	262	196	5.05	171	4.03	814	267	852	264	186	776	275	573	213	818	171	2/4		E	912	289	696	197	610	696	172	552	368	152	659	337	181	215	437	668	186	0 0 0		482
.	، د.	co (<u>ה</u>	9 9	ŗ	و	7	ņ	Ņ	÷.	-	u <i>u</i>) u	8	5	ς.	8 0	<u>,</u>	م	• -		-	m	4	נו	<u>ہ</u> ،	• •	ې د	· 	80	~		ou	•	· .			m	-	2		10
	¥ I	•	20 00	h 07	5	с, С	م	6	<u>б</u>	م	.	n a		6	6	8		8	9. (5 9			8	8	9.	-		:-		-						N	N	N	~		5	5
Valu	τı	5 0	•	n 01	0	σ	σ	6	5	σ, ι	5 0	~ 0	۰ σ	6	6	5	0	5	оло (• •	6	6	6	a 0	, ,		0	6	6	n (ייכ	סת	• •	6	6	6	6	5 G	n a	9	19

VAIU	63	01	18-1005	and 18	-rcaic																ra	9e 15
н -	ĸ	L -	Fobs	Fcalc	SigF	H -	K L 	Fobs	Fcalc	S1gF	H -	K -	L -	Fobs	Fcalc	SigF	н -	к -	Ļ	Fobs	Fcalc	SigF
1.0	9	-5	293	284	1ø	11	1 1	136	142	18	11	5	-7	152	179	17	11	9	-4	426	411	9
1.0	9	-3	559	565	7	11	12	1531	1566	14	11	5	-6	599	621	7	11	9	-1	152	154	19
10	9	-1	1835	1Ø33	11	11	1 4	963	967	10	11	5	-5	214	241	13	11	9	ø	432	424	9
1.0	9	1	888	810	8	- 11	1 18	133	144	21	11	5	-4	651	667	7	11	9	2	916	9.02	8
1.0	9	2	288	279	1.0	11	2-11	943	924	9	11	5	-2	334	336	9	11	9	4	797	813	8
1.0	9	3	482	486	8	11	2 -9	385	382	. 9	- 11	5	ø	478	482	8	11	. 9	5	245	234	14
19	9	5	347	357	1.0	11	2 - 7	184	284	15	11	5	Z	1264	1249	12	11	10	-5	261	252	13
1.6	3	0	348	323	19	11	2 -6	211	216	12	11	5	4	928	915	9	11	1.0	-4	274	292	12
10			153	132	19	11	2 -5	146	158	18		5	5	213	234	13	11	1.0	-3	563	5/3	8
1.0	1.0	-/	128	162	13		2 -4	187	194	14		2		152	165	17		10	-1		142	
10	1.0		532	515	8		2 - 3	853	1620	16		D 2	-9	103	454		12	10	. 1 a	212	040	8
10	1.0		922	560	7		2 -1	1010	1029	10		2	- 5	722	726	1	12	. D.	- 10	1101	1212	12
18	1.0	-1	343	242	6		2 2	262	261	11	11	6	-3	133	120	16	12	a	-6	561	676	12
10	1.0	-	274	271			2 3	146	142	17	- 11	6	-4	1207	1296	12	12	a	-0	512	575 520	'
เลี	ĩã	2	356	267	19		2 5	1926	1821	· ''		6	ä	217	329	19	12	ä	-2	714	711	2
เดี	เลี	ā	273	261	11	- 11	2 7	458	454	Å	- 11	6	ĩ	779	790		12	ã	ā	451	447	, ,
18	เดิ	Ă	356	351	18		2 9	277	281	11		6	3	471	455	Á	12	ã	ĩ	831	848	Ŕ
18	iø	5	381	377	10	ii	3-10	7.92	7 8 9			6	Ă	273	293	11	12	ã	1	975	963	ğ
10	iø	6	562	554	ĩã	ii	3 -9	148	121	18	ii	6	5	1828	1007	10	12	ã	6	198	213	13
1.8	11	-5	282	276	12	ii	3 - 8	97.8	985	18	ii	6	7	539	537	8	12	ã	ā	991	982	iø
1.0	11	-3	352	347	18	11	3 -6	594	596	7	ii	6	8	250	239	13	12	ĩ	- 9	427	4.05	9
10	11	-2	135	139	22	ii	3 -4	735	758	7	11	7	-8	779	783	ž	12	ī	-7	780	76Ø	ż
1.0	11	-1	677	678	8	11	3 - 3	162	168	16	11	7	-7	157	167	19	12	1	-5	1337	1322	14
10	11	1	61.0	614	8	11	3 -2	471	475	7	11	7	-6	559	567	8	12	1	-3	647	65Ø	7
10	11	2	197	228	16	11	3 Ø	471	479	7	11	7	-5	177	16Ø	15	12	1	3	381	386	8
1Ø	11	3	414	384	9	11	3 1	217	189	12	11	7	-4	545	547	7	12	1	5	1199	1199	12
10	12	- 2	51.8	511	9	11	32	1314	1285	13	11	7	-3	165	199	16	12	1	7	959	952	9
10	12	-1	265	257	13	11	34	958	975	9	11	7	-2	185	194	14	12	2.	-1Ø	682	69ø	8
11	Ø-	11	973	964	9	11	36	202	220	13	11	7	-1	235	232	12	12	2	-8	1Ø97	1189	11
11	ø	-9	422	417	8	11	4-11	866	852	9	11	7	ø	568	563	7	12	2	-7	135	128	28
11	ø	-5	130	116	2.0	11	4 -9	360	363	19	11	- 7	2	1164	1171	12	12	2	-6	500	499	8
11	ø	-3	811	823	8	11	4 -8	198	231	15	11	7	4	799	812	.7	12	2	-4	421	438	. 8
11	8	-1	1557	1515	15	11	4 -/	284	203	13			5	271	2/2	12	12	2	-3	167	1/3	15
11	8	1 1	1084	1811	1.0	11	4 -5	177	176	15	11		-8	161	162	210	12	2	-2	5/10	5/6	
	0	3	/33	/45		11	4 - 3	8.67	889			8	-5	254	252	12	12	~	-1	1/5	176	14
11	ю а	2	1325	1362	14		4 -1	1480	1468	14			-4	383	296	10	12		2	400	401	
	a	~	490	474				1/0	11/2	15			- 3	1011	1010	·	12	5	2	100	32.0	
11	1-	19	228	232	13	11		1104	1100	11		8	-1	1011	1919	0	12	2	3	100	100	14
- 11	1-	- 8	1 1 1 1 1 2	100	1.4			229	201	12		8	10	339	340	2	12	2	2	162	160	10
ii	1	-6	569	579	7	11	1 2	876	201	12	- 11	ŝ	2	214	220	13	12	5	8	889	897	10
ii	i	-5	196	211	14		4 7	474	465	8		Ä	Ă	364	382	1.0	12	3	-9	285	293	13
ii	i	-4	780	766	• 7		i s	227	236	13	ii	ĕ	5	769	787	ĩ	12	3	-7	7.08	726	
ii	i	-3	200	189	15		Ă Ğ	311	327			8	ž	518	540	ģ	12	3	-6	183	166	15
ii	ĩ	-2	484	398	8	- 11	5-19	546	541		ii	ğ	-6	492	483	8	12	3	-5	1226	1236	13
11	í	ø	773	776	8	ii	5 - 8	854	866	9	ii	9	-5	221	2.09	15	12	3	-3	759	765	8

,

÷ -

Values of 18thobs and 18thcalc

×.

.

e

Page 16

i

÷.

-43-

ge 17	SigF	8 8 9 - 8
Pa	fcalc	名 G - で B で 4 B - で B 4 B - B - C - C - C - C - C - C - C - C -
	Fobs	8 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
	 I	
	¥Ι	4 4 4 D D
	Ξ Ι	
	Sigf	<i>຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺ຬຬຬຬຬຬຬຬຬຬຬ</i>
	Fcalc	528 6611 6611 6611 6611 6611 6611 6611 66
	Fobs	
	ц і	
	¥ι	キャキャキキャッション こうこうこう うらう うらう アノノノノ ううう うらう うっこう こうろう キャー・ーー こうこう こうろう ちょうしょう しょう うっしょう しょう うらう ちょう しょう うちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し
18°fobs and 18°fcalc	Ξı	
	SigF	ਫ਼ਫ਼ਫ਼ਫ਼ਲ਼ੑਲ਼ਲ਼ਫ਼ਫ਼ਫ਼ਸ਼ਫ਼
	Fcalc	252 882 882 882 882 882 882 882 882 882
	Fobs	889988565338574845955555178575555555555555555555555555555
	ш I	●▼●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
	¥Т	・ て う ち ち ち ち ち ち ち ち ち な な な な な な な な ち
	I I	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
	SigF	, , , , , , , , , , , , , , , , , , ,
	Fcalc	
	Fobs	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	-	
Values :	¥Υ	ຆຆຆຆຆຆຌຌຌຌຌຌຌຌຬຬຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎ ຎຎຎຎ
	X 1	222322222222222222222222222222222222222

-44-

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

تد سقسة _

,

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

٠.