UC Berkeley

UC Berkeley Previously Published Works

Title

Integrating process design and materials genomics for energy efficient adsorption-based capture technologies

Permalink

https://escholarship.org/uc/item/63b5s6bm

Authors

Garcia, S

Smit, B

Reimer, JA

et al.

Publication Date

2020

Peer reviewed

Integrating process design and materials genomics for energy efficient adsorption-based capture technologies

Susana Garcia^{a,*}, Berend Smit^b, Jeffrey A. Reimer^{c,d}, Rahul Anantharaman^e, Eva Sanchez Fernandez^f

^aResearch Center for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK

^bEcole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

^cDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA

^dMaterials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

^eSINTEF Energy Research, Sem Sælandsvei 11, NO-7465 Trondheim, Norway

^fSolverlo LtD, EH42 1TL, Dunbar, UK

*S.Garcia@hw.ac.uk 17 November 2020

The Background to the Problem

Preliminary efforts

The innovation in PrISMa

PrISMa Workflow
Some examples

MatScreen: Our automated screening platform

The Background to the Problem

The Challenge:

"There is currently no ability to quickly identify what processes and process conditions are optimal for a particular adsorbent to achieve the required specifications for a capture application" (Mission Innovation report)¹

- > For maximum impact of breakthrough materials, *processes and materials must be developed hand-in-hand* for any particular application.
- ➤ The *integration between molecular science and process engineering* is a significant gap of knowledge which hinders the realization of many novel promising materials beyond lab scale testing.

¹ Carbon Capture, Utilization and Storage Expert's Workshop (2017) Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage. Houston, Texas.

Our previous efforts

What's the best MOF material for wet flue gas CO₂ capture?

In-silico screening

Total: 325,000 MOFs

The Adsorbaphore concept

0.25

0.50

 $K_{\rm H} \ CO_2 \ (10^6 \ mol \ kg^{-1} \ bar^{-1})$

0.75

1.00

0.00

Adsorbaphore (pharmacophore):

- Two parallel aromatic rings with interatomic spacing of approximately 7 Å (31% of all binding sites)
- Metal–oxygen–metal bridges (32%)
- Open metal sites (21%)

The parallel aromatic rings adsorbaphore discovered with the feature recognition algorithm.

The CO₂ capacity: what materials to synthesize

Second library using experimental input:

Fateeva et al, Angew. Chem.-Int. Edit. 2012, **51**, 7440.

Process Performance and Benchmarking

Mixture: N₂/CO₂ (+water)

BUT WE WANTED TO DO BETTER...

The PrISMa Project

Prisma: Process-Informed design of tailor-made Sorbent Materials for energy efficient carbon capture

Aim: To accelerate the transition of energy and industrial sectors to a low-carbon economy by developing a technology platform to tailor-make cost-efficient carbon capture solutions for a range of different CO₂ sources and CO₂ use/destinations.

Accelerating

CS

ACT-Funded Project

€2.9M, 4 Research partners and

13 Industrial Partners

Duration: 3 years (Sept19-Aug22)

Process CO₂ sinks CO₂ sources requirements Coal/NG Geological power Evaluation (ECP) storage generation Fuels Industrial **KPI** targets (natural gas/ ECP= f(KPI₁, KPI₂, ...) sources liquid fuels) Material Waste properties incineration Chemical products Material NG gas screening fields/biogas **Enhanced** oil recovery Synthesis Air and testing CASE STUDIES for

TRL5

The PrISMa Platform

Key Technical Outputs

- ✓ A technology platform that allows us to identify for a given source and target of CO₂ the optimal capture technology. This platform is based on a methodology for systematic knowledge exchange between material science and process engineering.
- ✓ A set of case studies, inspired by the interest of the national funding agencies and our industrial advisory board, to bring the technology/material to the TRL5 level.

The PrISMa Project

Cause and Effect Diagram for the Screening Methodology

How to link material properties with Process KPIs, Economic KPIs and ECP

The Screening Workflow

Parameters for Optimization

set a range to the process parameters

Material Ranking

rank thousands of adsorbents based on process indicators

Material Properties

- target ranges of key parameters
- optimal material characteristics

Some Examples of ongoing work in PrISMa

Charithea Charalambous is Speaking at the 2020 Virtual AIChE® Annual Meeting

CO2 Capture By Adsorption II

CO2 Recovery from Ultra-Dilute Streams: Bridging a Novel Temperature Vacuum Swing Adsorption Model with Materials Screening

Date: Thursday, Nov 19 8:00 AM

MatScreen: Our automated screening platform

An Automated Framework from Crystal structure to Carbon Capture

refinement

Checking:

- atoms overlapping
- missing H
- chemistry
- solvent

CP2K

- checking stability
- reliable optimum cell & geometry
- partial charges

Geometry optimization

Geometry characterization

Zeo++

- PLD, LFS
- surface / pore vol.
- blocking spheres

Adsorption properties

RASPA

For CO₂ and N₂:

- Henry coefficient
- Adsorption isotherm
- Heat of adsorption

Process

modelling

calPE.py

- parasitic energy kJ/kg[CO₂]
- optimal T/P desorption
- working capacity
- final CO₂ purity

D. Ongari, A.V. Yakutovich, L. Talirz, B. Smit, Building a consistent and reproducible database for adsorption evaluation in COFs, ACS Cent. Sci. 2019

Case Study- COFs for CO₂ capture: Updates and Surprises

A matching platform for materials and applications

Acknowledgments

This PrISMa Project (No 299659) is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No 294766). Financial contributions made from: BEIS together with extra funding from NERC and EPSRC, UK; RCN, Norway; SFOE, Switzerland and US-DOE, USA, are gratefully acknowledged. Additional financial support from TOTAL and Equinor, is also gratefully acknowledged.

https://prisma.hw.ac.uk/

