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Abstract

Glioblastoma (GBM) is the most common primary malignant brain tumor of adults and confers a 

poor prognosis due, in part, to diffuse invasion of tumor cells. Heparan sulfate (HS) 

glycosaminoglycans, present on the cell surface and in the extracellular matrix, regulate cell 

signaling pathways and cell-microenvironment interactions. In GBM, the expression of HS 

glycosaminoglycans and the enzymes that regulate their function are altered but the actual HS 

content and structure are unknown. However, inhibition of HS glycosaminoglycan function is 

emerging as a promising therapeutic strategy for some cancers. In this study, we use liquid 

chromatography-mass spectrometry (LC/MS) analysis to demonstrate differences in HS 

disaccharide content and structure across four patient-derived tumorsphere lines (GBM1, 5, 6, 43) 

and between two murine tumorsphere lines derived from murine GBM with enrichment of 

mesenchymal and proneural gene expression (mMES and mPN, respectively) markers. In GBM, 

the heterogeneous HS content and structure across patient-derived tumorsphere lines suggested 

diverse functions in the GBM tumor microenvironment (TME). In GBM5 and mPN, elevated 

expression of sulfatase 2 (SULF2), an extracellular enzyme that alters ligand binding to HS, was 

associated with low trisulfated HS disaccharides, a substrate of SULF2. In contrast, other primary 

tumorsphere lines had elevated expression of the HS-modifying enzyme heparanase (HPSE). 

Using gene editing strategies to inhibit HPSE a role for HPSE in promoting tumor cell adhesion 

and invasion was identified. These studies characterize the heterogeneity in HS 

glycosaminoglycan content and structure across GBM and reveal their role in tumor cell invasion.
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INTRODUCTION

Glioblastoma (GBM) is characterized by tumoral heterogeneity, including differences in 

tumor cell invasion and receptor tyrosine kinase (RTK) signaling pathway activity. Despite 

this heterogeneity transcriptional profiling has identified tumor subtypes (1,2) with 

enrichment of specific cell signaling (3), proteomic (4,5) and immune cell characteristics 

(6,7). The design of improved therapeutics for GBM requires an understanding of 

intertumoral heterogeneity and its potential impact on therapeutic response.

Heparan sulfate proteoglycans (HSPGs), present on the cell surface and in the extracellular 

matrix (ECM), are abundant in the brain and regulate interactions in the extracellular 

environment via their binding with diverse partners, including soluble factors, membrane 

proteins and the ECM (8). HSPGs consist of a core protein and covalently attached heparan 

sulfate (HS) glycosaminoglycan chains comprised of repeating disaccharide units. Extensive 

co- and post-translational enzymatic modifications, particularly involving the HS chains, 

generate the structural diversity important for their many functions, including their ability to 

bind and sequester soluble ligands, act as a co-receptor on the cell surface (9), and influence 

cell adhesion and migration, one mechanism being the regulation of integrin activity (8,10).

A major determinant of the specificity and the affinity of HSPG ligand interactions is the 

sulfation pattern of the HS glycosaminoglycan (GAG) side chains, for which one critical 

determinant is the 6-O-sulfate (6OS) of glucosamine (8,11). Regulation of 6OS levels occurs 

during biosynthesis and post-synthetically by the extracellular endoglucosamine-6-sulfatases 

or sulfatases (SULFs) whose principle substrate is trisulfated disaccharides (12). SULF1 or 

SULF2 desulfation of 6OS regulates HS-ligand binding and subsequent cell signaling 

important in normal development and in cancer, including Wnt, sonic hedgehog (Shh), 

fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), glial cell line-

derived growth factor (GDNF), and stromal cell-derived factor 1 (SDF1) (13–17). In GBM, 

the expression of HSPGs and the enzymes that regulate their function, including SULF2, are 

altered (18). In human GBM cell lines and murine models for high grade glioma, SULF2 has 

been directly implicated in promoting tumorigenesis (19–21). Ablation of SULF2 in tumor-

prone cells resulted in decreased tumor growth, prolonged host survival, increased HSPG 6-

O-sulfation in tumors in vivo, and decreased activity of PDGFRα and related downstream 

signaling pathways (21).

Heparanase (HPSE), a β-endoglucuronidase, cleaves HS chains to reduce HS chain length 

and release smaller biologically active oligosaccharides. Increased HPSE activity is 

associated with increased tumorigenesis, angiogenesis and invasiveness in diverse cancers 

including multiple myeloma, melanoma, breast, and pancreatic cancer (22). In multiple 

myeloma, a number of oncogenic functions for HPSE have been identified including direct 

effects on tumor cells and indirect effects on tumor-associated endothelial cells (10,23,23–

25). In the brain, HPSE has been implicated in metastatic tumor cell invasion and 
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medulloblastoma cell signaling (26–28), but its role in GBM is less established (29,30) 

although recent studies suggest its importance in tumor progression (31).

Given the role for HSPGs in tumorigenesis and the importance of GAG composition and 

structure in regulating cell signaling and invasion, we investigated HS GAGs in GBM using 

tumorspheres cultured from four patient-derived GBM lines and two murine GBM. In 

addition, we examine the biologic function of HS modification in tumor cell invasion. These 

data demonstrate heterogeneity in HS content and structure in GBM and suggest 

intertumoral differences in proteoglycan expression and function with potential implications 

for therapeutic stratification.

MATERIALS AND METHODS

Cell culture conditions and reagents

Murine GBM tumorspheres established and demonstrated to have tumor-generating and 

differentiation capacity in Lindberg O. et al. (32) were cultured and maintained as described 

previously (21,32,33). GBM43, GBM6, and GBM5 are tumorsphere cultures of patient-

derived xenografts (PDX). PDX were established as previously described (34,35) and have 

been genetically and transcriptionally profiled (1,35,36). GBM1 (SF9487) is a newly 

generated primary patient-derived tumorsphere culture from UCSF and when injected into 

the striatum of nude mice generates highly invasive GBM (Supplemental Figure 1, 

Supplemental Table 1, and Supplemental Material and Methods). All cell lines were 

analyzed before using and each subsequent year by short tandem repeat (STR) analysis to 

ensure the identity and validity of cells and checked by PCR for mycoplasma contamination. 

Cells were passaged no more than 15–20 times and then a new frozen aliquot of cells was 

used. Unless otherwise specified media and supplements were purchased from Thermo 

Fisher Scientific (Waltham, MA). Human tumorspheres (2–4 × 104 cells/1ml) were cultured 

in Neurobasal-A media containing B27-A, N2 and glutamine and passaged every 4–7 days. 

bFGF and EGF were added every third day (20 ng/ml). Tumorspheres were dissociated by 

adding 2 ml of Accutase (Innovative Cell Technologies, San Diego, CA) (hGBM) or 150 μL 

non-enzymatic dissociation media (NEDM; Sigma-Aldrich Corporation, St. Louis, MO) 

(mGBM) followed by mechanical trituration. Invasion assays use Corning® Matrigel® 

Growth Factor Reduced (GFR) Basement Membrane Matrix (Corning Inc., Corning, NY).

Purification of GAG chains, quantification and disaccharide compositional profiling of HS 
chains from tumorspheres

GAG chains were purified and analyzed from tumorsphere cultures following the protocol 

reported by Yang B. et al (2011) (37) with minor modifications (see Supplemental Materials 

and Methods). The HS disaccharides were released from the GAG chains with heparitinase 

I, II, III (a kind gift from Dr. Kuberan Balagurunathan) in heparitinase buffer (3.3 mM 

calcium acetate, 40 mM amonium acetate, 0.1mg/ml BSA, pH 7.0) overnight followed by 

enzyme inactivation at 100°C for 5 min. Proteins and uncleaved GAG chains were removed 

using 3 kDa MWCO Amicon columns (12000xg). Heparan sulfate disaccharide were 

separated by a 5 um particle size Zorbax SB-C18 HPLC column with a 12 mM TrBA/38 

mM ammonium acetate, pH 6.5 solvent systems using a gradient curve from 2% to 100% 
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solvent B (65% acetontrile) at flowrate 10 μl/min with extra acetrontrile (0.7ml/min). The 

MS was acquired in the negative ion mode with inline 4000 QTRAP mass spectrometry 

equipped with a TIS (Turbolon Ionspray) source (AB Sciex Instrument. SCIEX, Redwood 

City, CA) at the following conditions: curtain gas (CUR) at 10 psi, ion spray voltage (IS) at 

4500 V, temperature (TEM) at 100°C, ion source gas (GS1) at 10 psi, ion source gas (GS2) 

at 0 psi, declustering potential (DP) at −50 V, and entrance Potential (EP) was set at −10 V. 

Quantification analysis of heparin/HS disaccharides was performed using calibration curves 

constructed from unsaturated heparan sulfate disaccharide (18.6, 37.2, 74.4, 148.8, 297.6, 

595.2 ng per disaccharide) (Supplemental Figures 2–3) as described in Supplemental 

Material and Methods. The area of disaccharides and internal standards was quantified using 

PeakView 2.2 software (AB Sciex LLC, CA). Total HS amount was calculated as the 

cumulative total of each disaccharide and to compare across tumors the value was 

normalized by total protein (ng/mg).

RNA and protein analysis

Tumorspheres were re-suspended in an appropriate volume of RLT buffer from RNeasy mini 

kit (Qiagen, Germany). RNA was isolated as per the manufacturers instructions and 

quantified using a Nanodrop (Nanodrop Technologies Inc., Wilmington, DE) 

Spectrophotometer. For quantitative real time PCR, complementary DNA was synthesized 

using Oligo(dT) primers and Superscript III (18080-051, Thermo Fisher Scientific). Primers 

were synthesized by IDT (IDT Inc, Coralville, IA) and are listed in Supplemental Table 2. 

Real Time PCR was performed on a 7900 HT Fast Real-Time PCR System (Thermo Fisher 

Scientific, Waltham, MA) using FastStart Universal SYBR Green Master (Rox) (Roche, 

Switzerland). Ct values were normalized to GAPDH Ct values for each individual sample 

and then averaged across experiments. For NanoString analysis of human tumorsphere lines, 

RNA (200ng) integrity was assessed using an Agilent 2100 bioanalyzer (Agilent 

Technologies, Santa Clara, CA) and probed using a custom codeset, including four genes of 

interest in GBM (EGFR, EGFRvIII, PDGFRA, and NF1), and 6 normalizing genes (ACTB, 

B2M, GAPDH, POLR2A, SDHA, and TBP). Data was analyzed with the NanoString 

nCounter Analysis System at NanoString Technologies according to the manufacturer’s 

protocol (NanoString Technologies, Seattle, WA) and relative expression levels were 

compared (Supplementary Table 2). Gene expression data from human GBM were 

downloaded from http://www.cbioportal.org/index.do. Gene expression analysis of mRNA 

isolated from FACs sorted murine tumors was previously reported (32) and is available in 

the GEO database (accession number GSE87332). To assess enrichment of GBM subtype 

genes in murine tumors Gene Set Enrichment Analysis (GSEA) was implemented using the 

Broad Institute GSEA v2.07 software (http://www.broadinstitute.org/gsea) and subtype 

signature genes (2). For all GSEA analyses 1000 gene set permutations were performed and 

a Signal2Noise ranking metric was used to create the ranked list of genes. A false discovery 

rate (FDR) q-value of less than 0.05 (5%) was considered statistically significant. HPSE 

protein was detected by Western blotting using anti-HPSE antibody (#APP60766, Aviva 

System Biology, San Diego, CA). Anti-Hpse antibody binding to both the 50 kDa and 61 

kDa bands could be blocked with an HPSE blocking peptide (Supplemental Figure 4A).
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CRISPR/Cas9 gene editing of HPSE

Human HPSE targeting CRISPR guide RNA 6 (CCTTCTTGGGATCGAAAATT) in the 

pLenti-Guide-puro backbone and lentiCas9-Blast (GenScript, Piscataway, NJ) were used to 

make lentivirus using standard procedures (21). Target sites and specificity were validated 

using the UCSC Genome Browser. Transduced GBM43 cells were clonally plated, 

sequenced, and comparisons were made between GBM43-Cas9 and GBM43-gRNA6. 

Sequencing the targeted HPSE loci confirmed introduction by the Cas9 nuclease of small, 

mostly frameshift indels/WT, including gRNA6-1 (NM_001098540, c.395-414del) and 

gRNA6-2 (NM_001098540, c.389-415del). The human HPSE cDNA construct, pIRES2-

EGFP/HPSE1 (38) was a kind gift of Dr. Ralph Sanderson (University of Alabama at 

Birmingham, Birmingham, AL).

Invasion and adhesion assays

Three-dimensional invasion assays were performed as described previously (39) (see 

Supplemental Material and Methods). Briefly, 500–1000 cells per well were plated in a 96 

well round bottom ultra-low attachment plate (Corning Life Sciences, Tewksbury, MA) in 

standard culture media (100 μl/well) for 3 days. For drug treatment, the cells were treated 

with heparin (24 h), necuparanib (formerly M402) (a kind gift from Momenta 

Pharmaceuticals, Cambridge, MA) (6 h), or an equivalent volume of PBS prior to matrigel 

invasion assay using growth factor reduced matrigel. Images were acquired at 0, 16, 24, and 

40 hours after plating. Relative invasion was determined from representative images of each 

sphere using ImageJ (http://imagej.nih.gov/ij/) by subtracting the solid sphere area from the 

maximal invaded sphere area and normalizing by the initial sphere area at 0h (Supplemental 

Figure 5). Adhesion assays were performed in 96 well plates pre-coated with laminin (2 

μg/cm2) and blocked with 1% BSA in PBS-D for 1–2 h at 37°C. Cells were treated with 

necuparanib (Necu) or PBS (control) for 24 h, dissociated to single cells, counted ×3, diluted 

to 2.5×104 cells per 100 μL of full growth media, and transferred to the laminin coated 

wells. Cells were allowed to adhere for 2 hours at 37°C, after which media and non-adherent 

cells were gently removed, wells were gently washed with ice-cold PBS, and adherent cells 

were fixed with 4% paraformaldehyde (PFA), incubated on ice for 10 min, and stained with 

crystal violet as previously described (32,39). Transwell invasion assays were performed 

using BD BioCoat Growth Factor Reduced Matrigel Invasion chambers (BD Biosciences, 

San Jose, CA) as described previously (39) (see Supplemental Materials and Methods). 

HPSE or Control conditioned media was generated from 293T cells incubated in minimal 

essential media as described in Supplemental Materials and Methods. Images for 3-D 

invasion, adhesion, and transwell invasion were acquired using a DMI IL LED Leica 

microscope (Leica, Germany).

Statistics

All statistics were performed using Graph Pad Prism 6.0 software (Graph Pad Software, San 

Diego, CA). All data are presented as mean ± standard error (SEM). One-way ANOVA, the 

student’s t-test analysis, and Mann-Whitney test were performed at confidence interval 

levels of 95%.
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RESULTS

Human GBM are heterogeneous and can be divided into subtypes based upon transcriptional 

profiling (1,2). Our previous studies in GBM (21) and our analysis of transcriptional data 

from The Cancer Genome Atlas (18) suggested differences in HS proteoglycan expression 

and function across tumor transcriptional subtypes. Heparan sulfate disaccharides consist of 

repeating units of a glucosamine (N-acetylglucosamine (NAc) or N-sulfate glucosamine 

(NS)) and uronic acid (glucuronic acid or iduronic acid) that undergo extensive post-

translational modifications including sulfation. These modifications greatly alter their 

functional properties (8). To determine the diversity of heparan sulfate (HS) content and 

structure in human GBM, we profiled HS disaccharides isolated from patient-derived GBM 

lines maintained as tumorspheres using liquid chromatography mass spectrometry (LCMS). 

Tumor cells were cultured as tumorspheres, using neural stem cell conditions including non-

adherent growth and minimal essential media, to promote retention of tumor generating cells 

(40,41). The four human lines were selected based on their diversity of molecular and 

transcriptional properties, including EGFR amplification and EGFRvIII expression in 

GBM6, PDGFRA amplification in GBM5, and CDKN2C/p18(INK4c) homozygous deletion 

in GBM43 (35,36,42). Nanostring analysis of tumorsphere mRNA confirmed differences 

between the lines, including EGFR and EGFRvIII expression in GBM6, low expression of 

NF1 in GBM43, and robust expression of PDGFRA in all four lines (Supplemental Table 3). 

Individual disaccharides were identified and quantified based on standard curves generated 

from known quantities of individual disaccharides (Supplemental Figures 2–3). Each of the 

four independent human GBM lines had a unique HS disaccharide ion chromatography 

profile (Figure 1A–D) and different total HS abundance (ng disaccharide/mg protein) 

(Figure 1E). GBM5 had two-fold greater absolute abundance of HS disaccharides compared 

to the other three GBM lines (p<0.005). HS structure also differed between GBM as 

demonstrated by differences in relative disaccharide abundance (Figure 1F). While many 

disaccharide structures are regulated during biosynthesis, trisulfate disaccharides can be 

reduced post-synthetically in the extracellular environment by the extracellular 

endosulfatases, or SULFs, which remove 6-O sulfate from trisulfate disaccharides (12,43). 

GBM5 had the lowest trisulfate abundance relative to the other GBM (Figure 1F (inset), 

p<0.05). GBM5 also had the highest expression of SULF2 mRNA across the four lines 

(Figure 1G, p<0.0001). In contrast, SULF1 was expressed at similar levels (Figure 1H).

Heparanase (HPSE), an HS degrading enzyme, can directly alter cellular HS content (44) 

and indirectly change cell surface proteoglycan core protein composition via HS-dependent 

regulation of proteases (45). In several cancers including GBM, HPSE expression is 

upregulated and has been associated with increased tumor cell invasion and increased tumor 

growth in vivo (22,46). In human GBM, HPSE was most highly expressed in the 

mesenchymal GBM subtype (Figure 2A; p<0.0001), a subtype proposed to be the most 

therapy resistant (47). To examine potential functions for HPSE in GBM43, CRISPR-Cas9 

gene editing was used to introduce deletions in exon 3 of HPSE. Clones with heterozygous 

deletions in HPSE and reduced HPSE expression relative to control clones were isolated 

(Figure 2B p<0.001). HPSE reduced clones did not exhibit a growth defect relative to 

control clones in vitro (Supplemental Figure 4B). To assess cell invasion in the context of a 
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three-dimensional matrix, tumorspheres were embedded in matrigel and tumor cell invasion 

away from the sphere was imaged and quantified over time. Reduced HPSE conferred a 

marked decrease in tumor cell invasion (Figure 2C–D, p<0.0001). Cell invasion in a three-

dimensional matrix requires coordinated regulation of cell attachment, migration, and ECM 

breakdown. Given the reported roles for HPSE and HS in cell invasion and adhesion, we 

asked whether decreased invasion in HPSE-reduced cells was associated with reduced cell 

adhesion. HPSE reduced GBM43 had markedly reduced cell adhesion to laminin relative to 

control cells (Figure 2E–F, p<0.01). Addition of exogenous HPSE promoted invasion of 

HPSE-reduced GBM43 cells relative to control treated cells (Figure 2G–H, p<0.05).

Heparin, a highly sulfated HS, can bind to and inhibit HS-interacting factors including 

enzymes such as HPSE (48,49). Due to the anticoagulant properties of heparin, however, 

heparan sulfate mimetics have been developed with reduced anti-coagulant properties. These 

mimetics have been used for their ability to inhibit HPSE and the function of other HS-

interacting factors in therapeutic trials for cancer, including necuparanib (formerly M402), 

PI-88, PG-545, and SST0001 (https://clinicaltrials.gov) (Supplemental Table 4). Treating 

GBM43 with necuparanib (necu), a heparan sulfate mimetic re-engineered from heparin 

(49), reduced three-dimensional tumor cell invasion (Figure 3A–B, p<0.001) and reduced 

cell adhesion to 53% of control treated cells (Figure 3C, p<0.01). Thus, a heparan sulfate 

mimetic could phenocopy HPSE knockdown supporting a role for HPSE in GBM tumor cell 

invasion and cell adhesion to laminin.

Human GBM can be subtyped based on transcriptional signatures (1,2), however, multiple 

sampling of tumors and single-cell analysis suggest tumors retain significant intratumoral 

heterogeneity even within a given subtype (50). To investigate associations between HS 

GAG content, structure and role in invasion in a more homogeneous system we used a 

murine model for GBM driven by defined alterations in neural progenitor cells (21,32) 

(Figure 4A). First, tumor prone cells, containing alterations common to human GBM 

(deletion of Ink4a/Arf and expression of EGFRvIII), were implanted orthotopically in mice, 

and allowed to form invasive tumors. Second, tumor cells were isolated and cultured from 

tumors as tumorspheres under non-adherent conditions in minimal essential media. Murine 

tumorspheres maintained in this manner retain tumor-forming capacity and biologic features 

of the original tumor (32). Previously we identified and transcriptionally profiled tumors 

from two murine tumorsphere lines with different biologic behaviors (32). Gene Set 

Enrichment Analysis (GSEA) of differentially expressed genes (GSE87332) demonstrated 

significant enrichment for mesenchymal signature genes in tumors designated murine 

mesenchymal-like (mMES) and proneural signature genes in tumors designated murine 

proneural-like (mPN) (Figure 4B, NES 1.59, FDR q-value <0.001%, and Figure 4C, NES 

2.66, FDR q-value <0.0001%, respectively). Using these two tumorsphere lines generated 

from syngeneic neural progenitor cells, we investigated differences in HS content and HS 

structure.

HS disaccharides isolated from murine tumorspheres were analyzed by LCMS. Similar to 

the human tumor cells, each murine line had a unique HS disaccharide ion chromatography 

profile (Figure 5A–B). mPN had increased total HS abundance (ng disaccharide/mg protein) 

relative to mMES (Figure 5C, p<0.05). While overall HS structure of mMES and mPN was 
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more similar than when comparing the human GBM, mPN had decreased levels of trisulfate 

disaccharides relative to mMES (Figure 5D, p<0.01). Similar to GBM5 with reduced levels 

of trisulfate disaccharides, the mPN cells had increased expression of the extracellular 

endosulfatase Sulf2 for which HS trisulfate disaccharides are a substrate (Figure 5E, 

p<0.001). SULF2 protein expression was also elevated in mPN tumors in vivo (Figure 5F) 

suggesting SULF2 may be one determinant of HS trisulfate abundance in GBM.

To investigate the factors that may influence the reduced HS content in mMES tumor cells 

we compared expression of HPSE and HS biosynthetic enzymes and core proteins. Hpse 

expression was markedly different in the two lines with increased Hpse mRNA (Figure 6A, 

p<0.001) and protein expression (Figure 6B–C, p<0.05) in mMES relative to mPN 

tumorspheres, including the 52 kDa active enzyme. Biosynthetic enzymes important in HS 

chain initiation (Xylt1) and elongation (Ext1) were also decreased in mMES relative to mPN 

(Figure 6D, p<0.0001). In addition, expression of the core protein Syndecan 3 (Sdc3) was 

significantly decreased in mMES cells (p<0.05) (Figure 6E). These data suggest several 

factors may contribute to the lower abundance of total HS in mMES versus mPN, including 

decreased expression of HS biosynthetic enzymes, decreased expression of core proteins 

such as Sdc3, and increased expression of the HS degrading enzyme Hpse.

Based on our data with human tumorspheres, we treated murine tumorspheres with either 

heparin or the heparan sulfate mimetic necuparanib to investigate HS function in tumor cell 

invasion. Treatment of Hpse-high mMES cells with heparin inhibited invasion in three-

dimensional matrigel invasion assays in a dose-dependent manner (Figure 7A–B, p<0.05). In 

contrast, invasion of Hpse-low mPN cells was not decreased by heparin (Figure 7C). Similar 

to treatment with heparin, HS mimetic treatment inhibited invasion of Hpse-high mMES 

cells (Figure 7D–E, p<0.05).

DISCUSSION

GBM are highly malignant, invasive tumors that are highly resistant to current therapies and 

associated with a dismal prognosis. HS proteoglycans on the cell surface and in the 

extracellular matrix regulate interactions in the extracellular environment such as ligand-

mediated signaling, a potential mechanism of resistance to targeted therapies (51). Analysis 

of tumorspheres derived from four patient-derived GBM (hGBM) lines and two murine 

GBM lines demonstrate heterogeneity in the content and the structure of HS 

glycosaminoglycans. Patient-derived GBM5 and mPN demonstrated increased HS content, 

increased SULF2 expression and reduced HS trisulfate groups, the major substrate for 

SULF2. These data support previous studies in human GBM demonstrating that SULF2, an 

extracellular endosulfatase that removes 6-O-sulfate from trisulfate disaccharides and can 

promote PDGFRA signaling, is most highly expressed in a subset of GBM (21). In contrast, 

GBM43 and mMES tumorspheres exhibited elevated expression of the HS-modifying 

enzyme HPSE. Heterozygous gene deletion of HPSE in human GBM tumorspheres 

decreased tumor cell invasion and adhesion. Chemical inhibition of HS function reduced 

human and murine tumorsphere invasion and this was most pronounced in HPSE-high cells. 

These data support a role for HS-interacting factors, including HPSE, in tumor invasion and 

highlight the heterogeneity of HS content, structure, and function in GBM.

Tran et al. Page 8

Mol Cancer Res. Author manuscript; available in PMC 2018 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HPSE specifically liberates biologically active GAG chains from HSPGs, and its activity is 

associated with both cell autonomous and non-cell autonomous functions (reviewed in (22)). 

HPSE can promote tumor cell invasion in several ways, including actions on HSPGs on the 

cell surface and in the extracellular matrix (10,26,27,52,53). In multiple myeloma HPSE 

promotes tumor cell adhesion and invasion via SDC1 ectodomain shedding and subsequent 

alterations in receptor tyrosine kinase signaling and integrin binding (10,23,54). Few studies 

have investigated the role for HPSE in primary brain tumors (28–31,46), but the data suggest 

HPSE can promote tumor growth and progression in vivo. HPSE knockdown in human 

GBM43 cells cultured under neural stem cell conditions did not alter proliferation. The role 

for HPSE in proliferation in vitro may be complex and potential modifiers include cell 

culture conditions, cell lines used, and method to alter HPSE levels (31,46). In human GBM, 

HPSE is most highly expressed in the mesenchymal GBM subtype. In tumorsphere lines 

derived from both human and murine GBM, we identify elevated HPSE expression in a 

subset of tumors, and HPSE knockdown in human GBM43 or inhibition of HS function in 

human GBM43 or mMES tumorspheres reduced tumor cell invasion. While the regulators of 

HPSE expression in GBM are not known, the NF-κB pathway, active in a subset of GBM 

with a radioresistant and mesenchymal phenotype (47), can drive HPSE expression 

following viral infection (44).

HSPGs regulate signaling pathways important in cell proliferation, inflammation, 

angiogenesis, and invasion and are dysregulated in cancer (reviewed in (18) and (55)). As 

extracellular molecules, HSPGs and the extracellular enzymes that modify them, SULF2 and 

HPSE, are amenable to therapeutic targeting. HS mimetics, highly sulfated oligosaccharides, 

inhibit HS-binding enzymes such as the SULFs and HPSE, as well as sequester HS-binding 

ligands, making them attractive candidates for cancer therapy (56,57). In preclinical studies, 

HS mimetics have effectively targeted multiple HSPG-dependent phenotypes, as indicated 

by their ability to decrease tumor growth, invasion, metastasis and angiogenesis (49,58). 

While HS mimetics have not yet been tested in GBM in vivo, our data suggest that HS 

mimetics or more selective inhibitors of proteoglycan function may have anti-tumor efficacy 

in subsets of GBM patients.

Using human and murine GBMs, our study identifies different patterns of proteoglycan 

expression and modification in tumors and demonstrates a role for HPSE in tumor invasion. 

Recent advances in glycan analysis from cells and tissue (59–62) open the way for a detailed 

analysis of glycan structure and content in human tumors. The integration of detailed 

glycomic, genomic, and proteomic data will facilitate the identification of novel tumor 

biomarkers and help to identify tumors most likely to respond to inhibitors of HSPG 

function.
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Refer to Web version on PubMed Central for supplementary material.
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Implications

Heparan sulfate interacting factors promote GBM invasion and are potential therapeutic 

targets.
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Figure 1. Analysis of HS disaccharide structure and amount from human GBM tumorspheres
(A–D) Extracted ion chromatography profile of HS disaccharides isolated from human 

GBM tumorspheres demonstrating intensity profiles (counts per second) over time (min) 

across tumors. Based on the analysis of disaccharide standards (Supplemental Figures 2–3), 

each peak could be assigned a disaccharide with different sulfate patterns. (E) Absolute HS 

abundance normalized to total protein extracted (ng/mg) across tumorspheres. (F) Relative 

HS disaccharide abundance as a percentage (%) of HS disaccharide composition. Inset 

highlights the comparison of the relative percentage of trisulfate content. (G–H) Relative 

SULF1 and SULF2 gene expression levels in tumorspheres, normalized to GBM43 (n=3). 

Representative data (A–D) from biologic replicates. Symbols denote: NAc, N-

acetylglucosamine; NS, N-sulfated glycosamine; 6S, 6-O-sulfated glucosamine; 2S, 2-O-

sulfated iduronic acid; and trisulfate, NS2S6S. Mean ± SEM. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001.
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Figure 2. HPSE expression is increased in the mesenchymal GBM subtype and can promote 
tumor cell invasion
(A) Increased expression of HPSE in human GBM of the mesenchymal (MES) 

transcriptional subtype. Bars denote the mean ± SEM Z-score for tumors in the specified 

subtype (1) with mesenchymal (red) (n=56) and non-mesenchymal (white) (n=139); The 

Cancer Genome Atlas (TCGA) Data Portal (63). (B) Focal deletion in HPSE confers 

decreased HPSE mRNA expression in human GBM43 (HPSE del., n=7, and Ctrl, n=3). (C–
D) Decreased 3D invasion of GBM43 with HPSE deletion as compared to Ctrl. 

Representative images and quantification (biologic triplicate) at 24 h post plating. (E–F) 

Decreased laminin adhesion of GBM43 with HPSE deletion relative to Ctrl. (G–H). 

Increased invasion of HPSE deletion GBM43 cells treated with conditioned media from 

HPSE overexpressing cells as compared to control vector (Ctrl) overexpressing cells (HPSE, 

n=5, and Ctrl, n=5). Mean ± SEM. Representative images and data are from biologic 

triplicate experiments; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. (C, F, H) Scale 

bars denote 100μm and (E) scale bar denotes 20μm.
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Figure 3. Inhibition of GBM43 invasion and adhesion by a heparan sulfate mimetic
(A,B) Decreased 3D invasion of GBM43 following treatment with the heparan sulfate 

mimetic necuparanib (Necu; 240μg/mL). Representative images and quantification at 40 h 

post plating (Necu, n=13, Ctrl, n=4). (C) Decreased adhesion of Necu treated GBM43 as 

compared to Ctrl (biologic triplicate). Mean ± SEM. Representative data are from biologic 

triplicate experiments; **, p<0.01; ***, p<0.001. Scale bars denote 100μm.
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Figure 4. Gene expression analysis of murine tumor cells
(A) Murine tumorspheres were derived from brain tumors formed from Ink4a/Arf−/− neural 

progenitor cells (NPCs) transduced with a constitutively active deletion mutant of EGFR 

(EGFRvIII; EGFR*) and a fluorescent tag (ZsGreen). Gene set enrichment analysis (GSEA) 

of differentially expressed genes in tumorsphere-generated tumors (n=6 mice per line, (32)), 

isolated by fluorescence-activated cell sorting (FACS), revealed differential enrichment of 

genes associated with human GBM transcriptional subtypes (2). (B) Tumors enriched for the 

human mesenchymal GBM subtype gene signature were denoted murine mesenchymal-like 

(mMES), NES 1.59, FDR q-value <0.001%. (C) Tumors enriched for the human proneural 

GBM subtype gene signature were denoted murine proneural-like (mPN), NES 2.66, FDR q-

value <0.0001%.
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Figure 5. HS disaccharide analysis of mMES and mPN tumorspheres
GAG chains isolated from mMES and mPN tumorspheres were analyzed as in Figure 1. 

(A,B) Extracted ion chromatography profile of HS disaccharides demonstrating differences 

in HS structure, intensity profiles (counts per second) over time (min). (C) Elevated total HS 

content in mPN as compared to mMES normalized to total protein extracted (ng/mg). (D) 

Relative abundance of HS disaccharide composition in tumorspheres demonstrating 

decreased trisulfate content in mPN. (E) Increased expression of Sulf2 mRNA in mPN 

relative to mMES. (F) Increased SULF2 protein expression in mPN brain tumors as 

compared to mMES. (A–B, F) Representative data from 4 biologic replicates. Mean ± SEM. 

*, p<0.05, (n=4); **, p<0.01, (n=4); ***, p<0.001 (n=5).

Tran et al. Page 19

Mol Cancer Res. Author manuscript; available in PMC 2018 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Increased HPSE and decreased HS biosynthetic enzyme and core protein expression in 
mMes
Tumorspheres from mMES demonstrate increased Hpse mRNA (A) and protein (B) 

expression as compared to mPN. (C) Quantification of 52 kDa active enzyme levels. (D) 

Decreased expression of HS biosynthetic enzymes Xylt1 and Ext1 in mMES relative to 

mPN. (E) Decreased Sdc3 expression in mMES relative to mPN. *, p<0.05; **, p<0.01; ; 

***, p<0.001; ****, p<0.0001. Mean ± SEM, at least biologic triplicate.
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Figure 7. Inhibitors of HS function inhibit invasion in HPSE-high tumorspheres
(A,B) Heparin inhibits mMES invasion in a dose-dependent manner in 3D spheroid invasion 

assays. (A) Representative images of Control (Ctrl) and heparin (300 and 150μg/ml) treated 

mMES tumorspheres at 40 hours (h) and (B) quantification at 16h and 40h. (C) In contrast, 

heparin treatment of mPN tumorspheres had no effect on invasion even at the highest 

concentration (300 μg/ml) at 16 hours. (D–E) The heparan sulfate mimetic necuparanib 

(Necu) also reduced invasion of mMES tumorspheres in 3D invasion assays. Representative 

images at 40h (E) and quantification at 16h and 40h (F). Assays performed in biologic 

triplicate. Mean ± SEM. (B) *, p<0.05 and **, p<0.01, Ctrl (n= 6), heparin 150 μg/ml (n = 

5), and heparin 300 μg/ml (n= 6). *, p<0.05, Ctrl and Necu (n=5 each). N.S., not significant 

(n=6). Scale bars denote 100μm.
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