
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
A scheduling algorithm for optimization and early planning in high-level synthesis

Permalink
https://escholarship.org/uc/item/63b1q3sw

Journal
ACM Transactions on Design Automation of Electronic Systems, 10(1)

ISSN
1084-4309

Authors
Memik, S O
Kastner, Ryan
Bozorgzadeh, E
et al.

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63b1q3sw
https://escholarship.org/uc/item/63b1q3sw#author
https://escholarship.org
http://www.cdlib.org/

A Scheduling Algorithm for Optimization and
Early Planning in High-Level Synthesis

SEDA OGRENCI MEMIK
Northwestern University
RYAN KASTNER
University of California, Santa Barbara
ELAHEH BOZORGZADEH
University of California, Irvine
and
MAJID SARRAFZADEH
University of California, Los Angeles

Complexities of applications implemented on embedded and programmable systems grow with the
advances in capacities and capabilities of these systems. Mapping applications onto them manually
is becoming a very tedious task. This draws attention to using high-level synthesis within design
flows. Meanwhile, it is essential to provide a flexible formulation of optimization objectives as well
as to perform efficient planning for various design objectives early on in the design flow. In this work,
we address these issues in the context of data flow graph (DFG) scheduling, which is an essential
element within the high-level synthesis flow. We present an algorithm that schedules a chain of op-
erations with data dependencies among consecutive operations at a single step. This local problem
is repeated to generate the schedule for the whole DFG. The local problem is formulated as a maxi-
mum weight noncrossing bipartite matching. We use a technique from the computational geometry
domain to solve the matching problem. This technique provides a theoretical guarantee on the so-
lution quality for scheduling a single chain of operations. Although still being local, this provides a
relatively wider perspective on the global scheduling objectives. In our experiments we compared
the latencies obtained using our algorithm with the optimal latencies given by the exact solution to
the integer linear programming (ILP) formulation of the problem. In 9 out of 14 DFGs tested, our

At the time the research for this article was carried Out, S. O. Memik was affiliated with the
University of California, Los Angeles, Los Angeles, CA.
Authors’ addresses: S. O. Memik, Department of Electrical and Computer Engineering, Northwest-
ern University, 2145 Sheridan Road, Evanston, IL 60208; email: seda@ece.northwestern.edu; R.
Kastner, Department of Electrical and Computer Engineering, University of California, Santa
Barbara, Engineering I, Room 4123, Santa Barbara, CA 93106; email: kastner@ece.ucsb.edu;
E. Bozorgzadeh, Computer Sciences Department, University of California, Irvine, 408E Computer
Science Building, Irvine, CA 92697-3425; email: eli@ics.uci.edu; M. Sarrafzadeh, Computer Science
Department, University of Califonia, Los Angeles, 3532C Boelter Hall, Los Angeles, CA 90095-1596;
email: majid@cs.ucla.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1084-4309/05/0100-0033 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005, Pages 33–57.

34 • S. O. Memik et al.

algorithm found the optimal solution, while generating latencies comparable to the optimal solu-
tion in the remaining five benchmarks. The formulation of the objective function in our algorithm
provides flexibility to incorporate different optimization goals. We present examples of how to ex-
ploit the versatility of our algorithm with specific examples of objective functions and experimental
results on the ability of our algorithm to capture these objectives efficiently in the final schedules.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design
AIDS—Automatic synthesis; J.6 [Computer-Aided Engineering]: Computer-aided design

General Terms: Design, Algorithms

Additional Key Words and Phrases: Scheduling, high-level synthesis, data flow graph, bipartite
matching

1. INTRODUCTION

Traditionally, translation of application descriptions into a synthesizable hard-
ware description language (HDL) was a manual process. Then, designs speci-
fied with an HDL were mapped onto embedded or programmable systems by
logic and physical synthesis tools. Due to the increasing complexity of the ap-
plications, mapping applications manually is becoming harder. Therefore, in-
creasing the level of abstraction for designers and automating the mapping
process is becoming more attractive. This alternative paradigm involves au-
tomatic compilation from high-level descriptions of applications, such as from
a high-level programming language (e.g., C, C++). This approach offers de-
signers a very convenient and familiar computational model. There are sev-
eral proposed compilation flows from a high-level of abstraction to hardware
[Wazlowski et al. 1993; Hammes et al. 1999; Gokhale et al. 2000; So et al. 2002;
Haldar et al. 2001; Schreiber et al. 2002].

Figure 1 depicts an example flow for automatic mapping of applications onto
various hardware platforms. The application described in a high-level program-
ming language is processed by the compiler stage. The compiler generates an
intermediate representation (IR) and performs several optimizations such as
constant propagation, loop unrolling, and function inlining on this IR. While
internal representations in different compilers take different forms and names,
essentially they capture two basic pieces of information about an application:
control flow and data dependency. A high-level synthesis stage follows the com-
piler stage and takes the optimized IR as input and generates the register trans-
fer level (RTL) description of the design. Back-end tools perform logic synthesis
and physical synthesis on this RTL description and create the bit-stream data
to program the target system. In the most general form of this flow, feedback
paths between major steps may exist to incorporate physical level informa-
tion into high-level synthesis or hardware/synthesis-related information into
compiler stage (denoted by dotted arcs in Figure 1). Feedback is employed in
such flows to improve the interaction between different design phases and re-
fine the quality of the solution generated at each stage. However, feedback can
also cause problems in convergence and design closure. In order to create a
more coherent design flow, planning early on can be a better alternative. This
can be achieved by planning of design objectives or through use of correct by
construction methodology.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 35

Fig. 1. A representative flow for automatic mapping of applications from high-level descriptions
to a programmable system.

In this work, we present a scheduling algorithm for data flow graphs (DFGs),
which is an integral element within the high-level synthesis stage of this au-
tomated flow. Our method “simultaneously” assigns a set of operations within
the input DFG to control steps. (Note that scheduling several operations si-
multaneously does not refer to assigning them to the same control step. By
scheduling them simultaneously we mean to generate a scheduling decision
for a collection of nodes at once.) Each set of nodes selected to be considered
together constitutes an ordered set. There exists a direct data dependency be-
tween every pair of consecutive nodes in each ordered collection of operations.
We refer to these sets of operations as paths, since they constitute a topolog-
ical path in the DFG. In the proposed algorithm, the scheduling problem for
each individual set of nodes is formulated as maximum-weight noncrossing
bipartite matching. This local problem in turn is solved optimally by convert-
ing it to the max-weighted k-chain problem [Atallah and Kosaraju 1989]. The
bipartite matching basically provides the assignment of operations to control
steps. DFGs impose a data dependency constraint on the scheduling problem.
This is reflected in our algorithm by the noncrossing property of the matching
solution. Furthermore, the matching is weighted and the objective is to pro-
duce a matching with maximum edge weight total. The particular objective
function of the actual scheduling problem is embodied within the maximum-
weight objective of the matching. We will elaborate on the specifics as we dis-
cuss our algorithm in detail. At this point, however, it is appropriate to com-
ment on the impact of these properties on the global behavior of our scheduling
algorithm.

First, our algorithm assigns several nodes along a path to control steps
at once. This local assignment is realized by solving the matching between

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

36 • S. O. Memik et al.

operations and control steps optimally. Each operation-control step matching
within this solution is associated with a corresponding weight/gain. The local
solution is optimal for the given set of operations in the sense that the summa-
tion of the weights of the matching generated for those operations is maximum.
This distinguishes our algorithm from other heuristics such as list scheduling
[Parker et al. 1986; McFarland et al. 1988; Pangrle and Gajski 1987], force-
directed scheduling [Paulin and Knight 1987; Cloutier and Thomas 1990], etc.,
which generally make a scheduling decision about a single operation at a time.
In our algorithm we generate a solution for a collection of operations while
maximizing the scheduling objective for this set of operations. While the qual-
ity guarantee remains local, this helps to provide a good solution at each step
for the operations along each path at hand. Furthermore, by manipulating the
weight function associated with the matching between operations and control
steps, a wide variety of objectives can be combined within a solution. Hence,
our algorithm provides a flexible way of defining and changing our scheduling
objective function. In this article, we discuss two specific cases in more detail:
efficient utilization of optimized cores embedded in the target architecture and
early planning and distribution of time slack within a DFG during scheduling.

The rest of the article is organized as follows. Section 2 states the scheduling
problem and defines the objective and the constraints. We give a brief overview
of existing scheduling heuristics in Section 2.2. Our algorithm is described in
Section 2.3. In Section 3 we present how our algorithm can be applied to target
two particular objective functions for schedules. First, we discuss using our
scheduler for hybrid target architectures, aiming to optimize the utilization
of embedded cores within the target architecture. Next, we present how our
flexible scheduling cost function can be used to target efficient distribution and
management of time slack within a schedule. We present experimental results
for these two problem instances. We discuss our conclusions and future work
in Section 4.

2. SCHEDULING OF DATA FLOW GRAPHS

In this section we formulate our problem and state the constraints on the prob-
lem. We also define our objective function. Next, we present our scheduling
algorithm.

2.1 Problem Formulation

Given a data flow graph (DFG),1 the scheduling problem is to assign each oper-
ation in the DFG to a control step under certain constraints. Any assignment
that is feasible under these constraints is a valid schedule. Out of possible
valid schedules the goal is to find one that optimizes a given objective function.
An immediate objective function for any scheduling algorithm is the length of
the schedule or the latency. In addition, depending on the specific context in
which the scheduler is used, other components are incorporated into the objec-
tive function. Objectives such as power [Musoll and Cortadella 1995; Monteiro

1A data flow graph is basically a directed acyclic graph (DAG).

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 37

et al. 1996; Shiue and Chakrabarti 2000] and register usage [Wong et al. 2002]
have been incorporated into scheduling algorithms in the past. In this work we
will introduce two other objective functions and show how the cost function of
our algorithm can be easily adjusted to include either of those. We will discuss
these objective functions in Section 3. The objective function is maximized un-
der a set of constraints. For our scheduling problem the following constraints
are given:

—For each operation a start time must be defined.
—Data dependencies imposed by the DFG must be obeyed. Let, opi and opj

be two operations in the DFG. In addition, let opi be the parent of opj. This
means that opj has a data dependency on opi. Then, the control step in which
opj starts must be later than the finish time of opi.

—At any control step, the number of active operations of any type must be less
than or equal to the number of available resources of that type.

2.2 Scheduling Algorithms Overview

Most of the practical formulations of the scheduling problem are NP-complete.
These instances contain combinations of dependency, timing, and resource con-
straints. Several efficient heuristics have been proposed in the literature for
these problem instances. Two of the most widely used approaches are list
scheduling and force-directed scheduling. List scheduling maintains an ordered
list of operations that can potentially be scheduled at a control step with no vio-
lation of data dependency. Considering one control step at a time, operations are
selected from this ordered list one by one according to some priority function and
scheduled at the control step under consideration. There exist a variety of real-
izations of this approach [McFarland et al. 1988; Thomas et al. 1990; McFarland
1986; Parker et al. 1986; Pangrle and Gajski 1987; Kramer and Rosenstiel
1990]. In force-directed scheduling [Paulin and Knight 1989] the goal is to create
a balanced distribution of operations among control steps. Using the mobility of
each operation to define possible intervals of execution, the potential demand
for each control step is determined. The operation-to-control step assignment,
which will contribute toward the most homogeneous distribution is accepted at
each step. This approach has been incorporated into high-level synthesis sys-
tems as well [Paulin and Knight 1987; Cloutier and Thomas 1990]. Another type
of scheduling method is referred to as path-based scheduling in the literature
[Camposano 1991]. This method has been proposed for scheduling control flow
graphs. Paths of execution within the control/data flow are handled individu-
ally. Each such possible path is scheduled independently in an optimal fashion.
Then the final schedule is constructed by imposing the resource constraints
and overlapping the path’s schedules accordingly. Other popular techniques for
scheduling with control flow are trace scheduling from microcode compaction
[Fisher 1981] and percolation scheduling [Potasman et al. 1990]. While most
of the above-mentioned scheduling heuristics produce a scheduling decision for
one operation at a time, our algorithm generates an assignment between mul-
tiple operations and control steps at once. The particular set of operations to be

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

38 • S. O. Memik et al.

scheduled at each step constitute a chain of data dependency. This may be also
called a path spanning through the DFG. In path-based scheduling algorithms
mentioned earlier such as [Camposano 1991], any sequence of operations that
can possibly be executed conforming to the control flow is a path. Those opera-
tions do not need to create a chain with direct data dependencies. Therefore the
path-based scheduling algorithms consider an exponential number of possible
execution paths and combine their schedules eventually. In our scheme the def-
inition of a path is restricted to chains of operations with data dependencies
among them. The number of such paths extracted from an input DFG is kept
small, just enough to have considered all operations within the DFG. In fact,
we can find such a set of paths for a DFG in polynomial time.

Our technique to perform the actual assignment of operations to control
steps is based on weighted noncrossing bipartite matching. This approach is
fundamentally different from list scheduling and force-directed scheduling, and
path-based scheduling in nature. Moreover, at the local level, we can provide
theoretical guarantees on the quality of the operation-control step assignment
for individual operation chains. An algorithm proposed by Timmer and Jess
[1995] uses bipartite graph matching for scheduling DFGs. In their work, a
bipartite matching was performed between operations in the DFG and con-
trol steps without considering dependencies and the result was pruned with a
heuristic in order to comply with precedence constraints. In our approach we
show how to optimally solve the matching problem between a set of operations
along a path and control steps while satisfying precedence constraints within
the path. Hence, we have integrated the two problems handled separately by
Timmer and Jess [1995]. Also, the method proposed by Timmer and Jess does
not incorporate any objective function into the bipartite matching stage. In our
method, we are additionally maximizing an objective function by generating a
maximum weight matching. We will present a detailed analysis of our algorithm
in the next section.

2.3 Our Scheduling Algorithm

Our scheduling algorithm consists of two main tasks. First, selecting a chain
of operations to schedule together. Next, scheduling this set of operations by
generating a noncrossing maximum-weight bipartite matching. The input to
our algorithm is a data flow graph, and resource constraints for each resource
type. In the following we will present details of the two main tasks within our
algorithm.

2.3.1 Selection of Operation Chains. At each step we extract a chain of
operations from the input DFG. We start with extracting the longest path from
the DFG. After one set of operations are scheduled those operations are removed
from the DFG and the next longest path within the remaining graph is found. In
this manner paths are selected in decreasing order of path delays. While doing
that we retain information regarding the latencies of the scheduled operations.
In other words, for nodes already scheduled in the DFGs their delay is added
on top of the expected delays of remaining paths to preserve the ordering of
criticality among different paths. Finding the longest path in a directed acyclic

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 39

Fig. 2. (a) Example data flow graph. (b) A sample path extracted from the data flow graph.

graph (DAG)—as a graph type, a DFG is basically a DAG—can be done in
polynomial time, in O(V + E) time (V is number of nodes and E is number of
edges in the DAG). The first chain of operations we process are those along the
critical path of the DFG.

As the algorithm progresses the schedule of each new set of operations is
constrained by the existing partial schedule of the DFG so far. The task of
scheduling a given chain of operations at each scheduling step is tackled with
a geometric approach.

2.3.2 Scheduling Using Maximum-Weight Noncrossing Bipartite Matching.
The input to the local problem, that is, scheduling of a path, is a chain of opera-
tions. Consider the example DFG shown in Figure 2(a). Figure 2(b) illustrates
a chain extracted from this DFG.

We visualize the problem of scheduling the operations along this chain as
a bipartite matching between operations and control steps. A bipartite graph
depicting this formulation for the chain in our example is shown in Figure 3(a).
This bipartite graph consists of nodes corresponding to operations and control
steps. An edge between an operation-node and a control step-node represents
the possibility of assigning that operation to that control step. Constraints of
the scheduling problem decide whether it is feasible to have an edge between
a certain operation and a control step. For instance, at some point during the
execution of our algorithm, at a certain control step the number of operations
scheduled might have reached the number of available resources of some type.
As we build the bipartite graph for the next set of operations to match to con-
trol steps, there cannot be an edge between any operation demanding that
resource type and this control step. For any two consecutive operations along
the path, the earliest possible matching between the child any control step must
be later than the earliest possible matching between the parent and any con-
trol step. The latencies of individual operations may be single cycle or multiple
cycles. When deciding the latest cycle at which a predecessor can finish we take
this into account for multicycle operations. For instance, consider the operations

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

40 • S. O. Memik et al.

Fig. 3. (a) Bipartite graph representing the matching between operations in a path and control
steps. (b) A noncrossing bipartite matching between operations and control steps.

Op6 and Op9. The earliest possible matching for the parent operation is to con-
trol step 2. Therefore, there cannot be any edge between the child operation,
Op9, and any control step earlier or equal to control step 2. Also, as operations
from extracted paths are scheduled, their start and finish times restrict the in-
tervals of control steps within which their predecessors and successors need to
be scheduled. Our matching is also weighted, that is, each edge in the bipartite
formulation is assigned a weight. In fact, for each path under consideration our
goal is to find a matching such that the sum of the edge weights in the matching
is maximum. The edge weights are used to formulate the objective function of
the schedule; hence maximizing the sum of the weights in turn maximizes our
objective function.

A mathematical function F needs to be defined to compute the weights. F is
constructed according to what we want to achieve in our schedule. In different
cases and applications different objectives can be more relevant or important. A
traditional objective for scheduling is minimizing latency. However, a versatile
and flexible scheduling algorithm should be able to consider other objectives de-
pending on the particular context. Our approach in constructing F is to combine
different optimization objectives in a weighted sum. User-defined coefficients
for each term of F maintains the balance between different objectives. In the
next section we will provide specific examples of objectives that can be incorpo-
rated into our cost functions.

A valid schedule for a path is a noncrossing matching between operations and
control steps. This is a different problem than the general bipartite matching.
Techniques, such as max-flow [Cormen et al. 1990], to find a bipartite match-
ing do not guarantee yielding a noncrossing matching. A noncrossing bipartite
matching means that in the matching solution no edges are allowed to cross.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 41

Fig. 4. (a) Weighted bipartite formulation for scheduling a path. (b) The geometric formulation of
scheduling.

This actually corresponds to the data dependency constraint. Since along each
path consecutive operations have data dependency, their matching to control
steps must be noncrossing. A possible noncrossing matching for the example
path from Figure 2(b) is shown in Figure 3(b).

Now the question is how to find a noncrossing matching with maximum
weight total out of all possible noncrossing matchings. The bipartite match-
ing formulation is a conceptual aide to visualize our problem. To find the ac-
tual solution, we will transform our problem into geometric domain and use
the dominance concept in computational geometry [Lee 1996; Atallah and
Kosaraju 1989] to solve our scheduling problem. To do this we first create a
point in the x- y plane for each possible matching between operations and con-
trol steps. Figure 4 shows the original bipartite graph and the corresponding set
of points in the x- y plane for our example path. Operations are placed along the
x-axis and the control steps are placed along the y-axis. A possible matching
between an operation Opi and control step c is represented by a point in the
plane with coordinates (x, y). To create the point set for a path of length k
(k is equal to 5 for our example, since there are 5 operations along the path),
we enumerate the operations with indices starting from 1 to k, following the
topological order of the operations along the path. Then, the coordinates of
each point representing the edge between Opi and control step c are defined as
follows:

x(Opi) = index(Opi) and
y(Opi) = c.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

42 • S. O. Memik et al.

In our example index(Op1) = 1, index(Op6) = 2, and so on. The weights
associated with edges in the bipartite graph are attached to the points on the
plane as weights.

The following definitions will provide the background and the necessary ter-
minology for understanding our method to perform the scheduling.

Definition 1. On the two-dimensional plane, point P dominates point Q iff
x(P) > x(Q) AND y(P) > y(Q).

Definition 2. A set of k points (P1, P2, . . . , Pk) in the x- y plane, where Pi
dominates Pi−1 is called a k-chain.

Definition 3. Given a set of points in the x- y plane, among all chains of
length k that exist within this set, the k-chain with the maximum total of
weights is called the maximum weighted k-chain. The weights are those at-
tached to each point in our formulation.

Having created a set of points in the plane as explained above, the sched-
ule for the path is generated by finding the maximum weighted k-chain within
this point set. k is equal to the number of operations on the path that is being
scheduled. By finding a chain of length k, that is, selecting k points from the
plane, we will have found a matching between each operation and a control
step. The property described in Definition 1 ensures that the matching found
complies with dependencies among operations. Also we will ensure that our
method finds a chain of length k and does not return any chain of shorter length,
which would leave some operations unscheduled. Once we guarantee finding
a chain of length k, combined with the dominance property from Definition 1,
each point in the resulting k-chain must correspond to a matching for a dis-
tinct operation. Therefore, this k-chain corresponds to the schedule of the path.
Assuming that we find a chain of length k, no two points can have the same
x-coordinate, since the k-chain would not possess the dominance property from
Definition 1 in that case. Hence we guarantee that each operation is included in
the solution with a valid matching. We will explain how we guarantee finding
a chain of length k every time after we introduce the method of finding the
maximum-weighted chain. For illustrative purposes, a possible k-chain from
the point set of our example and the corresponding partial schedule is shown in
Figure 5.

Atallah and Kosaraju [1989] proposed an optimal O(n log n) (n is the number
of points in the plane) algorithm for finding the maximum-weight k-chain. We
refer the readers to Atallah and Kosaraju [1989] for the proof of optimality. If
for each point P in the plane the weight w(P) = 1, then this algorithm returns
the longest possible chain, which naturally corresponds to the maximum sum
of weights. However, when arbitrary weights are assigned to the points in the
plane, this algorithm yields the maximum weighted chain, but not necessarily
of length k. As explained earlier, we need to guarantee a chain of length k and
depending on our weight function F the weights can take arbitrary values. We
propose an adjustment to the weights, such that the algorithm proposed by
Atallah and Kosaraju [1989] can be adapted to our problem.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 43

Fig. 5. (a) A hypothetical matching found using a maximum-weighted k-chain. (b) Corresponding
partial schedule.

THEOREM 2.1. Let the weight w(Pi) of each point Pi in the plane have arbi-
trary values. If each weight w(Pi) is replaced with

w(Pi)′ = 1 + w(Pi)(∑n
i=1 w(Pi)

) + 1

then the maximum weighted chain will be of length k, if any chain of length k
exists in the point set.

PROOF. Given a set of n points at k different x-coordinates (because we have
k operations along the path to be scheduled), assume there exists a maximum
weighted chain of length k −1. Then, the sum of weights on this chain would be

(k − 1) · 1 +
k−1∑

i=1

w(Pi)(∑n
i=1 w(Pi)

) + 1
.

The second term in the above sum is the sum of weights for k −1 points divided
by the total sum of weights plus 1. This term is always less than 1. Therefore,

k − 1 +
k−1∑

i=1

w(Pi)(∑n
i=1 w(Pi)

) + 1
< k.

On the other hand, if we take any k points (strictly one from each x-coordinate
obeying dominance condition; assuming at least one chain of length k exists,

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

44 • S. O. Memik et al.

we should be able to do that) the sum of the weights of these k, points will be

k · 1 +
k∑

i=1

w(Pi)(∑n
i=1 w(Pi)

) + 1
,

which is definitely larger than the sum of k−1 points. This contradicts the initial
assumption of having a (k − 1)-chain with a maximum-weight sum. Hence, the
weight sum of any chain of length k will be larger than any chain of shorter
length with this weight assignment. (The case for chains shorter than k − 1
follows same arguments.)

COROLLARY 2.1. For any two weights w1 and w2, if w1 > w2, then w1′ >

w2′. This property ensures that if a k-chain found with adjusted weights is a
maximum-weighted chain, then by converting back to the original weights we
can show that the original weights would yield the same maximum-weight k-
chain.

So far we have explained how to guarantee finding a maximum-weighted
k-chain if at least one chain of length k exists in the point set. To guarantee
the latter, that is, that there is at least one k-chain in the point set, for each
operation along the current path there needs to be at least one feasible matching
control step. In other words, there must be at least one point with each x-
coordinate from 1 to k. At each scheduling step, we check the point set generated
for each path of operations to verify that this is true. If not, we perform a
correction pass. This actually corresponds to situations when the schedules of
different paths need to be combined. Note that in our algorithm once a path
is selected all operations along the path are scheduled regardless of whether
any of their predecessors are scheduled. Sometimes, the parent of an already
scheduled operation is included in a path that is extracted from the DFG later
in the execution of the algorithm. It can be the case that at some point due
to resource and/or dependency constraints we cannot find any possible feasible
matching between control steps and the parent operation that appeared later in
the scheduling process. In these cases we restore the feasibility of the matching,
that is, we ensure finding at least one chain of length k in the point set by
inserting extra control steps into the schedule. We do this according to the
following rules. Assume at some point we are about to schedule a path that
contains an operation which has some already scheduled successor(s). If the
earliest possible start for the predecessor operation is later than the earliest
scheduled successor, then we insert extra control steps right before the earliest
scheduled successor and push all operations starting at or later than this step
by the delay of the predecessor operation. If the earliest possible start of the
predecessor operation is earlier or at the same time as the earliest scheduled
successor operations (probably the predecessor operation has large delay, such
that its result is not ready for the earliest scheduled successor although it can
start before the earliest scheduled successor), then we need to determine the
number of extra control steps to be inserted as follows. If the earliest possible
start time of the predecessor operation is equal to the start of successor, then
we insert as many control steps as the delay of the predecessor operation. If the

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 45

Fig. 6. A sample DFG where O(V) correction passes will be required.

predecessor operation can start earlier than the earliest scheduled successor
but cannot finish on time, then we push the schedule by the overlapping amount
of control steps by inserting extra control steps.

In the following we will make a quick analysis of the worst-case behavior
expected from our algorithm in terms of number of correction passes that have
to be performed. Consider a DFG as shown in Figure 6. Assume that all opera-
tions are of same type and also assume that there is only one resource available.
Finally, assume that all operations take a single control step. Given these con-
ditions, our algorithm would first schedule a path such as (Op1−Op5) in the first
and second control steps. Then, the algorithm encounters Op2 (plus the delay
of Op5) as the second path. At that point we will need the correction pass and
push operation Op5 by one control step to accomodate time for Op2. Similarly, in
the consequent steps of the algorithm, a correction pass will be required before
scheduling Op3 and Op4. This shows that we might need corrections propor-
tional to V , which is the number of operations in the DFG. Note that, in each
step, the scheduling decision of at least one node (the node with no parent) will
be finalized. Therefore, we will not need more than V correction passes. Con-
sequently, in the worst case our algorithm will require O(V) correction steps
passes.

The need for correction passes is correlated with three factors. First, it is re-
lated to the DFG topology. For DFGs with low connectivity and with more inde-
pendent paths spanning throughout the DFG, possibly there will be fewer con-
flicts. Second, the resource constraint will impact the frequency of occurence of
conflicts. Consider the earlier example of Figure 6. If there were four resources
available, there would be no need for correction passes. If there were three re-
sources, there would be a single correction pass. For more stringent resource
constraints, the conflicts during scheduling will increase. Finally, the selection
of paths is important. We try to minimize possible conflicts by scheduling the
longest paths first. By doing this, operations on long paths would be more likely
to be scheduled much later than their yet unscheduled predecessors in shorter
paths.

Although our algorithm is locally optimal, it might not yield a globally op-
timal schedule. This lack of optimality is related to the correction passes. Al-
though we schedule a given path optimally under the given conditions, it does
not mean that the final global schedule will require this path to be scheduled
within the shortest time. In fact, correction passes try to merge optimally sched-
uled paths into nonoptimal paths that will be required by the optimal global
schedule. However, due to the selection order of the paths and our local decision-
making mechanism, we might not be able to merge into the globally optimal
schedule.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

46 • S. O. Memik et al.

Fig. 7. The overall scheduling algorithm.

Fig. 8. Illustration of the algorithm with a sample DFG.

Combining all the steps explained above, the overall scheduling algorithm
is summarized in Figure 7.

In Figure 8 we illustrate the execution of the algorithm on a sample DFG.
We assume that one ALU to execute additions and subtrations and two mul-
tipliers is available. In addition, the latency of the ALU is a single cycle and
the latencies of the multipliers are two cycles. In this case the scheduling al-
gorithm executes in three steps. In the first step, the chain consisting of M1,
M4, S6, S7, M8, A9 is scheduled. For this example we assume that weights

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 47

of matchings are adjusted such that the earliest schedule step is preferred for
each operation. In the second step, the operation M2 is scheduled. M2 is chosen
next considering that M2 combined with the path following M2, which consists
of already scheduled operations, has the next longest delay. In the third and
last step, the chain consisting of operations M3, M5 is scheduled. However, at
this step the initial bipartite graph created for this chain is infeasible. This is
due to the fact that the earliest possible matching between operation M5 and
a clock step with a free multiplier is later than the step at which the successor
of M5, which is S7, is scheduled. Therefore, at this point a correction step is
applied. S7 and all transitive successors of S7 are shifted by a cycle. After this
correction, step M3 and M5 can be successfully scheduled. The final schedule
is shown in Figure 8(d).

3. TUNING THE MAXIMUM WEIGHTED MATCHING FOR
SCHEDULING OBJECTIVES

We can use the maximum-weighted matching procedure to optimize different
objectives within the schedule. Any possible matching between an operation
and a control step would contribute to the quality of the certain feature(s) that
we aim to embody in the final schedule. Different assignments of operations to
control steps can result in different amounts of resource requirements, inter-
connect structure, switching activity, operation slack, etc., in the final synthe-
sized design. In this article we present how we can utilize the flexibility of the
weight assignment to pursue two specific objectives: utilization of embedded
fixed cores within an embedded system or within the programmable fabric of
a reconfigurable device, and early planning and distribution of slack within a
schedule.

An immediate objective for our scheduling algorithm is to minimize latency.
In order to optimize for this objective only, we need a function that assigns mono-
tonically decreasing values to weights. We need such a distribution among the
weights assigned to all feasible matchings between an operation and all can-
didate control steps. In other words, for each operation the weight of matching
it with a certain feasible control step c must be larger than matching the same
operation with any later feasible control step. A possible function to create these
weights could be as follows:

F = κ − c.

Here, κ is some constant and c is the index of the control step. As we go further
in time axis, the value of F will be monotonically decreasing.

3.1 Embedded Core Utilization Objective

A possible objective in high-level synthesis can arise due to the specific architec-
tural features of the target system. For instance, looking back at the evolution of
programmable systems, configurability was first available in standalone chips.
These devices possess 100 % programmability. Currently, reconfigurable fab-
ric is not only considered to be confined to standalone chips, but also is part
of hybrid systems such as system-on-chip (SoC) solutions. While one trend is

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

48 • S. O. Memik et al.

toward embedding reconfigurable cores into SoCs with processors, DSPs, etc.
[Hauck et al. 1997; Actel ; Altera Corp. ; Chameleon Systems], another direction
of new architectures considers integration of optimized cores and hardwired
blocks with reconfigurable fabric. The main goal here is to utilize the optimized
blocks to improve the system performance. Such programmable devices are tar-
geted for a class of applications, such as DSP [Xilinx, Inc.] networking, or data
communications [Lucent Technologies]. Embedded fixed blocks are tailored for
the critical operations common to the application class. In essence, the flexi-
ble programmable logic is supported with the high-density, high-performance
cores. This can be applied at various levels, such as the functional block level
[Lucent Technologies] or the level of basic arithmetic operations, for example,
multipliers [Xilinx, Inc.].

In the context of reconfigurable systems, there have been efforts to create
compilation frameworks where templates for frequently occurring operations
or operation clusters are extracted and mapped onto specialized cores. Such a
framework is described by Kastner et al. [2001]. In a synthesis environment,
where such templates are recognized for a given application during compilation,
it is crucial to utilize these optimized modules during the actual synthesis of
the datapath at the high-level synthesis stage.

For mapping designs on such special architectures, there is a need for synthe-
sis tools that are aware of the features of the underlying hardware resources.
The customized cores certainly improve the application’s running time since
they are superior in delay to their counterparts implemented with reconfig-
urable logic. A similar argument is valid for the power consumption. Finally,
those blocks will lessen the reconfiguration overhead for the overall design.
The power of the context-based reconfigurable architectures lies in the efficient
utilization of the fixed cores within the system. By customizing our weight func-
tion F accordingly, we can make our scheduler aware of the customization of
the target architecture. As a result, as we schedule DFGs we can exploit the
optimized embedded cores without causing their limited availability become
a bottleneck. Functional units for any desired operation type can be instanti-
ated using reconfigurable logic. For operations that cannot be performed by the
embedded cores, this is a necessity. For other operations, this can be done in
order to exploit parallelism in the schedule. However, as mentioned earlier, the
available blocks are highly preferred for those operations. It is the task of the
scheduler to do the tradeoff in such situations.

When considering two different feasible control steps for a matching with an
operation, the control step with a free customized block would be preferred over
the other control step at which no customized embedded block is free. There still
can be a feasible matching between the operation and the later step, assuming
a reconfigurable module is available or can be instantiated. Nevertheless, the
weight assigned to the first feasible matching should be made larger in order
to make the algorithm aware of the resource preferences. Also, the value of
the weight for the matching of the latter step can reflect the willingness of the
synthesis to instantiate new reconfigurable modules. If this matching is asso-
ciated with a very small value, the tendency would be to avoid instantiation of
further reconfigurable modules, possibly in order to control the reconfiguration

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 49

Table I. Origins of DFGs from MediaBench

Benchmark C File Description

adpcm adpcm.c ADPCM to/from 16-bit PCM
epic convolve.c 2D image convolution
rasta fft.c Fast Fourier Transform
mpeg2 getblk.c DCT Block Decoding
jpeg jdmerge.c Color Conversion

overhead. We can introduce these objectives as additional terms within the
weight function F . In this case F can take the following form:

F = κ − α × c + β × customized block preference − γ

× reconfiguration overhead preference.

We can formulate architecture-related preferences as Boolean variables taking
two values, 0 or 1. α, β, and γ are user-defined constants. We have adjusted
their values for our algorithm experimentally.

3.1.1 Results for Embedded Core Utilization Objective. We have used
DFGs extracted from representative functions of C programs within Media-
Bench multimedia benchmark suite [Lee et al. 1997] and also some additional
representative DSP functions such as EWF, FIR, and ARF. Table I shows the
files from MediaBench suite, from which input DFGs were generated. The cor-
responding applications containing these files are given as well. Two or more
DFGs were extracted from different procedures within these C Files. Those
are indicated as DFG0, DFG1, and DFG2 within each application. These DFGs
were mainly selected due to the fact that they were representative of the corre-
sponding applications in terms of size, topology, and operation variety. We tried
to select the largest possible DFGs out of those extracted from the Mediabench
applications. Each of these DFGs correspond to a basic block2 in the applica-
tion codes. Many of those basic blocks tend to be small in size. We tried to avoid
such small basic blocks. In order to increase the input DFG sizes and the par-
allelism, entities containing multiple basic blocks (e.g., hyperblocks [Mahlke
et al. 1992], superblocks [Hwu et al. 1993], and traces [Fisher 1981]) can be
equivalently given to our scheduler as input. We have not attempted to create
such formations at this point, since it is beyond the scope of this work.

Individual DFGs are scheduled with two different methods, as shown in
Table III. For each application, a set of hardware resources are specified as
given in Table II. Within the available set of resources, there can be multiple
components with same functionality, but different delays. This represents the
existence of optimized cores for certain operations. In Table III scheduling
results for a number of selected DFGs are given. We compare the results of our
algorithm against the results obtained from the linear programming solver,
CPLEX. The scheduling problem has been described as a linear integer program
for our problem instance. The objective function of the integer linear model tries

2A basic block is the same entity as in the compiler terminology, which refers to a straight line code
segment with a single entry and a single exit point.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

50 • S. O. Memik et al.

Table II. Resource Sets of Benchmark DFGs

Benchmark Resource set

adpcm DFG20:(ior, add, comp, mult-fast, mult)
DFG36:(comp-fast, comp, add, mult-fast, mult)

convolve DFG0: (comp, add/sub, mult-fast,
mult, div-fast, div)
DFG19:(add, mult-fast, mult)
DFG98:(comp, add/sub, mult-fast,
mult, div-fast, div)

fft DFG18:(add, mult-fast, mult)
DFG27:(add, mult-fast, mult, div-fast, div)

getblk DFG42:(add, comp, AshiftR, mult-fast, mult)
DFG91:(add, comp, AshiftR,
LshiftL, mult-fast, mult)
DFG165:(add, comp, AshiftR, mult-fast, mult)

jdmerge DFG2: (add, AshiftR, mult-fast, mult)
DFG21:(add, AshiftR, mult-fast, mult)
DFG165:(add, comp, AshiftR, mult-fast, mult)

ewf (add, mult-fast, mult)
arf (add, add, mult-fast, mult, mult)
fir (add, mult-fast, mult)

Table III. Scheduling Results in Terms of DFG Latencies,
in Cycles

Benchmark (DFG) ASAP CPLEX Our algorithm

adpcm
DFG1 6 7 7
DFG2 6 6 6
convolve
DFG1 12 16 20
DFG2 6 12 12
DFG3 17 18 19
fft
DFG1 12 26 27
DFG2 19 22 24
getblk
DFG1 14 14 14
DFG2 18 18 18
jdmerge
DFG1 7 28 31
DFG2 8 28 28
ewf 17 28 28
arf 8 12 12
fir 7 12 12

to minimize the latency and the number of slow blocks used. A higher priority
is given to latency minimization. Similarly in our algorithm, we try to minimize
the latency, while trying to utilize the optimized blocks as well as possible.
We actually perform binding of operation to resources simultaneously with
scheduling. This enables us to handle resources of same type but with different
delay characteristics. Through simultaneous binding we obtain operation delay

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 51

Table IV. Number of Operations Performed on the
Optimized Block Versus Total Number of

Operations of Matching Type

Benchmark (DFG) CPLEX Our algorithm

adpcm
DFG1 1/1 1/1
DFG2 1/1 1/1
convolve
DFG1 4/6 3/6
DFG2 2/3 2/3
DFG3 5/6 5/6
fft
DFG1 6/9 6/9
DFG2 5/6 6/6
getblk
DFG1 3/4 3/4
DFG2 4/4 3/4
jdmerge
DFG1 5/8 5/8
DFG3 4/5 3/5
ewf 3/8 3/8
arf 10/16 8/16
fir 7/11 7/11

information based on the particular resource executing the operation. CPLEX
provides us an optimal solution for the given objective function. Therefore, we
are comparing our results to those generated by the exact solver. For compari-
son, the ASAP scheduling latencies are also provided. In Table IV the utilization
of high-performance components are presented. For each DFG the total number
of operations assigned to optimized blocks is given versus the total number of
operations of suitable type that can be performed by any available optimized
block.

As depicted in Table III, our algorithm was able to produce latencies compat-
ible with CPLEX results for most cases. In 9 out of 14 cases our algorithm was
able to produce the optimal latency. Out of the remaining five cases, four were
within 12% of the optimal value. In two of the suboptimal cases, convolve-DFG3
and fft-DFG1, our algorithm was able to utilize the optimized blocks as good as
CPLEX results. In the case of fft-DFG2, the increase in latency resulted from a
tradeoff aiming to increase usage of optimized blocks. Table IV shows that, for
this particular DFG, our algorithm was able to outperform the optimized block
utilization obtained from the CPLEX solution.

For 9 out of the 13 remaining cases our algorithm reached the same core
utilization as the CPLEX solution. For six of those cases the latency produced
by our scheduler was optimal. For the remaining three cases our scheduling
solution was within 10% of the optimal value. In four cases our algorithm
yielded lower core utilization. We observe that in three out of those four cases
the latency produced by our scheduling algorithm was equal to the optimal la-
tency. Hence, the core utilization, although lower than the solution produced by
CPLEX, seems to have been sufficient to reach an optimal schedule. We report

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

52 • S. O. Memik et al.

Table V. Number of Nodes and Edges in Each Benchmark
DFG and the Runtimes of Two Scheduling Methods

DFG Size (nodes/edges) CPLEX Our algorithm

adpcm
DFG1 17/19 26 s 4 ms
DFG2 21/18 20 s 9 ms
convolve
DFG0 49/41 121 s 14 ms
DFG1 25/19 30 s 9 ms
DFG2 18/10 24 s 4 ms
fft
DFG1 17/12 30 s 3 ms
DFG2 11/9 4.8 s 2 ms
getblk
DFG1 33/29 34 s 12 ms
DFG2 40/30 42 s 13 ms
jdmerge
DFG1 79/66 985 s 23 ms
DFG2 54/46 436 s 14 ms
ewf 34/47 13.67 s 25 ms
arf 28/30 700 s 14 ms
fir 21/20 8.8 s 4 ms

the sizes of the benchmark DFGs in terms of number of nodes and edges, and
the compare the runtimes of the two schedulers in Table V.

3.2 Early Planning and Distribution of Slack

Another possible use of our flexible objective function is distribution of opera-
tion slack within a schedule. We define slack as the amount of extra delay an
operation can tolerate without violating any dependency constraints. There can
be various uses of this extra amount of allowed time per operation.

Depending on the available slack for an operation, resource selection, IP
utilization, power management, clock tree construction, etc., can be different.
To give a more specific example: from a single operation’s point of view, slack on
this operation can be exploited for slowing the module executing this operation
or performing power shutdown for this module. Hence, early planning for this
objective can have various uses and an impact on the later optimization stages.

We can incorporate this new objective into our weight function F in the
following manner. Given a latency constraint λ, we evaluate the weight of a
feasible matching for each operation considering the amount of slack that the
operation can attain after this matching. Specifically, we aimed to distribute
slack along paths homogenously at each step. For this purpose, we first deter-
mine the average slack each operation can have along a path. This is found by
dividing the total slack along a path to the number of operations on the path.
Then, while computing the weight for a certain assignment of an operation to
a clock step, we determine the difference between the average slack the opera-
tion could attain and the amount it can attain if the current assignment were to
take place. The latency constraint is necessary in this case, since the flexibility
in finish times of operations needs to be bounded.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 53

Table VI. Summary of DFG Properties, Latency, and
Runtime Results

DFG Optimal latency Our latency Runtime

ewf 28 28 10 ms
arf 18 20 7 ms
fir 16 16 6 ms

Table VII. Incorporating Operation Slack into Scheduling Objective

ewf arf fir

W/O slack With slack W/O slack With slack W/O slack With slack
objective objective objective objective objective objective

Num. of ALU operations 4 5 4 2 3 4
with nonzero slack
Total slack on 14 16 9 8 7 9
ALU operations
Num. of MUL operations 2 2 7 9 4 5
with nonzero slack
Total slack on 3 3 23 26 6 8
MUL operations

3.2.1 Results on Planning for Slack. First, we have used a weight function
that only considers to minimize latency. This corresponds to the Without (W/O)
Slack Objective case. Alternatively, we have added the slack component to our
weight function and used the latencies obtained in the first case as our λ. By
doing this, we are able to compare two schedules fairly. Table VI presents the
DFGs, the optimal latencies, the latencies obtained with our algorithm, and the
runtimes of our algorithm. Table VII shows our results. For this experiment
we present results for a subset of our original DFG collection. The particular
DFGs selected were those with suitable topologies to reflect improvement in
slack. Availability of slack in a schedule depends on the topology of the input
DFG as much as on the scheduling method. Therefore, in some DFGs it was
not possible to see any effect of slack planning due to their structure. For the
selected DFGs, we have used two ALU resources and two multipliers. Each
ALU has a delay of one clock cycle, and each multiplier has a delay of two
clock cycles. The slack of operations is calculated as the difference between the
control step when the result of an operation is ready and the control step at
which the earliest scheduled successor of this operation demands the result. We
report the number of operations that have nonzero slack values, that is, the rest
of the operations in the scheduled DFG had slack values equal to zero or they
were I/O operations for which we do not report slack. We only report the slack
values of arithmetic operations (MUL and ADD). We also give the total sum of
the slack values on each operation type. We present a breakdown of these two
measurements for the two types of arithmetic operations in the DFG, that is,
the ALU operations and multiplications (abbreviated as MUL in Table VII).

The results in TableVII show that with proper planning to distribute slack on
arithmetic operations our algorithm could indeed transform available flexibil-
ity in a schedule into additional slack for a spefically targeted set of operations,

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

54 • S. O. Memik et al.

arithmetic operations in this case. For the arf benchmark we observe a degra-
dation in slack value for ALU operations. The reason is due to the assignment
of priorities for the two operations types ALU and MUL. The sensitivity toward
increase the slack for MUL operations was set higher for these experiments.
Therefore, the gain of increasing the slack for MUL operations is evaluated to
be larger than for ALU operations, leading to a greater tendency to allocate
slack for MUL operations than for ALU operations. In the case of ewf, due to
the DFG topology and the order in which operations were scheduled, MUL op-
erations could not attain any slack whereas ALU operations could gain larger
slack-using the slack objective. For the fir benchmark, slack objective affected
the slack distribution for both operation types positively.

By allowing a larger number of operations to possess nonzero slack, further
optimizations can be possible. For instance, by ensuring slack on an increased
number of operations, we would have increased the tolerance of the sched-
ule toward future uncertainties in operation delays. Those uncertainties can
arise due to a mismatch between high-level delay estimations and actual op-
eration delays after synthesis of functional modules and interconnect in the
datapath.

Additional optimization steps can be incorporated into the synthesis flow
following the scheduling in order to exploit the available slack. For instance, a
slack-oriented binding methodology can take advantage of this planning by as-
signing operations with nonzero slack to the same resource. If operations that
possess various amounts of slack were assigned to the same resource, then the
minimum out of those slack values would determine the extra amount of time
by which that resource could be made slower. Using this information, some re-
sources can be replaced by their slower and more power- and/or area-efficient
versions. We have investigated possible benefits of exploiting slack distribution
in a schedule during binding where we used our scheduling algorithm inte-
grated with a slack-driven binding technique. After distributing time slack to
arithmetic operations, as described earlier, we performed binding while trying
to group operations with large slack values to the same resource. By doing this,
the delay constraint on that resource could be relaxed by the minimum amount
of extra slack available on the operations assigned to the resource. Then this
information was passed onto the logic synthesis tool as a delay constraint re-
laxation of the corresponding module. We have observed significant benefits
through this relaxation in terms of final design quality. Results to this end are
reported in Srivastava et al. [2003] in detail.

Similarly, even if some operations assigned to one resource posses nonzero
slack while others have no extra slack, some power optimizations are still pos-
sible. In such cases, techniques such as dynamic voltage scaling and dynamic
power shutdown can be used if the schedule has been planned for slack distri-
bution early on.

Optimization for slack as described in this section can also be helpful for tasks
preceding scheduling. By creating a feedback loop between high-level synthesis
and the compilation stage, different compiler optimizations can be leveraged.
One such optimization is template extraction and template matching during
compilation. At early stages it can be beneficial to extract frequently occuring

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 55

subgraphs as templates from the DFGs and replace them with optimized cores.
Usage of such cores was discussed in Section 3.1. Especially for reconfigurable
platforms, usage of preoptimized precharacterized modules can speed up the
synthesis process and improve performance. However, information regarding
scheduling and binding is not available at the compiler stage. Therefore, the
decisions of the compiler to lump subgraphs into larger nodes corresponding
to optimized cores might not be accurate enough. This is due to the fact that
scheduling of nodes internal to such subgraphs can affect the latency of the
overall DFG schedule. Therefore, scheduling and also distribution of time slack
among nodes needs to be aware of any clustering of nodes. In turn, after schedul-
ing, a more accurate assessment of the benefits of clustering can be done. Espe-
cially, it would not be desirable to leave time slack within a group of nodes which
are going to be assigned as a subgraph onto a specialized core. Based on the
slack distribution and the schedule information, the compiler can be informed
about the quality of clustering decisions made earlier during compilation. If
a certain template is not yieling any gain or if it is hurting the performance
of the overall DFG schedule, the compiler can be advised to undo that tem-
plate clustering or redo it in a different way based on the current schedule
information.

4. CONCLUSIONS

In this article we presented an algorithm for scheduling data flow graphs. Our
algorithm uses a geometric representation of the problem. We applied the max-
imum weight k-chain technique to generate schedules for paths extracted from
the input DFG. This technique is essentially a realization of maximum-weight
noncrossing bipartite matching in the geomteric domain. The maximum-weight
k-chain method enables us to provide a theoretical guarantee on the quality of
each local matching problem. By exploiting the weighted matching feature in-
herent in our technique, we are able to provide a flexible objective function
for the scheduling problem. We manipulate the function that generates the
weights for the matching in order to create suitable objective functions for dif-
ferent scheduling problems. Our experiments indicate good results in terms of
the combined effort of minimizing latency and utilizing optimized cores avail-
able in a given system. We also demonstrated the use of the flexible objective
function in managing operation slack within a schedule.

REFERENCES

ACTEL. Visit the Web site http://varicore.actel.com.
ALTERA CORP. Visit the Web site http://www.altera.com/products/prd-index.html.
ATALLAH, M. J. AND KOSARAJU, S. R. 1989. An efficient algorithm for maxdominance with applica-

tions. Algorithmica 4, 2, 221–236.
CAMPOSANO, R. 1991. Path-based scheduling for synthesis. IEEE Trans. Comput.-Aided Des. 10,

85–93.
CHAMELEON SYSTEMS. Visit the Web site www.chameleonsystems.com.
CLOUTIER, R. AND THOMAS, D. 1990. The combination of scheduling, allocation and mapping in a

single algorithm. Proceedings of the Design Automation Conference.
CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. MIT Press,

Cambridge, MA.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

56 • S. O. Memik et al.

FISHER, J. A. 1981. Trace scheduling: A technique for global microcode compaction. IEEE Trans.
Comput. 30, 7, 478–490.

GOKHALE, M. B., STONE, J. M., ARNOLD, J., AND KALINOWSKI, M. 2000. Stream-oriented FPGA com-
puting in the streams-c high level language. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines.

HALDAR, M., NAYAK, A., CHOUDHARY, A., AND BANERJEE, P. 2001. A system for synthesizing optimized
FPGA hardware from matlab. In Proceedings of the International Conference on Computer Aided
Design.

HAMMES, J., RINKER, R., BOHM, W., NAJJAR, W., DRAPER, B., AND BEVERIDGE, R. 1999. Cameron:
High-level language compilation for reconfigurable systems. In Proceedings of the Conference on
Parallel Architectures and Compilation Techniques.

HAUCK, S., FRY, T. W., HOSLER, M. M., AND KAO, J. P. 1997. The Chimaera reconfigurable functional
unit. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines.

HWU, W. W., HAAB, G. E., HOLM, J. G., LAVERY, D. M., MAHLKE, S. A., CHEN, W. Y., CHANG, P. P., WARTER,
N. J., BRINGMANN, R. A., OUELLETTE, R. G., HANK, R. E., AND KIYOHARA, T. 1993. The superblock:
An effective structure for vliw and superscalar compilation. J. Supercomput. 7, 1–2, 229–
248.

KASTNER, R., MEMIK, S. O., BOZORGZADEH, E., AND SARRAFZADEH, M. 2001. Instruction generation for
hybrid reconfigurable systems. In Proceedings of the International Conference on Computer-Aided
Design.

KRAMER, H. AND ROSENSTIEL, W. 1990. System synthesis using behavioral descriptions. In Pro-
ceedings of the European Design Automation Conference.

LEE, D. T. 1996. “Computational geometry”. In The Computer Science and Engineering Hand-
book, Chap. 6, Allen B. Tucker, Ed. CRC Press, Boca Raton, FL.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems. In Proceedings of the International
Symposium on Microarchitecture.

LUCENT TECHNOLOGIES. Lucent technologies announces high-speed communications cores for cus-
tomizing ORCA FPGAs.

MAHLKE, S. A., LIN, D. C., CHEN, W. Y., HANK, R. E., AND BRINGMANN, R. A. 1992. Effective com-
piler support for predicated execution using the hyperblock. In Proceedings of the International
Symposium on Microarchitecture.

MCFARLAND, M. C. 1986. Using bottom-up design techniques in the synthesis of digital hardware
from abstract behavioral descriptions. In Proceedings of the Design Automation Conference.

MCFARLAND, M. C., PARKER, A. C., AND CAMPOSANO, R. 1988. Tutorial on high-level synthesis. In
Proceedings of the Design Automation Conference.

MONTEIRO, J., DEVADAS, S., ASHAR, P., AND MAUSKAR, A. 1996. Scheduling techniques to enable
power management. In Proceedings of the Design Automation Conference.

MUSOLL, E. AND CORTADELLA, J. 1995. Scheduling and resource binding for low power. In Proceed-
ings of the International Symposium on System Synthesis.

PANGRLE, B. M. AND GAJSKI, D. 1987. Design tools for intelligent silicon compilation. IEEE Trans.
Comput.-Aided Des. 6, 6, 1098–1112.

PARKER, A. C., PIZARRO, J., AND MLINAR, M. 1986. Maha: A program for datapath synthesis. In
Proceedings of the Design Automation Conference.

PAULIN, P. G. AND KNIGHT, J. P. 1987. Force directed scheduling in automatic data path synthesis.
In Proceedings of the International Conference on Computer Design.

PAULIN, P. J. AND KNIGHT, J. P. 1989. Force directed scheduling for behavioral synthesis of asics.
IEEE Transactions on Comput.-Aided Des. 8, 6, 661–679.

POTASMAN, J., LIS, J., NICOLAU, A., AND GAJSKI, D. 1990. Percolation based synthesis. In Proceedings
of the Design Automation Conference.

SCHREIBER, R., ADITYA, S. G., RAU, B. R., MAHLKE, S., KATHAIL, V., CRONQUIST, D., AND SIVARAMAN, M.
2002. Pico-npa high-level syntesis of nonprogrammable hardware accelerators. J. VLSI Signal
Process. 31, 2, 127–142.

SHIUE, W. AND CHAKRABARTI, C. 2000. Low-power scheduling with resources operating at multiple
voltages. IEEE Trans. Circ. Syst. II: Analog Digital Sign. Process. 47, 6, 536–543.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

A Scheduling Algorithm for Optimization and Early Planning • 57

SO, B., HALL, M., AND DINIZ, P. 2002. A compiler approach to fast design space exploration in
fpga-based systems. In Proceedings of the Conference on Programming Language Design and
Implementation.

SRIVASTAVA, A., MEMIK, S. O., CHOI, B. K., AND SARRAFZADEH, M. 2003. Achieving design closure
through delay relaxation parameter. In Proceedings of the International Symposium on Computer
Aided Design.

THOMAS, D. E., LAGNESE, E. D., WALKER, R. A., NESTOR, J. A., RAJAN, J. V., AND BLACKBURN, R. L. 1990.
Algorithmic and Register Transfer Level Synthesis: The System Architect’s Workbench. Kluwer
Academic Publishers, Norwell, MA.

TIMMER, A. H. AND JESS, J. A. G. 1995. Exact scheduling strategies based on bipartite graph
matching. In Proceedings of the European Design and Test Conference.

WAZLOWSKI, M., AGARWAL, L., LEE, T., SMITH, A., LAM, E., ATHANAS, P., SILVERMAN, H., AND GOSH, S.
1993. Prism-ii compiler and architecture. In Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines.

WONG, J. L., MEGERIAN, S., AND POTKONJAK, M. 2002. Forward-looking objective functions: Concepts
and applications in high level synthesis. In Proceedings of the Design Automation Conference.

XILINX, INC. Visit the Web site www.xilinx.com/apps/appsweb.htm.

Received January 2003; revised August 2003, October 2003; accepted November 2003

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 1, January 2005.

