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ABSTRACT The potential spread of antimalarial drug resistance to Africa, in particu-
lar for artemisinins and key partner drugs, is a major concern. We surveyed Plasmo-
dium falciparum genetic markers associated with drug sensitivity on 3 occasions at
~6-month intervals in 2016 and 2017 at 10 sites representing a range of epidemio-
logical settings in Uganda. For putative drug transporters, we found continued evo-
lution toward wild-type sequences associated with increased sensitivity to chloro-
quine. For pfcrt K76T, by 2017 the prevalence of the wild type was >60% at all sites
and >90% at 6 sites. For the pfmdr1 N86Y and D1246Y alleles, wild type prevalence
ranged from 80 to 100%. We found low prevalence of K13 propeller domain muta-
tions, which are associated with artemisinin resistance in Asia, but one mutation pre-
viously identified in northern Uganda, 675V, was seen in 2.0% of samples, including
5.5% of those from the 3 northernmost sites. Amplification of the pfmdr1 and plas-
mepsin2 genes, associated elsewhere with decreased sensitivity to lumefantrine and
piperaquine, respectively, was seen in <1% of samples. For the antifolate targets
pfdhfr and pfdhps, 5 mutations previously associated with resistance were very com-
mon, and the pfdhfr 164L and pfdhps 581G mutations associated with higher-level
resistance were seen at multiple sites, although prevalence did not clearly increase
over time. Overall, changes were consistent with the selective pressure of the na-
tional treatment regimen, artemether-lumefantrine, with increased sensitivity to chlo-
roquine, and with poor efficacy of antifolates. Strong evidence for resistance to arte-
misinins was not seen. Continued surveillance of markers that predict antimalarial
drug sensitivity is warranted.

KEYWORDS Uganda, antimalarial drug sensitivity, molecular markers

ntimalarial drug resistance is a major concern. In Africa, resistance to chloroquine

and antifolates has been widespread for many years (1). In Uganda, the standard
therapy for uncomplicated malaria changed from chloroquine to chloroquine plus
sulfadoxine-pyrimethamine (SP) in 2000 and then to the artemisinin-based combina-
tion therapy (ACT) artemether-lumefantrine in 2004, although implementation of the
new regimen was slow (2). Many countries in Africa utilize the ACT artesunate-
amodiaquine as first-line therapy. Dihydroartemisinin-piperaquine is an alternative ACT
for uncomplicated malaria in some countries and is under evaluation for chemopre-
vention (3). Amodiaquine plus SP is used for seasonal malaria chemoprevention in parts
of west and central Africa (4). SP is the standard for intermittent preventive therapy
during pregnancy (IPTp) (5). Resistance to each component of these regimens has been
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detected (6) and the spread of resistance to Africa, in particular that to artemisinins and
key partner drugs, may have devastating consequences.

Mechanisms of altered sensitivity to a number of antimalarial drugs are quite well
understood. Mutations in genes encoding two putative drug transporters, Plasmodium
falciparum multidrug resistance protein-1 (pfmdr1) and P. falciparum chloroquine re-
sistance transporter (pfcrt), impact sensitivities to a number of drugs (1). Three muta-
tions that have been common in Uganda, pfcrt 76T, pfmdr1 86Y, and pfmdr1 1246Y (7),
are selected by therapy with artesunate-amodiaquine (8, 9) and associated with de-
creased sensitivity to aminoquinolines (10). Wild-type sequences at these same alleles
are selected by prior therapy with artemether-lumefantrine (11-13), associated with
decreased lumefantrine sensitivity (10), and, in a pooled analysis, predicted recrudes-
cence after treatment with artemether-lumefantrine (14).

P. falciparum resistance to artemisinin derivatives, defined as delayed parasite
clearance either clinically (15) or in the in vitro ring stage survival assay (16), is now
widespread in southeast Asia (17, 18). This phenotype is associated with a number of
different mutations in the propeller domain of the kelch13 (K73) protein (19). To date,
20 K13 propeller domain mutations in Asia have been associated with delayed clear-
ance (20). K13 mutations have also been seen in P. falciparum isolates from Africa; most
of these differ from the mutations associated with delayed clearance, and, based on
clinical, parasitological, and molecular data, artemisinin resistance has not clearly been
identified in Africa (21-25). Resistance to ACT partner drugs is also of great concern. In
southeast Asia resistance to mefloquine, mediated by increased pfmdr1 copy number
(26), and to piperaquine, mediated by increased plasmepsin2 copy number (27, 28), has
been noted. Furthermore, combined resistance to artemisinins and piperaquine that
has led to very high rates of treatment failure for dihydroartemisinin-piperaquine in
Cambodia is a concern (29, 30).

P. falciparum resistance to SP is mediated by mutations in the target dihydrofolate
reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes (31). The combination
of three mutations in pfdhfr (511, 59R, and 108N) and two in pfdhps (437G and 540E)
leads to an intermediate level of SP resistance (32). This genotype is common in Uganda
and other parts of Africa, although the pfdhps 540E mutation is absent in much of west
and central Africa (33). Addition of either pfdhfr 164L or pfdhps 581G leads to higher-
level SP resistance (31). These additional mutations have been uncommon in Africa, but
some reports have noted moderate prevalence of the pfdhfr 164L mutation in parasites
from southwestern Uganda (34-36) and of the pfdhps 581G mutation in parasites from
Uganda and Tanzania (35-37).

Changes in treatment practices appear to have impacted antimalarial drug
sensitivity in Africa. In the clearest demonstration of this phenomenon, nonuse of
chloroquine in Malawi in the 1990s was followed by reversion of parasites to the
wild-type pfcrt K76 genotype, with subsequent demonstration of improved chlo-
roquine sensitivity in vitro (38) and in vivo (39). In Uganda, with increased use of
artemether-lumefantrine and decreased use of chloroquine to treat malaria, para-
site genotypes have been changing, with increased prevalence of pfcrt and pfmdr1
wild-type alleles (7, 35). Recently, high prevalence of wild-type pfcrt K76 parasites
and remarkable improvement in in vitro sensitivity to chloroquine was observed in
Tororo in eastern Uganda (10). Changing parasite sensitivities appear to have
clinical consequences, with the efficacy of artesunate-amodiaquine being better
than that of artemether-lumefantrine in recent trials, a change from the results of
trials conducted about a decade ago (21, 40). For antifolates, resistance-associated
mutations are widespread, but SP remains the standard of care for IPTp, and there
is concern for selection of more highly resistant parasites. With this background,
careful surveillance for established markers of antimalarial drug resistance is a high
priority, and so we surveyed the prevalence of key polymorphisms over time at 10
sites across Uganda.
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FIG 1 Surveillance sites in Uganda. The map shows study sites and estimated parasite prevalence for
children 2 to 10 years of age. Estimates are based on community surveys between 1985 and 2010 under
the Malaria Atlas Project. White locations have indeterminate prevalence based on insufficient data;
these are primarily high-elevation areas with known low malaria transmission intensity.

RESULTS

Collection of samples. We set out to collect blood samples from 50 children
presenting with malaria at each of 10 sites (Fig. 1) on 3 occasions during 2016 and 2017.
A total of 1,459 samples were collected, as follows: 499 from April to June 2016
(collection 1), 491 from November 2016 to January 2017 (collection 2), and 469 from
May to June 2017 (collection 3; Table S1); for Kabale, the third collection continued to
October 2017 due to the low number of available samples. Fewer than 50 samples per
collection were available from Kabale and Tororo during some collection periods due
to low incidence of malaria (Table S1). Due to anticipated low prevalence of polymor-
phisms, sequencing of K713 and assays for amplification of pfmdr1 and plasmepsin2 were
only performed on samples from 2017; due to slow collection, these assays were not
performed on samples from Kabale. Reported results are for samples that yielded data
for at least one polymorphism.

Prevalence of drug resistance-mediating polymorphisms in putative transport-
ers. The prevalence of key pfcrt and pfmdr1 polymorphisms varied across the country,
but the temporal trends were similar (Fig. 2). For the pfcrt K76T polymorphism, for
which the mutant is associated with resistance to chloroquine, wild-type prevalence
was higher than that reported in earlier surveys performed at 3 of the sites (7, 35), and
this prevalence increased over time, such that, in 2017, >60% of samples were wild
type at all sites and >90% were wild type at 6 of the sites. For pfmdr1 N86Y and pfmdr1
D1246Y, 80 to 100% of parasites were wild type at all study sites. As seen previously,
the pfmdr1 Y184F allele was polymorphic, but the prevalence of wild-type alleles did
not change notably over time.

Prevalence of K13 polymorphisms. Of the 412 samples with successful sequenc-
ing of the K13 propeller domain, 25 carried nonsynonymous polymorphisms, with 7
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FIG 2 Prevalence of wild-type, mixed, and mutant alleles at the named sites over the indicated survey periods. The
numbers above the site names represent survey periods (1, April 2016 to June 2016; 2, November 2016 to January
2017; 3, May 2017 to June 2017).
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TABLE 1 Prevalence of K13 and copy number polymorphisms at the different sites in 2017

K13 candidate artemisinin resistance markers Increased copy number

PfK13 A675V PfK13 C469Y
Site Ne  Wild type (%) Mixed (%) Mutant (%) Wild type (%) Mixed (%) Mutant (%) N  pfmdrl (%) plasmepsin2 (%)
Agago 42 40 (95.2) 1(2.4) 1(2.4) 40 (95.2) 1(2.4) 1(2.4) 30 2(6.7) 1(3.3)
Amolatar 48 48 (100) 0 0 48 (100) 0 0 41 0 0
Arua 43 42 (97.7) 0 1(2.3) 43 (100) 0 0 37 0 0
Jinja 48 48 (100) 0 0 48 (100) 0 0 37 0 1(2.7)
Kanungu 48 8 (100) 0 0 48 (100) 0 0 45 0 0
Kole 47 46 (97.9) 0 1(2.1) 46 (97.9) 0 1 (2.1 31 0 0
Lamwo 43 39 (90.7) 0 4 (9.3) 41 (95.4) 1(2.3) 1( 35 0 0
Mubende 45 45 (100) 0 0 44 (97.8) 1(2.2) 0 39 0 0
Tororo 48 48 (100) 0 0 48 (100) 0 0 40 O 0

aN, number of samples successfully evaluated.

different mutations observed (Tables S2 and S3). Two single-nucleotide polymorphisms
(SNPs) had a prevalence of >1%, A675V (2.0%) and C469Y (1.4%); both alleles were seen
primarily at sites in northern Uganda (Table 1). The 675V mutation was seen in 7/128
(5.5%) samples from the 3 northernmost sites. The most common mutation previously
reported in Africa, 578S, was seen in 3 (0.7%) samples.

Prevalence of parasites with increased pfmdr1 and plasmepsin2 gene copy
numbers. Of 335 samples successfully assessed for copy number variation, only 2
(0.6%), both from Agago, had an increased pfmdr1 copy number and 2 (0.6%; one each
from Agago and lJinja) had increased plasmepsin2 copy numbers (Table 1). Thus,
consistent with prior reports (10), increased pfmdr1 and plasmepsin2 copy numbers
were uncommon in Ugandan isolates.

Prevalence of drug resistance-mediating polymorphisms in folate pathway
enzymes. As seen previously (7, 35), the prevalences of 5 mutations in pfdhfr (511, 59R,
and 108N) and pfdhps (437G and 540E) were high across Uganda (Fig. 2). Additional
mutations associated with higher-level antifolate resistance (pfdhfr 164L and pfdhps
581G) were seen, with the prevalence of mixed or mutant pfdhps 581G at ~25 to 60%
at sites in central and southwestern Uganda. However, the prevalences of pfdhfr 164L
and pfdhps 581G mutant parasites did not increase over time at most sites.

DISCUSSION

In Uganda, treatment of malaria primarily with artemether-lumefantrine for the last
decade has been associated with marked changes in P. falciparum genetic markers
associated with drug sensitivity. To gain insight into recent trends across the country,
we performed surveillance for relevant markers on 3 occasions in 2016 and 2017 at 10
sites representing a range of epidemiological settings. We found continued evolution
toward wild-type transporter sequences, low prevalence of K713 mutations or amplified
pfmdr1 or plasmepsin2, and high prevalence of antifolate mutations. These results
suggest increasing sensitivity of P. falciparum to chloroquine, a lack of resistance to
artemisinins or major ACT partner drugs, and continued poor antimalarial efficacy of SP.
Thus, in Uganda, P. falciparum appears to remain sensitive to the ACTs available to treat
malaria, but the utility of antifolates to prevent malaria is in question.

The current evolution of transporter gene sequences in Uganda is not surprising. In
Malawi, withdrawal of chloroquine in the 1990s was followed by increased prevalence
of parasites with the wild-type pfcrt K76 allele, accompanied by improved chloroquine
sensitivity (38, 39). Similar changes have been documented in other African countries,
including Kenya (41) and Tanzania (42). In Uganda, reversion to wild-type pfcrt K76 and
pfmdr1 N86 and D1246 alleles was initially slow following chloroquine withdrawal,
perhaps due to continued usage of chloroquine in the community and reasonably
strong fitness of chloroquine-resistant parasites. Prior analyses showed a <10% prev-
alence of parasites with wild-type pfcrt K76 until 2012 in Tororo (7), but a steady
increase in prevalence of the wild type in Tororo and two other sites since that time
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(35). Reversion to wild-type pfmdr1 N86 and D1246 alleles was also seen, with changes
more rapid than those for pfcrt K76T (7, 35). Our new results show continued selection
of parasites that have wild-type sequences at key transporter alleles. Consistent with
this finding, parasites collected in Tororo demonstrated increasing chloroquine ex vivo
sensitivity over time (10). Remarkably, recent results suggest that chloroquine may soon
again be a highly effective antimalarial in Uganda, although widespread use would
likely reselect for resistant parasites.

Resistance to artemisinins, manifested as delayed parasite clearance after therapy or
in vitro, is associated with polymorphisms in the K73 gene. A total of 20 different K73
propeller domain mutations have been associated with delayed clearance in southeast
Asia (20), with resistance documented across the Greater Mekong Subregion (17, 18). In
Africa, delayed clearance after therapy with ACTs (43) or when measured in vitro (22)
appears to be very uncommon. Multiple K73 mutations have been seen at low
prevalence in African parasites, but many, including the most common polymorphism
reported in Africa, A578S, have not been associated with delayed clearance (20). One
mutation that has been associated with delayed clearance in southeast Asia, 675V, was
seen in 2.0% of our study samples. This mutation was also noted in one sample
collected in Rwanda in 2015 (44) and in one sample that showed delayed clearance in
vitro in a recent study from northern Uganda (45). The clinical significance of this
finding is uncertain, but in our study the polymorphism was geographically clustered
in northern Uganda.

Amplification of pfmdr1 has been associated with decreased sensitivity of P. falcip-
arum to mefloquine (26) and lumefantrine (46) and amplification of plasmepsin2 with
decreased sensitivity to piperaquine (27, 28). Amplification of pfmdr1 (47, 48) and
plasmepsin2 (10) has been uncommon in previous studies from Uganda, as also seen in
our new results. These results are reassuring, as they suggest continued strong efficacy
of important ACT partner drugs, consistent with excellent efficacy for leading ACTs in
recent trials (21, 49).

SP was abandoned as a treatment for malaria due to widespread resistance in P.
falciparum, mediated by well-characterized mutations in the pfdhfr and pfdhps genes
(31), however, SP remains the standard of care for IPTp in areas of Africa where malaria
is endemic (5). SP is also increasingly used for seasonal malaria chemoprophylaxis,
whereby treatment courses of SP plus amodiaquine are provided monthly during the
rainy season in parts of west and central Africa (4). We found that all 5 pfdhfr and pfdhps
mutations commonly associated with SP resistance in Africa remain widespread in
Uganda. In addition, the pfdhfr 164L and pfdhps 581G mutations, which predict
higher-level resistance, were seen in samples from many sites. These results suggest
that, in Uganda, the antimalarial efficacy of SP for IPTp or other indications is poor,
consistent with results of recent clinical studies (5, 36, 50). Furthermore, while SP plus
amodiaquine appears to be efficacious for malaria chemoprevention in areas where the
pfdhps 540E mutation is absent (4), this regimen is unlikely to be effective in Uganda.
Other regimens for chemoprevention, in particular the ACT dihydroartemisinin-
piperaquine, are under study for intermittent preventive therapy (IPT) in pregnancy (50,
51) and in children (3, 52). Our data suggest continued good antimalarial activity of
dihydroartemisinin-piperaquine in Uganda, although loss of activity of this regimen in
Cambodia (29, 30) is concerning.

Our study had important limitations. First, we studied convenience samples col-
lected across Uganda; we cannot be sure that our results are representative of all
parasites from the study areas. Second, we assessed only polymorphisms already
associated with resistance to antimalarials. Additional genetic changes in P. falciparum
likely impact sensitivity to various antimalarial agents. Although it is difficult to identify
new resistance mediators in highly diverse clinical isolates, broader deep sequencing
approaches should shed light on additional polymorphisms contributing to drug
sensitivity. Third, for some uncommon markers we only evaluated the most recent
available samples, so were unable to characterize temporal trends.

In summary, in studies from a range of sites in Uganda, we identified consistent
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changes in P. falciparum genetic markers associated with drug sensitivity over time.
Importantly, markers associated with resistance to artemisinins or key ACT partner
drugs were not seen. Markers indicating resistance to antifolates had continued high
prevalence. These findings suggest that continued use of leading ACTs to treat malaria
in Uganda is warranted, but that continued surveillance for markers associated else-
where with ACT resistance is a high priority.

MATERIALS AND METHODS
We selected 10 sites to represent different regions of Uganda with varied malaria transmission
intensity and epidemiology (Fig. 1). At each site, as part of routine care, health care personnel evaluated
children 6 months to 10years of age with clinical syndromes suggestive of malaria using either
Giemsa-stained blood smears or histidine-rich protein 2 (HRP2)-based rapid diagnostic tests, following
national guidelines and depending on local availability of these tests. Consecutive children diagnosed
with malaria and their parents or guardians were approached for enrollment, and, if consent was
obtained, blood was collected as 4 blood spots dried on Whatman 3MM filter paper. Filter paper samples
were stored in zipper storage bags with desiccant at room temperature and transported to our
laboratory in Kampala for evaluation. This study was approved by the Makerere University Research and
Ethics Committee, the Uganda National Council of Science and Technology, and by the University of
California, San Francisco Committee on Human Research.
Genomic DNA was extracted from blood spots using Chelex 100, as previously described (53). Pfmdr1,
pfert, pfdhfr, and pfdhps polymorphisms of interest were characterized by PCR and ligase detection
reaction-fluorescent microsphere assays, as previously described (54), with minor modification to incor-
porate nested PCR (48). Copy number variations for pfmdr1 and plasmepsin2 were assessed by quanti-
tative PCR (qPCR), and the K13 propeller domain was amplified and sequenced, all as previously
described (10).
Data availability. Nucleotide sequences are available in the GenBank database under the accession
numbers MH788997 to MH789408.
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