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Original Article

Abstract: Understanding the incidence of disease is often crucial for 
public policy decision-making, as observed during the COVID-19 pan-
demic. Estimating incidence is challenging, however, when the defi-
nition of incidence relies on tests that imperfectly measure disease, as 
in the case when assays with variable performance are used to detect 
the SARS-CoV-2 virus. To our knowledge, there are no pragmatic 
methods to address the bias introduced by the performance of labs in 
testing for the virus. In the setting of a longitudinal study, we devel-
oped a maximum likelihood estimation-based approach to estimate 
laboratory performance-adjusted incidence using the expectation- 
maximization algorithm. We constructed confidence intervals (CIs) 
using both bootstrapped-based and large-sample interval estimator 
approaches. We evaluated our methods through extensive simula-
tion and applied them to a real-world study (TrackCOVID), where 
the primary goal was to determine the incidence of and risk factors 
for SARS-CoV-2 infection in the San Francisco Bay Area from July 
2020 to March 2021. Our simulations demonstrated that our method 
converged rapidly with accurate estimates under a variety of scenar-
ios. Bootstrapped-based CIs were comparable to the large-sample 
estimator CIs with a reasonable number of incident cases, shown via 
a simulation scenario based on the real TrackCOVID study. In more 
extreme simulated scenarios, the coverage of large-sample interval 
estimation outperformed the bootstrapped-based approach. Results 
from the application to the TrackCOVID study suggested that assum-
ing perfect laboratory test performance can lead to an inaccurate 
inference of the incidence. Our flexible, pragmatic method can be 
extended to a variety of disease and study settings.

Keywords: COVID-19; Incidence; Maximum Likelihood Estimation; 
Sensitivity; Specificity

(Epidemiology 2024;35: 295–307)

It is often of interest to estimate disease incidence. For this 
purpose, we typically rely on repeated measurements of par-

ticipants’ disease status over time in a longitudinal framework, 
where disease status may be determined through lab tests. 
During the COVID-19 pandemic, accurate estimates of the 
incidence of infection with SARS-CoV-2 have been critical 
for public health policy decision-making.1–3 There are multiple 
challenges to achieving this goal that include a sub-population 
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that is asymptomatic and a dynamic landscape of disease vari-
ants and diagnostic tests. Specifically, several SARS-CoV-2 test 
kits (rt-nucleic acid amplification, antigen, and serological tests) 
were approved under Emergency Use Authorization for clinical 
use without rigorous validation.4,5 The SARS-CoV-2 literature 
demonstrated how critical it was to adjust for the varying per-
formance of these laboratory tests (sensitivity and specificity) to 
draw an accurate inference on prevalence and incidence.6,7 Indeed, 
for cross-sectional studies designed to estimate prevalence, the 
“standard correction” method based on Bayes’ rules6,8 was often 
applied to account for the laboratory test performance.9–13 Both 
frequentist8,9,14 and Bayesian approaches11–13,15 were proposed 
for this purpose. For example, Bajema et al.9 and Havers et al.10 
proposed a two-stage nonparametric bootstrapping approach that 
resampled the false positive and negative cases to account for the 
uncertainty of the sensitivity and specificity estimates. Meireles et 
al.11 used a Bayesian approach with uniform prior distributions of 
sensitivity and specificity, whereas Sahlu and Whittaker12 consid-
ered an informative beta prior and Meyer et al.13 proposed more 
specific beta prior distributions that incorporated information by 
geographical regions. Under scenarios where knowledge of test 
performance was limited, Burstyn et al.16 proposed a Bayesian 
approach to inform the sensitivity and specificity in the popula-
tion using publicly available time-series data.

Because incidence measures the instantaneous prob-
ability of being infected at a given time point, it is consid-
ered a more relevant measure for informing timely decisions 
on public health and healthcare resource allocation to arrest 
SARS-CoV-2 transmission, as it provides additional insight 
into the current “momentum” of the epidemic.17–20 In contrast 
to prevalence, incidence is often estimated with a longitudi-
nal study design, which presents challenges in accounting 
for test performance.17 Given the longitudinal nature of the 
study required to estimate incidence, participants need to be 
repeatedly tested over time, yielding a high volume of tests 
performed. This means that even a small percentage of labora-
tory testing errors can result in a high absolute number of false 
positive or negative test results, eventually leading to a biased 
estimate of incidence, while the direction and magnitude of 
the bias would depend on the underlying true incidence and 
prevalence of the disease. For the purposes of our study, we 
defined incidence as the initial infection for a participant, 
where participants were censored at a positive result with no 
further follow-up tests scheduled. The implications of censor-
ing as a function of the test status are that the test performance 
of one assay will affect whether the patient will be censored 
at subsequent visits, affecting the participant’s length of time 
considered at risk.

In the current literature, there are no guidelines or a 
“gold standard” approach to adjust for laboratory test errors 
when estimating incidence within a repeated measures longi-
tudinal framework, which is a fairly common goal. For exam-
ple, work by Becker and Britton (1999)17 and by Gan and Bain 
(1998)21 examined the estimation of the incidence risk under a 

similar longitudinal design. A key difference with the current 
article is our consideration of the testing error in identifying the 
true cases, quantified by imperfect sensitivity and specificity. 
Previous studies proposed methods to incorporate sensitivity 
and specificity by adjusting the number of positive or negative 
events.22,23 However, in those studies, the incidence was modeled 
as a single probability with only one follow-up measurement. 
Further, the methods proposed assumed consistent follow-up 
times and nondifferential time at risk and loss to follow-up 
across participants. Novel methods that challenged or relaxed 
these assumptions were proposed in the field of HIV. For exam-
ple, McDougal et al.24 derived a correction factor for incidence 
adjustment—the probability of being infected divided by the 
probability of being in the window (P(T0)/P(W))—that was 
subsequently criticized because the correction factor took on the 
value of 1 under commonly occurring circumstances that did not 
make empirical sense.24,25 Hargrove et al.,26 therefore, proposed 
a modified version of a correction factor (ε)—the probability of 
being in the window period if infected at least twice the duration 
of the time interval (2μ) earlier.26 Similar to McDougal’s method, 
however, this approach could be misleading due to its underlying 
mathematical inconsistency that nonzero ε values could lead to 
anomalous results.25 The methods mentioned above all failed to 
adequately leverage the repeated nature of testing by assuming a 
uniform distribution of testing across all time points. Thus, there 
is a critical gap in the current literature for addressing unbiased 
estimation of incidence in a typical longitudinal framework. 
Flexible methods are needed that adjust for laboratory test per-
formance in the common scenario where incidence is estimated 
from repeated measurements.

Parent Study: The TrackCOVID Study
Our work is motivated by a public health surveillance 

initiative to estimate the incidence and prevalence of SARS-
CoV-2 infection and the associated risk factors in the San 
Francisco Bay Area (TrackCOVID study). The TrackCOVID 
study was conducted from July 2020 to March 2021, during 
the outbreak of the COVID-19 pandemic. The longitudinal 
study relied on a sampling framework to randomly select res-
idents from six Bay Area counties using census tract data.27 
We requested participants in the study to come into the clinic 
for a baseline visit and, subsequently, for monthly visits for 
up to 6 months. Evidence of infection was defined as a posi-
tive test using two types of assays measured repeatedly: (1) an 
rt-PCR test of a nasopharyngeal swab and (2) serologic test-
ing of blood. In this way, we can capture infections that may 
have been missed by one of the assays, and particularly those 
infections we may miss in between monthly visits. Thus, our 
definition of infection relied on the performances of multiple 
assays. Importantly, to account for (1) the sampling frame-
work, (2) the probability of selection from the household, 
and (3) nonresponse bias, we estimated and incorporated a 
combined weight variable for each participant when calcu-
lating quantities of interest (such as incidence).27
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The TrackCOVID study was designated as a public 
health surveillance study and not human subjects research 
under 45 CFR 46.102(l) by the Stanford University School of 
Medicine Administrative Panel on Human Subjects in Medical 
Research and the University of California, San Francisco 
Institutional Review Board.

In this article, we proposed a new statistical framework 
to address the problem of estimating incidence while adjust-
ing for laboratory test performance in a longitudinal repeated 
measures framework using a maximum likelihood estimation 
(MLE)-based approach. Our method can be extended to a 
variety of study design scenarios under relaxed assumptions. 
We presented the likelihood function using the motivating 
example, assessed the properties of the method with a simu-
lation study, and applied our approach to the real-world data 
collected in our parent study.

METHODS
To better understand the underlying principles of our 

method, we illustrated ideas through the TrackCOVID study.

Possible Trajectories of Observed Longitudinal 
Test Result

In the TrackCOVID study, each participant could have 
at most seven visits (including the baseline visit). Considering 
loss to follow-up and censoring after a given visit, we may 
observe a total of 14 possible test result trajectories as illus-
trated in Table 1. For example, scenario 4 reflects the situa-
tion where an individual has three negative tests followed by 
a positive test at visit 4, and scenario 12 represents a trajec-
tory where there are four consecutive negative tests immedi-
ately following enrollment with loss to follow-up afterward. 
In practice, observed data could be represented by either an 
unweighted or weighted number of participants, whose test 

results fall into each of these possible trajectories or scenarios, 
denoted as nk , k = 1, · · · , 14. If there is any intermittent 
missing value, we consider the observed data to be those pre-
ceding this value.

Possible Trajectories of True Longitudinal 
Infection Status

There are eight true infection status trajectories for 
the participants enrolled in our parent study (Table 2). Here, 
we assume that once a participant’s underlying true disease 
status is positive, their status remains positive until the last 
follow-up visit. Participant’s test status at each visit is a 
binary variable (positive or negative) that can be determined 
by either a single test result or multiple test results com-
bined under prespecified rules. First, we define the following 
parameters:

 1. π: prevalence at baseline (probability of being infected at 
baseline).

 2. p: incidence at a visit assumed to be constant, (i.e., the con-
ditional probability of infection at the current visit given 
no infection in the prior visit, p=P(infected at the current 
visit|uninfected in the prior visit)).

 3. Sen: Sensitivity (conditional probability of testing positive 
given infected, or P(Test +|True +)), considered fixed and 
as prespecified by the literature in both the parent and sim-
ulation study.

 4. Spe: Specificity (conditional probability of testing negative 
given uninfected, or P(Test −|True −)), considered fixed 
and as prespecified by the literature in both the parent and 
simulation study.

 5. r: the rate of loss to follow-up at a visit (conditional 
probability that a participant’s data are not available 
at the current visit given the data were observed in the  
prior visit).

TABLE 1. All Possible Trajectories of Observed Longitudinal Test Result at the Participant Levela

 Baseline 
Follow-up

Visit 1 
Follow-up

Visit 2 
Follow-up

Visit 3 
Follow-up

Visit 4 
Follow-up

Visit 5 
Follow-up

Visit 6 

Test result scenario 1 +       

Test result scenario 2 − +      

Test result scenario 3 − − +     

Test result scenario 4 − − − +    

Test result scenario 5 − − − − +   

Test result scenario 6 − − − − − +  

Test result scenario 7 − − − − − −− +

Test result scenario 8 − − − − − − −

Test result scenario 9 −       

Test result scenario 10 − −      

Test result scenario 11 − − −     

Test result scenario 12 − − − −    

Test result scenario 13 − − − − −   

Test result scenario 14 − − − − − −  

a+ indicates a positive test result; − indicates a negative test result; and blank indicates loss to follow-up or censoring.
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We can express the probabilities of the eight true infec-
tion status trajectories—denoted as q

i
 (i=1, 2, 3,…, 8)—as 

a function of π and p (Table 2). Note that the incidence is 
assumed to be constant for simplicity. Later, we extend the 
method to allow nonconstant incidence risk.

Likelihood Function at the Participant Level
The values of sensitivity (sen) and specificity (spe) 

of the laboratory test are considered to be given, and the 
observed data are {n1, · · · , n14} . Given this, our interest 
lies in estimating (π, p). We account for test performance 
via the maximum likelihood estimation, which requires 
expressing the likelihood function. According to Tables 1 
and 2, we expect to have a total of 14 × 8 = 112 combina-
tions of the test results and the true infection status trajecto-
ries for the study cohort. We express the likelihood function 

for each combination as a function of π, p, and r (Tables 3 
and 4).

We first estimate the rate of loss to follow-up at a given 
visit, r, by considering the likelihood function below.

(1 − r)(n2+2n3+3n4+4n5+5n6+6n7+6n8)+(n10+2n11+3n12+4n13+5n14)

×rn9+n10+n11+n12+n13+n14 .
 (1)

The maximum likelihood estimator (MLE) of r is

r̂ =
n9 + n10 + n11 + n12 + n13 + n14

(n2 + 2n3 + 3n4 + 4n5 + 5n6 + 6n7 + 6n8)

+ (n10 + 2n11 + 3n12 + 4n13 + 5n14)

,

 (2)

where nk is defined as the number of participants with test 
result scenario k.

We define sik (π, p, r̂) to be the kth test result scenario 
and ith true infection status in Tables 3 and 4. Given the MLE 
of r (r̂), the only model parameters left to estimate are the ones 

TABLE 2. All Possible Trajectories of True Longitudinal Infection Status at the Participant Levela

 Baseline 
Follow-up

Visit 1 
Follow-up

Visit 2 
Follow-up

Visit 3 
Follow-up

Visit 4 
Follow-up

Visit 5 
Follow-up

Visit 6 Probability 

True status 1 + + + + + + + q1 = π

True status 2 − + + + + + + q2 = (1 − π) p

True status 3 − − + + + + + q3 = (1 − π) (1 − p) p

True status 4 − − − + + + + q4 = (1 − π) (1 − p)2p

True status 5 − − − − + + + q5 = (1 − π) (1 − p)3p

True status 6 − − − − − + + q6 = (1 − π) (1 − p)4p

True status 7 − − − − − − + q7 = (1 − π) (1 − p)5p

True status 8 − − − − − − − q8 = (1 − π) (1 − p)6

a+ indicates a positive infection; − indicates no infection.

TABLE 3. Probability of Combination of Each Test Result and True Infection Status (True Status 1–4)

 True Status 1 True Status 2 True Status 3 True Status 4 Probability 

Test result scenario 1 sen (1 − spe) (1 − spe) (1 − spe) qj

Test result scenario 2 (1 − sen) sen spesen spe (1 − spe) spe (1 − spe) (1 − r̂) qj

Test result scenario 3 (1 − sen)2sen spe (1 − sen) sen spe2sen spe2 (1 − spe) (1 − r̂)2qj

Test result scenario 4 (1 − sen)3sen spe(1 − sen)2sen spe2 (1 − sen) sen spe3sen (1 − r̂)3qj.

Test result scenario 5 (1 − sen)4sen spe(1 − sen)3sen spe2(1 − sen)2sen spe3 (1 − sen) sen (1 − r̂)4qj

Test result scenario 6 (1 − sen)5sen spe(1 − sen)4sen spe2(1 − sen)3sen spe3(1 − sen)2sen (1 − r̂)5qj

Test result scenario 7 (1 − sen)6sen spe(1 − sen)5sen spe2(1 − sen)4sen spe3(1 − sen)3sen (1 − r̂)6qj

Test result scenario 8 (1 − sen)7 spe(1 − sen)6 spe2(1 − sen)5 spe3(1 − sen)4
(1 − r̂)6qj

Test result scenario 9 (1 − sen) spe spe spe r̂qj

Test result enario 10 (1 − sen)2 spe (1 − sen) spe2 spe2 (1 − r̂) rqj

Test result scenario 11 (1 − sen)3 spe(1 − sen)2 spe2 (1 − sen) spe3 (1 − r̂)2rqj

Test result scenario 12 (1 − sen)4 spe(1 − sen)3 spe2(1 − sen)2 spe3 (1 − senm) (1 − r̂)3rqj

Test result scenario 13 (1 − sen)5 spe(1 − sen)4 spe2(1 − sen)3 spe3(1 − sen)2
(1 − r̂)4rqj

Test result scenario 14 (1 − sen)6 spe(1 − sen)5 spe2(1 − sen)4 spe3(1 − sen)3
(1 − r̂)5rqj

Sen indicates sensitivity; spe, specificity.
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of interest: prevalence (π) and incidence (p). The likelihood 
function for participants who fall into test result scenario k can 
be obtained by summing the probabilities of the combinations 
of true statuses (1–8). Specifically, the likelihood of observing 
test result k is expressed as

Pk (π, p) =
8∑

i=1

sik (π, p, r̂) , k = 1, · · · , 14. (3.1)

Under a more general study design whereas there is a total of 
K test result scenarios and I true infection statuses, the likeli-
hood of observing test result k can be generalized as

Pk (π, p) =
I∑

i=1

sik (π, p, r̂) , k = 1, · · · , K, .
 (3.2)

where sik (π, p, r̂) needs to be modified accordingly.

Likelihood Function for the Study Cohort
The likelihood function of the entire study cohort fol-

lows a multinomial distribution corresponding to 14 test result 
scenarios:

l ( p, π) =
14∏

k=1

Pk(π, p, r̂)nk . (4.1)

For the general case, the likelihood function becomes

l ( p, π) =
K∏

k=1

Pk(π, p, r̂)nk . (4.2)

Expectation-maximization Steps
The above likelihood function l ( p, π) can be con-

veniently maximized using the expectation-maximization 
algorithm.

Specifically, let ξik be the number of individuals who has 
test result scenario k ∈ {1, · · · , 14} with true infection status 
i ∈ {1, · · · , 8}. Then it follows that nk =

∑8
i=1 ξik

• M step: If ξik are observed, then let mi =
∑14

k=1 ξik . We 
can find the MLE of p, π by considering the likelihood 
function

l1 (π)× l2 ( p) , (5)

where

l1 (π) = πm1(1 − π)
m2+m3+m4+m5+m6+m7+m8

l2 ( p) = pm2+m3+m4+m5+m6+m7(1− p)m3+2m4+3m5+4m6+5m7+6m8 .

Clearly, the likelihood function is maximized at

π̂ =
m1

m
, p̂ =

m2 + m3 + m4 + m5 + m6 + m7

m2 + 2m3 + 3m4 + 4m5 + 5m6 + 6m7 + 6m8
, (6)

where m =
∑8

i=1 mi =
∑14

k=1 nk .

• E step: Given current estimate of p and π, we can find 
E(ξik |data, p, π) as

E (ξik |data, p, π) = nk
sik ( p, π, r̂)∑8
i=1 sik ( p, π, r̂)

. (7)

In summary, the expectation-maximization algorithm can be 
implemented iteratively via the following steps:

 1. Initialize p, π
 2. Calculate ξ̂ik = E (ξik |data, p, π)

 3. Calculate m̂i =
∑14

k=1 ξ̂ik

TABLE 4. Probability of Combination of Each Test Result and True Infection Status (True Status 5–8)

 True Status 5 True Status 6 True Status 7 True Status 8 Probability 

Test result scenario 1 (1 − spe) (1 − spe) (1 − spe) (1 − spe) qj

Test result scenario 2 spe (1 − spe) spe (1 − spe) spe (1 − spe) spe (1 − spe) (1 − r̂) qj

Test result scenario 3 spe2 (1 − spe) spe2 (1 − spe) spe2 (1 − spe) spe2 (1 − spe) (1 − r̂)2qj

Test result scenario 4 spe3 (1 − spe) spe3 (1 − spe) spe3 (1 − spe) spe3 (1 − spe) (1 − r̂)3qj

Test result scenario 5 spe4sen spe4 (1 − spe) spe4 (1 − spe) spe4 (1 − spe) (1 − r̂)4qj

Test result scenario 6 spe4 (1 − sen) sen spe5sen spe5 (1 − spe) spe5 (1 − spe) (1 − r̂)5qj

Test result scenario 7 spe4(1 − sen)2sen spe5 (1 − sen) sen spe6sen spe6 (1 − spe) (1 − r̂)6qj

Test result scenario 8 spe4(1 − sen)3 spe5(1 − sen)2 spe6 (1 − sen) spe7 (1 − r̂)6qj

Test result scenario 9 spe spe spe spe r̂qj

Test result scenario 10 spe2 spe2 spe2 spe2 (1 − r̂) rqj

Test result scenario 11 spe3 spe3 spe3 spe3 (1 − r̂)2rqj

Test result scenario 12 spe4 spe4 spe4 spe4 (1 − r̂)3rqj

Test result scenario 13 spe4 (1 − spe) spe5 spe5 spe5 (1 − r̂)4rqj

Test result scenario 14 spe4(1 − sen)2 spe5 (1 − sen) spe6 spe6 (1 − r̂)5rqj

Sen indicates sensitivity; spe, specificity.
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 4. Calculate π̂ = m̂1
m , p̂ = “m2+“m3+“m4+“m5+“m6+“m7“m2+2“m3+3“m4+4“m5+5“m6+6“m7+6“m8

 5. Repeat 2–4 until convergence.
 6. Denote the final estimator by (π̂, p̂) with slightly abuse of 

notations.

The details of the expectation-maximization algorithm 
are provided in eAppendix 1; http://links.lww.com/EDE/
C117.

Confidence Intervals

Nonparametric Bootstrapped-based Approach
The confidence intervals (CIs) of p, π  can be con-

structed using the nonparametric bootstrapped-based method. 
Specifically, we create 500 bootstrap cohorts with the same 
sample size as the original study cohort via the standard non-
parametric bootstrap method so that each bootstrap cohort 
would randomly select participants with the replacement from 
the original study cohort.28 We then compute the MLE of 
( p,π) for each of the 500 bootstrap cohorts. The distribution 
of (p̂, π̂) is then approximated by the empirical distribution 
from the 500 bootstrapped-based estimates. Lastly, we calcu-
late the 2.5 and 97.5 percentiles of the 500 bootstrapped-based 
estimates as the lower and upper limits for the 95% empirical 
CIs of p and π.

Large Sample Interval Estimator Approach
As an alternative to the bootstrapped-based approach, we 

also estimate the variance of p̂ and π̂ based on the likelihood 
function directly. To this end, we first calculate the 2nd-order 
numerical derivatives of the log-likelihood function at (p̂, π̂) to 
construct the Fisher’s information matrix.29,30 The diagonal ele-
ments of the inverse of the matrix are used to estimate the vari-
ances of p̂ and π̂. The 95% CIs are then computed via equation 
(8) and equation (9) below, leveraging the large-sample approx-
imation to the distribution of MLE. The CI is constructed with 
logit transformation to ensure that the CI is always within 0 and 
1. More details of the calculations are provided in eAppendix 2; 
http://links.lww.com/EDE/C117.

expit

®
logit (p̂)± 1.96 ×

√
var (p̂)

p̂ (1 − p̂)

´
 (8)

expit

®
logit (π̂)± 1.96 ×

√
var (π̂)

π̂ (1 − π̂)

´
 (9)

Important Considerations of Underlying 
Statistical Assumptions

The validity of our proposed method based on our moti-
vating study relies on the following assumptions.

 1. Constant incidence: We assume the same probability 
(P) of having a new infection at each follow-up visit for 
all participants, which aligns with the original design in 
TrackCOVID. In the presence of nonconstant incidence 
over time, our estimate of the incidence parameter (p) 

is essentially an “average” of incidences across all study 
visits.

 2. Discrete and finite number of follow-up visits with a fixed 
length of time between visits (e.g., monthly or weekly vis-
its). This assumption can be relaxed, as we described in the 
next section.

 3. Laboratory test performance or properties of the diagnos-
tic tests (sensitivity and specificity) are constant across 
visits and prespecified based on the literature or previous 
studies. We did not consider laboratory test performance 
metrics as parameters to be estimated either in the simula-
tion study or in the parent study. However, with appropriate 
modifications of our proposed algorithm, the uncertainty 
in the reported laboratory performance metrics can be 
considered.

 4. Constant rate of loss to follow-up over time: we assumed 
the same probability (r) of loss to follow-up at each  
follow-up visit. In the presence of nonconstant rates of loss 
to follow-up over study visits, we may consider estimating 
the parameters of loss to follow-up as a function of study 
visits or calendar time.

Potential Extensions of the Method
There are many possible extensions of the method. 

Below we describe three key extensions.

Incorporate Sampling Weights
Oftentimes, when over- or undersampling of some 

patient subgroups is implemented, weighted inference is 
needed. It is straightforward to incorporate weights in our 
expectation-maximization algorithm. Specifically, instead of 
using nk  as our input data, we can use the weighted counts 
of a number of participants under the k th test result scenario. 

We can then update nk  as 
nk∑

i=1
wik , where wik  represents the 

weighted number of participants in the k th test result scenario.

Incorporate Factors Associated with Incidence
Knowing potential factors that are associated with 

incidence, we can update our model and the correspond-
ing likelihood function on the participant level to relax the 
constant incidence assumption. For example, in the case of 
SARS-CoV-2 which has a rapidly changing landscape over 
time, it may be reasonable to expect that incidence would 
depend on calendar months. One way to relax this assump-
tion is to model the incidence rate at a given visit as a func-
tion of calendar time. For example, we may assume that

p (s; θ) =
exp (α0 + β0s)

1 + exp (α0 + β0s)
,

where s is the calendar month of the visit, and (α0,β0) are 
unknown model parameters to be estimated. Under this model, 
we may test if the incidence rate is constant over time by exam-
ining the point and interval estimates of β0. This model can be 

http://links.lww.com/EDE/C117
http://links.lww.com/EDE/C117
http://links.lww.com/EDE/C117
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estimated via the expectation-maximization algorithm as well. 
Specifically, we may organize the observed data into multiple 
waves {n1,s, · · · , n14,s} , s = 0, · · · , S, where nj,s represents 
the observed frequency of the jth scenario among patients 
who were enrolled at calendar time s, that is, the sth wave. Let 
ξiks be the number of individuals who had test result scenario 
k ∈ {1, · · · , 14} with true infection status i ∈ {1, · · · , 8} 
enrolled at the sth wave. Then it follows that nks =

∑8
i=1 ξiks. 

The new expectation-maximization algorithm consists of the 
following two steps:

 1. Maximization step: If ξiks is observed, then let

mis =
14∑

k=1

ξiks, ms =
8∑

i=1

mis, mi =
S∑

s=0

mis, m =
8∑

i=1

mi.

Then the number of new incidences at calendar month t 
becomes

γ+
t =

min(t−1, S)∑
s=0

m(t+1−s)s

while the number of patients at calendar month t is

γt =

min(t−1, S)∑
s=0

8∑
i=t+1−s

mis

We can find the MLE of (α,β, π)π by considering the like-
lihood function

l1 (π)× l2 (α, β) ,

where

l2 (α,β) =
∏
t≥1

exp
{
(α+ βt) γ+

t

}
{1 + exp (α+ βt)}γt

.

To be noted, maximizing the likelihood function l2 (α,β) is 
the same task as fitting a logistic regression with observation 
{(t, 1)} weighted by γ+

t , and {(t, 0)} weighted by γt − γ+
t , 

for t ≥ 1.

 2. Expectation step: Given the current estimate of (α,β) and 
π, we can find E(ξiks|data, α, β, π) as

E (ξiks|data, α,β, π) = nks
qiks (α,β, π, r̂)∑14
k=1 qiks (α,β, π, r̂)

,

where qiks (a,β, π, r) is the probability of being at the  
ith true status trajectory, k th observed test trajectory for partic-
ipants enrolled at time s. Specifically, qiks (α,β,π, r) can be 
calculated by replacing qj in Table 2 by

q1 = π,

q2 = (1 − π)
exp (α+ β (s + 1))

1 + exp (α+ β (s + 1))
,

qj = (1 − π)×
max( j−2)∏

l=1

1
1 + exp (α+ β (s + l))

× exp (α+ β (s + j − 1))
1 + exp (α+ β (s + j − 1))

, 3 ≤ j ≤ 7,

and

q8 = (1 − π)×
6∏

l=1

1
1 + exp (α+ β (s + l))

.

This expectation-maximization algorithm is used to find the 
MLEs of (α, β). The variance of the MLE is estimated using the 
nonparametric bootstrap method. In principle, we can account 
for more complex factors associated with incidence using 
similar extension. When the number of incidences is small, 
for example, as in the TrackCOVID study, the expectation- 
maximization algorithm may generate outliers for some boot-
strapped datasets, which may exaggerate the variance estimate 
for 
Ä
”α, “β

ä
. To overcome this, instead of using the empirical 

standard error of the bootstrapped estimates, we use appropri-
ately normalized median absolute deviations as the estimates 
for the standard error of the corresponding parameters. The 
reported 95% CIs for the TrackCOVID study were constructed 
based on this robust standard error estimate.

Allow Differential Cadence and Number of 
Follow-ups

To extend our method to allow varying lengths of time 
between visits, we can simply update the probability of each 
true infection trajectory by attributing a differential probabil-
ity of infection based on time since the last visit. For example, 
suppose we were to re-design our study with the first three 
follow-up visits at a biweekly cadence and the last three visits 
at a monthly cadence. By denoting the incidence of the first 
three follow-up visits as p, we could have the incidence of the 
last three visits equal to 1 − (1 − p)2 ≈ 2p under the constant 
incidence assumption. As a result, we can update the proba-
bility of the true infection trajectories accordingly (eTable 1; 
http://links.lww.com/EDE/C117).

Theoretically, it is possible to extend our methods so that 
they allow for varying cadence and frequency of the follow-up 
visits across participants. This could be implemented by writ-
ing out the likelihood function for each individual participant 
separately, with the infection rate being p = exp (λLt), where 
Lt is the time from the previous visit to the current visit and 
λ is the infection rate, which can be further modeled as, for 
example, a function of calendar time as above.

Simulation Study Design
We conducted an extensive simulation study to inves-

tigate the finite sample performance of the proposed method 
based on our TrackCOVID study design. We considered differ-
ent combinations of the five key parameters to mimic relevant 
contexts: true prevalence (π), true incidence ( p), probability 
of loss to follow-up (r), sensitivity (sen), and specificity (spe).

http://links.lww.com/EDE/C117
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For each simulation scenario, we simulated 500 datasets 
with a sample size of 4000. For each simulated dataset, we used 
the proposed expectation-maximization algorithm to find the 
MLEs for (π, p) . In the expectation-maximization algorithm, 
we set the initial values of π and p as the observed prevalence 
and incidence, respectively, without considering the sensitiv-
ity and specificity, and the maximum number of iterations was 
1000. The convergence was reached if consecutive changes in 
log-likelihood were less than 10−6. For each simulated dataset, 
we recorded whether the algorithm converged within 1000 iter-
ations and the number of iterations at the convergence. We also 
reported median bias and median percent bias and the empirical 
coverage level of constructed 95% CIs of p. Specifically, we cal-
culated the median bias as the median of the differences between 
the estimated incidence p̂ and true incidence p; the median per-
cent bias was calculated as the ratio of the median bias to p; and 
the empirical coverage level was the proportion of constructed 
CIs containing the true incidence p.

Scenario for TrackCOVID Study
The following values of our key parameters were selected 

as follows to closely mimic the motivating TrackCOVID 
study:

π = 0.015, p = 0.01, r = 0.3, sen = 0.728, spe = 0.997

Scenarios Under Varying Assumptions of π, �� �

To investigate the impact of π, p, r upon the perfor-
mance of proposed methods, we considered additional plau-
sible scenarios with varying assumptions of π, p, r under 
fixed sen = 0.728, spe = 0.997. All pairwise combinations 
of π, p, r below were considered in the simulations, result-
ing in 3 × 3 × 2 = 18 simulation scenarios. For each of the 18 
simulation scenarios, we simulated 500 datasets with a sample 
size of 4000.

π = 0.015, 0.02, 0.03

p = 0.01, 0.1, 0.5

r = 0.01, 0.3

Scenarios Under Varying Assumptions of ���� ���
To further explore the impact of sen, spe upon our 

algorithm performance, we performed simulation sce-
narios with varying sen, spe at fixed assumptions of 
π, p, r (π = 0.015, p = 0.01, r = 0.3). The following pos-
sible sen, spe were considered.

sen = 0.7, 0.8, 0.9

spe = 0.99, 0.992, 0.994, 0.996, 0.998

All pairwise combinations of sen, spe were considered in 
this set of simulations, resulting in 3 × 5 = 15 simulation 
scenarios.

Scenarios Under Varying Incidence Rates over 
Calendar Time

To investigate the impact of varying incidence, we con-
sidered at month s, incidence would follow the function below.

p (s; θ) =
exp (α0 + β0s)

1 + exp (α0 + β0s)
.

Specifically, we assumed that

π = 0.015, α = −5, β = 0.2, r = 0.3, sen = 0.728, spe = 0.997

and patients were enrolled at s = 0, 1, 2, and 3, that is, there 
were four waves of patients with the sample size being 500, 
1000, 1000, and 1500, respectively, mimicking the parent 
study.

Software
We coded our method using the R programming lan-

guage (The R Project for Statistical Computing, Vienna, 
Austria) and created an open source package (“mlelabper-
form”) in a github repository (install_github(“isabelweng/
mlelabperform”)). Scripts of the simulations were made avail-
able under the same repository.

RESULTS

Results from Simulation Study
Scenario Corresponding to TrackCOVID Study 
(π = 0.015, p = 0.01, r = 0.3, sen = 0.728, spe = 0.997)
The median bias for estimating incidence ( p) was low: 
−0.000124 (95% CI = −0.0029, 0.0031) or −0.15 per 
100 person-year (95% CI = −3.5, 3.7) (to be noted, 
p = 0.01, or 12 per 100 person year). The median 
percent bias for estimating incidence was −1.24% (95% 
CI = −29%, 31%). The empirical coverage level of large- 
sample interval estimated 95% CIs was 98.6% and higher than 
the coverage level obtained with bootstrapped-based 95% CIs 
(92.2%). We were able to estimate π and p for all 500 sim-
ulated datasets under the TrackCOVID scenario, where the 
median number of iterations needed to reach convergence was 
81, (interquartile range: 71, 92).

Scenarios Under Varying Assumptions of π, p, r
The expectation-maximization algorithm successfully 

converged within 1000 iterations for all the simulated data-
sets across 18 simulated scenarios with close to zero median 
bias (−2.02 × 10−4 to 1.00 × 10−4, or −0.24 to 0.12 per 100 
person-year) and percent median bias (−1.05% to 5.00%) for 
p (Figure 1A,B). It took more iterations for the algorithm 
to converge with lower incidence ( p). Higher missing rate 
(r) was associated with requiring more iterations for con-
vergence. Baseline prevalence π did affect the convergence 
performance under our simulation scenarios (Figure 1C). As 
expected, a higher missing rate (r) led to wider or more con-
servative CIs for p. Both large-sample interval estimated or 
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bootstrapped-based CIs reached nominal coverage levels with 
the large-sample interval being slightly more conservative 
(Figure 1D).

Scenarios Under Varying Assumptions of sen, spe
The expectation-maximization algorithm success-

fully converged for all the simulated datasets across 15 
simulated scenarios. Sensitivity and specificity ( sen, spe)  
did not have a big impact on bias (Figure 2A). It took fewer 
iterations for the algorithm to converge with increasing 
sensitivity or specificity (Figure 2B). All 95% CIs attained 
coverage levels above 90% and often close to 95%. As 
we saw previously, the large-sample interval estimated 
approach was slightly more conservative relative to the 
bootstrapped-based approach (Figure 2C).

Scenarios Under Varying Incidence Rates over 
Calendar Time

The expectation-maximization algorithm yielded 
estimates of α  and β with low median bias of −0.005 
(0.1% where α = −5) and 0.008 (4.1% where β = 0.2), 
respectively. The empirical coverage level of the 95% CIs 
based on nonparametric bootstrapping was 94.2% for α 
and 94.6% for β. In addition, we rejected the hypothesis 
that the incidence rate is constant over time in 69.4% 
of the simulated data sets at the two-sided signif icance 
level of 0.05.

Results from Application to the TrackCOVID 
Study

We applied our method to the TrackCOVID study to esti-
mate the prevalence and incidence with and without weights 
that accounted for stratified sampling. TrackCOVID was 
comprised of a total of 3860 participants enrolled in the six 
Bay Area counties, with a median follow-up of 3.03 months 
(interquartile range: 1.97–4.33 months). Table 5 shows the 
crude incidence, weighted incidence, and assay performance- 
adjusted weighted incidence in the entire cohort and by county, 
where we calculated the sensitivity of our case definition as 
0.728 and its specificity as 0.997 (eAppendix 3; http://links.
lww.com/EDE/C117).

The expectation-maximization algorithm converged 
within 600 iterations for all analyses. As expected, the assay 
performance-adjusted weighted incidence estimate was 
lower than the corresponding incidence rate, which does not 
adjust for assay performance. With a low underlying inci-
dence, even a few false positive cases can substantially bias 
the unadjusted naive incidence estimate upward, as observed 
in our simulation study. Aligned with our simulation results, 
sensitivity, on the other hand, was not expected to have a 
large impact on our incidence estimates due to relatively low 
underlying incidence. To further illustrate this in our case 
study, we explored the trend of assay performance-adjusted 
incidence estimates under various values of sensitivity and 
specificity. When setting sensitivity at a fixed value of 0.728, 

FIGURE 1. Impact of prevalence (π), incidence(p), missing rate (r) upon algorithm performance (sensitivity = 0.728 and speci-
ficity = 0.997). A, Absolute median bias: the median of the differences between the estimated incidence p̂ and true incidence p. 
B, Percent median bias: ratio of the median bias to p. C, Converge efficiency: the number of iterations at the convergence. D, 
Coverage by confidence interval: the proportion of constructed CIs containing the true incidence p.

http://links.lww.com/EDE/C117
http://links.lww.com/EDE/C117
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the adjusted incidence estimate demonstrated wide variation 
(range: 0–12.6 per 100 person-years [PY]) for varying spec-
ificity levels (Figure 3A). In contrast, when specificity was 
fixed at 0.997, adjusted incidence estimate did not vary sub-
stantially (range: 8.9–9.2 per 100 PY) under different values 
of sensitivity (Figure 3B).

The CIs were constructed when there were more than 10 
cases observed in the county. For San Mateo County, the lab-
oratory performance-adjusted incidence was close to 0, which 
means it is likely that all seven incident cases identified in San 
Mateo County could be a result of false positives given the 
volume of lab tests at that county and the specificity of labora-
tory performance (spe = 0.997). This finding suggested that 
the true parameter of interest may be close to the boundary of 
the parameter space, where the large-sample approximation 
may provide misleading conclusions.

Last, we repeated our analysis assuming a time-varying 
incidence rate as

p (s; θ) =
exp (α0 + β0s)

1 + exp (α0 + β0s)
.

The results are summarized in Table 5. For the entire 
cohort, the 95% CI of β0 was 0.36 (0.041, 0.72), suggest-
ing that the incidence rate indeed increased with time. 
Since p (s, θ) ≈ exp (α0 + β0s) for small α0, we may 
conclude that on average the incidence rate increased by 
exp (β0)− 1 = 43.7% per month during the period from 
September 2020 to December 2021 (95% CI = 5.7%, 

95.6%). β0 >0 suggested that there was a steep increase 
in COVID-19 incidence in the Bay Area during the study 
period, consistent with the initial outbreak of COVID-19 
in the USA. When evaluating trends within the two big-
gest counties (Alameda and Santa Clara) and the other four 
counties combined (Contra Consta, Marin, San Francisco, 
and San Mateo), we observed nuances. Specifically, we 
observed an increasing trend for Alameda (51.1% monthly 
increase in the incidence, 95% CI = 12.6%, 102.6%), while 
analyses of Santa Clara and the other four counties com-
bined showed increasing trends of incidence by 20.7% and 
54.8% per month with CIs that included the value of zero. 
Overall, however, the results indicated an increasing trend 
of the incidence rate during the study period.

DISCUSSION
In this study, we proposed to use maximum likelihood 

estimation to estimate the prevalence and incidence with 
an adjustment for measurement error of incident cases due 
to laboratory performance. We evaluated the properties of 
our proposal via extensive simulation studies and applied 
them to a real study. Our algorithm demonstrated solid per-
formance in most scenarios investigated. We demonstrated 
that both nonparametric bootstrapped-based and large- 
sample interval estimation methods worked well in con-
structing CIs with a reasonable sample size. If the sample 
size is small or the incidence rate is low, it is desirable to 
develop exact inference procedures for which the validity 

FIGURE 2. Impact of sensitivity, specificity upon algorithm performance (π = 0.015, p = 0.01, r = 0.3). A. Percent median bias: 
ratio of the median bias to p. B, Converge efficiency: the number of iterations at the convergence. C, Coverage by confidence 
interval: the proportion of constructed CIs containing the true incidence p.
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does not require large-sample approximations. Under the 
scenario where the underlying incidence was low, such as 
the TrackCOVID study, we found that even a few false pos-
itive cases (or slightly imperfect specificity), can substan-
tially bias the unadjusted naive incidence estimate upward. 
This suggests that assuming perfect assay performance can 
lead to considerable inaccurate estimates of the incidence, 
particularly when the true prevalence and incidence are 
low. For example, when the latter is true, ignoring a test 
with specificity even as high as 99.7% led to an overestima-
tion of incidence by 3.6 per 100 person-years, equivalent to 
an overestimation of the true incidence by 39.8%.

Our method relied on the assumption of constant inci-
dence, which is a common assumption for most longitudi-
nal cohort studies with similar goals. The original design of 
TrackCOVID assumed constant incidence by follow-up visits 
with incidence being estimated as the total number of new 
cases across all follow-up visits over total years of follow-up 
across all participants. We developed the algorithm based 
on this assumption and additionally provided guidance on 
how to relax this assumption. If this assumption is violated, 
our MLE should be interpreted as an “average” incidence, 
which may not always be meaningful. For example, in our 
TrackCOVID study, we noticed during the study implemen-
tation that the public health dashboard data suggested that 
the community incidence rate was much lower between July 
2020 and November 2020 than that between December 2020 
and March 2021 (the 2nd surge of COVID-19 pandemic).31 
It may very well be possible that most of the incident cases 
were coming from the last three follow-up visits during the 
latter half of the study (December 2020–March 2021). This 
may challenge the constant incidence assumption and would 
require a cautious interpretation of the estimated incidence 
rate. To test this assumption, we considered an important case 
where the incidence may depend on the calendar time. As a 
result, we found an increase in trend of incidence over cal-
endar time for TrackCOVID. For studies where the disease 
landscape is changing or studied over a long period of time 
where preventive treatment and/or behaviors may vary and 
affect the incidence rate, we propose to use the extensions of 
our method discussed in the article so that the incidence rate 
can be estimated as a function of follow-up time or other fac-
tors of interest. With the fitted model, predictions for future 
incidences can be made. However, one may want to avoid 
predicting incidence over a long time horizon, since the sim-
ple extrapolation of the current model may not be valid. The 
model can also be extended to incorporate regression analy-
sis of associations between other factors of interest and the 
underlying incidence. Furthermore, for a binary exposure 
of interest, we may use the proposed method to estimate the 
incidence rate among exposed and unexposed populations 
(e.g., disease status and vaccination status) after appropri-
ate matching or weighting based on propensity scores. Thus, 
our method may prove useful for examining causal effects TA
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if information on individual patients is available. This direc-
tion warrants further research. Finally, the constant incidence 
rate assumption can be examined empirically by applying our 
proposed method in subcohorts of participants, which allows 
us to compare the incidences by subpopulation. The key for 
our approach and corresponding extensions of the approach 
is to account for the sensitivity and specificity in relevant 
analyses.

Our study has limitations. First, we acknowledged 
that test performances were likely to vary by the type of 
tests/assays, immunity/vaccination status, and expo-
sure status. Our method was used to estimate laboratory  
performance-adjusted incidence under the assumption 
that the assay performances (sensitivity and specificity) 
were well-established or prespecified based on prior lit-
erature or other studies. In practice, however, we often do 
not have reliable data on lab performance. As an imper-
fect remedy, we recommend performing analyses under 
a range of sensitivity and specificity measures to charac-
terize their influence on the conclusions. To be noted, the 
reported sensitivity and specificity of the lab test or assay 
are often coming from the empirical data of limited sample 
size. When those data are available, it is desirable to con-
sider the uncertainty in the sensitivity and specificity val-
ues when drawing statistical inferences on incidence. One 
practical approach is to bootstrap both the observed longi-
tudinal cohort data and the empirical laboratory data that 
provides the sensitivity and specificity estimates. Second, in 
the TrackCOVID study, we imputed the intermittently miss-
ing data conditional on the outcome of the next nonmissing  
follow-up visit. Our method can be extended to allow gen-
eral intermittent missing patterns without this ad-hoc impu-
tation, and new scenarios beyond those in Table 1. However, 

in practice, we recommend concentrating on a moderate 
number of simple missing patterns that account for the 
majority of the patients to avoid complex likelihood func-
tion computation. Note that the true infection status trajec-
tory of interest consists of 0s followed by 1s, where the first 
appearance of a 1 indicates the timing of the first positive 
test. The analysis of such outcomes can fit the framework 
of a discrete-time survival analysis. Finally, when the loss 
to follow-up rate is high, it may be important to consider 
the time-specific loss to follow-up instead of a constant rate 
assumed in the current method. An extension to accom-
modate this is straightforward, particularly when there is a 
sufficient number of patients with loss to follow-up at each 
visit and a reasonable point estimate of the missing rate can 
be obtained. Note that in our study and in many longitudi-
nal studies such as ours, we expect to observe some loss to 
follow-up. In our study, we assumed that bias due to loss 
to follow-up was negligible, as we assumed that the loss to 
follow-up was missing at random (conditional on case sta-
tus). That said, the impact and underlying reasons of loss to 
follow-up should be considered when applying these meth-
ods. To that end, we highly recommend devising additional 
analyses to understand the impact of loss to follow-up on 
the interpretation of findings from the primary analysis.

CONCLUSIONS
In this article, we proposed an MLE-based approach 

that allows estimation of incidence and prevalence that 
adjusts for measurement error of incident cases due to 
imperfect lab performance. Our method is flexible and has 
the potential to be extended to scenarios with varying inci-
dence over time and time gaps between visits, as well as 
other external factors.

FIGURE 3. Lab performance-adjusted weighted incidence under different scenario of sensitivity and specificity (data from 
TrackCOVID study). Red horizontal line: benchmark incidence reported at sensitivity = 0.728 (A) and specificity = 0.997 (B).
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