
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Algorithmic Problems in Committee Selection

Permalink
https://escholarship.org/uc/item/63c0w114

Author
Sonar, Chinmay

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63c0w114
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Algorithmic Problems in Committee Selection

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Chinmay Sonar

Committee in charge:

Professor Subhash Suri, Chair
Professor Daniel Lokshtanov
Professor Eric Vigoda

December 2023

The Dissertation of Chinmay Sonar is approved.

Professor Daniel Lokshtanov

Professor Eric Vigoda

Professor Subhash Suri, Committee Chair

December 2023

Algorithmic Problems in Committee Selection

Copyright © 2023

by

Chinmay Sonar

iii

To my parents

iv

Acknowledgements

I begin by thanking my advisor Subhash Suri for introducing me to computational

geometry research and geometric committee selection and helping me select an amazing

committee for my thesis. I want thank him even more for giving me immense indepen-

dence in choosing my research problems and allowing me to set my goals and my pace

through the research process, and still be available for guidance whenever I need. I leaned

a lot through his profound simplicity in finding clean research questions and clarity in his

writing. I am indebted to Daniel Lokshtanov not only for the research guidance but also

for encouraging us to do a lot of physical activities and keep in shape. Thanks to him

also for teaching me many new concepts not only in CS theory research but also in skiing,

trail running and the life in general. I am fortunate to meet a friend like Daniel, and the

work in this thesis would not have been so fulfilling without his perpetual energy and

optimism. I also want to thank Eric Vigoda for introducing me to the field of combinato-

rial counting and for helping me write a good thesis and develop my presentation skills.

Thanks also for inviting many many (celebrity) guest speakers and arranging meetings

with them, talking to them really helped me shape my perspective of CS research.

A special thanks for Jie Xue for all his support and guidance throughout my PhD. I

was very fortunate to work with him since the very outset of my graduate school journey,

and I learned a lot of new concepts and writing skills from him. Thanks to him for

his quarter long visit during my last quarter at UCSB, I really enjoyed our in-person

discussions. A big thanks also to Neeldhara Misra for her unwavering support and en-

couragement throughout my PhD. Her belief in me and her guidance has been invaluable

and it always keeps me motivated to become better academically and personally.

I am thankful to all the CS department faculties for teaching such amazing classes

and providing amicable interdisciplinary research environment. Mentioning everyone is

v

going to be hard but I would like to highlight my interactions with Diba Mirza, William

Wang, Ambuj Singh and Divyakant Agrawal, and thank all of them for their support.

I am extremely grateful to all my friends for making this journey fulfilling. I am

so very fond of all the friends I have gathered at UCSB and the friends who continued

to be together from before, and I consider myself fortunate to be associated with such

amazing human beings. A special thanks to Úrsula who was my labmate, housemate,

climbing/hiking companion and a close friend for sharing many many fun moments to-

gether. Thanks to Kalyan, Subramaniyam, Swaroop, Radha, Vaishali, and Sesha for

arranging so many trips, pursuing so many discussions, and most importantly being

there for me through the ups and downs of life during my PhD. Thanks also to Amogh,

Harsh and Pranali for arranging a memorable trip to the east coast. Thanks to Vismay,

Vaidyanathan, Kshiteej, Sanket, Aditya, and Pinank for passing the test of time and still

keeping in touch despite being separated by timezones.

Finally, I would like to thank my parents, my sister and my extended family who are

truly the wind under my wings; their unconditional trust and support means the world.

Thanks also to Vikrant, Saurabh, Kaustubh and Ketaki for making all of my India trips

special. I am short of words to thank my family enough for their invaluable presence my

life, my memories, and my whole essence, hence, I would like to be indebted to them for

my lifetime.

vi

Curriculum Vitæ
Chinmay Sonar

Education

2023 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2019 MTech in Computer Science, Indian Institute of Technology Gand-
hinagar.

2019 BTech in Mechanical Engineering, Indian Institute of Technology
Gandhinagar.

Publications

1. Fault-Tolerance in Euclidean Committee Selection
with Subhash Suri and Jie Xue.
In European Symposium on Algorithms (ESA’23), Amsterdam, Netherlands.

2. Multiwinner Elections under Minimax Chamberlin-Courant Rule in Eu-
clidean Space
with Subhash Suri and Jie Xue.
In International Joint Conference on Artificial Intelligence (IJCAI’22), Vienna,
Austria.

3. Anonymity-Preserving Space Partitions
with Úrsula Hébert-Johnson, Subhash Suri and Vaishali Surianarayanan.
In International Symposium on Algorithms and Computation (ISAAC’21), Fukuoka,
Japan.

4. Equitable Division of a Path
with Neeldhara Misra, P. R. Vaidyanathan and Rohit Vaish.
In COMSOC 2021

5. Fair Covering of Points by Balls
with Daniel Lokshtanov, Subhash Suri and Jie Xue.
In Canadian Conference of Computational Geometry (CCCG 2020), Saskatoon,
Canada.

6. On the Complexity of Winner Verification and Candidate Winner for
Multiwinner Voting Rules
with Palash Dey and Neeldhara Misra.
In International Joint Conference on Artificial Intelligence (IJCAI’20), Yokohama,
Japan.

7. Robustness Radius for Chamberlin-Courant on Restricted Domains
with Neeldhara Misra.
In International Conference on Current Trends in Theory and Practice of Informat-
ics (SOFSEM’19), Nový Smokovec, Slovakia.

vii

8. On the Complexity of Chamberlin-Courant On Almost Structured Pro-
files
with Neeldhara Misra and P. R. Vaidyanathan.
In International Conference on Algorithmic Decision Theory (ADT’17), Luxem-
bourg.

9. Let’s Think Frame by Frame: Evaluating Video Chain of Thought with
Video Infilling and Prediction
with Vaishnavi Himakunthala, Andy Ouyang, Daniel Rose, Ryan He, Alex Mei,
Yujie Lu, Michael Saxon, William Yang Wang.
In The 2023 Conference on Empirical Methods in Natural Language Processing
(EMNLP’23), Singapore

10. Visual Chain of Thoughts: Bridging Logical Gaps with Multimodal In-
fillings
with Daniel Rose, Vaishnavi Himakunthala, Andy Ouyang, Ryan He, Alex Mei,
Yujie Lu, Michael Saxon, Diba Mirza, William Yang Wang.
In submission to ICLR’24.

Work Experience

June - September 2023 Visa, Inc. ML Scientist (PhD Intern), Palo Alto, CA

June - September 2022 Visa, Inc. ML Scientist (PhD Intern), Austin, TX

Miscellaneous

• Teaching Assistant

– UCSB: CS 130A, 130B (Data Structures and Algorithms), CS 24 (Problem
Solving with Computers), CS 8 (Introduction to Python Programming)

– IIT Gandhinagar: CS 112 (Introduction to Python Programming), ES 214
(Discrete Mathematics)

• Undergraduate Mentoring (UCSB)

– Central mentor for the Early Research Scholar Program (ERSP) for two years
(mentored 40 sophomores each year on how to get started with research in CS)

– Research project mentor (mentored a group of 4 people in a yearlong research
project 2022)

• Program Committee and External Reviewer for Conferences

– PC member for AAMAS’24

– External Reviewer for STACS’24

– External Reviewer for SODA’20

viii

– External Reviewer for MFCS’19

– External Reviewer for AAMAS’19

• External Reviewer for Journals

– Transactions on Intelligent Systems and Technology (TIST)

– Transactions on Knowledge Discovery from Data (TKDD)

ix

Abstract

Algorithmic Problems in Committee Selection

by

Chinmay Sonar

Committee selection is a classical problem in the social sciences where the goal is to

choose a fixed number of candidates based on voters’ preferences. The problem naturally

models elections in representative democracies or hiring of staff, but also generalizes many

other resource allocation problems such as the classical facility location problems where

facilities are treated as candidates and users as voters. By explicitly modeling voters’

preferences, the committee selection problem raises a number of interesting and challeng-

ing algorithmic problems such as winner determination, fault tolerance, and fairness. In

this dissertation, we study four such problems.

For the most part, we consider the committee selection problem in Euclidean d-space

where candidates/voters are points and voters’ preferences are implicitly derived using

their Euclidean distances to the candidates. Our first problem is to find a winning

committee under the well-known Chamberlin-Courant voting rule. The goal here is

to choose a committee of k candidates so that the rank of any voter’s most preferred

candidate in the committee is minimized. (The problem is also equivalent to the ordinal

version of the classical k-center problem.) We show that the problem is NP-hard in

any dimension d ≥ 2, and is also hard to approximate. Our main results are three

polynomial-time approximation schemes, each of which finds a committee with a good

minimax score.

Our second problem deals with fault tolerance in committee selection. We study the

following three variants: (1) given a committee and a set of f failing candidates, find their

x

optimal replacement; (2) compute the worst-case replacement score for a given committee

under failure of f candidates; and (3) design a committee with the best replacement

score under worst-case failures. Our main results are polynomial-time algorithms for

three problems in one dimension. We also show that the problems are NP-hard in higher

dimensions and give constant-factor approximations for all three problems along with an

FPT bicriterion approximation for the optimal committee problem.

In our third problem we consider non-Euclidean elections and study the following

two natural questions for a given election: (1) (Winner Verification) Given a subset of

candidates (committee) T , is T a winning committee? (2) (Candidate Winner) Given

a candidate c, does c belong to a winning committee? We show that both the above

problems are hard (coNP-complete and θP2 -complete, respectively) in general, but for

the restricted case of single-peaked and single-crossing preferences, they admit efficient

algorithms.

Our last problem is the problem of covering a multicolored set of points in Rd using (at

most) k disjoint unit-radius balls chosen from a candidate set of unit-radius balls so that

each color class is covered fairly in proportion to its size. Specifically, we investigate the

complexity of covering the maximum number of points in this setting. In the committee

selection terminology, each ball is a candidate and each point is a voter; a voter approves

all candidates within a unit-radius ball around it, and our goal is to choose an optimal

size k committee under fairness constraints. We show that the problem is NP-hard even

in one dimension when the number of colors is not fixed. On the other hand, for a fixed

number of colors, we present a polynomial-time exact algorithm in one dimension, and a

PTAS in any fixed dimension d ≥ 2.

xi

Contents

Curriculum Vitae vii

Abstract x

1 Introduction 1
1.1 Problems Studied and Our Contributions 3
1.2 Organization of Chapters . 12
1.3 Permissions and Attributions . 13

2 Winner Determination Under the Chamberlin-Courant Rule 15
2.1 Hardness Results . 18
2.2 Approximation using epsilon-nets . 32
2.3 Bicriterion Approximation by Relaxing the Committee Size 38
2.4 Approximation by combining Cardinal and Ordinal Score 41
2.5 Bibliographic notes . 46

3 Fault-Tolerant Committee Selection (FTCS) 47
3.1 Optimal Replacement Problem . 50
3.2 Fault-Tolerance Score . 51
3.3 Optimal Fault-Tolerance Committee . 55

4 FTCS in Multidimensional Instances 59
4.1 NP-hardness Results . 60
4.2 Constant factor Approximations . 74
4.3 Bicriterion Approximation Scheme . 82
4.4 Bibliographic notes . 90

5 Committee Winner Verification Problem 92
5.1 Chamberlin-Courant Voting Rule . 99
5.2 Monroe Voting Rule . 103
5.3 Elections with Approval Preferences . 108
5.4 Efficient Algorithms on Restricted Preferences 110

xii

6 Candidate Winner Verification Problem 113
6.1 Chamberlin-Courant Voting Rule . 115
6.2 Monroe Voting Rule . 122
6.3 Elections with Approval Preferences . 127
6.4 Efficient Algorithms on Restricted Preference 129

7 Fair Covering of Points in Euclidean Space 135
7.1 Polynomial time Algorithm in One-dimension 138
7.2 NP-hardness and W[1]-hardness of Fair Covering 143
7.3 PTAS using Shifting Technique . 145
7.4 Unconstrained Fair Covering in 1D . 153
7.5 Bibliographic Notes . 156

8 Conclusion and Open Problems 157

Bibliography 161

xiii

Chapter 1

Introduction

Consider the following city planning scenario: The municipal council has allocated some

funds to build recreational venues in a district in the city. There are several options such

as a convention center, a conference hall, a museum or a zoo, a golf course, a stadium

or a climbing gym, and many more, but the allocated funds will only be sufficient for

three new facilities. In order to choose which facilities to build, the council wants to

do participatory planning where the entire local community is involved in the district

planning process. Individuals in the local community have different preferences, the

goal of the council is to elicit these preferences and then use them to make the final

choice of three facilities such that the choice satisfies as many individuals as possible.

In abstract terms, in the above scenario we have a limited public resource that can be

spent on a few possible options, and different stakeholders have preferences over these

options; the goal is to use their preferences to find a small subset of options to spend

the resource on such that the stakeholders are as “happy” as possible. We call this the

Committee Selection Problem. This abstraction captures many other interesting scenarios

such as choosing representatives in a democracy, staff hiring and procurement decisions,

shortlisting candidates for a limited fellowship, jury selection, cache management, etc.

1

Introduction Chapter 1

[1, 2, 3, 4, 5, 6, 7]. These scenarios are ubiquitous and choosing the right set of candidates

is crucial; hence studying this abstract problem is important. This thesis focuses on a

few computational aspects of the committee selection problem.

Formally, the committee selection problem can be described as follows: We have a

set C of m candidates, a set V of n voters and a committee size k. The goal is to choose

a subset of k candidates denoted by T ⊆ C called a winning committee, that collectively

best represents the preferences of all the voters. To relate the above abstract setting to

the formal definition, observe that the set of possible options is the set of candidates, the

stakeholders are the voters and the limited resource (budget) is the fixed committee size

k. Every committee T has an associated score computed by a predetermined function f

(the function f takes voters’ preferences and T as input, and returns an integer score)

which quantifies the “goodness” of T . Given candidates, voters, and preferences, the

main problem is to efficiently find a committee of size k that optimizes the score. In this

thesis, we focus on the computational aspects of the committee selection problems. That

is, our aim to design efficient algorithms 1 which can compute an optimal (i.e., winning)

committee as quickly as possible.

The committee selection problem as described above is known to be NP-hard. It is

believed that NP-hard problems cannot be solved optimally in polynomial time (for more

details, refer to [9, 10]). A super-polynomial running time is quite slow for practical ap-

plications; therefore, researchers have studied approximation algorithms where we settle

for a near optimal solution to get faster (possibly polynomial-time) algorithms. Another

way to obtain faster algorithms is to consider special/structured cases (i.e., restricted

input instances) of the general problem. Considering special cases is a good research

direction since the real-life problem instances are usually structured. Furthermore, in

1At a high level, an algorithm is a sequence of steps to solve a computational problem. Please find
more details in [8].

2

Introduction Chapter 1

many cases, the study of structured input instances helps us understand the general

problem better. For the most part, in this thesis we take two approaches: the first is to

design approximation algorithms for committee selection problems, and the second is to

consider these problems on restricted input classes.

1.1 Problems Studied and Our Contributions

We also refer to the committee selection problem as the multiwinner election prob-

lem. We first describe Euclidean elections (which is a restricted input class) and then

we introduce a committee selection rule (i.e., a voting rule) known as the Chamberlin-

Courant.

Euclidean elections. We represent an election as E = (C, V), where C is the set of

candidates and V is the set of voters. In a Euclidean election, candidates and voters are

embedded in d-dimensional Euclidean space, and the preferences of the voters over the

candidates are based on Euclidean distances, namely, a voter prefers a candidate closer

to it over a farther candidate.

We consider the ranking (ordinal) preferences where each voter v ∈ V ranks all

candidates in C from the most preferred (rank 1) to the least preferred (rank m). For

Euclidean elections, voters’ rankings are implicitly defined by Euclidean distances (closest

to farthest). Let σv(c) denote the rank of candidate c in v’s preference list. Next, we

introduce the Chamberlin-Courant voting rule [11] which we use for evaluating the score

of a committee.

Chamberlin-Courant Voting Rule. Under the Chamberlin-Courant rule, voter v’s

score for a committee T is the rank of its most preferred candidate: σv(T) = minc∈T σv(c).

In a sense, v is “assigned to” or “represented by” its top choice in the committee. The

overall score of the committee T is some function g(σv1(T), . . . , σvn(T)) of all the voter’s

3

Introduction Chapter 1

scores. Two classical choices for g are the sum and the max. The former is the utilitarian

objective and seeks to minimize the sum of the scores over all the voters (this min-sum

aggregation is also referred to as ℓ1 aggregation based on the 1-norm). The latter is

the egalitarian objective and minimizes the maximum (worst) of the scores over all the

voters (the min-max aggregation is also referred to as ℓ∞ aggregation based on the ∞-

norm). In Chapters 2, 3 and 4, we work with the egalitarian objective where the score

of a committee is σ(T) = maxv∈V σv(T), and in Chapters 5 and 6, we work with both.

Finally, in Chapter 7, we work only with the utilitarian objective for the case of approval

elections which we introduce in Section 1.1.3.

We now present the problems studied in this dissertation and give a high-level idea

of our contributions to them.

1.1.1 Winner Determination under the Chamberlin-Courant Rule

Our first problem is to compute a winning committee under the Chamberlin-Courant

voting rule for Euclidean elections. Given a Euclidean election E = (C, V) and a commit-

tee size k, our goal here is to find a committee T ⊆ C of size k that optimizes (minimizes)

the score σ(T). We consider the ranking preferences and so the goal is to minimize the

worst case representation rank, i.e., maxv∈V σv(T). Observe that this problem is equiva-

lent to the ordinal version of the classical k-center problem [12]. (In the classical k-center

problem, the score of a voter for a committee T is determined by its distance to the

closest candidate in T rather than the rank of the most preferred candidate.)

For general preferences (unstructured preferences), finding a winning committee under

Chamberlin-Courant is NP-hard for both the min-sum [5] and the min-max [1] objec-

tives; as a result, an important line of research has been to examine natural settings with

structured preferences [1, 13, 14, 15]. Our setting of Euclidean preferences is arguably

4

Introduction Chapter 1

the most natural setting. The geometry of Euclidean space gives an intuitive and inter-

pretable positioning of voters and candidates in many natural settings such as spatial

voting and facility locations, but it also has important computational advantages: when

candidates and voters are embedded in d-space, only a tiny fraction of all (exponentially

many) m! candidate orderings are realizable. In particular, the maximum number of

realizable rankings is only O(md+1) (i.e., polynomially bounded). This important com-

binatorial property enables us to derive much better bounds than what is possible in

completely unstructured preference spaces.

We first settle the complexity of the winner determination problem by showing that

(unfortunately) the problem still remains NP-hard even for Euclidean elections. We

reduce from Planar Monotone 3-SAT which was introduced and shown to be NP-

hard in [16]. By a slight modification of our NP-hardness proof, we can also show that

even computing an approximate Euclidean minimax committee within any sublinear

factor of |C| is hard. This result is in sharp contrast to the classical k-center problem

for which a 2-approximation algorithm is known. Our hardness result for this problem is

summarized in Theorem 2 as follows:

“Theorem: For any constant ε > 0, it is NP-hard to achieve a |C|1−ε-approximation

for Euclidean minimax committee in Rd for any d ≥ 2.”

Next, we turn to approximation algorithms. Our first result is a polynomial time

O(m/k) approximation in 2-dimensions and O((m/k) log k)approximation for d ≥ 3. To

obtain the above results, we use ε-nets to design an algorithm to compute a committee of

size k with a minimax score O(m/k) for d = 2, and a committee of size O((m/k) log k)

for d ≥ 3. For the special case when the candidate set is a subset of the voters, i.e.,

C ⊆ V , we show that the optimal minimax score has a lower bound of Ω(m/k) in all

instances using an argument based on kissing number 2. By combining this lower bound

2Kissing number is defined as the greatest number of non-overlapping (closed) unit spheres that can

5

Introduction Chapter 1

with the above approximation algorithm, we obtain a constant-factor approximation in

2 dimensions and a O(log k) approximation for d ≥ 3 when C ⊆ V .

Our next approximation uses the bicriterion framework to design a polynomial-time

algorithm that achieves the optimal minimax score σ⋆ for a committee of size k by

constructing a slightly larger committee, namely, of size (1 + ε)k for d = 2 and size

O(k logm) for d ≥ 3. We also show that increasing the committee size by an additive

constant is not sufficient to bypass the inapproximability imposed by our hardness result.

In our final result, we combine the ordinal (rank-based) and cardinal (distance-based)

features of the problem in a novel way to get an approximation algorithm. Suppose the

optimal score of the size-k committee is σ⋆, and d⋆v is the distance from v to its rank-σ⋆

candidate. We define a committee T to be δ-optimal if each voter has a representative in

T within distance δd⋆v. We show a 3-approximation, that is, we give a polynomial-time

algorithm that computes a 3-optimal committee, and we show that we cannot compute

a δ-optimal committee for any δ < 2 in polynomial time unless P = NP.

1.1.2 Fault-Tolerant Committee Selection

In our next problem, we consider fault tolerance in committee selection, that is, we

want to quantify how robust a chosen committee is against the possibility that some of

the winning committee members may become unavailable (fail). The question of fault

tolerance in committee selection is well-motivated this is because faults are uncommon in

many scenarios modeled by committee selection problems such as democratic elections,

staff hiring, jury selection, etc. In our work, we consider three different fault-tolerant

committee selection problems.

Consider a Euclidean election E = (C, V). For this problem, we consider the minimax

Chamberlin-Courant rule with cardinal (distance based) score, that is, voter v’s score for a

be arranged in the Euclidean space such that they each touch a common unit sphere.

6

Introduction Chapter 1

committee T ⊆ C is: σv(T) = minc∈T dist(v, c). Recall that the score of the committee T

is: σ(T) = maxv∈V σv(T) the worst-case voter score. We denote a set of failing candidates

by J ⊆ C, and denote the integer fault-tolerance parameter by f . We will now describe

our problems at a high-level (see Section 3.0.1 for the formal definitions):

• Optimal Replacement Problem (ORP): Given an election E = (C, V), a com-

mittee T and a failing set J , the goal is to find an optimal replacement (of failed

committee members) R ⊆ C \ J with |R| ≤ |T ∩ J | which minimizes σ(T \ J ∪R).

That is, we study how badly the given failing set affects the score of the committee.

• Fault-tolerance Score (FTS): Given E = (C, V), a committee T and the fault-

tolerance parameter f , we compute the effect of the worst-case size at most f failing

set of candidates on the score of T , i.e., for each failing set of size at most f , we

compute the score of the optimal replacement and return the worst score overall.

• Optimal Fault-Tolerance Committee (OFTC): Given E = (C, V), a commit-

tee size k and fault-tolerance parameter f , we want to proactively compute a size

k committee with minimum worst case f -fault tolerance score.

We now summarize our results. In one-dimensional instances when candidates and

voters are embedded on a line, we show the following:

“Theorem: ORP, FTS, and OFTCS can be solved in a polynomial time on one-

dimensional instances.”

We obtain the above result by combining Theorems 11, 12 and 13. For dimensions

d ≥ 2, we show the following in Theorem 14:

“Theorem: ORP, FTS, and OFTC are NP-hard in any dimension d ≥ 2, when the

committee size k and the fault-tolerance parameter f are part of the input.”

Next, we turn to our algorithmic results. We give polynomial time constant factor

approximation for all three problems with factors 3, 3 and 5 for ORP, FTS and OFTC,

7

Introduction Chapter 1

respectively. For a special case when f is a constant, we give a 3-approximation in poly-

nomial time for OFTC. All of the above constant factor approximations are based on

clever packing arguments and hold in any metric space. Our main algorithmic result in

dimensions d ≥ 2 is a novel bicriterion EPTAS (Efficient Polynomial-Time Approxima-

tion Scheme) for OFTC where suppose the optimal sore for a size k committee is σ∗, then

our algorithm returns a size k committee that achieves the score (1 + ε)σ∗ for at least

(1− ε) fraction of the voters. We obtain the above EPTAS with a nontrivial application

of the (well-known) grid shifting technique [17].

1.1.3 Winner Verification Problems

The next set of problems we consider are the winner verification problems. Given

an election E = (C, V) and the committee size k, we consider the following two natural

variants of this problem:

1. Committee Winner Verification: For a size k subset T ⊆ C, is T a winning

committee?

2. Candidate Winner Verification: For a candidate c ∈ C, does there exists a size

k winning committee containing c?

We consider these two questions on general (non-Euclidean) elections for both ranking

preferences and approval ballots. Recall that in the case of rankings, each voter gives a

complete preference ordering over the set of candidates. Suppose the number of candi-

dates is m then in approval ballots, each voter gives an m-length binary vector denoting

its approved/non-approved candidates. Consider an election with 5 candidates, then an

example voter preference under rankings is v := c2 ≻ c4 ≻ c1 ≻ c5 ≻ c3 and under ap-

proval ballots is v = [1, 1, 0, 1, 0] which represents that v only approves candidates c1, c2

and c4.

8

Introduction Chapter 1

In this work, along with the Chamberlin-Courant rule, we also consider the Monroe

rule [18] where the only difference from Chamberlin-Courant is that each committee

member is assigned to the same number of voters. Observe that under the Monroe rule,

proportional representation is explicitly ensured.

We consider both min-sum (ℓ1) and min-max (ℓ∞) aggregations and by reductions

from the complement of hitting set problem we obtain the following result (Theorem 21)

for problem 1:

“Theorem: Committee Winner Verification for Chamberlin-Courant and Monroe is

coNP-complete in the setting of approval ballots and rankings. In the latter setting, the

result holds for the ℓ1 and ℓ∞-Borda misrepresentation functions.”

The above result settles the complexity of committee winner verification and recog-

nizes a natural coNP-complete problem, in particular, one that is not merely a comple-

ment of a natural NP-complete problem.

We consider the same problem settings for candidate winner verification and by re-

ductions from a vertex cover variant, we obtain the following result (formally stated in

Theorem 27):

“Theorem: Candidate Winner Verification for Chamberlin-Courant and Monroe is

complete for ΘP
2 in the setting of approval ballots and rankings. In the latter setting, the

result holds for the ℓ1 and ℓ∞-Borda misrepresentation functions.”

Given the above hardness results, a natural question is to find structured settings

where Problem 1 and 2 can be solved efficiently. We consider the two most well-studies

structured settings – single-peaked and single-crossing preferences. Formally, we explain

these two structured settings in Section 5.0.2 but at a high-level, under single-peaked

preferences, there exists a linear ordering over all candidates and under single-crossing

preferences, there exists a linear ordering over the voters which allows for a design of

dynamic-programming procedures to obtain efficient algorithms. We summarize our re-

9

Introduction Chapter 1

sults on these structured preferences as follows (Theorem 29):

“Theorem: Committee/Candidate Winner Verification for Chamberlin-Courant are

polynomial-time solvable for each of single-peaked and single-crossing preferences. The

result holds for the ℓ1 and ℓ∞-Borda misrepresentation functions.”

1.1.4 Fair Covering of Points in Euclidean Space

In our final problem, we study fairness in max covering of points in Euclidean space.

Given a set P of n points in a d-dimensional Euclidean space, our goal is to cover

maximum number of points using k unit-radius balls such that the coverage of each color

is in proportion to its size. We study this problem under the discreteness and bounded

ply constraints, that is, we require the balls used in the covering to be chosen from an

input candidate set of unit-radius balls B (discreteness), and we want any point in the

plane to be covered by at most p chosen disks where p is a given constant (bounded-

ply). Formally, the input is a set P of n points in Rd each of which is colored with

one of t-colors, a candidate set B of m unit-radius balls in Rd, budget k of balls to be

use, and a number p which is the bound on the ply of the covering. Our goal is to find

(approximately) fair covering C ⊆ B that covers maximum number of points. We say

that C is a (proportionally) fair covering if, let ci be the number of points of color i

covered by C, and let ni be the total number of points of color i for i ∈ {1, 2, . . . , t} then,

⌊ρi · c∗⌋ ≤ ci ≤ ⌈ρi · c∗⌉

where c∗ =
∑t

i=1 ci and ρi = ni/n for i ∈ {1, . . . , t}.

Connection to Committee Selection Problems. The fair covering problem stated

as above can be formulated as a (fair) committee selection problem under approval pref-

10

Introduction Chapter 1

erences in the Euclidean space. That is, the points in P corresponds to the voters and

unit-radius balls in B corresponds to the candidates. Voters give approval preferences

based on Euclidean distances, in particular, a voter approves all candidates within a

unit-radius ball around it. Given this mapping, the vanilla max covering problem where

goal is to cover maximum number of points irrespective fairness constraints corresponds

to finding size k committee with max ℓ1-score committee under approval preferences, and

the fair covering problem corresponds to a variant of max ℓ1-score committee selection

under fairness constraints.

We first describe our results for the one-dimensional instances when the points in P

are on a line and B is a set of unit intervals. Following is the summary of our results

from Theorem 33 and Theorem 34:

“Theorem: For one-dimensional instances, the fair covering problem can be solved

polynomial time if the number of colors t is a constant, and the problem is NP-hard when

t is large, that is, for t = Ω(n)”

In dimensions d ≥ 2, the maximum coverage problem is NP-hard even without fairness

constraints [19]; therefore, in this case we design an algorithm to find an approximate

fair covering.

A covering C is called ε-fair for some ε ∈ [0, 1], if for all i ∈ {1, . . . , t},

(1− ε) · ⌊ρi · c∗⌋ ≤ ci ≤ (1 + ε) · ⌈ρi · c∗⌉

We obtain a PTAS (Theorem 36) based on grid shifting technique [17]:

“Theorem: There exists a (1 − ε)-approximation algorithm for the (t-color) fair

covering problem in Rd which runs in nO(t)mO(1/εd) time.”

11

Introduction Chapter 1

1.2 Organization of Chapters

We organize the chapters to match the order of the problems described above. In

Chapter 2, we study winner determination under Chamberlin-Courant voting rule in

Euclidean elections. Recall that, our score is defined by the worst-case representation

rank of the voter. We show that the problem is NP-hard and hard to even approximate

within any constant factor of the optimal score in dimensions d ≥ 2. Then we present

three polynomial-time approximation schemes, each of which finds a committee with a

good minimax score.

Chapters 3 and 4 deals with fault tolerance in committee selection. We introduce

and study three – ORP, FTS, and OFTC as described in Section 1.1.2. In Chapter 3, we

consider one-dimensional instances when voters and candidates are points on a line and

show that all three problems can be solved in polynomial time. We investigate instances

in dimensions d ≥ 2 in Chapter 4. Here, we first show that all three problems are NP-

hard and then present constant-factor approximations for all three along with an FPT

bicriterion approximation for OFTC.

Next, in Chapters 5 and 6, we consider winner verification problems. We show that

Committee Winner Verification is coNP-complete for Chamberlin-Courant and Monroe

rules in Chapter 5. We end this chapter with efficient algorithms for Chamberlin-Courant

rule on single-peaked and single-crossing preferences in Section 5.4. Chapter 6 deals with

Candidate Winner Verification where we show that the problem is θP2 -complete for both

the rules and is again, polynomial-time solvable for Chamberlin-Courant on restricted

preferences.

Finally, in Chapter 7 we study the fair covering problem in Euclidean space and then

in Chapter 8 we conclude with some interesting open problems.

12

Introduction Chapter 1

1.3 Permissions and Attributions

Most of the research presented in this dissertation have appeared as a conference

proceedings. The specific details on chapters is as follows:

1. All results in Chapter 2 is a join work with Subhash Suri and Jie Xue. These

results appeared as a paper [20] in proceedings of IJCAI’22 and is available online

at https://www.ijcai.org/proceedings/2022/0068.pdf.

2. Results in Chapters 3 and 4 is a joint work with Subhash Suri and Jie Xue, and parts

of it have previously appeared as a paper [21] in proceedings of ESA’23 and is avail-

able online at https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.95.

3. The contents of Chapters 5 and 6 is a joint work with Neeldhara Misra and Palash

Dey. Most results in these two chapters have been appeared previously as a paper

[22] in proceedings of IJCAI’20 and is available online at

https://www.ijcai.org/proceedings/2020/0013.pdf.

4. The contents of Chapter 7 is a joint work with Daniel Lokshtanov, Subhash Suri,

and Jie Xue. Most results in this chapter have been appeared previously as a paper

[23] in the proceedings of CCCG’20 and is available online at

https://par.nsf.gov/servlets/purl/10309897page=36.

During my PhD studies, I also worked on other problems that resulted in the following

published and in-submissions works:

• Úrsula Hebert-Johnson, Chinmay Sonar, Subhash Suri, and Vaishali Surianarayanan.

Anonymity-Preserving Space Partitions.

In the proceedings of ISAAC ’21 [24].

13

https://www.ijcai.org/proceedings/2022/0068.pdf
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.95
https://www.ijcai.org/proceedings/2020/0013.pdf
https://par.nsf.gov/servlets/purl/10309897#page=36

Introduction Chapter 1

• Neeldhara Misra, Chinmay Sonar, P. R. Vaidyanathan, and Rohit Vaish.

Equitable Division of a Path.

In the proceedings of COMSOC ’21 [25].

• Daniel Lokshtanov, Úrsula Hebert-Johnson, Chinmay Sonar, and Vaishali Suria-

narayanan.

Parameterized Complexity of Kidney Exchange Revisited.

(In submission to AAAI ’24)

• Vaishnavi Himakunthala, Andy Ouyang, Daniel Rose, Ryan He, Alex Mei, Yujie

Lu, Chinmay Sonar, Michael Saxon, William Yang Wang.

Let’s Think Frame by Frame: Evaluating Video Chain of Thought with Video

Infilling and Prediction.

In proceedings of EMNLP ’23 [26]

• Daniel Rose, Vaishnavi Himakunthala, Andy Ouyang, Ryan He, Alex Mei, Yujie

Lu, Michael Saxon, Chinmay Sonar, Diba Mirza, William Yang Wang

Visual Chain of Thoughts: Bridging Logical Gaps with Multimodal Infillings.

(In submission to ICLR ’24 [27])

14

Chapter 2

Winner Determination Under the

Chamberlin-Courant Rule

In this chapter, we will study the winner determination problem under the Chamberlin-

Courant voting rule. We consider the setting when the candidates and voters are placed

in a Euclidean space. We will first define the problem formally. As we saw earlier (in

Chapter 1), in the committee selection problem we are given an election E = (C, V)

where C = {c1, c2, . . . , cm} is the set of m candidates and V = {v1, v2, . . . , vn} is the set

of n voters. We consider the ordinal preferences where the preference list of each voter

is a total ordering (ranking) of C, in which the most preferred candidate has rank 1 and

the least preferred candidate has rank m. We call an election E = (C, V) a d-Euclidean

election if there exists a function f : C ∪ V → Rd, called a Euclidean realization of E,

such that for any pair ci, cj ∈ C, a voter v prefers ci to cj if and only if dist(f(v), f(ci)) <

dist(f(v), f(cj)) where dist(·, ·) denotes the Euclidean distance (in case the candidates

are equidistant, we break the ties arbitrarily). We assume that a Euclidean realization

is part of the input; the decision problem of whether an election admits an Euclidean

realization is computationally hard [28].

15

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

We use σv(c) to denote the rank of candidate c in v’s preference list, and we use

the Chamberlin-Courant voting rule [11] for evaluating the score of a committee. Recall

that under the Chamberlin-Courant voting rule, a voter v’s score for a committee T ⊆ C

is the rank of its most preferred committee member σv(T) = minc∈T σv(c), and the

Euclidean minimax committee problem is to choose a committee of size k that minimizes

the maximum score (misrepresentation) of any voter. That is, minimize the following:

σ(T) = max
v∈V

(
min
c∈T

σv(c)

)
,

So the optimal committee score is always between 1 andm. The Chamberlin-Courant rule

is also known as 1-Borda rule as each candidate is assigned to its single top choice in the

committee; in Subsection 2.2.2, we consider a generalization of the Chamberlin-Courant

rule which is called the r-Borda rule where each voter is assigned to its top r-choices in

the committee and the score of the voter is the sum of the ranks of all candidates it is

assigned to.

The winner determination problem is to find a size-k committee T ⊆ C that minimizes

σ(T). In the general case (when candidates and voters are not embedded in a Euclidean

space), this problem is known to be NP-complete (and hard to approximate within any

constant factor) [5, 1], and as a result, an important line of research has been to examine

natural settings with structured preference spaces [1, 13, 14, 15]. Our work in this chapter

studies the setting of elections in the Euclidean space. As discussed in Section 1.1, the

number of realizable preference lists in Rd are polynomially bounded in d (i.e., O(md+1))

compared to all possible m! orderings in the general case; hence, we expect to get much

better bounds for Euclidean elections.

Remark: There are good reasons for using ordinal preferences even when cardinal dis-

tances are implied by an Euclidean embedding. The first is robustness: consider a voter

16

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

v and two candidates c, c′. If their distances satisfy d(v, c) < d(v, c′), then clearly v

prefers c to c′, but it seems harder to argue that v’s preference varies linearly (or even

smoothly) with distance—for instance, would doubling the distance really halve the value

to a voter? Another reason is that k-center solutions based on cardinal preferences are

highly susceptible to the outlier effect—a few outlying voters may control the minimax

value (i.e., radius) of the optimal solution even though all other voters have significantly

better solution quality. By contrast, under the ordinal measure the (rank-based) solu-

tion seems more equitable because outliers are matched with a highly ranked candidate

(irrespective of the distances).

Results and Organization of the Chapter In this chapter we show that a number of

interesting and encouraging approximation results are possible for Euclidean preferences.

We now give a brief summary of our results.

We first settle the complexity of the problem. To this end, we show that the Euclidean

minimax committee problem is NP-hard in every dimension d ≥ 2; in one dimension,

the problem is easy to solve optimally with dynamic programming. The complexity of

this problem, also called the ordinal Euclidean k-center problem, was not known and

had been an important folklore problem. Our proof shows that the problem also hard to

approximate in the worst-case (see Theorem 2), which stands in sharp contrast with the

2-approximability of the cardinal k-center problem [8] (please see Section 2.1 for details).

In Section 2.2, we turn to approximation algorithms. Our first result is a polynomial

time algorithm to compute a size-k committee with a minimax score of O(m/k) for any

instance in dimension d = 2, and score of O((m/k) log k) for any instance in dimension

d ≥ 3. Note that this implies an O(m/k), O((m/k) log k) approximations in two and

more dimensions, respectively. Furthermore, the O∗(m/k)1 scores are also shown to

1The O∗(·) notation hides the polylog factors

17

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

be essentially the best possible in worst-case (see Theorem 4). In Subsection 2.2.2, we

also give a similar approximation result to the r-Borda rule. For the special case when

C ⊆ V , we show that the optimal has a lower bound of Ω(m/k) in all instances (see

Subsection 2.2.1 for details). Our next approximation uses the bicriterion framework to

design a polynomial time algorithm that achieves the optimal minimax score σ⋆ possible

for a size-k committee by constructing slightly larger committee, namely, of size (1+ ϵ)k

for d = 2 and size O(k logm) for d ≥ 3. We also show that increasing the committee size

by an additive constant is not sufficient. We give the details in Subsection 2.3.

Finally, in Section 2.4, our approximation combines ordinal and cardinal features of

the problem in a novel way, as follows. Suppose the optimal score of the k committee

is σ⋆, and d⋆v is the distance of v to its rank σ⋆ candidate. We define a committee T to

be δ-optimal if each voter has a representative in T within distance δd⋆v. (That is, for

each voter the committee contains a candidate whose distance to the voter is almost as

good as distance to its σ∗ rank candidate.) We show that a δ-optimal committee can be

computed in polynomial time for δ = 3, but unless P = NP, there is no polynomial-time

algorithm to compute δ-optimal committees for any δ < 2.

2.1 Hardness Results

We begin this section by showing that the Euclidean minimax committee problem

is NP-hard in any dimension d ≥ 2. After that, we extend our proof to show that the

problem is even hard to approximate within any sublinear factor of m, where m is the

number of candidates in the election.

Our hardness reduction uses the NP-complete problem Planar Monotone 3-SAT

(PM-3SAT) [16]. An instance of PM-3SAT consists of a monotone 3-CNF formula ϕ

where each clause contains either three positive literals or three negative literals, and a

18

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

x2 x3 x4x1

x1 ∨ x3 ∨ x4(z4)

x1 ∨ x2 ∨ x3(z3)

x2 ∨ x3 ∨ x4(z2)

x1 ∨ x2 ∨ x4(z1)

Figure 2.1: Rectangular embedding of the PM-3SAT instance

ẑ2

ẑ1

ẑ3

ẑ4

x̂1 x̂2 x̂3 x̂4

Figure 2.2: Orthogonal embedding of the PM-3SAT instance

special “planar embedding” of the variable-clause incidence graph of ϕ described below.

In the embedding, each variable/clause is drawn as a (axis-parallel) rectangle in the

plane. The rectangles for the variables are drawn along the x-axis, while the rectangles

for positive (resp., negative) clauses lie above (resp., below) the x-axis. All the rectangles

are pairwise disjoint. If a clause contains a variable, then there is a vertical segment

connecting the clause rectangle and the variable rectangle. Each such vertical segment is

disjoint from all the rectangles except the two it connects. We call such an embedding a

rectangular embedding of ϕ. See Figure 2.1 for an illustration. Given ϕ with a rectangular

embedding, the goal of PM-3SAT is to decide if there exists a satisfying assignment for

ϕ.

Suppose we are given a PM-3SAT instance consisting of the monotone 3-CNF formula

ϕ with a rectangular embedding. Let X = {x1, . . . , xn} be the set of variables and

19

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

Z = {z1, . . . , zm} be the set of clauses of ϕ (each of which consists of three literals).

We construct (in polynomial time) a Euclidean minimax committee instance (E, k) in

R2 such that ϕ has a satisfying assignment if and only if for the election E there exists

a committee of size k with score at most 4. We begin by modifying the rectangular

embedding of ϕ to another form that we call an orthogonal embedding.

Orthogonal Embedding First, we collapse all the variable and clause rectangles into

horizontal segments: the segments for variables lie on the x-axis and those for positive

(resp., negative) clauses lie above (resp., below) the x-axis. By slightly moving the clause

segments vertically, we can guarantee that all clause segments have distinct y-coordinates.

Consider a variable/clause segment s. There are vertical segments connected to s; we

call the intersection points of these segments with s the connection points. We then

only keep the part of s that is in between the leftmost and rightmost connection points;

that is, we truncate the part of s that is to the left (resp., right) of the leftmost (resp.,

rightmost) connection point. Next, we shrink each variable segment s to a point ŝ and

also move the vertical segments incident to s accordingly. By doing this, all vertical

segments incident to s are merged into a single vertical segment going through ŝ, whose

two endpoints lie on the highest positive s-neighboring clause segment and the lowest

negative s-neighboring clause segment; furthermore, this segment hits one endpoint of

each of the other s-neighboring clause segments. After shrinking all variable segments, we

obtain our orthogonal embedding for ϕ. Figure 1b shows an illustration of the orthogonal

embedding. In the orthogonal embedding, each variable corresponds to a point on the x-

axis (which we call the reference point of the variable) and a vertical segment through the

reference point, while each positive (resp., negative) clause corresponds to a horizontal

segment above (resp., below) the x-axis; we call the intersection points of these vertical

and horizontal segments connection points.

20

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

The resulting embedding satisfies the following three conditions: (i) no vertical seg-

ment crosses a horizontal segment; (ii) each horizontal segment s intersects exactly three

vertical segments which correspond to the three variables contained in the clause corre-

sponding to s; and (iii) the endpoints of all segments are connection points.

By properties (ii) and (iii), there are three connection points on each clause segment,

two of which are the left and right endpoints of the segment, and we call the middle one

the reference point of the clause. We denote by x̂1, . . . , x̂n the reference points of the

variables x1, . . . , xn and denote by ẑ1, . . . , ẑm the reference points of the clauses z1, . . . , zm.

By shifting/scaling the segments properly without changing the topological structure of

the orthogonal embedding, we can further guarantee that the x-coordinates (resp., y-

coordinates) of the vertical (resp., horizontal) segments are distinct even integers in the

range {1, . . . , 2n} (resp., {−2m, . . . , 2m}). Therefore, all the connection points now have

integral coordinates (which are even numbers) and the entire embedding is contained in

the rectangle [1, 2n] × [−2m, 2m]. Points on the segments of the orthogonal embedding

that have integral coordinates partition each segment s into ℓ(s) unit-length segments,

where ℓ(s) is the length of s. We call these unit-length segments the pieces of the

orthogonal embedding. Let N be the total number of pieces. Clearly, N = O(nm).

Our Euclidean minimax committee instance (E, k) consists of the following set of vot-

ers and candidates in the two-dimensional plane. (In fact, in our construction, each point

is both a candidate and a voter, namely, C = V . It is easy to modify the construction so

that the set of voters is much larger by simply making multiple copies of each voter.)

Variable gadgets. For each variable xi, we choose four points near the reference point

x̂i as follows. There are two (vertical) pieces incident to x̂i in the orthogonal embedding,

one above x̂i, the other below x̂i. On each of the two pieces, we choose two points with

distances 0.01 and 0.02 from x̂i, respectively. We put a candidate and a voter at each

21

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

of the four chosen points, and call these candidates/voters the xi-gadget. We construct

gadgets for all x1, . . . , xn. The total number of candidates/voters in the variable gadgets

is 4n.

Clause gadgets. The second set of candidates/voters are constructed for the clauses

z1, . . . , zm. For each clause zi, we put a candidate and a voter at the reference point ẑi,

and call this candidate/voter the zi-gadget. The total number of candidates/voters in

the clause gadgets is m.

Piece gadgets. The last set of candidates/voters are constructed for connecting the

variable gadgets and the clause gadgets. Consider a piece s of the orthogonal embedding,

which is a unit-length segment. We distinguish the two endpoints of s as s− and s+ as

follows. If s is a vertical piece above (resp., below) the x-axis, let s− be the bottom

(resp., top) endpoint of s and s+ be the top (resp., bottom) endpoint of s. If s is a

horizontal piece, then it must belong to the horizontal segment of some clause zi. If s is

to the left (resp., right) of the reference point ẑi, let s
− be the left (resp., right) endpoint

of s and s+ be the right (resp., left) endpoint of s. For every piece s that is not adjacent

to any clause reference point, we choose four points on s with distances 0.49, 0.8, 0.9, 1

from s− (i.e., with distances 0.51, 0.2, 0.1, 0 from s+), respectively. We put a candidate

and a voter at each of the four chosen points, and call these the candidates/voters of the

s-gadget. Note that we do not construct gadgets for the pieces that are adjacent to some

clause reference point. Thus, the total number of candidates/voters in the piece gadgets

is 4(N − 3m), as each clause reference point is adjacent to three pieces.

By combining these three constructed gadgets, we obtain our election E = (C, V)

instance with 4N + 4n − 11m candidates and voters. The size of the committee is

k = N + n− 3m. We now prove that E has a committee of size k with score ≤ 4 iff ϕ is

22

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

satisfiable.

The “if” part. Suppose ϕ is satisfiable and let π : X → {true, false} be an assignment

which makes ϕ true. We construct a committee T ⊆ C of size k as follows. Our committee

T contains one candidate in each variable gadget and each piece gadget (this guarantees

|T | = k as the total number of variable and piece gadgets is k). Consider a variable

xi. By our construction, the xi-gadget contains four candidates which have the same

x-coordinates as x̂i. If π(xi) = true (resp., π(xi) = false), we include in T the topmost

(resp., bottommost) candidate in the xi-gadget. Now consider a piece s that is not

adjacent to any clause reference point. We first determine a variable as the associated

variable of s as follows. If s is vertical, then the associated variable of s is just defined as

the variable whose vertical segment contains s. If s is horizontal, then s must belong to

the horizontal segment of some clause zj. In this case, we define the associated variable

of s as the variable whose vertical segment intersects the left (resp., right) endpoint of the

horizontal segment of zj if s is to the left (resp., right) of the reference point ẑj. Let xi

be the associated variable of s. If π(xi) = true, then we include in T the candidate in the

s-gadget that has distance 1 (resp., 0.9) from s− if s is above (resp., below) the x-axis.

Symmetrically, if π(xi) = false, then we include in T the candidate in the s-gadget that

has distance 1 (resp., 0.9) from s− if s is below (resp., above) the x-axis. This finishes

the construction of T . The following lemma completes the “if” part of our proof.

Lemma 1 The score of T in the election E is at most 4.

Proof: For the reduced Euclidean minimax committee instance E = (C, V) and the

constructed committee T ⊆ C, we will show that, for each voter v ∈ V , σv(T) ≤ 4.

Let us begin with the voters in the variable gadgets. For each variable xi, recall

that we place four voters (say v1, v2, v3, v4) and four candidates (say c1, c2, c3, c4) near the

23

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

reference point x̂i. Among the four voters (resp., candidates), v1, v2 (resp., c1, c2) are at

distances 0.01 and 0.02 above x̂i, and v3, v4 (resp. c3, c4) are at distances 0.01 and 0.02

below x̂i, respectively. We claim that for each of v1, v2, v3, v4, the closest four candidates

to that voter belong to the set {c1, c2, c3, c4}. This is because for each of these four voters,

any candidate that belongs to its nearest piece gadget is at least at a distance 0.47 from

that voter, which is strictly more than the distance from that voter to cj for all j ∈ [4],

which is bounded by 0.04. Now recall that our constructed committee T either includes

the topmost (c2) or the bottommost (c4) of the four candidates in the xi-gadget; hence,

the score for each of v1, v2, v3, and v4 is at most 4. This completes the argument for the

voters in all the variable gadgets.

Next, we consider the voters in the piece gadgets. Let s be a piece and let v1, v2, v3, and

v4 (resp., c1, c2, c3, and c4) be the voters (resp., candidates) at distances 0.49, 0.8, 0.9, 1

from s−, respectively. Furthermore, let xi be the variable associated with s. We only

show the proof when s lies above x̂i (the case when s lies below x̂i is similar). We first

consider the case when π(xi) = true. In this case, T includes c4. For each of the voters,

v2, v3 and v4, their distance from c4 is at most 0.2. On the other hand, for each of the

voters v2, v3 and v4, their distance from a candidate in an adjacent piece gadget is at least

at 0.49 (and, their distance from c1 is at least 0.31). Hence, we conclude that the closest

three candidates for v2, v3 and v4 belong to the set {c2, c3, c4}. Therefore, the score for

each these voters is at most 3. Finally, for the voter v1, dist(v1, c4) = 0.51. Hence, v1’s

closest four candidates are {c1, c2, c3, c′4} where c′4 is either the candidate belonging to

the preceding piece gadget of s, placed at s− or it is the candidate placed at a distance

0.02 above the variable reference point x̂i (we are in the latter case when s is adjacent

to x̂i). Therefore, due to the way we construct T , in either case, T includes c′4. (Note

that c′4 exists even when s− is a connection point.) Hence, the score of v1 is at most 4.

We now consider the case when π(xi) = false. In this case, T includes the candidate c3

24

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

from s. As argued above, c3 belongs to the set of closest four candidates for each of the

four voters v1, v2, v3, v4. Hence, the score of committee T for each of the four voters is at

most 4.

Finally, we consider the voters from the clause gadget. We only show our argument

for an arbitrary positive clause zi, as the proof for the negative clauses is similar. We

need to show that at least one of the four closest candidates to zi belongs to T . Consider

the three pieces s1, s2, s3 adjacent to the clause reference point ẑi. Suppose s1 is to the

left of ẑi, s2 is to the right of ẑi, and s3 is below ẑi. By our construction, we have

ẑi = s+1 = s+2 = s+3 . Since ẑi is a connection point and all connection points have even

coordinates, s−1 , s
−
2 , s

−
3 are not connection points. Therefore, there exist pieces s4, s5, s6

such that the right endpoint of s4 is s
−
1 , the left endpoint of s5 is s

−
2 , and the top endpoint

of s6 is s
−
3 . We have s−1 = s+4 , s

−
2 = s+5 , and s−3 = s+6 . In the s4-gadget, there is a candidate

c4 with distance 1 from s−4 (and hence located at s−1). Similarly, there is a candidate c5

in the s5-gadget located at s−2 and a candidate c6 in the s6-gadget located at s−3 . The

candidates c4, c5, c6, together with the candidate in the zi-gadget (which is located at ẑi),

are the four candidates closest to the voter at ẑi, because all pieces except s1, . . . , s6 have

distances at least 2 from ẑi by the fact that the x-coordinates (resp., y-coordinates) of

the vertical (resp., horizontal) pieces are all even numbers. We claim that T includes at

least one of c4, c5 or c6. Recall that π is a valid satisfying assignment. Hence, at least one

of the associated variables of s4, s5 or s6 is true under π. Therefore, by the construction

of T , for at least one of s4, s5 or s6, T contains the candidate belonging to it which is

placed at distance 1 from s−4 , s
−
5 or s−6 , respectively (i.e., T contains one of c4, c5 or c6).

This completes the proof of Lemma 1.

The “only if” part. Suppose there exists a size-k committee T ⊆ C with score at

most 4. We use that committee to construct a satisfying assignment π : X → {true, false}.

We first note the following property of the committee T .

25

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

Lemma 2 T contains exactly one candidate in each variable gadget and exactly one

candidate in each piece gadget.

Proof: We first show that T contains at least one candidate in each variable gadget.

For each variable xi, recall that we place four voters (say v1, v2, v3, v4) and four candidates

(say c1, c2, c3, c4) near the reference point x̂i. Among the four candidates (resp., voters),

c1, c2 (resp., v1, v2) are at distances 0.01 and 0.02 above x̂i, and c3, c4 (resp. v3, v4) are

at distances 0.01 and 0.02 below x̂i, respectively. We recall from the proof of Lemma 1

(paragraph 2) that the closest four candidates to each of v1, v2, v3 and v4 belong to the

set {c1, c2, c3, c4}. Since the score of committee T is at most 4, then, in particular,

σvi(T) ≤ 4 for each i ∈ [4]; hence, T contains at least one of c1, c2, c3, c4. This completes

the argument for the variable gadgets. Next, consider a piece gadget s. Let v1, v2, v3,

and v4 (resp., c1, c2, c3, and c4) be the voters (resp., candidates) placed at distances

0.49, 0.8, 0.9, 1 from s−, respectively. For the voters v2 and v3 a candidate from an

adjacent variable/piece/clause gadget is at least at a distance 0.78/0.57/1.1, respectively,

while the candidates c1, c2, c3, c4 lie within distance 0.41. Therefore, the closest four

candidates for v2 and v3 belong to the set {c1, c2, c3, c4}. Hence, T includes at least one

of c1, c2, c3, c4 for each piece gadget.

At this stage, we recall that the number of variable gadgets is n, the number of piece

gadgets is N − 3m, and the committee size is k = N + n− 3m. Hence, using a counting

argument, we conclude that T contains exactly one candidate from each variable gadget

and each piece gadget.

We note that the total number of variable and piece gadgets is k. Since |T | = k,

using Lemma 2, we conclude that T has no budget to contain any candidate in the clause

gadgets.

Corollary 1 T contains no candidate in the clause gadgets.

26

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

Recall that each variable gadget contains four candidates, two of which are above the

x-axis while the other two are below the x-axis. Consider a variable xi. By Lemma 2,

T contains exactly one candidate in the xi-gadget. If that candidate is above (resp.,

below) the x-axis, we set π(xi) = true (resp., π(xi) = false). We show that π is a

satisfying assignment of ϕ. It suffices to show that every positive (resp., negative) clause

of ϕ contains at least one variable which is mapped to true (resp., false) by π. We

only consider positive clauses, as the proof for negative clauses is similar. We need the

following property of T .

Lemma 3 Let s be a piece above the x-axis that is not adjacent to any clause reference

point, and suppose xi is the associated variable of s. If T contains the candidate in the

s-gadget with distance 1 from s−, then π(xi) = true.

Proof: Consider a piece s above the x-axis that is not adjacent to any clause

reference point, and let xi be the variable associated with s. First, consider the case

when s is not adjacent to the variable reference point x̂i. Let v1, v2, v3, and v4 (resp.,

c1, c2, c3, and c4) be the voters (resp., candidates) placed at distances 0.49, 0.8, 0.9, and 1

from s−, respectively. Moreover, let s′ be the piece below (resp., to the left of) s when s

is a vertical (resp., horizontal) piece. We assume that c4 ∈ T (note that dist(s−, c4) = 1).

We recall from the proof of Lemma 1 (paragraph 3) that the closest four candidates for

v1 are c1, c2, c3, c
′
4 where c′4 is a candidate from the piece s′ placed at a distance 1 from

s′−. Using Lemma 2, we know T only includes c4 from s. Hence, to satisfy σv1(T) ≤ 4,

T must include the candidate c′4. Observe that we can repeat the above argument for all

pieces below (resp., to the left of) s, which implies that for all pieces si below (resp., to

the left of) s, T includes the candidate in si placed at a distance 1 from s−i .

Let xi be the variable associated with s and ŝ be the piece adjacent to the variable

reference point x̂i. Moreover, let v̂1, v̂2, v̂3, and v̂4 (resp., ĉ1, ĉ2, ĉ3, and ĉ4) be the voters

27

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

(resp., candidates) placed at distances 0.49, 0.8, 0.9, and 1 from ŝ−, respectively. The

four closest candidates to v̂1 belong to the set {ĉ1, ĉ2, ĉ3, c5} where c5 is the candidate

at a distance 0.02 above x̂i added corresponding to the xi-gadget. Using the argument

above, we know T only includes ĉ4 from the piece ŝ. Hence, to satisfy σv̂1(T) ≤ 4, T

must include the candidate c5. Recall that for an arbitrary variable xj for j ∈ [n], if T

includes a candidate above the reference point x̂j, we set xj = true. Since, c5 ∈ T and c5

lies above x̂i, we set xi = true. This completes the proof of Lemma 3.

We will now use Lemma 2, Lemma 3 and Corollary 1 to show that the constructed

assignment π satisfies ϕ. We will show this only for positive clauses as the argument for

negative clauses is similar.

Let zi be a positive clause. We want to show that at least one variable of zi is

mapped to true by π. Consider the three pieces s1, s2, s3 adjacent to the reference point

ẑi. Suppose s1 is to the left of ẑi, s2 is to the right of ẑi, and s3 is below ẑi. By

our construction, we have ẑi = s+1 = s+2 = s+3 . Since ẑi is a connection point and all

connection points have even coordinates, s−1 , s
−
2 , s

−
3 are not connection points. Therefore,

there exist pieces s4, s5, s6 such that the right endpoint of s4 is s−1 , the left endpoint of

s5 is s−2 , and the top endpoint of s6 is s−3 . We have s−1 = s+4 , s
−
2 = s+5 , and s−3 = s+6 .

In the s4-gadget, there is a candidate c4 with distance 1 from s−4 (and hence located at

s−1). Similarly, there is a candidate c5 in the s5-gadget located at s−2 and a candidate

c6 in the s6-gadget located at s−3 . The candidates c4, c5, c6, together with the candidate

in the zi-gadget (which is located at ẑi), are the four candidates closest to the voter

at ẑi, because all pieces except s1, . . . , s6 have distances at least 2 from ẑi by the fact

that the x-coordinates (resp., y-coordinates) of the vertical (resp., horizontal) pieces are

all even numbers. Since the score of T is at most 4, T must contain at least one of

these four candidates. However, T does not contain the candidate in the zi-gadget by

Corollary 1. Thus, T ∩{c4, c5, c6} ≠ ∅. By Lemma 3, this implies that at least one of the

28

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

associated variables of s4, s5, s6 is true. Note that these associated variables are just the

three variables in the clause zi. Therefore, π makes zi true. This completes the “only if”

part of our proof. As a result, we see that ϕ is satisfiable iff there exists a committee in

E of size k whose score is at most 4.

Finally, the reduction can clearly be done in polynomial time, and so we have estab-

lished the following result.

Theorem 1 Euclidean minimax committee is NP-hard in all dimensions d ≥ 2. This

claim holds even if the voter and candidate sets are identical.

In fact, our construction also rules out the possibility of a PTAS as it is hard to decide

in polynomial time whether the minimum score is ≤ 4 or ≥ 5. By slightly modifying the

proof, we can also show that even computing an approximation for Euclidean minimax

committee within any sublinear factor of |C| is hard.

Theorem 2 For any constant ϵ > 0, it is NP-hard to achieve a |C|1−ϵ-approximation

for Euclidean minimax committee in Rd for any d ≥ 2.

Proof: Our proof is a slight modification of the proof of NP-hardness from The-

orem 1. We will show that even computing an approximation for Euclidean minimax

committee within a sublinear factor of |C| is hard.

Given a PM-3SAT instance with formula ϕ, we construct the orthogonal embedding

and create the clause gadgets as before. Next, we slightly change the piece gadgets as

follows. For each piece s that is not adjacent to a clause reference point, we choose

4 points with distances 0.47, 0.8, 0.9, 1 from s− (call them s1, s2, s3, s4), and introduce

a voter and a candidate at each of these points. Also, we create an additional set of

candidates as follows. Note that s4 is an endpoint of s. Thus, there can be two or three

pieces adjacent to s4, depending on whether s4 is a connection point or not. It follows

29

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

that when s is vertical (resp., horizontal), there is no piece adjacent to s4 in one of the

left or right (resp., top or bottom) directions. Without loss of generality, assume s is

vertical and there is no piece adjacent to s4 on its left. Let s′4 (resp., s′3) be the point

to the left of s4 (resp., s3) with distance 0.19 from s4 (resp., s3). We then place (nm)w

candidates at s′4 (resp., s′3) for a sufficiently large constant w. The candidates/voters at

s1, s2, s3, s4 and the additional candidates at s′3, s
′
4 form the s-gadget. Finally, recall that

in each xi-gadget, we have candidates/voters at the four points near x̂i two of which are

at distances 0.01 and 0.02 above x̂i and the other two of which are at distances 0.01 and

0.02 below x̂i. Let p+ (resp., p−) be the point at distance 0.02 above (resp., below) x̂i.

Let q+ (resp., q−) be the point to the left of p+ (resp., p−) with distance 0.05 from p+

(resp., p−). We place (nm)w additional candidates at q+ (resp., q−). This completes the

construction. The desired committee size is again k = N + n− 3m.

We first show the following structural lemma for the constructed instance.

Lemma 4 If ϕ is satisfiable, then there exists a size k committee with score at most 4;

otherwise, every size k committee has score at least (nm)w.

Proof: First, to show that when ϕ is satisfiable, there exists a size-k committee

with score at most 4, we refer the reader to the “if” part of the argument of equivalence

for the NP-hardness result in Theorem 1 where we construct a committee T . It can be

easily verified that the same committee T also has the score at most 4 in the instance

constructed for Lemma 4.

Next, we show that if ϕ is unsatisfiable, then every size-k committee has score at least

(nm)w. For a contradiction, assume that when ϕ is unsatisfiable, then in the reduced

instance, there is a size-k committee T with score strictly less than (nm)w. We will first

show the following claim.

30

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

Claim 1 T contains exactly one candidate in each variable gadget and exactly one can-

didate in each piece gadget. Moreover, T contains no candidate in the clause gadgets.

Proof: We first show that T contains at least one candidate in each variable gadget.

For each variable xi, recall that we place four voters (say v1, v2, v3, v4) and four can-

didates (say c1, c2, c3, c4) near the reference point x̂i. Among the four voters (resp.,

candidates), v1, v2 (resp., c1, c2) are at distances 0.01 and 0.02 above x̂i, and v3, v4 (resp.

c3, c4) are at distances 0.01 and 0.02 below x̂i, respectively. Moreover, let q+ (resp., q−)

be the point to the left of v2 (resp., v4) at a distance 0.05; we place (nm)w candidates

at q+ (resp., q−). Observe that the closest (nm)w candidates for the voters v1, v2, v3, v4

belong to the xi-gadget. This is because any candidate from the nearest piece gadget is

at least at a distance 0.4. Hence, T contains at least one candidate from each variable

gadget. Next, we consider a piece gadget s. We first recall the construction of s. Let

s1, s2, s3, and s4 be the points placed at distances 0.47, 0.8, 0.9, 1 from s−, and let s′3, s
′
4

be the points placed at a distance 0.19 to the left of the points s3, s4, respectively. We

place a voter and a candidate at each of s1, s2, s3 and s4, and place (nm)w candidates at

s′3 and s′4. Notice that the closest (nm)w candidates for the voter placed at s4 include

the candidates placed s4, s3 and s′4 (which belong to s). Hence, T contains at least one

candidate from each piece gadget.

At this stage, we recall that the number of variable gadgets is n, the number of piece

gadgets is N − 3m, and the committee size is k = N + n− 3m. Hence, using a counting

argument, we conclude that T contains exactly one candidate from each variable gadget

and each piece gadget. Clearly, T cannot contain any candidate from the clause gadgets.

This completes the proof of Claim 1.

Next, we strengthen Claim 1 as follows: For each piece gadget s, we show that T

contains the candidate placed at either s3 or s4. Indeed, consider the voters placed at s3

31

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

and s4. The closest (nm)w candidates for the voter at s3 include the candidates placed

at s1, s2, s3, s4, s
′
3. And, for the voter at s4, it’s closest (nm)w candidates include the

candidates placed at s3, s4, s
′
4. By Claim 1, we know T includes exactly one candidate

in s; hence, T must include a candidate placed at either s3 or s4 to bound the score for

the voters at s3 and s4 simultaneously. By a similar argument, for each variable gadget,

we can show that T must include c1, c2, c3 or c4 (in particular, T cannot include any

candidates placed at q+ or q−). Therefore, we have shown that T does not contain any

candidate placed on one of the points with (nm)w candidates.

We now claim that we can recover a satisfying assignment π for the PM-3SAT instance

ϕ. We define π as follows: For each variable xi, if T includes a candidate from the xi-

gadget placed above the x-axis, then π(xi) = true; otherwise π(xi) = false. We can

now use a similar argument to the “only if” part of the argument of equivalence for the

NP-hardness result from Theorem 1 to show that π is a satisfying assignment of ϕ (due

to the similarity of the arguments, we skip the details). But this is a contradiction, since

we started with an unsatisfiable instance ϕ of PM-3SAT. This completes the proof of

Lemma 4.

Our construction satisfies |C| = (4N+4n−11m)+(nm)wN , and sinceN = O(nm) and

we can choose any sufficiently large value for w, we can guarantee that (nm)w ≥ |C|1−ϵ

for any small constant ϵ > 0. This completes the proof of Theorem 2.

In the rest of this chapter, we complement the hardness results of the previous sections

with nearly-optimal approximation algorithms.

2.2 Approximation using epsilon-nets

Our first algorithm computes in polynomial-time a size-k committee of minimax score

O(m/k) for d = 2 and O((m/k) log k) for d ≥ 3. Our algorithm uses the notion of ϵ-

32

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

nets, which are commonly used in computational geometry [29] for solving set cover and

hitting set problems. Let us first briefly describe this notion.

Let X be a finite set of points in Rd and let R be a set of ranges (subsets of X) in

Rd. A subset A ⊆ X is called an ϵ-net of (X,R) if A intersects all those ranges in R that

are ϵ-heavy, i.e., they contain at least an ϵ-fraction of the points in X. In other words,

A is an ϵ-net for (X,R) if A ∩ R ̸= ∅ for any R ∈ R with |R ∩X| ≥ ϵ|X|. There exists

an ϵ-net of size O(1
ϵ
) for ranges defined by disks in R2, and of size O(1

ϵ
log 1

ϵ
) for ranges

defined by balls in Rd, for any constant dimension d ≥ 3 [29]. In both cases, ϵ-nets can

be computed in polynomial time.

Building on this result, we now present our algorithm.

Theorem 3 Given a d-Euclidean election E = (C, V), we can compute in polynomial

time a size k committee with minimax score O(m/k) for d = 2 and score O((m/k) log k)

for d ≥ 3, where m = |C|.

Proof: In order to convey the intuition more clearly, let us first show how to find

an O(k)-size committee with score at most ⌈(m/k) log k⌉. Given a d-Euclidean election,

let C be the set of the m candidates with their embedding in Rd. For each voter v, we

consider a d-dimensional ball Rv centered at v containing the ⌈(m/k) log k⌉ closest points

of C to v. Let R be the set of all these balls. Each ball of R is ϵ-heavy for ϵ = log k/k

because it contains an ϵ-fraction of the m candidates. Therefore, in polynomial time we

can find an ϵ-net T ⊆ C for (C,R) of size O(1
ϵ
log 1

ϵ
) = O(k). By the definition of ϵ-net,

T contains at least one point from each Rv, and thus points of T form a committee of

size O(k) with minimax score ⌈(m/k) log k⌉.

To reduce the committee size to k while increasing the score by only a constant

factor, we enlarge each ball Rv to include the α(m/k) log k closest candidates of v, for an

appropriate constant α. Each ball is now ϵ′-heavy, for ϵ′ = α log k/k, which guarantees

33

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

an ϵ′-net T ⊆ C for (C,R) of size O(1
ϵ′
log 1

ϵ′
) = O(k/α). With an appropriate choice of

α, we can ensure |T | ≤ k and achieve the score of α(m/k) log k = O((m/k) log k).

When d ≤ 2, the ϵ-nets of this set system have size O(1
ϵ
), and therefore we can

construct a committee of size k with score O(m/k).

The O((m/k) log k) and O(m/k) bounds of Theorem 3 are essentially the best possi-

ble. In particular, we can construct instances of Euclidean elections in which no size-k

committee can achieve the minimax score better than Ω(m/k).

Theorem 4 For any d ≥ 1, there exist Euclidean elections in Rd such that any committee

T ⊆ C of size k has score Ω(m/k), where m = |C|.

Proof: We give an example of a one-dimensional election instance where any size-k

committee has score Ω(m/k) which can then be embedded in higher dimensions.

Consider a set of n voters on the real line at positions in [n], and a set of m candidates

at positions i(n/m), for i ∈ [m], assuming n is a multiple of m. An optimal size-k

committee corresponds to a partition of the line into k pieces, each containing Θ(n/k)

voters. Each such group also contains Θ(m/k) candidates, and only one of them is in

the committee. Therefore, in each group, there is at least one voter (e.g., the leftmost or

the rightmost) whose score is Ω(m/k).

2.2.1 Lower bound on the optimal score when C ⊆ V

We now consider a special class of election instances when the candidate set is a subset

of the voter set (namely, C ⊆ V). We note that most representative elections satisfy this

condition because each candidate is also a voter.

Notice that Theorem 4 cannot be used to bound the approximation ratio of our

algorithm in Theorem 3, because the lower bound is only derived for the hard instances

34

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

vj

vi

c

60◦

P1

P2P3

P4

P5 P6

Figure 2.3: Partition of space across the candidate c. Adjacent solid lines form a 60◦

angle at c. The part P1 contains the voters vi, vj.

constructed in the proof. In what follows, we prove that there is a lower bound of Ω(m/k)

on the optimal score for all the instances where C ⊆ V .

Theorem 5 For a d-Euclidean election E = (C, V) with C ⊆ V , any size-k committee

in E has score Ω(m/k), where m = |C|.

Proof: We will only show the proof in d = 2 dimensions, since a similar idea works

for all constant dimensions d ≥ 3. Consider a sub-election E ′ = (C ′, V ′) of E such that

C ′ = V ′ = C, i.e., E ′ only contains those points in E which have both a candidate and a

voter placed on them. Hence, the number of candidates and the number of voters in E ′

is m. We will show that any size-k committee in E ′ has score Ω(m/k). Since V ′ ⊆ V and

C ′ = C, it implies that the score of any size-k committee in E is also Ω(m/k). Therefore,

for the rest of this proof, we will only work with election E ′.

We begin by showing the following structural lemma for the constructed election E ′.

Lemma 5 In E ′ = (C ′, V ′), each candidate belongs to the set of the closest s candidates

for at most 6(s−1)+1 voters. In other words, a candidate can be one of the top s choices

for at most 6(s− 1) + 1 voters.

Proof: The proof is trivial for s = 1; hence, we consider the case when 1 < s ≤

m. Consider an arbitrary candidate c ∈ C ′. We equipartition the space into six parts

35

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

P1, P2, . . . , P6 using three lines across c (see Figure 2.3). We assume that no candidate

or voter lies on any of these three lines (note that this can be ensured by slightly moving

the candidates/voters while ensuring that the rankings for each voter does not change).

We claim that c belongs to the set of the closest s candidates for at most s voters

in each part Pi for i ∈ [6]. Without loss of generality, we prove our claim for P1. Let

P̂ = {p̂1, p̂2, . . . , p̂q} where q ≥ s (when q ≤ s, the proof is trivial) be the points in P1

which have a voter and a candidate. Note that P̂ is sorted according to the distance

of it’s points from c. Let V̂ = {v̂1, v̂2, . . . , v̂q} and Ĉ = {ĉ1, ĉ2, . . . , ĉq} be the set of

voters and candidates, respectively, such that v̂i, ĉi are located at p̂i. We will show

that for each pair i, j ∈ [q] with j < i, vi prefers cj to c. We need to show that

dist(vi, cj) < dist(vi, c). Recall that dist(vi, c) > dist(vj, c). Hence, using the sine rule,

we know ∠cvjvi > ∠cvivj. Furthermore, if dist(vi, cj) > dist(vi, c), then using the sine

rule, we get ∠vicvj > ∠cvjvi > ∠cvivj. But observe that ∠vicvj < 60◦. This implies that

∠vicvj+∠cvjvi+∠cvivj < 180◦, which is a contradiction. Hence, dist(vi, cj) < dist(vi, c).

This completes the proof of Lemma 5.

Let T = {t1, t2, . . . , tk} be an optimal committee in E ′. We partition the set of

voters V ′ into k parts V ′
1 , V

′
2 , . . . , V

′
k such that voters in V ′

i have ti as their most preferred

candidate in T for i ∈ [k]. Using an averaging argument, we know that there exists some

index j ∈ [k] such that V ′
j contains at least m/k voters. Since all the voters in V ′

j are

represented by tj, using Lemma 5, we conclude that there is a voter v ∈ V ′
j such that

σv(T) ≥ m
6(k−1)+1

. This completes the proof of Theorem 5.

In light of the above lower bound, it follows that whenever the candidate set is a

subset of the voter set, Theorem 3 implies an O(1)-approximation of the minimax score

for d = 2, and an O(log k)-approximation for d ≥ 3.

Corollary 2 Given a d-Euclidean election E = (C, V) with C ⊆ V , we can compute in

36

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

polynomial time a size-k committee with minimax score within a constant factor of the

optimal for d = 2, and within a factor of O(log k) for d ≥ 3.

2.2.2 The r-Borda Rule

A natural generalization of the Chamberlin Courant rule is the so-called r-Borda rule

where the score of each voter is determined by its nearest r candidates in the committee

for a given r ≤ k. More specifically, the score of a voter v with respect to a committee

is the sum of the ranks of its nearest r candidates in the committee in the preference list

of v. The minimax score of a committee T is the maximum over all voter scores. Our

goal is to find a committee T of size k that minimizes σ(T), where

σ(T) = max
v∈V

(
min

Q⊆T,|Q|=r

(∑
c∈Q

σv(c)

))
.

We show that for any election E = (C, V) in Rd, we can compute a size-k commit-

tee with an r-Borda score of O((r2m/k) log k) using a modification of the algorithm in

Theorem 3.

Theorem 6 Given an election in any fixed dimension d, we can find in polynomial time

a size-k committee with minimax r-Borda score O((r2m/k) log k). Furthermore, if d ≤ 2,

the score can be further improved to O(r2m/k).

Proof: We only give a high-level idea of our algorithm as the rest of the details are

similar to the proof of Theorem 3.

For each voter v ∈ V , we create a ball Rv centered at v that contains ⌈α(rm/k) log k⌉+

r candidates for a sufficiently large constant α. Let R = {Rv : v ∈ V } and ϵ =

α(r/k) log k. Our algorithm runs in r rounds. In each round, we first compute an ϵ-net

T0 ⊆ C for (C,R) of size O(1
ϵ
log 1

ϵ
). Since α is sufficiently large, we have |T0| ≤ k/r.

37

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

Then we add the candidates in T0 to the committee T and remove them from C. After r

rounds, we obtain our committee T , which is of size at most k. To see that the r-Borda

score of T is O((r2m/k) log k), we observe that each ball Rv contains at least r candidates

in T , which implies that the score of v with respect to T is r(⌈α(rm/k) log k⌉ + r) =

O((r2m/k) log k). Recall that T is the (disjoint) union of r ϵ-nets. If Rv contains at least

one candidate in each of the r ϵ-nets, then |Rv ∩ T | ≥ r, and we are done. So suppose

Rv does not contain any candidate in the ϵ-net generated in the i-th round. This means

Rv is not ϵ-heavy in the i-th round. But Rv contains at least m/ϵ+ r candidates in the

original C. Therefore, in the i-th round, at least r candidates in Rv are removed from C,

and they are already included in T . It follows that |Rv ∩ T | ≥ r.

In R2, the score of the committee can be further improved to O(r2m/k) using the same

approach with ϵ-nets of size O(1/ϵ) for disks. This completes the proof of Theorem 6.

We observe that the bound O(r2m/k) in the above theorem is tight. In particular,

there are instances for which an optimal committee’s r-Borda score is Ω(r2m/k)—this

can be verified using the instance described in the proof of Theorem 4—and so this serves

as the benchmark score for r-Borda.

2.3 Bicriterion Approximation by Relaxing the Com-

mittee Size

The hardness result of Theorem 2 rules out any efficient algorithm for Euclidean

election with a good approximation guarantee but only under the rigid constraint that

the committee size is at most k. In this section, we study the problem in the setting

where we are allowed to relax the committee size. Specifically, we ask the following

natural question: Can we efficiently compute a committee of size slightly larger than k

38

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

whose score is close to the optimal score of a size-k committee?

First, we show that if we are allowed to increase the committee size by a (small)

multiplicative factor, then one can achieve (or improve) the optimal score of a size-k

committee.

Theorem 7 Given a d-Euclidean election, we can compute in polynomial time a com-

mittee of size (1 + ϵ)k, given any fixed ϵ > 0, when d = 2 and of size O(k logm), where

m is the number of candidates, when d ≥ 3, whose score is smaller than or equal to the

score of any size-k committee.

Proof: We prove the result for a Euclidean election E = (C, V) in d = 2; the proof

for higher dimensions is similar. Suppose we know that the optimal size-k committee of

E has score σ⋆. We show how to compute a committee of size (1 + ϵ)k whose score is at

most σ⋆. For each voter v ∈ V , we consider the smallest disk Rv centered at v containing

its closest σ⋆ candidates in C. Let R = {Rv : v ∈ V }. A hitting set of the set system

(C,R) is a subset H ⊆ C such that H ∩ R ̸= ∅ for all R ∈ R. If a committee has score

at most σ⋆, then it must be a hitting set of (C,R), and since there is a size-k committee

with score σ⋆, the minimum hitting set of (C,R) has size at most k. By using the PTAS

for disk hitting set [30], we can compute a hitting set for (C,R) of size (1 + ϵ)k, which

is the desired committee. Since we do not know the value of σ⋆, we simply try all values

from 1 to m, and pick the smallest one for which we have a hitting set of size (1 + ϵ)k.

In higher dimensions, we can apply the same approach. The only difference is that

we do not have a PTAS for ball hitting set in Rd for d ≥ 3. But we can apply the greedy

hitting set algorithm to compute a hitting set of size O(k logm) if a size-k hitting set

exists. Therefore, the above algorithm computes a committee of size O(k logm) whose

score is at most the score of any size-k committee.

On the other hand, we prove that if we can only increase the committee size by an

39

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

additive constant, we are not able to achieve any good approximation for the minimax

score.

Theorem 8 Let α, ϵ > 0 be constants. Given a Euclidean election E = (C, V) in Rd for

d ≥ 2 and a number k ≥ 1, it is NP-hard to compute a committee of size k + α whose

score is at most |C|1−ϵ · σ⋆, where σ⋆ is the minimum score of a size-k committee.

Proof: Our proof is a minor modification of the proof of Theorem 2; hence, we

describe the construction and only give the main idea of the proof of equivalence.

We begin by constructing an election instance E ′ = (C ′, V ′) as described in the proof

of Theorem 2 and do the further modifications as follows: Let E = (C, V) be an election

instance constructed by taking α + 1 distinct copies of E ′, i.e., C = C ′1 ∪ C ′2 ∪ · · · ∪ C ′α+1

and V = V ′
1 ∪V ′

2 ∪ · · · ∪V ′
α+1. In the Euclidean embedding of the election E, we keep the

Euclidean embeddings of the individual copies of E ′ the same as before but place these

α + 1 copies far away from each other so that any voter v ∈ V ′
i prefers all candidates

in its copy to any candidate in any other copy. Recall that in E ′, the committee size is

k′ = N +n−3m according to the construction in Theorem 2 (where N , n, and m are the

total number of pieces, variable, and clauses, in the orthogonal embedding of the PM-

3SAT instance, respectively). For the election E we set the committee to k = (α+ 1)k′.

This completes the construction of the reduced instance.

The main idea here is that any committee T for the reduced election instance E can

be viewed as the disjoint union of candidates in the committees (T ′
i) for each individual

election E ′
i. This is because a voter v ∈ V ′

i prefers any candidate ci ∈ C ′i to a candidate

cj ∈ C ′j for all i, j ∈ [α] with i ̸= j. Hence, even if we select a committee of size at

most k + α in E (i.e., |T | ≤ k + α), at least one of the copies of E ′ (in E) will have a

committee of size k′ (i.e. there exists T ′
i such that |T ′

i | ≤ k′). Without loss of generality,

assume E ′
1 is one such copy. Using Theorem 2, we know that it is NP-hard to achieve

40

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

even a |C ′1|1−ϵ-approximation for Euclidean minimax committee in E ′
1 for any ϵ > 0.

Since we consider minimax Chamberlin-Courant rule, the approximation factor in E is

the max over the approximation factors in all copies of E ′ in E. This implies that a

polynomial-time algorithm cannot achieve a |C ′1|1−ϵ-approximation for any ϵ > 0 in E.

Since |C| ≤ (α+1)|C ′1|, where α is a constant, this completes the proof of Theorem 8.

2.4 Approximation by combining Cardinal and Or-

dinal Score

In the previous section, we showed that for any instance we can find a minimax

committee of optimal score if we increase the committee size by a small (multiplicative)

factor. In this section, we suggest an alternative way to assess the approximation quality

while keeping the committee size k.

To introduce this criterion, let us consider an election E = (C, V) and suppose the

optimal score of a size-k committee is σ⋆. In our approximation, we are looking for a

size-k committee in which the candidate closest to each voter v ∈ V has rank not much

larger than σ⋆ in the preference list of v. Our hardness proof shows that in general this is

not possible because there may be many candidates at roughly the same distance from v,

but with a large difference in ranks, and any polynomial time algorithm is bound to end

up with a bad minimax score for some v. A natural way to get rid of this pathological

situation is to treat two candidates with roughly the same distance from v as if they have

similar ranks.

With this motivation, we introduce the following δ-optimality criterion. We say a

committee T ⊆ C of size k is δ-optimal, for δ ≥ 1, if for each voter v ∈ V the distance

from v to its closest candidate in T is at most δ times the distance from v to its rank-σ⋆

41

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

candidate.

We now show how to compute a 3-optimal committee in polynomial time for any

d-Euclidean election. Let E = (C, V) be a Euclidean election and k ≥ 1 be the desired

committee size. For convenience, let us first assume that the optimal score σ⋆ of a size-k

committee of E is known. For each voter v ∈ V , define d⋆v as the distance from v to

the rank-σ⋆ candidate in the preference list of v. We say a voter v is satisfied with a

subset T ⊆ C if there exists a candidate c ∈ T such that dist(c, v) ≤ 3d⋆v. We denote

by S[T] ⊆ V the subset of voters satisfied with T . Then a committee T ⊆ C (of size

k) is 3-optimal if every v ∈ V is satisfied with T . Our algorithm begins with an empty

committee T = ∅ and iteratively adds new candidates to T using the following three

steps until S[T] = V :

1. v̂ ← argminv∈V \S[T] d
⋆
v.

2. ĉ← a candidate within distance d⋆v̂ from v̂.

3. T ← T ∪ {ĉ}.

In words, in each iteration, we find the unsatisfied voter v̂ with the minimum d⋆v̂, and

then add to T a (arbitrarily chosen) candidate ĉ ∈ C within distance d⋆v̂ from v̂. The

algorithm terminates when S[T] = V , and so all voters are satisfied with T at the end.

We only need to show that |T | ≤ k; if |T | < k, we can always add extra candi-

dates while keeping all voters satisfied. Consider an optimal size-k committee Topt =

{c1, . . . , ck}, with score σ⋆, and let Vi ⊆ V be the subset of voters whose closest candi-

date in Topt is ci. Thus, V1, . . . , Vk form a partition of V . We say two voters v, v′ ∈ V

are separated if they belong to different Vi’s.

Suppose our algorithm terminates in r iterations. We will show that r ≤ k. Let v̂j

(resp., ĉj) be the voter v̂ (resp., the candidate ĉ) chosen in the j-th iteration, and let

42

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

Tj be the committee T at the beginning of the j-th iteration. We claim the following

property of our greedy algorithm.

Lemma 6 The voters v̂1, . . . , v̂r are pairwise separated.

Proof: Let j, j′ ∈ [r] such that j ̸= j′, and we want to show that v̂j and v̂j′ are

separated. Without loss of generality, assume j < j′ and let i ∈ [k] be such that v̂j ∈ Vi.

We claim that Vi ⊆ S[Tj+1]. Consider a voter v ∈ Vi. If v ∈ S[Tj], then v ∈ S[Tj+1].

So assume v ∈ Vi\S[Tj]. In this case, d⋆v̂j ≤ d⋆v. Since the score of Topt is σ⋆, we have

dist(ci, v) ≤ d⋆v and dist(ci, v̂j) ≤ d⋆v̂j ≤ d⋆v. Furthermore, by the construction of ĉj, we

have dist(ĉj, v̂j) ≤ d⋆v̂j ≤ d⋆v. It follows that

dist(ĉj, v) ≤ dist(ĉj, v̂j) + dist(v̂j, ci) + dist(ci, v) ≤ 3d⋆v.

Therefore, v is satisfied with Tj+1 = Tj ∪ {ĉj}, i.e., v ∈ S[Tj+1]. Based on this, we can

deduce that v̂j′ /∈ Vi, because v̂j′ /∈ S[Tj′] and Vi ⊆ S[Tj+1] ⊆ S[Tj′]. Since v̂j ∈ Vi and

v̂j′ /∈ S[Tj′], v̂j and v̂j′ are separated.

Thus, the voters v̂1, . . . , v̂r belong to different Vi’s, which implies that r ≤ k and

|T | = r ≤ k, proving the correctness of our algorithm.

Finally, notice that in our algorithm we assumed σ⋆ is known, but this assumption

is easy to get rid of. We can try each possible value from 1 to m = |C|, and choose the

smallest number σ⋆ ∈ [m] for which the algorithm returns a committee of size at most k.

Thus, we proved the following.

Theorem 9 Given a Euclidean election E = (C, V) in any dimension and k ≥ 1, one

can compute a 3-optimal committee of size k in polynomial time.

Complementary to the above algorithmic result, we can also show the following hard-

ness result.

43

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

Theorem 10 For any δ < 2, unless P=NP, there is no polynomial time algorithm to

compute a δ-optimal committee of size k for a given Euclidean election in Rd for d ≥ 2.

Proof: We will show that if there is a polynomial time algorithm which computes a

δ-optimal committee for δ < 2, then it can be used to design a polynomial-time procedure

to distinguish between satisfiable and unsatisfiable instances of PM-3SAT.

First, we reduce a PM-3SAT instance ϕ to a d-dimensional Euclidean election. Our

construction is a slight modification of the one used in Theorem 1. In particular, for each

variable xi, let si be the piece adjacent to the reference point x̂i placed above it. We

modify si as follows: First, we remove all points (along with the candidates/voters placed

on them) from si. Next, we move x̂i up to a distance 0.5 above s−i so that x̂i lies at the

midpoint of si, i.e., the x-axis now passes through the midpoint of si. Furthermore, we

change the variable gadget to only have three points: one at the reference point x̂i, and

one above and one below it at a distance of 1/6. We put a candidate and a voter at each

of these three points. The total number of candidates/voters in the variable gadgets is 3n.

Moreover, for each clause gadget zi, we place only a voter at the clause reference point

ẑi. Overall, the clause gadgets contain m voters (and no candidates). Finally, we change

each nonempty piece gadget s to only contain three points at distances 1/6, 1/2, 5/6 from

s−, and we place a candidate and a voter at each of these three points. The total number

of candidates/voters in the piece gadgets is 3(N − 3m− n) where N is the total number

of pieces in the orthogonal embedding of the PM-3SAT instance. Recall that for each of

the m clauses, the three pieces adjacent to the clause reference point ẑi are empty, and

for each variable xi, there is a piece (si) which only contains points corresponding to a

variable gadget.

Overall, we obtain an election E = (C, V) that consists of 3N − 8m voters and

3N − 9m candidates. We now set the desired committee size to be k = N − 3m. Using

44

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

similar arguments to the argument of equivalence for the reduction in Theorem 1, we can

show that E has a committee of size k with score at most 3 iff the PM-3SAT instance

is satisfiable. Next, to show that it is unlikely to have an efficient algorithm to compute

δ-optimal committees for any δ < 2, we now state the main structural property of our

construction.

Observation 1 In the constructed election E = (C, V), for all voters v ∈ V , their

closest three candidates are within the distance 1/3, and the distance to the fourth ranked

candidate is 2/3.

Let δ < 2 be a constant and let P be a polynomial-time algorithm which computes

a δ-optimal committee. We will show that P can distinguish satisfiable and unsatisfi-

able instances of PM-3SAT in polynomial time. Consider a reduced election instance

E = (C, V) constructed from a PM-3SAT instance ϕ, and let T be the δ-optimal com-

mittee returned by P . For a committee T , we compute the distance dmax which is

the maximum distance of a voter v ∈ V from its most preferred candidate in T , i.e.

dmax = maxv∈V (minc∈T dist(v, c)). Clearly, given a committee T , dmax can be computed

in a polynomial time.

Lemma 7 The instance ϕ is satisfiable iff dv < 2/3.

Proof: We first show that if ϕ is a satisfiable PM-3SAT instance then dmax < 2/3.

Let E = (C, V) be the election constructed using ϕ. Recall that if ϕ is satisfiable, then

σ∗ ≤ 3 in the reduced instance E (i.e., the optimal rank in E is at most 3). We now

use Observation 1 to conclude that d∗v ≤ 1/3 for all voters v ∈ V . Hence, in a δ-optimal

committee, each voter has its representative within distance strictly less than 2/3, i.e.,

dmax < 2/3. We now turn to the other direction and show that if dmax < 2/3 then ϕ is

satisfiable. We use Observation 1 to conclude that each voter v ∈ V is represented by

45

Winner Determination Under the Chamberlin-Courant Rule Chapter 2

one of its closest three candidates, i.e., σ∗ ≤ 3. Therefore, ϕ is satisfiable. This completes

the proof for Lemma 7.

Hence, algorithm P combined with our reduction gives a polynomial-time procedure

to distinguish satisfiable and unsatisfiable instances of PM-3SAT which is impossible,

unless P=NP. This completes the proof of Theorem 10.

2.5 Bibliographic notes

For a general introduction to multi-winner elections, we refer the reader to the works

of [31, 32, 33]. The work of [34] studies the computational complexity and axiomatic

properties of various egalitarian committee scoring rules under the general preferences.

For computing a winning committee under the Chamberlin-Courant rule, polynomial-

time algorithms are known only for restricted preferences such as single-peaked, single-

crossing, 1D Euclidean, etc. [1, 14, 15]. Very little is known about the more general

d-dimensional Euclidean setting considered in this chapter with the exception of a work

of [35], which shows NP-hardness for the approval set voting rule for the utilitarian

objective in 2-dimensional Euclidean elections.

Constant factor approximations are often easier to achieve under the utilitarian ob-

jective. For instance, [36] present several nearly-optimal approximation bounds; [37]

presents a constant factor approximation for minimizing the weighted sum of ranks of

the winning candidates; and [38] presents a constant factor approximation for minimizing

the sum when σv(c) is an arbitrary cardinal value. In contrast, for the minimax objective,

mostly inapproximability results are known, and only under general preferences [37]. The

work in this chapter is the first attempt to study ordinal preferences for the minimax

objective under restricted (geometric) preferences.

46

Chapter 3

Fault-Tolerant Committee Selection

(FTCS)

In this chapter we consider the computational complexity of adding fault tolerance into

spatial voting (also known as Euclidean committee selection problem). Recall that in

Euclidean committee selection problem, the voters and the candidates are both modeled

as points in some d-dimensional space, where each dimension represents an independent

policy issue that is important for the election, and each voter’s preference among the

candidates is implicitly encoded by a distance function (we refer the reader to Chapter 2

for a formal definition). For example, in the simplest 1-dimensional setting, voters and

candidates are points on a line indicating their real-valued preference on a single issue.

Several aspects of Euclidean committee selection such as axiomatic properties, fair-

ness, winning committee determination have been studied in the past [39, 40, 41] but

the work in this chapter is first to consider fault-tolerance, that is, how robust a cho-

sen committee is against the possibility that some of the winning members may default.

Committee selection problems model a number of applications in the social sciences and

in computer science where such defaults are not uncommon, such as democratic elections,

47

Fault-Tolerant Committee Selection (FTCS) Chapter 3

staff hiring, choosing public projects, locations of public facilities, jury selection, cache

management, etc. [5, 4, 7, 1, 2, 6, 3]. In this chapter, we are particularly interested in

designing algorithms to address questions of the following kind: If some of the winning

members default, how badly does this affect the overall score of the committee? Or, how

much does the committee score suffer if a worst-case subset of size f defaults? Finally,

can we proactively choose a committee in such a way that it can tolerate up to f faults

with the minimum possible score degradation? We begin by formalizing these problems

more precisely and then describing our results.

3.0.1 Problem Statement

Let E = (C, V) be a Euclidean election. In this chapter, we will use the Euclidean

distance of a voter to the closest committee member to measure the quality of the commit-

tee. Formally, the score of a committee T ⊆ C for v is defined as σ(v, T) = minc∈T d(v, c),

and the score of T as σ(T) = maxv∈V σ(v, T). Note that the above scoring function is

same as the Chamberlin-Courant voting rule or the k-center objective [12].

The fault tolerance of a committee is parameterized by a positive integer f , which is

the upper bound on the number of candidates that can fail.1 Throughout the Chapter,

we use the notation J to denote a failing set of candidates. We are allowed to replace

the failing members of J with any set of at most |T ∩ J | candidates from C \ J . We

often denote this set of replacement candidates by R. However, we must keep all the

non-failing members of T in the committee — that is, the replacement committee is the

set (T \ J) ∪ R — and throughout the chapter our goal is to optimize this committee’s

score, namely σ((T \ J) ∪R).

1In our chapter, we will allow any subset of size f from C to fail, so the faults can also include
candidates not in the selected committee T . This only makes the problem harder because the adversary
can always limit the faults to T , and elimination of candidates from C \ T makes finding replacements
for failing committee members more difficult.

48

Fault-Tolerant Committee Selection (FTCS) Chapter 3

We consider the following three versions of fault-tolerant committee selection, pre-

sented in increasing order of complexity. The first problem is the simplest: given a

committee and a failing set, find the best replacement committee.

Optimal Replacement Problem (ORP)

Input: An election E = (C, V), a committee T ⊆ C and a failing set J ⊆ C.

Goal: Find a replacement set R ⊆ C\J of size at most |T∩J |minimizing σ((T \J)∪R).

Our second problem is to quantify the fault tolerance of a given committee T over

worst-case faults. That is, what is the largest score of T ’s replacement when a worst-

case subset of f faults occur? We introduce the following notation as T ’s measure of

j-fault-tolerance, for any 0 ≤ j ≤ f : σj(T) = maxJ⊆C s.t. |J |≤j σ((T \ J) ∪ R), where

R is an optimal replacement set with size at most |T ∩ J |. We want to compute σf (T).

Occasionally, we also use the notation σ0(T) for the no-fault score of T , namely σ(T).

Fault-Tolerance Score (FTS)

Input: An election E = (C, V), a committee T ⊆ C and a fault-tolerance parameter

f .

Goal: Compute σf (T).

Our third and final problem is to compute a committee with optimal fault-tolerance

score.

Optimal Fault-Tolerant Committee (OFTC)

Input: An election E = (C, V), a committee size k and a fault-tolerance parameter f .

Goal: Find T ⊆ C of size at most k minimizing σf (T).

3.0.2 Results and Organization of the Chapter

In this chapter, we only consider the one-dimensional Euclidean instances. (In Chap-

ter 4, we study fault-tolerant committee selection problems in multidimensions.) In one

dimension, the candidates and voters are points on a line. Surprisingly (unlike non-fault-

49

Fault-Tolerant Committee Selection (FTCS) Chapter 3

tolerant versions), fault-tolerant committee problems are nontrivial even in one dimen-

sion. In particular, while the Optimal Replacement Problem (ORP) is easily solved by

a simple greedy algorithm (see Section 3.1 for details), the other two problems, Fault-

Tolerance Score (FTS) and Optimal Fault-Tolerant Committee (OFTC), do not appear to

be easy. Our main result in one dimension is the design of efficient dynamic-programming-

based algorithms for these two problems. Along the way, we solve a fault-tolerant Hitting

Set problem for points and unit intervals, which may be of independent interest. Sec-

tion 3.2 describes our most technical results. In this section, we solve the aforementioned

fault-tolerant hitting set problem by deriving a structural observation about hitting sets

of unit intervals (Lemma 9), and we use this result to design a dynamic-programming

based algorithm which is used solve the FTS problem. In Section 3.3, we use the algo-

rithm from Section 3.2 and additionally design a greedy procedure to solve OFTC.

3.1 Optimal Replacement Problem

In the Optimal Replacement Problem (ORP), we are given a committee T ⊆ C

and a failing set J ⊆ C, and we must find a replacement set R minimizing the score

σ((T \ J) ∪ R), where |R| ≤ |T ∩ J |. Since this score is always the distance between

some voter-candidate pair, it suffices to solve the following decision problem: Is there a

replacement set with score at most r? We can then try all possible O(nm) distances to

find the smallest feasible replacement score.

This decision problem is equivalent to the following hitting set problem: for each

voter v ∈ V , let Iv be the interval of length 2r centered at v, and let I = {Iv : v ∈ V } be

the set of these n (voter) intervals. A subset of candidates is a hitting set for I if each

interval contains at least one of the candidates. In our problem, we are given a hitting set

T and a failing subset of candidates J , and we must find the minimum-size replacement

50

Fault-Tolerant Committee Selection (FTCS) Chapter 3

hitting set. Such a replacement is easily found using the standard greedy algorithm, as

follows. We first remove all of the intervals from I that are already hit by a candidate in

T \J , and we also remove all the failing candidates J from C. For the leftmost remaining

interval, we then choose the rightmost candidate c contained in it, add it to R, delete all

intervals hit by c, and iterate until all remaining intervals are hit. If we ever encounter

an interval containing no candidate, or if the size of the replacement set is larger than

|T \ J |, the answer to the decision problem is no. Otherwise, the solution is R. The

greedy algorithm is easily implemented to run in time O((m + n) log(m + n)). To find

the optimal replacement set, we can do a binary search over O(nm) values of r and find

the smallest r for which |(T \ J) ∪R| ≤ k.

Theorem 11 The Optimal Replacement Problem can be solved in time O((m+n) log2(m+

n)) for one-dimensional Euclidean elections.

3.2 Fault-Tolerance Score

We now come to the more difficult problem of computing the fault-tolerance score

σf (T) of a committee T in one dimension, which is the worst case over all possible failing

sets of T . Once again it suffices to solve the following decision problem: given a size-k

committee T and a real number r, can we find a replacement with score at most r for

every failing subset of size f? Using our hitting set formulation, σf (T) ≤ r if and only

if T is an f -tolerant hitting set of I, that is, for any failing set J ⊆ C of size at most f ,

there exists a replacement set R ⊆ C \J such that |(T \J)∪R| ≤ |T | and (T \J)∪R hits

I. (Recall that each member of I is an interval of length 2r centered at one of the voter

positions.) We can then compute the fault-tolerance score of T by trying each of the

O(nm) voter-candidate distances to find the smallest r for which this decision problem

has a positive answer.

51

Fault-Tolerant Committee Selection (FTCS) Chapter 3

I1

I2

I3

I4

c1 c2 c3 c4 c5

Figure 3.1: The figure shows an interval hitting set instance with four intervals and five
points. The set {c2, c4} is a feasible hitting set. For X = {c2, c3, c5}, the intervals I1, I3, I4
are X-disjoint.

We solve this fault-tolerant hitting set decision problem by observing that the size of

a smallest hitting set equals the size of a maximum independent set, defined with respect

to candidate points and voter intervals in the following way. Suppose the intervals of

I = {I1, . . . , In} are sorted left to right. First, we can assume without loss of generality

that |Ii ∩ C| > f for all i ∈ [n], since otherwise there is no f -tolerant hitting set for I.

Given a set of points X in R, we say that a set of intervals is X-disjoint if each point in

X is contained in at most one interval. (That is, X-disjoint intervals can be thought of

as independent in that they contain disjoint sets of points in X). The following claim is

easy to prove.

Lemma 8 Given a set of points X and a set of intervals J on the real line, the size of

a minimum hitting set X ′ ⊆ X of J equals the maximum size of an X-disjoint subset of

J .

Thus, if T ⊆ C is an f -tolerant hitting set for I, then for any failing set J ⊆ C, the

size of any (C \ J)-disjoint subset of I is at most |T |. One should note that the size

of the maximum (C \ J)-disjoint subset in I is a monotonically increasing function of

|J | — as more candidates fail, more intervals can become disjoint. Our goal is to find

the maximum size of such a disjoint interval family over all possible failure sets J of

size at most f . We will do this using dynamic programming, by combining solutions of

subproblems, where each subproblem corresponds to an index range [i, j], over the set of

candidate points c1, . . . , cm. Assuming that the candidate points C = {c1, . . . , cm} are

ordered from left to right, our subproblems are defined as follows, for 1 ≤ i ≤ j ≤ m:

52

Fault-Tolerant Committee Selection (FTCS) Chapter 3

• Ci,j = {ci, . . . , cj} is the set of candidates in the range [ci, cj].

• Ii,j = {I ∈ I : I ∩ C ⊆ Ci,j} is the set of intervals that only contain points from

Ci,j.

• For any J ⊆ Ci,j, δi,j(J) is the maximum size of a (Ci,j\J)-disjoint subset of Ii,j.

• The subproblems we want to solve are the values δi,j(f) = maxJ⊆Ci,j ,|J |≤f δi,j(J).

The key technical lemma of this section is the following claim.

Lemma 9 T ⊆ C is an f -tolerant hitting set of I if and only if |T ∩ Ci,j| ≥ δi,j(f), for

all 1 ≤ i ≤ j ≤ m.

Proof: We first show the “if” part of the lemma. Assume |T ∩ Ci,j| ≥ δi,j(f) for

all i, j ∈ [m] with i ≤ j. To see that T is an f -tolerant hitting set of I, consider a

failing set J ⊆ C of size at most f . We have to show the existence of a replacement set

R ⊆ C\J such that |(T\J) ∪ R| ≤ |T | and (T\J) ∪ R is a hitting set of I. We write

T\J = {ci1 , . . . , cip}, where i1 < · · · < ip. For convenience, set i0 = 0 and ip+1 = m + 1.

By our assumption, every interval I ∈ I is hit by some point in C. Thus, either I is hit

by T\J or I belongs to Ii,j where i = it−1 + 1 and j = it − 1 for some index t ∈ [p+ 1].

Now consider an index t ∈ [p + 1]. We write Tt = T ∩ Ci,j and define Rt ⊆ Ci,j\J as

a minimum hitting set of Ii,j. By Lemma 8, the size of Rt is equal to the maximum

size of a (Ci,j\J)-disjoint subset of Ii,j, which is nothing but δi,j(J ∩ Ci,j). Also, by

assumption, we have |Tt| = |T ∩ Ci,j| ≥ δi,j(f) ≥ δi,j(J ∩ Ci,j). Therefore, |Rt| ≤ |Tt|.

Finally, we define R =
⋃p+1

t=1 Rt. Clearly, (T\J) ∪ R hits I. So it suffices to show that

|(T\J) ∪R| ≤ |T |. Since |Rt| ≤ |Tt| for all t ∈ [p+ 1], we have

|(T\J) ∪R| = |T\J |+
p+1∑
t=1

|Rt| ≤ |T\J |+
p+1∑
t=1

|Tt| = |T |,

53

Fault-Tolerant Committee Selection (FTCS) Chapter 3

which completes the proof of the “if” part.

Next, we prove the “only if” part of the lemma. Assume T ⊆ C is an f -tolerant

hitting set of I. Consider two indices i, j ∈ [m] with i ≤ j. To show |T ∩ Ci,j| ≥ δi,j(f),

it suffices to show that |T ∩ Ci,j| ≥ δi,j(J) for all J ⊆ Ci,j with |J | ≤ f . Since T is

an f -tolerant hitting set of I, there exists R ⊆ C\J such that |(T\J) ∪ R| ≤ |T | and

(T\J) ∪ R is a hitting set of I. For brevity, let T ′ = (T\J) ∪ R. By definition, the

intervals in Ii,j can only be hit by the points in Ci,j. Thus, T
′∩Ci,j is a hitting set of Ii,j.

As T ′ ∩Ci,j ⊆ Ci,j\J , by Lemma 8, the size of T ′ ∩Ci,j is at least the maximum size of a

(Ci,j\J)-disjoint subset of Ii,j, i.e., |T ′∩Ci,j| ≥ δi,j(J). Furthermore, because J ⊆ Ci,j, we

have (T\J)\Ci,j = T\Ci,j. It follows that T\Ci,j ⊆ T ′\Ci,j and thus |T\Ci,j| ≤ |T ′\Ci,j|.

For a committee T , we can partition T into two parts: the part containing candidates in

Ci,j and the part containing candidates outside of Ci,j. Hence, |T | = |T ∩Ci,j|+ |T\Ci,j|

and |T ′| = |T ′ ∩ Ci,j| + |T ′\Ci,j|. Because |T ′| ≤ |T | and |T ′\Ci,j| ≥ |T\Ci,j|, we have

|T ′ ∩ Ci,j| ≤ |T ∩ Ci,j|. Therefore, |T ∩ Ci,j| ≥ δi,j(J). This completes the proof of

Lemma 9.

In order to decide if σf (T) ≤ r, therefore, we just have to compute δi,j(f), for all i, j,

and check the condition |T ∩ Ci,j| ≥ δi,j(f). We now show how to do that efficiently.

Efficiently Computing δi,j(f) For ease of presentation, we show how to compute

δ1,m(f); computing other δi,j(f) is similar. We have C1,m = C, I1,m = I, and δ1,m(f)

is size of the largest subset of I that is (C\J)-disjoint for any failing set J ⊆ C with

|J | ≤ f . The intervals of I = {I1, I2, . . . , In} are in the left to right sorted order and, for

each i ∈ [n], let C(Ii) = C ∩ Ii be the set of points in C that hits Ii. Define Γ [i][j] as

the maximum size of an (C \X)-disjoint subset J ⊆ {I1, . . . , Ii} such that X ⊆ C and

|X| ≤ j.

54

Fault-Tolerant Committee Selection (FTCS) Chapter 3

Lemma 10 We have the following recurrence

Γ [i][j] = max

Γ [i− 1][j],

max
0≤i′≤i

1 + Γ [i′][j − |C(Ii) ∩ C(Ii′)|]

Clearly, δ1,m(f) = Γ [n][f]. The base case for our dynamic program is Γ [0, j] = 0 for

all j ∈ [f] and Γ [i][j] = −∞ for j < 0 and all i ∈ [n]. Our dynamic program runs in

time O(n2mf). In the same way, we can compute the values of δi,j(f) for all i, j ∈ [m]

with i ≤ j.

Lemma 11 δi,j(f), for all 1 ≤ i ≤ j ≤ m, can be computed in time O(n2m3f).

Given a hitting set T ⊆ C and the values δi,j(f), we can verify the condition in

Lemma 9 in time O(m3). We can then use binary search to find the smallest value of r

for which T is an f -tolerant hitting set. This establishes the following result.

Theorem 12 The fault-tolerance score of a 1-dimensional committee T can be computed

in time O(n2m3f log(nm)).

3.3 Optimal Fault-Tolerance Committee

We now address the problem of designing a fault-tolerant committee: select a com-

mittee T of size k whose fault-tolerance score σf (T) is minimized. Thus, our goal is not

to optimize the fault-free score of T , namely σ0(T), but rather the score that the best

replacement will have after a worst-case set of f faults in T , namely σf (T). Following

the earlier approach, we again focus on the decision question: given some r ≥ 0, is there

a committee of size k with σf (T) ≤ r? For a given value of r, we construct our hitting

set instance with candidate-points and voter-intervals, and compute a minimum-sized

f -tolerant hitting set T ⊆ C as follows:

55

Fault-Tolerant Committee Selection (FTCS) Chapter 3

1. Compute the value of δi,j(f), for all 1 ≤ i ≤ j ≤ m.

2. Compute a minimum subset T ⊆ C satisfying |T ∩ Ci,j| ≥ δi,j(f), for all 1 ≤ i ≤

j ≤ m.

3. If |T | ≤ k, we have a solution; otherwise, the answer to the decision problem is no.

Step (1) is implemented using the dynamic program of the previous section, and so

it suffices to explain how to implement step (2). We assume without loss of generality

that |Ci,j| ≥ δi,j(f) for all i, j, because otherwise there is no solution. We compute a set

T using the following greedy algorithm.

• Initialize T = ∅.

• For each ck for k ∈ [m], if there exists i, j ∈ [m] with i ≤ k ≤ j ≤ m such that

δi,j(f) ≥ |T ∩ Ci,j|+ (j − k + 1), then add ck to T .

The algorithm runs in time O(m3). To prove correctness, we first claim the following.

Lemma 12 |T ∩ Ci,j| ≥ δi,j(f), for all 1 ≤ i ≤ j ≤ m.

Proof: Suppose not, so we have |T ∩ Ci,j| < δi,j(f), for some i ≤ j. We recall that

for any interval Ii ∈ I, |Ii∩C| > f . Therefore, for any failing set J , Ci,j \J is a hitting set

of Ii,j, and |Ci,j| ≥ δi,j(f). This implies that there exists some point among ci, . . . , cj that

is not in T . Let k ∈ {i, . . . , j} be the largest index such that ck /∈ T . For convenience,

we use T ′ to denote the set T in the iteration of our algorithm that considers ck. Note

that T ∩Ci,j = (T ′ ∩Ci,j)∪{ck+1, . . . , cj} and (T ′ ∩Ci,j)∩{ck+1, . . . , cj} = ∅. Therefore,

|T ′∩Ci,j| = |T∩Ci,j|−(j−k) < δi,j(f)−(j−k). This implies |T ′∩Ci,j|+(j−k+1) ≤ δi,j(f).

By our algorithm, in this case we should include ck in T , which contradicts the fact that

ck /∈ T .

56

Fault-Tolerant Committee Selection (FTCS) Chapter 3

We now argue that T has the minimum size among all subsets of C satisfying the

property of Lemma 12. Let opt be the minimum size of a subset of C satisfying the

desired property. We write T = {ck1 , . . . , ckr}, where k1 < · · · < kr.

Lemma 13 For any t ∈ [r], there exists a subset T ∗ ⊆ C such that (1) |T ∗∩Ci,j| ≥ δi,j(f)

for all i, j ∈ [m] with i ≤ j, (2) |T ∗| = opt, and (3) {ck1 , . . . , ckt} ⊆ T ∗.

Proof: We prove the observation by induction on t. For t = 0, the statement trivially

holds. Suppose the statement holds for t− 1, i.e., there exists a subset T ∗ ⊆ C satisfying

the first two conditions in Lemma 13 and {ck1 , . . . , ckt−1} ⊆ T ∗. We show the statement

holds for t. Specifically, we shall modify T ∗ to make it satisfy {ck1 , . . . , ckt} ⊆ T ∗ while

maintaining the first two conditions in the observation.

First, we notice that T ∗ must contain a point other than ck1 , . . . , ckt−1 . To see this,

suppose T ∗ = {ck1 , . . . , ckt−1}. Since our algorithm added ckt to T , there exist i, j ∈ [m]

with i ≤ kt ≤ j such that δi,j(f) ≥ |{ck1 , . . . , ckt−1} ∩ Ci,j| + (j − kt + 1). This implies

that δi,j(f) > |{ck1 , . . . , ckt−1} ∩ Ci,j|, that is, δi,j(f) > |T ∗ ∩ Ci,j|, which contradicts the

fact that T ∗ satisfies the first condition in the lemma. Thus, T ∗ contains a point other

than ck1 , . . . , ckt−1 .

Now let k be the smallest index such that ck ∈ T ∗\{ck1 , . . . , ckt−1}. If k = kt, then

{ck1 , . . . , ckt} ⊆ T ∗ and we are done. Otherwise, we remove ck from T ∗ and add ckt to T ∗.

After this modification, it is clear that |T ∗| = opt and {ck1 , . . . , ckt} ⊆ T ∗. So it suffices

to show |T ∗ ∩ Ci,j| ≥ δi,j(f) for all i, j ∈ [m] with i ≤ j. Consider indices i, j ∈ [m]

with i ≤ j. By assumption, before the modification we have |T ∗ ∩ Ci,j| ≥ δi,j(f). If

j ≥ kt, then |T ∗ ∩ Ci,j| does not decrease after the modification, and is thus at least

δi,j(f). So assume j < kt. In this case, T ∩Ci,j = {ck1 , . . . , ckt−1}∩Ci,j ⊆ T ∗∩Ci,j. Since

|T ∩ Ci,j| ≥ δi,j(f) by Lemma 9, we have |T ∗ ∩ Ci,j| ≥ δi,j(f).

57

Fault-Tolerant Committee Selection (FTCS) Chapter 3

We use binary search to find the smallest r such that the reduced instance has an

f -tolerant hitting set of size at most k. Therefore, the following theorem holds.

Theorem 13 Optimal Fault-Tolerant Committee can be solved in time O(n2m3f log(nm))

for one-dimensional Euclidean elections.

Remark 1 Our dynamic programming algorithm works as long as either the set V or

the set C is embedded in R (i.e., has a linear ordering), while the other set can have

an arbitrary d-dimensional embedding. Moreover, we can also extend our algorithms to

ordinal elections with (widely studied) single-peaked preferences [1, 42, 43, 44] to compute

an optimal fault-tolerant Chamberlin-Courant committee.

58

Chapter 4

FTCS in Multidimensional Instances

In the previous chapter, we introduced a new notion of fault-tolerance in committee selec-

tion and we studied the fault-tolerant committee selection problems for one-dimensional

instances (i.e., when candidates and voters lie on a line). Although we presented polynomial-

time algorithms for all our problems, the problem was already nontrivial in 1D. In this

chapter, we will consider fault-tolerance in multidimensional instances where candidates

and voters lie in a d-dimensional Euclidean space and voters’ preferences are derived

based on the Euclidean distances. In particular, we will investigate all three problems –

Optimal Replacement Problem (ORP), Fault-tolerance Score (FTS) and Optimal Fault-

Tolerant Committee (OFTC) in multidimensions. We refer the reader to Subsection 3.0.1

for the formal problem statements.

4.0.1 Results and Organization of the Chapter

Before discussing our results for multidimensional instance, we briefly recall our nota-

tions from the last chapter. A Euclidean election is represented by E = (C, V). For a com-

mittee T ⊆ C, the score of a voter for a committee is defined as σ(v, T) = minc∈T d(v, c),

and the score of T as σ(T) = maxv∈V σ(v, T). f is the fault-tolerance (integer) parame-

59

FTCS in Multidimensional Instances Chapter 4

ter, a failing set is denoted by J and a replacement set is denoted by R. For an integer j,

the j-fault-tolerance score of T is denoted by σj(T) = maxJ⊆C s.t. |J |≤j σ((T \J)∪R).

We now summarize our results.

In two dimensions and higher, OFTC is NP-hard because of its close connection to the

k-center problem. However, we show that even the seemingly simpler problem of optimal

replacement (ORP) is also NP-hard (see Section 4.1 for details). Our main results include

a constant-factor approximation for all three problems in any fixed dimension (in fact,

in any metric space) which we present in Section 4.2, as well as a novel bicriterion FPT

approximation via an EPTAS whose running time has the form f(ϵ)nO(1) presented in

Section 4.3. For a complete set of results and for ease of reference, we show all our

results (including the ones presented in Chapter 3) on fault-tolerant committee selection

problems in the following table.

One-dimensional
instances

Dimension d ≥ 2
Complexity Approximation Bounded f

ORP
P

(Theorem 11)
NP-hard

(Theorem 14)
3-approx.

(Lemma 19)
P

(Section 4.1.3)

FTS
P

(Theorem 12)
NP-hard

(Theorem 14)
3-approx.

(Lemma 20)
P

(Section 4.1.3)

OFTC
P

(Theorem 13)
NP-hard

(Theorem 14)

5-approx.
(Lemma 23)

Bicriterion-EPTAS
(Theorem 16)

NP-hard
(Section 4.1.3)

3-approx.
(Theorem 15)

Table 4.1: Summary of our results.

4.1 NP-hardness Results

In this section, we settle the complexity of all three problems in multidimensional

elections. Unsurprisingly, the optimal committee design problem is intractable — it is

similar to facility location — but it turns out that the seemingly simpler variants ORP

60

FTCS in Multidimensional Instances Chapter 4

x1 x2 x3 x4 x5

x1 ∨ x2 ∨ x3(z1)

x3 ∨ x4 ∨ x5(z2)

x2 ∨ x3 ∨ x4(z3)

x1 ∨ x2 ∨ x5(z4)

(a)

x̂1 x̂2 x̂3 x̂4 x̂5

ẑ1

ẑ2

ẑ4

ẑ3

(b)

Figure 4.1: Figure (a) shows rectangular embedding of the PM-3SAT instance given as
a part of the input. In figure (b), we show a transformation of rectangular embedding to
orthogonal embedding useful for our construction. Here, each variable xi in the rectan-
gular embedding is replaced by the variable reference point x̂i and each clause is replaced
zi is replaced by the clause reference point ẑi.

and FTS are also intractable.

Theorem 14 All three problems (Optimal Replacement, Fault-Tolerance Score, and Op-

timal Fault-Tolerant Committee) are NP-hard, in any dimension d ≥ 2 under the Eu-

clidean norm, where size of the committee k and the failure parameter f are part of the

input.

We will use a single construction to show NP-hardness all three problems. Our proof

uses a reduction from the NP-complete problem Planar Monotone 3-SAT (PM-

3SAT) [16]. An input to this problem is a monotone 3-CNF formula ϕ where each clause

contains either three positive literals or three negative literals, and whose variable-clause

incidence graph has a planar embedding which is given as a part of the input. Given an

instance ϕ of PM-3SAT, our reduction constructs a 2-dimensional Euclidean election. The

general outline follows a scheme used in Section 2.1 to show the hardness of committee

selection under ordinal preferences, but generalizing the proof to fault-tolerant committees

requires several technical modifications and a new proof of correctness.

For ease of referencing, we adapt the terminologies from Section 2.1. In the planar

embedding of the formula ϕ, each variable/clause is drawn as an (axis-parallel) rectangle

61

FTCS in Multidimensional Instances Chapter 4

in the plane, and so this is called a rectangular embedding. See Figure 4.1a for an illus-

tration. The rectangles for the variables are drawn along the x-axis, while the rectangles

for the positive (resp., negative) clauses lie above (resp., below) the x-axis. If a clause

contains a variable, then there is a vertical segment connecting the clause rectangle and

the variable rectangle. Each such vertical segment is disjoint from all the rectangles

except the two it connects.

The rectangular embedding of ϕ can be modified to another embedding which is

easier to work with called orthogonal embedding. We refer the reader to [20] for details

of the modification (See figure 4.1b for intuition). The intersection points of vertical and

horizontal segments in the orthogonal embedding are connection points. To build the

intuition for the orthogonal embedding, we now give its properties as stated in Section 2.1:

(i) Vertical and horizontal segments do not cross.

(ii) Each horizontal segment corresponds to a clause in ϕ. Moreover, it intersects

exactly three vertical segments corresponding to the literals in that clause.

(iii) The endpoints of all segments are connection points.

For each horizontal segment, we will refer to the middle connection point as the ref-

erence point of a the clause (notice that from properties (ii) and (iii) each horizontal

segment has three connection points and two of those are the left and the right end-

point of the segment). The reference points for the variables x1, . . . , xn are denoted by

x̂1, . . . , x̂n and for the clauses z1, . . . , zm they are denoted by ẑ1, . . . , ẑm. With shift-

ing/scaling of the orthogonal embedding without changing its topology, we can ensure

that the x-coordinates (y-coordinates) of vertical (resp., horizontal) segments are dis-

tinct even integers in the range {1, . . . , 2n} (resp., {−2m, . . . , 2m}). This guarantees

that all connection points have even integer coordinates and the embedding is contained

62

FTCS in Multidimensional Instances Chapter 4

in [1, 2n] × [−2m, 2m] rectangle. Now using the integral points on each segment s, we

can partition s into ℓ(s) parts each of unit length where ℓ(s) is the length of s. These

unit length segments are called pieces of the orthogonal embedding. We use N to denote

the total number of pieces. Note that N = O(nm).

We now construct a Euclidean election E = (V,C) with voters and candidates as

points in R2.

Variable gadgets. For each variable xi, we choose two additional points near (but not

equal to) xi as follows. Recall that there are two vertical pieces incident to x̂i in the

orthogonal embedding: one above x̂i, and the other below x̂i. We choose a point with

distance 0.2 from x̂i, on each of the two pieces. Next, we put f + 1 candidates on each

of these two points and a (single) candidate at x̂i (we set the value of f later in the

construction). Furthermore, we place a voter on each of these three points. We call these

candidates/voters the xi-gadget. See figure 4.2a. For i ∈ [n], we construct the xi-gadget

for each variable xi. Overall, the variable gadgets have (2f + 3)n candidates and 3n

voters.

Clause gadgets. Next, we construct a set of candidates/voters for the clauses z1, . . . , zm.

For each clause zi, we put a voter at the reference point ẑi, and call this voter the zi-

gadget. See figure 4.2b. The total number of voters in the clause gadgets is m. Clause

gadgets do not have any candidates.

Piece gadgets. Finally, we construct a set candidates/voters to connect the variable

and clause gadgets. Consider a piece s of the orthogonal embedding. Recall that s is

a unit-length segment. Let s− and s+ be the two endpoints of s. We identify these

endpoints as follows: For a vertical piece s above (resp., below) the x-axis, we say s−

is the bottom (resp., top) endpoint of s and s+ is the top (resp., bottom) endpoint of

s. For a horizontal piece s, s must belong to the horizontal segment of some clause zi.

Suppose s is to the left (resp., right) of the reference point ẑi, then s− is the left (resp.,

63

FTCS in Multidimensional Instances Chapter 4

right) endpoint of s and s+ be the right (resp., left) endpoint of s. For every piece s

that is not adjacent to any clause reference point, we choose four points near s+ and

add candidates/voters on them as follows: We place f + 1 candidates each on a point

which is 0.3 below and 0.3 to the right of s+, and on a point which is 0.4 above and 0.3

to the left of s+, and on a point at s+. Further, we place a candidate at a point which

is 0.3 above s+. Lastly, we place one voter at each of these four points. We call these

the candidates/voters of the s-gadget. See figure 4.2c. Note that pieces adjacent some

clause reference points do not have gadgets. Therefore, the total number of candidates

in the piece gadgets is (3f + 4)(N − 3m), as each clause reference point is adjacent to

three pieces, and the number of voters is 4(N − 3m).

Combining these three constructed gadgets, our election E = (C, V) has 4N −11m+

3n voters and (3N − 9m+2n)f +4N − 12m+3n candidates. We set the committee size

k equals to N + n − 3m. Clearly, the construction can be done in a polynomial time.

The main intuition behind the construction is the following.

Candidates in the constructed instance can be partitioned into two types:

• Robust candidates (Crob ⊆ C) is the set of candidates such that for each candidate,

there are f other candidates at the exact same location as it. Note that for any

failing set J ⊆ C, at least one candidate is live in each of these locations.

• Covering candidates (Ccov ⊆ C) is the set of candidates such that for each candidate

in the set, it is the unique candidate at its location. Note that |Ccov| = k.

In the constructed election, the following lemma holds.

Lemma 14 In the constructed election E = (C, V), we have σ(Ccov) ≤ 0.75 where

Ccov ⊆ C is the set of covering candidates.

Proof: For all voters v ∈ V , we will show that d(v, Ccov) ≤ 0.75.

64

FTCS in Multidimensional Instances Chapter 4

one voter

one candidate

(f+1) candidates

0.2

0.2

x̂i

(a) Vertex gadget

ẑi

(b) Edge gadget

s+

0.4

0.3

0.3

0.3

0.3

(c) Piece gadget

Figure 4.2: Gadgets in our construction. Here, a disk and a cross at the same location
indicates a voter and a candidate at the same location. Similarly, a circle and a cross at
the same location indicates a voter and (f + 1) candidates at the same location.

First, we consider the voters in the variable gadget. For a variable xi, the candidate

at x̂i belongs to Ccov. All three voters in the variable gadget are within distance 0.2 from

x̂i. Therefore, all the voters in the variable gadget have d(v, Ccov) ≤ 0.75.

Next, we consider the clause-gadgets. The closest candidate in T for a voter placed

at ẑi is at a distance 0.7 from it; therefore, all voters in the clause gadgets all have

d(v, Ccov) ≤ 0.75.

Finally, we consider the piece gadgets. For each piece s, Ccov contains a candidate at

a distance 0.3 above s+. It can be verified that all four voters in the piece gadget have

their closest candidate in Ccov within distance
√
0.45 < 0.7 (See figure 4.2c).

Hence, for all voters in the piece gadgets, d(v, Ccov) ≤ 0.75. This completes the proof

of Lemma 14.

The election constructed above will be used to show hardness for all three problems.

Let the distance r = 0.75. Recall that k = N + n − 3m. We will now, we describe

the decision version of each of our problems along with the construction of additional

elements necessary in their input:

(i) ORP: In the input of ORP we additionally need a committee T ⊆ C and a failing

65

FTCS in Multidimensional Instances Chapter 4

set J ⊆ C. We set T = J = Ccov.

We ask if there exists a replacement R ⊆ C \ Ccov such that σ(R) ≤ r?

(ii) FTS: In the input of FTS we additionally need a committee T ⊆ C and a fault-

tolerance parameter f . We set T = Ccov and f = k.

We ask if σf (T) ≤ r?

(iii) OFTC: In the input of OFTC we additionally need a committee size k′ and a

fault-tolerance parameter f . We set k′ = k and f = k.

We ask if there exists a k-sized committee T ⊆ C with σf (T) ≤ r?

To show the equivalence, we will show that the answer to each of the above question

is yes if and only if ϕ is satisfiable.

The following lemma shows the proof of equivalence for problem (i).

Lemma 15 There exists a committee R ⊆ C \Ccov with size k such that σ(R) ≤ r if and

only if ϕ is satisfiable where k = |Ccov| = N + n − 3m, N is the total number of pieces,

and m (resp., n) is the number of clauses (resp., variables) in ϕ, respectively.

In the next two subsections, we give the proof of Lemma 15.

4.1.1 Forward direction of Lemma 15

In this section, we will show that if ϕ is satisfiable, then there exists a k-sized com-

mittee R ⊆ C \ Ccov such that σ(R) ≤ r (recall that r = 0.75).

Suppose ϕ is satisfiable. Let π : X → {true, false} be an assignment which makes ϕ

true. We construct a k-sized committee R ⊆ C\Ccov with σ(R) ≤ r using ϕ. We include

one candidate from the every variable gadget and every piece gadget to R as follows:

66

FTCS in Multidimensional Instances Chapter 4

• Replacement candidates from variable gadgets: Consider a variable xi. By our

construction, the xi-gadget contains 2f + 3 candidates which have the same x-

coordinates as x̂i. If π(xi) = true (resp., π(xi) = false), we include in R one of the

topmost (resp., bottommost) candidates in the xi-gadget.

• Replacement candidates from piece gadgets: Consider a piece s not adjacent to a

clause reference point (recall that pieces adjacent to some clause reference point

do not have gadgets on them). We begin by defining a variable as an associated

variable of s in the same way as described in Section 2.1: When s is vertical, the

associated variable of s is just the variable whose vertical segment contains s. For

when s is horizontal, then s must belong to the horizontal segment of some clause

zj. Then, if s to the left of the reference point ẑj then the associated variable of s

is the variable whose vertical segment intersects the left endpoint of the horizontal

segment of zj, and vice versa when s to the right of the reference point ẑj.

Let xi be the associated variable of s. Then,

(i) If π(xi) = true: We include in R a candidate in the s-gadget that is 0.4 above

and 0.3 to the left (resp., 0.4 below and 0.3 to the right) of s+ if s is above

(resp., below) the x-axis.

(ii) If π(xi) = false: We include in R a candidate in the s-gadget that is 0.3 below

and 0.3 to the right (resp., 0.3 above and 0.3 to the left) of s+ if s is below

(resp., above) the x-axis.

This finishes the construction of the committee R. Recall that the total number of

variable and the piece gadgets is N + n − 3m = k. Therefore, |R| = k. The following

lemma completes the “if” part of Lemma 15.

Lemma 16 σ(R) ≤ r.

67

FTCS in Multidimensional Instances Chapter 4

Proof: For all voters v ∈ V in the constructed instance, we will show that d(v,R) ≤

r.

First, we consider the voters in the variable gadget. For a variable xi, either a

candidate 0.2 above or 0.2 below x̂i belongs to R. Hence, for all three voters, d(v,R) ≤

0.6. Recall that r = 0.75. Therefore, all the voters in the variable gadget have d(v, T) ≤ r.

Next, we consider the clause-gadgets. For a clause zi, consider the voter v placed at

ẑi. The closest candidate in R for this voter, is the candidate placed at 0.4 above and 0.3

to the left of s+ from a clause gadget with d(ẑi, s
+) = 1. Hence, d(v,R) =

√
0.45 < r.

Finally, we consider the piece gadgets. We consider two cases: piece gadget not

adjacent to a variable reference point and piece gadget adjacent to a variable reference

point. Let xi be the associated variable with the piece gadget s, and π(xi) = true (the

case when π(xi) = false is symmetric). Let s be a piece gadget not adjacent to any

variable reference point. Suppose s is above x-axis, and ŝ is the gadget below s (the case

when s is below the x-axis is symmetric; hence, we leave the proof for that to the reader).

Recall that the piece gadgets contains four voters: Let v1, v2, v3, and v4 be the voters

placed at distances 0.4 above and 0.3 to the left of s+, 0.3 above s+, at s+, and 0.3 below

and 0.3 to the right of s+, respectively. We know that a candidate placed at the location

of voter v1 (say c1) belongs to R. Notice v1, v2 and v3 have a distance at most 0.5 from

this voter but v4 has a distance
√
0.85 > r. But consider the gadget corresponding to ŝ.

Here, we know R contains a candidate (say c′1) placed at 0.4 above and 0.3 to the left

of ŝ+. It can be verified that d(v4, c
′
1) =

√
0.45 < r. Therefore, d(v4, R) ≤ r. We now

consider the case when s is adjacent to a variable reference points (say x̂i). We know s

has four voters v1, v2, v3, and v4 placed at distances 0.4 above and 0.3 to the left of s+,

0.3 above s+, at s+, and 0.3 below and 0.3 to the right of s+, respectively. We know that

a candidate placed at the location of voter v1 (say c1) belongs to R, and this candidate

is at a distance at most 0.5 from v1, v2, and v3. Recall that π(xi) = true, R contains a

68

FTCS in Multidimensional Instances Chapter 4

candidate at a distance 0.2 above x̂i. Notice that this candidate is at a distance
√
0.34

from v4. Therefore, d(v4, R) < r. This completes the proof of Lemma 16.

4.1.2 Reverse direction of Lemma 15

Suppose R ⊆ C \ Ccov is a k-sized committee with σ(R) ≤ r. We will show how to

recover a satisfying assignment π : X → {true, false} using R. The structure of our proof

is similar to the reverse direction argument in Section 2.1. First, we observe the following

property of R.

Lemma 17 R contains exactly one candidate from every variable and piece gadget.

Proof: We begin with the variable gadgets. Consider an xi-gadget corresponding

to the variable xi. Recall that we place three voters in the xi-gadget: One voter at

x̂i (say v1), and one voter each at a distance 0.2 above and 0.2 below of x̂i . Observe

that for v1, its distance to any candidate from the adjacent piece gadgets is at least√
(0.7)2 + (0.3)2 =

√
0.58 which is strictly greater than r. Hence, R must include at

least one candidate from the xi-gadget to ensure d(v1, R) ≤ r. We now consider the piece

gadgets. Let v1 be the voter placed at s+. The nearest candidate to v1 from the adjacent

piece gadgets is at a distance at least
√
0.58 which is strictly greater than r. Therefore,

R must contain at least one candidate from each piece gadget to ensure d(v1, R) ≤ r.

Finally, recall that the committee size is k = N +n− 3m and the number of variable

(piece) gadgets is n(N − 3m), respectively. Therefore, by a simple counting argument,

we can conclude that T must contain exactly one candidate from each variable gadget

and each piece gadget. This completes the proof of Lemma 17.

We will now use R to recover a satisfying assignment π for ϕ. For an arbitrary

variable xi, using Lemma 17, we know R contains exactly one candidate (say ci) from

the xi-gadget. We set π(xi) as follows:

69

FTCS in Multidimensional Instances Chapter 4

• If ci is above the x-axis, we set π(xi) = true.

• If ci is below the x-axis, we set π(xi) = false.

To complete the proof, we need to show that π is a satisfying assignment of ϕ. It is

enough to show that for each clause, at least one of its variables is set to true. Since

the argument for positive and negative clauses is similar, we will only that for each

positive clause, at least one its variables is set to true. We begin by proving the following

important structural property of the committee R.

Lemma 18 For a piece s above the x-axis that is not adjacent to any clause reference

point, suppose xi is the associated variable of s. If R contains the candidate in the

s-gadget which is 0.4 above and 0.3 to the left of s+, then π(xi) = true.

Proof: Let s be piece as described in the above lemma with the associated variable

xi. We will show that if R contains the candidate in the s-gadget which is 0.4 above and

0.3 to the left of s+, then R contains a candidate 0.2 above x̂i in the xi-gadget. The

choice of candidate in R from the s-gadget to the xi-gadget percolates as follows:

• When s is not adjacent to a variable reference point x̂i: Let v1, v2, v3, and v4 be the

voters placed at distances 0.4 above and 0.3 left of s+, 0.3 above s+, at s+, and 0.3

below and 0.3 to the right of s+, respectively. We know that the candidate placed

at s+ belongs to J . From the set of f+1 candidates placed at the locations of v1, v2

and v4, we denote a candidate by c1, c2, and c3, respectively. Moreover, let s′ be

the piece below (resp., to the left of) s when s is a vertical (resp., horizontal) piece.

We denote the corresponding candidate in s′ by c′1, c
′
2, and c′3. Assume that c1 ∈ R.

We observe that d(v4, c1) =
√
0.85 > r but d(v4, c

′
1) =

√
0.45 < r. Moreover, c′1 is

the only alive candidate from s′-gadget within distance r from v4. Using Lemma 2,

we know R only includes c1 from s. Hence, to satisfy d(v4, R) ≤ r, R must include

70

FTCS in Multidimensional Instances Chapter 4

the candidate c′1. Observe that we can repeat the above argument for all pieces

below (resp., to the left of) s, which implies that for all pieces si below (resp., to

the left of) s, R includes the candidate in si-gadget placed 0.4 above and 0.3 to the

left of s+i .

• When s is adjacent to a variable reference point x̂i: Let v1, v2, v3, and v4 be the

voters placed at distances 0.4 above and 0.3 left of s+, 0.3 above s+, at s+, and 0.3

below and 0.3 to the right of s+, respectively. Moreover, let c1, c2, and c3 denote an

arbitrary candidate placed at the locations of voters v1, v2, and v4, respectively. We

know that for voter v4, the set of candidates within distance r is {c2, c3, c4} where

c4 is the candidate placed 0.2 above x̂i. Using Lemma 17, we know R only includes

c1 from the piece ŝ. Hence, to ensure d(v4, R) ≤ r, R must include candidate c4.

Recall that for a variable xj for j ∈ [n], if R includes a candidate above the reference

point x̂j, we set xj = true. Since, c4 ∈ R and c4 lies above x̂i, we set xi = true.

This completes the proof of Lemma 18.

Using Lemma 17 and Lemma 18 we are now ready to show that the constructed

assignment π satisfies ϕ. Since the argument for positive and negative clauses is similar,

we will only show for the positive clauses. Our argument is similar to the one in Section 2.1

but we include it here for completeness.

Consider a positive clause zi. We will show that at least one variable of zi is set to

true by π. We denote the pieces adjacent to the reference point ẑi by s1, s2, s3. Without

loss of generality, let s1 be to the left of ẑi, s2 be to the right of ẑi, and s3 be below ẑi.

Notice that ẑi = s+1 = s+2 = s+3 . Recall that ẑi is a connection point. Since all connection

points have even coordinates and s−1 , s
−
2 , s

−
3 are at a unit distance from ẑi, s

−
1 , s

−
2 , s

−
3 are

not connection points. Hence, let s4, s5, s6 be the pieces such that the right endpoint of s4

is s−1 , the left endpoint of s5 is s
−
2 , and the top endpoint of s6 is s

−
3 . Therefore, s

−
1 = s+4 ,

71

FTCS in Multidimensional Instances Chapter 4

s−2 = s+5 , and s−3 = s+6 . Let c4 be a candidate in s4-gadget such that c4 is 0.4 above and

0.3 to the left of s+4 . Moreover, let the candidates c5 and c6 defined in the similar way

such that c5 belongs to the s5-gadget and c6 belongs to the s6-gadget. For the voter at

the reference point ẑi, only the candidates c4, c5, c6 are within distance r. This is because

all pieces except s1, . . . , s6 have distances at least 2 from ẑi. Since σ(R) ≤ r, R must

contain at least one of these three candidates. Therefore, using Lemma 18, we conclude

that at least one of the associated variables of s4, s5, s6 is true. Since these are exactly

the three variables in clause zi; hence, zi is true under the assignment π. This completes

the “only if” part of our proof.

The argument above completes the proof of Lemma 15 and completes the argument

of equivalence for our decision problem (i).

Argument of equivalence for the decision problem (ii): Recall that for the FTS

decision problem instance stated above, the input committee is T = Ccov and the fault-

tolerance parameter is f = k. Notice that T contains one candidate from each vertex and

each piece gadget. Suppose a subset J ⊂ C with |J | ≤ f fails. Consider the committee

T ′ = T \J . All voters in the vertex gadgets and the piece gadgets which have a non-empty

intersection with T ′ have a committee member within distance r (i.e., suppose V ′ ⊆ V

is the subset of all such voters then σ(V ′, T ′) ≤ r). For the voters in V \ V ′, we build

a committee R using the candidates in vertex and piece gadgets with have an empty

intersection with T ′ in the same way as we constructed a replacement committee in the

forward direction of proof of Lemma 15 (Section 4.1.1) (to replace the candidates from

set T ∩ J). Notice that it is always possible to construct such a replacement R because

all candidates in R are robust candidates (meaning that there are f + 1 identical copies

of each of these candidates) and the failure set J has size at most f .

Since the total number of vertex and edge gadgets is k, the new committee (T \J)∪R

72

FTCS in Multidimensional Instances Chapter 4

has size k. Using the same argument as in Section 4.1.1, we can show that σ((T \J)∪R) ≤

r. This completes the argument in the forward direction (that is, if ϕ is satisfiable then

σf (T) ≤ r).

To show the reverse direction, suppose σf (T) ≤ r. Therefore, when failing set J =

Ccov, there exists a k-sized replacement R ⊆ Crob such that σ(R) ≤ r. Hence, using

Lemma 15, we can conclude that ϕ is satisfiable.

Argument of equivalence for the decision problem (iii): Recall that for the

OFTC decision problem instance stated above, the input is the committee size k =

N + n− 3m and the fault-tolerance parameter f = k.

The argument for the forward direction is trivial, as we know when ϕ is satisfiable,

the k-sized committee T = Ccov has σf (T) ≤ r. In the reverse direction, suppose T ⊆ C

is a k-sized committee with σf (T) ≤ r. Therefore, in this case, for a size f failing set

J = Ccov, there exists a replacement R ⊆ C \ Ccov such that |(T \ J) ∪ R| ≤ k and

σ((T \ J) ∪ R) ≤ r. Since (T \ J) ∪ R = R and R ⊆ Crob; using Lemma 15, we can

conclude that ϕ is satisfiable.

4.1.3 Hardness when f is bounded

ORP and FTS Consider an election E = (C, V), a committee T ⊆ C of size k and a

fault-tolerance parameter f which is a constant. It is easy to see that we can solve ORP

optimally in time nmO(f)k by trying all possible replacement sets and choosing the best

one. Similarly, by trying all possible failing sets of size at most f (note that there are

mO(f) such sets) and computing optimal replacement for each set, we can compute σf (T)

in time nmO(f)k.

73

FTCS in Multidimensional Instances Chapter 4

OFTC We will now show that for any integer f ≥ 0, OFTC is NP-hard using a simple

reduction from the k-supplier problem [45]: Fix f ≥ 0. Let (C, F) along with an integer

k be a k-supplier instance where C is the set of customers and F is a set of facilities

embedded in R2. In the decision version of k-supplier, given a real number r, we ask if

there exists a size k set F ′ ⊆ F such that σ(C, F ′) ≤ r.

We construct an election E = (C, V) in R2 as follows. We set V = C. Further, we

construct the set of candidates C by adding f + 1 identical candidates on each point in

F . We set the committee size to k. It is easy to see that there exists a k-sized committee

T ⊂ C with σf (T) ≤ r if and only if there exists a k-sized subset F ′ ⊆ F such that

σ(C, F ′) ≤ r where r is a real number.

4.2 Constant factor Approximations

In the previous section, we showed that all three problems are NP-hard. We now turn

to approximation algorithms. In particular, we give 3-approximation algorithms for ORP

and FTS in subsections 4.2.1 and 4.2.2, respectively. Next, using a nontrivial packing

argument, we give a 3-approximation algorithm for OFTC in Subsection 4.2.3 which is

followed by a simple 5-approximation algorithm. All of these approximations hold not

just for d-dimensional Euclidean space, for any fixed d, but also for any metric space.

4.2.1 Optimal Replacement Problem

A simple greedy algorithm achieves a 3-approximation for the Optimal Replacement

Problem in any fixed dimension d as well as in any metric space.

Lemma 19 We can find a 3-approximation for ORP in time O(k(nk +m)).

Proof: Let T ⊆ C be the given committee and let J ⊆ T be the failing set.

74

FTCS in Multidimensional Instances Chapter 4

In order to find the replacement set R, we initialize T̂ = T \ J , and then repeat the

following two steps |T ∩ J | times: (1) Choose the farthest voter from T̂ , namely, choose

v̂ = argmaxv∈V d(v, T̂), and (2) Add to T̂ the candidate ĉ /∈ T̂ that is closest to v̂. Upon

termination, we clearly have |T̂ | = |T |.

We will now show that R is a 3-approximate replacement committee. Let |T ∩J | = r.

Suppose R∗ = {c∗1, c∗2, . . . , c∗r} is an optimal replacement such that T ∗ = (T \ J)∪R∗ has

σ(T ∗) = σ∗. Let V ∗
1 , V

∗
2 , . . . , V

∗
r ⊆ V be disjoint set of voters such that c∗i is the closest

candidate in T ∗ for all voters in V ∗
i for i ∈ [r]. We define V ′ =

⋃r
i=1 V

∗
i .

Let R = {c1, c2, . . . , cr} be the replacement set constructed by our algorithm and let

v̂1, v̂2, . . . , v̂r be the voters chosen by our algorithm. Recall that T̂ = (T \ J) ∪ R. It is

easy to see that σ(V \ V ′, T ∗) = σ(V \ V ′, T̂) ≤ σ∗ since (T \ J) ⊆ T ∗ and (T \ J) ⊆ T̂ .

Next, using a simple case analysis we will show that σ(V ′, T̂) ≤ 3σ∗.

Our cases are based on the voters v̂1, v̂2, . . . , v̂r as follows:

• If v̂i ∈ V \ V ′ for i ∈ [r], then the farthest voter (aka v̂i) in the ith-iteration of the

algorithm satisfies σ(v̂i, T̂) ≤ σ(V \ V ′, T̂) ≤ σ∗, and hence, σ(V ′, T̂) ≤ σ∗.

• Next, suppose for some i, j, k ∈ [r], we have v̂i, v̂j ∈ V ∗
k . Without loss of generality,

let j > i. Then, in the jth-iteration, the farthest voter (aka v̂j) among all voters in

V has d(v̂j, ˆTj−1) ≤ 3σ∗ where ˆTj−1 is a committee after j − 1 iterations of adding

replacement candidates. This is because d(v̂j, ˆTj−1) ≤ d(v̂j, v̂i) + d(v̂i, ĉi), and we

know d(v̂j, v̂i) = d(v̂j, c
∗
i) + d(c∗i , vi) ≤ 2σ∗ and d(v̂i, ĉi) ≤ σ∗ since ci is the closest

candidate to vi which is not in the committee. This implies that σ(ˆTj−1) ≤ 3σ∗.

Since ˆTj−1 ⊆ T̂ ; therefore, σ(V ′, T̂) ≤ 3σ∗.

• Finally, we consider the case for when i ∈ [r], we have v̂i ∈ V ∗
i . We will now show

that for v ∈ V ∗
i , σ(v, T̂) ≤ 3σ∗. We know d(v, ĉi) ≤ d(v, v̂i) + d(v̂i, ĉi). Notice that

75

FTCS in Multidimensional Instances Chapter 4

d(v, v̂i) ≤ d(v, c∗i) + d(c∗i , v̂i) ≤ 2σ∗, and d(v̂i, ĉi) ≤ σ∗. Therefore, d(v, ĉi) ≤ 3σ∗.

This implies, σ(V ′, R) ≤ 3σ∗, and hence, σ(V ′, T̂) ≤ 3σ∗.

Finally, it is easy to see that the algorithm runs for at most k iterations and each

iteration can be trivially implemented in time O(nk +m). This completes the proof of

Lemma 19.

4.2.2 Computing the Fault-Tolerance Score

We can also approximate the optimal fault-tolerance score of a committee within a

factor of 3. Specifically, if the optimal fault-tolerance score of T is σf (T) = σ∗, then our

algorithm returns a real number σ′ such that σ∗ ≤ σ′ ≤ 3σ∗.

For each voter v, let df (v) be v’s distance to its (f + 1)th closest candidate, and

let d′ = maxv∈V df (v) be the maximum of these values over all voters. The basic idea

behind our approximation is simple and uses the following two facts: (1) σ∗ ≥ d′, and

(2) σ∗ ≥ σ(T). The first one holds because d′ is the best score possible if some voter’s f

nearest candidates fail, and the second one holds because a failure can only worsen the

score (that is, σf (T) ≥ σ(T) for any f > 0). Therefore, the distance σ′ = d′ + 2σ(T) is

clearly within a factor of 3 of the optimal σ∗. We claim that for any failing set J ⊆ C,

there exists a replacement R ⊆ C \J of size at most |T ∩J | such that σ((T \J)∪R) ≤ σ′.

Claim 2 For a committee T ⊆ C and a failing set J ⊆ C, there exists a replacement

R ⊆ C \ J of size at most |T ∩ J | such that σ((T \ J) ∪R) ≤ σ′ where σ′ = d′ + 2σ(T).

Proof: Let T ∩ J = {c1, . . . , cr} and let V1, . . . , Vr be disjoint sets of voters such

that ci is the closest candidate in T to all voters in Vi for i ∈ [r]. We define V =
⋃r

i=1 Vi

and V ′ = V \V . For each voter v ∈ V ′, its closest candidate in T is still available; hence,

σ(v, T \ J) ≤ σ(T). Therefore, we only need to show that σ(V ,R) ≤ σ′.

76

FTCS in Multidimensional Instances Chapter 4

We build a replacement R as follows: We initialize R = ∅. Next, for r iterations, let

i be the iteration index then,

• Select an arbitrary voter vi ∈ Vi.

• Let ĉi ∈ C \ J be the closest available candidate to vi. Add ĉi to R.

To show σ(V ,R) ≤ σ′, we will now show that for all i ∈ [r], σ(Vi, ĉi) ≤ σ′. For

v ∈ Vi, we know d(v, ĉi) ≤ d(v, vi) + d(vi, ĉi) where vi is the voter selected in the ith-

iteration. First, observe that d(vi, ĉi) ≤ d′ as at most f closest candidates to vi belong

to J . Second, d(v, vi) ≤ d(v, ci) + d(ci, vi) ≤ 2σ(T) (recall that ci ∈ T ∩ J). Hence,

d(v, ĉi) ≤ 2σ(T) + d′ = σ′. Therefore, for the constructed replacement R, σ(V ,R) ≤ σ′.

We have the following result.

Lemma 20 The fault-tolerance score of a committee can be approximated within a factor

of 3 in time O(nm log(f)).

4.2.3 Optimal Fault-Tolerant Committee

We now discuss how to design approximately optimal fault-tolerant committees in

multiwinner elections. Specifically, given a set of voters V and a set of candidates C in

d-space, along with parameters k (committee size) and f (number of faults), we want to

compute a size k committee T ⊆ C with the minimum fault-tolerance score σf (T). In

this section, we prove the following result: We can solve this problem in polynomial time

within an approximation factor of 3 in polynomial time if the parameter f is treated as

a constant (while k remains possibly unbounded). If f is not assumed to be a constant,

we can solve the problem within an approximation factor of 5.

77

FTCS in Multidimensional Instances Chapter 4

Let σ∗ be the optimal f -tolerant score of a committee of size k. We compute the

approximation solution via an approximate decision algorithm, which takes as input a

number σ ≥ σf (C) and returns a committee T ⊆ C of size at most k with σf (T) ≤ 3σ if

σ ≥ σ∗. (We slightly abuse notation to introduce a convenient quantity σf (C), which is

the f -fault-tolerance score of a committee with all the input candidates. This is clearly

a lower bound on any size k committee’s score.)

For a committee T ⊆ C and a failing set J ⊆ C, let δ(T, J) denote the score obtained

after finding an optimal replacement K. That is,

δ(T, J) = min
K∈C\J,|K|=|T∩J |

σ0((T\J) ∪K).

Thus, σf (T) = maxJ⊆C,|J |≤f δ(T, J). Our approximation algorithm is shown in Algo-

rithm 1. It begins with an empty committee T (line 1), and as long as there exists a

failing set J of size at most f for which δ(T, J) > 3σ, 1 we do the following.

First, we remove all candidates in J from T (line 3). Then, whenever there exists a

voter v ∈ V with d(v, T) > 3σ, we add to T a candidate c ∈ C\J whose distance to v

is at most σ (lines 5-6). Such a c always exists because σ is at least the distance to the

(f + 1)th closest neighbor to v.

We call this voter v the witness of c, denoted by wit[c] (line 7). Adding c to T

guarantees that d(v, T) ≤ σ. We repeat this procedure (the inner while loop) until

d(v, T) ≤ 3σ for all v ∈ V . Finally, the outer while loop terminates when δ(T, J) ≤ 3σ

for all J ⊆ C of size at most f , i.e., σf (T) ≤ 3σ. At this point, we return the committee

T .

Lemma 21 Let T be the committee computed by Algorithm 1. Then d(wit[c],wit[c′]) > 2σ

1We can check this condition by iterating over all failing sets of size f and computing an optimal
replacement set in each case.

78

FTCS in Multidimensional Instances Chapter 4

Algorithm 1 Approximate decision algorithm

Input: a set V of voters, a set C of candidates, the committee size k, the fault-
tolerance parameter f , and a number σ ≥ σf (C)

1: T ← ∅
2: while ∃ J ⊆ C such that |J | ≤ f and δ(T, J) > 3σ do
3: T ← T\J
4: while ∃ v ∈ V such that d(v, T) > 3σ do
5: c← a candidate in C\J satisfying d(v, c) ≤ σ
6: T ← T ∪ {c}
7: wit[c]← v

8: return T

for any two distinct c, c′ ∈ T .

Proof: Let c, c′ ∈ T such that c ̸= c′. When the committee T is constructed in

Algorithm 1, the candidates are added to T one by one (line 6). Therefore, without loss

of generality, we can assume that c′ is added to T after c. Consider the iteration of the

inner while-loop (line 4-7) of Algorithm 1 in which we add c′ to T . At the beginning of

this iteration, we have d(v, T) > 3σ where v = wit[c′]. Note that c ∈ T at this time, and

thus d(wit[c′], c) > 3σ. Furthermore, we have d(wit[c], c) ≤ σ by construction. Therefore,

d(wit[c],wit[c′]) ≥ d(wit[c′], c)− d(wit[c], c) > 2σ,

by the triangle inequality.

Lemma 22 If σ ≥ σ∗, then Algorithm 1 outputs a size k committee T with σf (T) ≤ 3σ.

Proof: The condition of the outer while loop of Algorithm 1 guarantees that

δ(T, J) ≤ 3σ for all J ⊆ C of size at most f , which implies σf (T) ≤ 3σ. To prove

|T | ≤ k, suppose T = {c1, . . . , cr}. By Lemma 21, the pairwise distances between the

voters wit[c1], . . . ,wit[cr] are all larger than 2σ and thus larger than 2σ∗ (as σ ≥ σ∗ by

our assumption). Now consider a committee T ∗ ⊆ C of size k satisfying σf (T
∗) = σ∗.

79

FTCS in Multidimensional Instances Chapter 4

For each wit[ci], there exists c
∗
i ∈ T ∗ such that d(wit[ci], c

∗
i) ≤ σ∗. Observe that c∗1, . . . , c

∗
r

are all distinct. Indeed, if c∗i = c∗j and i ̸= j, then by the triangle inequality,

d(wit[ci],wit[cj]) ≤ d(wit[ci], c
∗
i) + d(wit[cj], c

∗
j) ≤ 2σ∗,

contradicting the fact that d(wit[ci],wit[cj]) > 2σ∗. Since |T ∗| = k and c∗1, . . . , c
∗
r ∈ T ∗,

we have r ≤ k, which completes the proof.

Using these two lemmas, we can compute a 3-approximate solution using Algorithm 1

as follows. First, we compute σf (C) in O(nmf+1) time by enumerating all failing sets

J ⊆ C of size at most f . For every voter v ∈ V and every candidate c ∈ C such

that d(v, c) ≥ σf (C), we run Algorithm 1 with σ = d(v, c). Among all the committees

returned of size at most k, we pick the one, say T ∗, that minimizes σf (T
∗). To see that

σf (T
∗) ≤ 3σ∗, note that σ∗ must be the distance between a voter and a candidate. Thus,

there is one call of Algorithm 1 with σ = σ∗, which returns a committee T ⊆ C of size

at most k such that σf (T) ≤ 3σ = 3σ∗, by Lemma 22. We have σf (T
∗) ≤ σf (T) by

construction, which implies σf (T
∗) ≤ 3σ∗.

Overall running time. We will show that each run of Algorithm 1 takes O(nm2f+1)

time. We can check the condition of while loop in Step 2 in time O(m2f). This is because

there are at most O(mf) failing sets of size at most f (the precise upper bound is 2mf),

and for each failing set, we can find an optimal replacement in time O(mf) by bruteforce.

Next, each iteration of the while loop takes O(nm) time, that is, the time required to

compute all voter-candidate pairwise distances. Therefore, the overall running time of

the algorithm is O(n2m2f+2).

Thus, we have the following result.

Theorem 15 We can find a 3-approximation for Optimal Fault-tolerant Committee in

time O(n2m2f+2), assuming the fault-tolerance parameter f is a constant.

80

FTCS in Multidimensional Instances Chapter 4

Next, for a non-constant f , we give a 5 approximation using a greedy rule.

Lemma 23 We can find a 5-approximation for Optimal Fault-Tolerant Committee in

time O(mnk).

Our algorithm is quite simple and uses the classical “farthest next” greedy rule [12].

Specifically, let C and V be the set of candidates and voters, respectively. We begin

with an empty committee T = ∅ and an empty set V̂ of picked voters. Then we repeat

the following step: pick the voter v̂ ∈ V \V̂ farthest to the current committee T , add v̂

to V̂ , and add to T the candidate ĉ ∈ C closest to v̂. The procedure terminates when

|T | = k or the candidate ĉ computed is already in T . Formally, our algorithm is shown

in Algorithm 2.

Algorithm 2 5-approximation algorithm for OFTC

Input: a set V of voters, a set C of candidates, the committee size k, and the
fault-tolerance parameter f

1: i← 0 and T ← ∅
2: while |T | ≤ k do
3: i← i+ 1
4: vi ← argmaxv∈V \V̂ d(v, T)
5: ci ← argminc∈C d(vi, c)
6: if ci ∈ T then
7: break
8: T ← T ∪ {ci}
9: return T

We now move on to the proof of correctness. Denote by σ∗ the optimal f -tolerant

score of a size-k committee. First, using the same analysis as the one for the k-center

problem [46], we can show that σ(T) ≤ 3σ∗.

Lemma 24 Let T be the committee computed by Algorithm 2. Then σ(T) ≤ 3σ∗.

The proof Lemma 24 is easy and we refer the reader to [46] for details. We now show

that T is a 5-approximate solution to OFTC.

81

FTCS in Multidimensional Instances Chapter 4

Lemma 25 Let T be the committee computed by Algorithm 2. Then σf (T) ≤ 5σ∗.

Proof: It suffices to show that for any failing set J ⊆ C of size at most f , there exists

a replacement set K ⊆ C\J such that |K| = T ∩ J and σ0((T\J) ∪K) ≤ 5σ∗. Suppose

T = {c1, . . . , cr}, where ci is the candidate selected in the i-th iteration of Algorithm 2.

Let v1, . . . , vr be the voters computed in line 4 of Algorithm 2. For a failing set J ⊆ C,

we construct the replacement set K as follows: For each index i ∈ [r] such that ci ∈ J ,

we include in K the candidate c′i ∈ C\J closest to vi. Clearly, |K| = |T ∩ J |.

Now we show that σ0((T\J) ∪K) ≤ 5σ∗. Using Lemma 24, we know that d(v, T) ≤

3σ∗ for any voter v ∈ V . Based on this, we bound σ0((T\J)∪K) as follows. Observe that

σ0((T\J)∪K) = maxv∈V d(v, (T\J)∪K). So it suffices to show that d(v, (T\J)∪K) ≤

5σ∗ for all v ∈ V . Let ci ∈ T be the candidate closest to v; thus, d(v, ci) = d(v, T) ≤ 3σ∗.

If ci /∈ J , we are done. Otherwise, c′i ∈ K and hence d(v, (T\J) ∪K) ≤ d(v, c′i). By the

triangle inequality, we have

d(v, c′i) ≤ d(v, ci) + d(ci, vi) + d(vi, c
′
i).

As argued before, d(v, ci) ≤ 3σ∗. Furthermore, d(ci, vi) ≤ d(vi, c
′
i) ≤ σ∗, because c′i is the

candidate in C\J closest to vi. Therefore, the above inequality implies d(v, c′i) ≤ 5σ∗.

By the above lemma, we know that Algorithm 2 achieves an approximation ratio of

5. Its running time is clearly O(mnk). This completes the proof of Lemma 23.

4.3 Bicriterion Approximation Scheme

In this final section of our chapter, we will present a bicriterion approximation scheme

for OFTC. In particular, We give an EPTAS with running time (1/ε)O(1/ε2d)(m+ n)O(1)

which is a bicriterion approximation, where the output committee T is fault-tolerant for

82

FTCS in Multidimensional Instances Chapter 4

at least (1 − ε)n voters with σf (T) ≤ (1 + ε)σ∗. Formally, we say a committee T is

(r, ρ)-good if there exists a subset V ′ ⊆ V of size at least ρn such that the f -tolerant

score of T with respect to only the voters in V ′ is at most r. Then our approximation

scheme can output a size-k committee which is ((1 + ε)σ∗, 1− ε)-good. The core of our

approximation scheme is the following (approximation) decision algorithm. The decision

algorithm takes the problem instance and an additional number r > 0 as input. The

output of the algorithm has two possibilities: it either (i) returns YES and gives a size-

k committee that is ((1 + ε)r, 1 − ε)-good or (ii) simply returns NO. Importantly, the

algorithm is guaranteed to give output (i) as long as r ≥ σ∗. Note that this decision

algorithm directly gives us the desired approximation scheme. Indeed, we can apply it

with r = d(v, c) for all v ∈ V and c ∈ C. Let r∗ be the smallest r that makes the algorithm

give output (i). The size-k committee T ∗ obtained when applying the algorithm with r∗

is ((1 + ε)r∗, 1− ε)-good. We have r∗ ≤ σ∗ because the algorithm must be applied with

r = σ∗ at some point and it is guaranteed to give output (i) at that time. Thus, T ∗ is

((1 + ε)σ∗, 1− ε)-good, as desired.

For simplicity of exposition, we describe our decision algorithm in two dimensions.

By scaling, we may assume that the given number is r = 1. To solve the decision

problem, our algorithm uses the shifting technique [17]. Let h be an integer parameter

to be determined later. For a pair of integers i, j ∈ Z, let □i,j denote the h × h square

[i, i+h]×[j, j+h]. A square □i,j is nonempty if it contains at least one voter or candidate.

We first compute the index set Ĩ = {(i, j) : □i,j is nonempty}. This can be easily done

in time O((n+m)h2).

Consider a pair (x, y) ∈ {0, . . . , h− 1}2. Let Lx,y be the set of all integer pairs (i, j)

such that i (mod h) ≡ x and j (mod h) ≡ y. We write Ĩx,y = Ĩ ∩Lx,y. For a voter v ∈ V

and a square□i,j, we say v is a boundary voter for□i,j if v /∈ [i+2, i+h−2]×[j+2, j+h−2].

Furthermore, we say v conflicts with (x, y) if v is a boundary voter in □i,j for some

83

FTCS in Multidimensional Instances Chapter 4

(i, j) ∈ Ĩx,y.

Lemma 26 There exists a pair (x, y) ∈ {0, . . . , h−1}2 such that at most 4h−4
h2 · |V | voters

conflict with (x, y).

Proof: A voter v ∈ V may conflict with (x, y) only if for some (i, j) ∈ Ĩx,y, we have

v ∈ □i,j but v /∈ [i+2, i+h−2]× [j+2, j+h−2]. Therefore, out of the total of h2 pairs

(x, y), v can only conflict with at most h2 − (h − 2)2 pairs. Hence, using an averaging

argument, there exists a pair (x, y) with at most h2−(h−2)2

h2 · |V | conflicting voters from V .

We fix a pair (x, y) ∈ {0, . . . , h − 1}2 that conflicts with the minimum number of

voters. For (i, j) ∈ Ĩx,y, we define the set of (non-boundary) voters Vi,j = {v ∈ □i,j : v ∈

[i+ 2, i+ h− 2]× [j + 2, j + h− 2]}, and the set of candidates Ci,j = {c ∈ C : c ∈ □i,j}.

Note that for (i, j) ∈ Ĩx,y, the Ci,j’s are disjoint and form a partition of C. Next, we

show an important lemma which allows our algorithm to divide our problem into smaller

subproblems, solve them individually, and combine the solutions to solve the overall

problem.

Lemma 27 Let V1, V2, . . . , Vs be subsets of V and let T1, T2, . . . , Ts be pairwise disjoint

subsets of C such that Ti is a fault-tolerant committee for Vi with σf (Ti) = σ. Then,

T =
⋃s

i=1 Ti is a fault-tolerant committee of
⋃s

i=1 Vi with σf (T) = σ.

Proof: We will show that for any failing set J ⊆ C, there exists a replacement set

R with |R| ≤ |J ∩ T | such that σ0((T \ J) ∪ R) ≤ σ. For i ∈ [s], let Ji ⊆ J be the

restriction of J to Ti, i.e., Ji = J ∩ Ti. We know |J | ≤ f . Since Ti is a fault-tolerant

committee for Vi; hence, there exists a valid replacement Ri ⊆ C\J such that |Ri| ≤ |Ji|

and σ0((Ti\Ji) ∪ Ri) ≤ σ. Let R =
⋃s

i=1 Ri (note that the Ri’s need not be disjoint).

Then we have |R| ≤
∑s

i=1 |Ji| ≤ |J ∩ Ti| which implies |R| ≤ |J ∩ T |, and we have

σ0((T\J) ∪R) ≤ σ. This completes the proof of Lemma 27.

84

FTCS in Multidimensional Instances Chapter 4

Consider a pair (i, j) ∈ Ĩx,y. Let T i,j be a smallest fault-tolerant committee for Vi,j

with σf (T i,j) ≤ 1. We observe that any inclusion-minimal fault-tolerant committee Ti,j

for Vi,j satisfies Ti,j ⊆ Ci,j. This is because any candidate outside Ci,j has distance more

than 1 + 6/h to any voter in Vi,j (for a large enough value of h). In the next section

we will show how to compute a fault-tolerant committee Ti,j ⊆ Ci,j for Vi,j such that

|Ti,j| ≤ |T i,j| and σf (Ti,j) ≤ 1 + 6/h in hO(h4)nO(1) time. Assuming we can compute the

above-mentioned committee Ti,j, our overall algorithm is as follows:

1. Fix a pair (x, y) ∈ {0, . . . , h− 1}2 conflicting with the minimum number of voters,

and set h to be the smallest integer such that (4h− 4)/h2 ≤ ε and 6/h ≤ ε.

2. For each pair (i, j) ∈ Ĩx,y, compute Ti,j ⊆ Ci,j.

3. Let T =
⋃

(i,j)∈Ĩx,y Ti,j. If |T | ≤ k, return YES (along with T); otherwise, return

NO.

Let V ′ =
⋃

(i,j)∈Ĩx,y Vi,j. Since the Ci,j’s are disjoint, using Lemma 27, we conclude

that T is a fault-tolerant committee for V ′. Furthermore, from our choice of (x, y), we

have |V ′| ≥ (1 − ε)n. It is easy to show that the f -tolerant score of T with respect

to the voters in V ′ is at most 1 + ε, and in addition, if σ∗ ≥ 1, we have |T | ≤ k; we

give a formal argument below. This proves correctness of our decision algorithm. The

overall algorithm takes (1/ε)O(1/ε4)(m+ n)O(1) time. We note that the algorithm can be

directly generalized to the d-dimensional case with running time (1/ε)O(1/ε2d)(m+n)O(1).

Therefore, we have the following result.

Theorem 16 Given a d-dimensional Fault-Tolerant Committee Selection instance, we

can compute a size-k committee T such that the f -tolerant score of T with respect to

at least (1 − ε)n voters is at most (1 + ε)σ∗, where σ∗ is the optimal f -tolerant score

85

FTCS in Multidimensional Instances Chapter 4

of a size-k committee (with respect to the entire set V). This algorithm runs in time

(1/ε)O(1/ε2d)(m+ n)O(1).

Correctness of the Decision Algorithm. Recall that, in our decision algorithm,

we set h to be the smallest integer such that (4h − 4)/h2 ≤ ε and 6/h ≤ ε. Moreover,

using Lemma 26 and our choice of (x, y), we have |V ′| ≥ (1 − ε)n. If the computed

committee T has size at most k, our algorithm returns YES; otherwise, it returns NO.

To see the correctness our algorithm, recall that σ∗ is an optimum score of a fault-tolerant

committee for V . If r ≥ σ∗, then there exists a size-k fault-tolerant committee with score

r for V , and hence for V ′ (as V ′ ⊆ V).

Recall that for (i, j) ∈ Ĩx,y, the computed committee Ti,j has |Ti,j| ≤ |T i,j| where

T i,j is the smallest committee for Vi,j with σf (T i,j) ≤ 1. Therefore, when r ≥ σ∗, for

T =
⋃

(i,j)∈Ĩx,y Ti,j, we have |T | ≤ k and our algorithm returns YES. On the other hand, if

there is no size-k committee whose f -tolerant score is at most (1+ε)r for at least (1−ε)n

voters, we must have |T | > k and thus our algorithm returns NO. This completes the

argument for the proof of correctness.

4.3.1 Algorithm to Compute Ti,j

We now present the most challenging piece of our algorithm: the computation of the

Ti,j’s. Consider a box □i,j. Suppose there exists a fault-tolerant committee T ⊆ C for

Vi,j with σf (T) ≤ 1. Our task is to compute a fault-tolerant committee Ti,j ⊆ C for Vi,j

such that |Ti,j| ≤ |T | and σf (Ti,j) ≤ 1 + 6/h.

We divide □i,j into h4 smaller cells each with size 1
h
× 1

h
, and we denote the set of

these cells by L = {l1, . . . , lh4}. (See Figure 4.3.) Our algorithm is based on two key

observations:

(i) A committee with a candidate in every nonempty cell has f -tolerant score within a

86

FTCS in Multidimensional Instances Chapter 4

< 2/h
1/h

1/h

voters

candidates

Figure 4.3: The figure shows a cell in the shifted grid. The solid lines around the sides
are the grid lines (and the region inside them is a cell). The shaded (green) region is the
boundary region. Inside the boundary region, we divide the cell into 1/h × 1/h smaller
cells. The distance between any two points in a smaller cell is < 2/h. All candidates in
smaller cells are identical (i.e., candidates in blue regions). In this example, since only
five cells are nonempty, we have at most 25 distinct failing sets.

difference of at most 2/h from the optimum score. Since the number of cells is h4, this

implies that the size of a smallest approximately optimal committee is bounded by h4

(formally shown in Lemma 28).

(ii) All candidates in a cell can be treated as identical, causing only a loss of 2/h in the

score. This implies that for any Ti,j, to approximately compute the f -tolerant score of

Ti,j, we only need to consider the failing sets where either all or none of the candidates

in a cell fail. Note that the number of such failing sets is at most 2O(h4) (formally shown

in Lemma 29).

Using these two observations, at a high level, our algorithm goes through all com-

mittees of size at most h4 (there are hO(h4) of these as we can assume that each cell has

at most h4 candidates), approximately computes the f -tolerant score of each of these

committees in time 2O(h4), and returns the smallest one with the desired score.

Lemma 28 Let T, T ∗ ⊆ C be fault-tolerant committees for Vi,j. If |T ∗ ∩ la| = 1 for all

a ∈ [h4] such that C ∩ la ̸= ∅, then σf (T
∗)− σf (T) ≤ 2/h.

87

FTCS in Multidimensional Instances Chapter 4

Proof: Consider a failing set J ⊆ C. Since T is a fault-tolerant committee, there

exists a valid replacement set R such that |(T\J) ∪ R| ≤ |T | and σ0((T\J) ∪ R) ≤

σf (T). Let L′ = {la ∈ L : la ∩ ((T\J) ∪ R) ̸= ∅}. Moreover, let J∗ = J ∩ T ∗. Then

we will show that there exists a replacement set R∗ for J∗ such that |R∗| ≤ |J∗| and

σ0((T
∗ \ J∗) ∪R∗)− σ0((T \ J) ∪R) ≤ 2/h.

We construct the set R∗ as follows: Consider a cell la ∈ L′. Since la∩((T \J)∪R) ̸= ∅,

la is nonempty. This implies T ∗ ∩ la ̸= ∅ from the way we construct T ∗. Let ca be the

only candidate in T ∗ ∩ la. If ca ∈ J , then we replace ca with an arbitrary c′a ∈ la \ J (i.e.,

we add c′a to R∗). We know that such a candidate c′a exists because la∩ ((T\J)∪R) ̸= ∅.

Since we only add a candidate to R∗ from la such that J∗ ∩ la ̸= ∅, we have |R∗| ≤ |J∗|.

We will now show that σ0((T
∗ \J∗)∪R∗)−σ0((T \J)∪R) ≤ 2/h. Observe that for a

pair of candidates c1, c2 ∈ la, d(c1, c2) ≤ 2/h (see Figure 4.3). Let Ca = la∩ ((T \J)∪R).

Moreover, let Va ⊆ V be the set of voters which have a candidate in Ca as their closest

candidate in the committee (T \ J) ∪ R. Using the triangle inequality, we know that

d(Va, c
′
a) ≤ d(Va, Ca) + 2/h. The above statement holds for all cells la ∈ L′. Therefore,

σ0((T
∗ \ J∗) ∪R∗)− σ0((T \ J) ∪R) ≤ 2/h.

Note that our proof works for an arbitrary failing set J including J = ∅. This

completes the proof of Lemma 28.

Based on the above observation, we solve the problem as follows. We enumerate

all maps χ : L → {0, 1, . . . , h4} where χ(la) is the number of candidates from la in the

committee. The total number of such maps is hO(h4). For each feasible map, i.e., χ

satisfying χ(la) ≤ |C ∩ la| for all a ∈ [h4], we construct a fault-tolerant committee T ∗
χ for

Vi,j by picking (arbitrarily) χ(la) candidates in C ∩ la for all a ∈ [h4] and including them

in T ∗
χ . For each constructed T ∗

χ , we compute a number σ̃f (T
∗
χ) that approximates σf (T

∗
χ)

using the following lemma.

88

FTCS in Multidimensional Instances Chapter 4

Lemma 29 Given T ∗
χ , one can compute a number σ̃f (T

∗
χ) in 2O(h4)nO(1) time such that

|σ̃f (T
∗
χ)− σf (T

∗
χ)| ≤ 2/h.

Proof: For a pair of candidates ci, cj in a cell li ∈ L, we know d(ci, cj) ≤ 2/h. Since

we want to compute the number σ̃f (T
∗
χ) within an absolute error of 2/h compared to the

actual value, it is sufficient to only consider the failing sets for which either all or none of

the candidates from a cell fail. The total number of cells is h4; therefore, we only need to

consider at most 2O(h4) distinct failing cells (see Figure 4.3). For each of these failing sets

(say J ⊆ C), we can compute a best replacement committee R in time 2O(h4) by either

choosing one or zero candidates from each cell. For each replacement, σ0(T
∗
χ \J ∪R) can

be computed in O(nh4) time. Therefore, we can compute ˜σf (T ∗
χ) in time 2O(h4)nO(1).

Finally, we let Ti,j be the smallest among all committees T ∗
χ satisfying σ̃f (T

∗
χ) ≤

1 + 4/h, and we return it as our solution. The running time of our algorithm is clearly

hO(h4)nO(1). The following lemma shows that our algorithm is correct.

Lemma 30 We have σf (Ti,j) ≤ 1+ 6/h. Furthermore, |Ti,j| ≤ |T | for any fault-tolerant

committee T for Vi,j with σf (T) ≤ 1.

Proof: The fact that σf (Ti,j) ≤ 1 + 6/h follows directly from our construction and

Lemma 29. Let T be a fault-tolerant committee for Vi,j with σf (T) ≤ 1. We consider

two cases: |T | > h4 and |T | ≤ h4. First, assume |T | > h4. Define χ : L → {0, 1, . . . , h4}

by setting χ(la) = 1 for all a ∈ [h4] with C ∩ la ̸= ∅, and χ(la) = 0 whenever C ∩ la = ∅.

Clearly, |T ∗
χ | ≤ h4 < |T |. By Lemma 28, σ(T ∗

χ) ≤ 1 + 2/h. Thus, σ̃f (T
∗
χ) ≤ 1 + 4/h by

Lemma 29. This further implies that |Ti,j| ≤ |T ∗
χ | < |T |.

Now assume |T | ≤ h4. Define χ : L → {0, 1, . . . , h4} by setting χ(la) = |T ∩ la| for

all a ∈ [h4]. Clearly, |T ∗
χ | = |T | and |T ∗

χ ∩ la| = |T ∩ la| for all a ∈ [h4]. We show that

σ(T ∗
χ) ≤ 1+2/h. Since |T ∗

χ ∩ la| = |T ∩ la|, for each a pick a bijection πa : C ∩ la → C ∩ la

such that for all x ∈ C ∩ la, x ∈ T ∗
χ if and only if πa(x) ∈ T . Observe that the distance

89

FTCS in Multidimensional Instances Chapter 4

between x and πa(x) is at most 2/h for all x ∈ C ∩ la. Combining all bijections πa, we

obtain a bijection π : Ci,j → Ci,j with the property that for all x ∈ Ci,j, the distance

between x and π(x) is at most 2/h, and x ∈ T ∗
χ if and only if π(x) ∈ T . Because of this

bijection, it is obvious that |σf (T
∗
χ)− σf (T)| ≤ 2/h and in particular σf (T

∗
χ) ≤ 1 + 2/h.

Thus, σ̃f (T
∗
χ) ≤ 1 + 4/h by Lemma 29. This further implies that |Ti,j| ≤ |T ∗

χ | = |T |.

4.4 Bibliographic notes

To the best of our knowledge, the issue of fault tolerance in committee selection has

not been studied in voting literature — their primary focus is on protocols and algorithms

for choosing candidates [32, 33, 36, 37, 22, 47]. However, the following two lines of work

consider some related issues. First, in the “unavailable candidate model” [48, 49] the goal

is to choose a single winner with maximum expected score when candidates fail according

to a given probability distribution; in contrast, we consider multiwinner elections under

worst-case faults. In the second line of work, a set of election control problems are

considered where candidates are added [50] or deleted [51] to change the outcome of

the election. In this setting, the candidate set is modified to obtain a favorable election

outcome, which is a rather different problem than ours.

In the facility-location research, there has been prior work on adding fault tolerance

to k-center or k-median solutions [52, 53, 54, 55, 56], but the main approach there is to

assign each user (voter) to multiple facilities (candidates). In particular, the “p-neighbor

k-center” framework [52] minimizes the maximum distance between a user and its pth

center as a way to protect against p−1 faults. This formulation, however, differs from our

optimal fault-tolerant committee problem (OFTC) because in our setting the replacement

candidates are chosen after failing candidates are announced. Therefore, in the OFTC

problem, the designer does not have to simultaneously allocate p neighbors for all the

90

FTCS in Multidimensional Instances Chapter 4

voters. Furthermore, to the best of our knowledge, neither of our first two problems —

Optimal Replacement (ORP) and Fault-Tolerance Score (FTS) — have been studied in

the facility-location literature, and initiate a new research direction.

91

Chapter 5

Committee Winner Verification

Problem

In the previous chapters, we studied the winner determination problem (Chapter 2) and

the fault-tolerant committee selection (Chapter 3 and Chapter 4) under the Chamberlin-

Courant voting rule for Euclidean elections. In this chapter, we take a step forward and

focus our attention to the winner verification problems. In particular, given an election

E = (C, V) (along with the preferences of voters over candidates), a desired committee

size k and the voting rule under consideration we ask the following two questions:

1. Winner Verification: For a committee S ⊆ C of size at most k, is S a winning

committee?

2. Candidate Winner: For a candidate c ∈ C, does there exists a committee S ⊆ C

of size at most k such that c ∈ S and S is a winning committee?

Recall that a winning committee is the one with minimum (dissatisfaction/misrepresentation)

score. The two questions above are natural to ask and answering them would be useful in

many cases such as an election organizer might want check the individual/group fairness

92

Committee Winner Verification Problem Chapter 5

in terms of outcome possibilities of the election or a campaign manager might want to

know if their party or a candidate has a chance of winning or not.

For an election with m voters, recall from Chapter 1 that Euclidean elections al-

low only a small fraction of all possible preference orderings over the candidates. (In

Euclidean elections, the candidates and voters lie in a d-dimensional Euclidean space

and the preferences are derived using the Euclidean distance.) In particular, only O(md)

orderings are realizable in a d-dimensional Euclidean election among the total of allm! or-

derings. In this chapter, we study non-Euclidean elections. That is, the candidates/voters

are not embedded in a Euclidean space and the voter preferences need not follow any

structures (such as the one imposed by Euclidean distances). Note that all m! orderings

of the candidates are realizable in this scenario. We work with the Chamberlin-Courant

[11] and Monroe [18] voting rules. Recall from Chapter 1 that both these rules ensure

representation as each voter is “assigned” to a committee member. Furthermore, the

Monroe voting rule also ensure proportional representation as each committee member

is assigned equal number of voters.

We recall briefly that the preferences of voters in an election instance are typically

solicited as either rankings (total orders over candidates) or approval ballots (subsets

of “approved” candidates) – see Chapter 1 for more details. The problem of finding

a committee whose misrepresentation is bounded by a given threshold is known to be

NP-complete for Chamberlin-Courant and Monroe [57, 58] in the setting of rankings as

well as approval ballots. In a recent development ([59, Theorem 10], improving upon [60,

Corollary 3]), it was shown that it is ΘP
2 -hard to determine whether a given candidate

belongs to an optimal CC committee in the setting of rankings for the utilitarian method

of aggregating misrepresentation scores. Following up on this, the main contribution of

our work is to completely settle the complexity of two aforementioned natural versions

of the winner determination question in the context of the two fundamental multiwinner

93

Committee Winner Verification Problem Chapter 5

rules — Chamberlin-Courant and Monroe. We address these problems in the settings of

both rankings and approval ballots, and for both the utilitarian and egalitarian methods

of aggregating scores.

5.0.1 Results and Organization of the Chapter

Our first set of contributions is for the Winner Verification problem; we show

that it is complete for the complexity class coNP. In this case, the membership is easy

to establish. For a given committee, observe that it is easy to compute its score with

respect to the Chamberlin-Courant rule (and also the Monroe rule, although this is less

straightforward). Thus, our coNP certificate is simply a “rival” committee with a better

score. We remark, as an aside, that this is in contrast with rules such as Dodgson [61, 62]

for which computing the Dodgson score of a given candidate is intractable.

To show hardness for coNP, we reduce from the complement of the Hitting Set

problem in different ways depending on the setting. We present the results for Chamberlin-

Courant rule under ranking preferences in Section 5.1. For showing the hardness of the

Monroe Rule we employ a variant where the elements enjoy uniform occurrences among

the sets (See Section 5.2 for details). We consider the case of approval voting in Section 5.3

and we show show that Winner Verification stays coNP-complete even in this case

for both Chamberlin-Courant and Monroe voting rule. Apart from settling the complex-

ity of fundamental question of winner verification, our contribution identifies a natural

coNP-complete problem, in particular, one that is not merely the complement of a nat-

ural NP-complete problem. Finally, in Section 5.4, we give polynomial-time algorithms

for the winner verification problem under single-peaked or single-crossing preferences for

both the Chamberlin-Courant voting rule.

For the ease of presentation, we present our results on the Candidate Winner

94

Committee Winner Verification Problem Chapter 5

problem in Chapter 6.

5.0.2 Additional notations for this Chapter

For a positive integer ℓ, we denote the set {1, . . . , ℓ} by [ℓ]. For convenience, for the

rest of this chapter and for Chapter 6 we use C for denote the set of candidates instead of

C. Every voter v has a preference ≻v which is typically a complete order over the set C of

candidates (rankings) or a subset of approved candidates (approval ballots). An instance

of an election consists of the set of candidates C and the preferences of the voters V ,

usually denoted as E = (C, V) with the understanding that the voters in V are identified

by their preferences.

We now recall some definitions in the context of rankings. We say voter v prefers a

candidate x ∈ C over another candidate y ∈ C if x ≻v y. For a ranking ≻, pos≻(c) is

given by one plus the number of candidates ranked above c in ≻. In particular, if there

are m candidates and c is the top-ranked (respectively, bottom-ranked) candidate in the

ranking ≻, then pos≻(c) is one (respectively, m). We denote the set of all preferences

over C by L(C). The n-tuple (≻v)v∈V ∈ L(C)n of the preferences of all the voters is

called a profile. We note that a profile, in general, is a multiset of linear orders. For

a subset M ⊆ V , we call (≻v)v∈M a sub-profile of (≻v)v∈V . For a subset of candidates

D ⊆ C, we use P|D to denote the projection of the profile P on the candidates in D

alone. The definitions of profiles, sub-profiles, and projections are analogous for approval

ballots.

Chamberlin-Courant for Rankings. The Chamberlin–Courant voting rule is based

on the notion of a dissatisfaction or a misrepresentation function. This function specifies,

for each i ∈ [m], a voter’s dissatisfaction αm(i) from being represented by the candidate

she ranks in position i. A popular dissatisfaction function is Borda, given by αm(i) = i−1.

95

Committee Winner Verification Problem Chapter 5

We now turn to the notion of an assignment function. Let k ≤ m be a positive integer.

A k-CC-assignment function for an election E = (C, V) is a mapping Φ: V → C such

that |Φ(V)| = k, where Φ(V) denotes the image of Φ. For a given assignment function

Φ, we say that voter v ∈ V is represented by candidate Φ(v) in the chosen committee.

There are several ways to measure the quality of an assignment function Φ with respect

to a dissatisfaction function α : [m] −→ R; and we will use the following:

1. ℓ1(Φ, α) =
∑

v∈V α(pos≻v
(Φ(v))), and

2. ℓ∞(Φ, α) = maxv∈V α(pos≻v
(Φ(v))).

Unless specified otherwise, α will be the Borda dissatisfaction function described above.

We are now ready to define the Chamberlin-Courant voting rule.

Definition 1 (Chamberlin-Courant) For ℓ ∈ {ℓ1, ℓ∞}, the ℓ-CC voting rule is a map-

ping that takes an election E = (C, V) and a positive integer k with k ≤ |C| as its input,

and returns the images of all the k-CC-assignment functions Φ for E that minimizes

ℓ(Φ, α).

Chamberlin-Courant for Approval Ballots. Recall that an approval vote of a voter

v on the set of candidates C is some subset Sv of C such that v approves all the candidates

in Sv. We define the misrepresentation score of a k-sized committee W as the number

of voters which do not have any of their approved candidates in W (i.e. W ∩ Sv = ∅).

Hence the optimal committees under approval Chamberlin-Courant are the committees

which maximize the number of voters with at least one approved candidate in the winning

committee [63].

We now turn to the definition of the Monroe voting rule [18]. Note that for c ∈ C,

Φ−1(c) denotes the set of voters represented by c.

96

Committee Winner Verification Problem Chapter 5

Definition 2 (Monroe) For ℓ ∈ {ℓ1, ℓ∞}, the ℓ-Monroe voting rule is a mapping that

takes an election E = (C, V) and a positive integer k with k ≤ |C| as its input, and

returns the image of any of the k-Monroe-assignment functions Φ such that |Φ−1(c)| is

either ⌊n
k
⌋ or ⌈n

k
⌉ where c ∈ C for E that minimizes ℓ(Φ, α).

We are now ready to describe the questions that we study in this chapter. The

first problem is Chamberlin-Courant Winner Verification (CCWV). Here, the

input is an election E = (C, V) and a subset S of k candidates. The question is if S

is a winning k-sized CC-committee for the election E, in other words, does S achieve

the best Chamberlin-Courant score in the given election among all committees of size k?

The second problem is Monroe Winner Verification (MWV) which is defined in

a similar way.

We also recall the definitions of 3-Hitting Set and its complement as we will use

these problems in our reductions. In the 3-Hitting Set problem, we are given a ground

set U , a family F of three-sized subsets of U , and an integer k, and the question is if there

exists S ⊆ U of size at most k that intersects every set in F , i.e: ∀ F ∈ F , S ∩F ̸= ϕ. In

the c-3-Hitting Set problem, the input is the same, and is a Yes-instance if and only

if there is no hitting set of size k; in other words, if for each S ⊆ U with |S| ≤ k, there

exists some FS ∈ F such that S ∩ FS = ϕ. We recall that 3-Hitting Set is a classic

NP-complete problem, and c-3-Hitting Set is coNP -complete.

The Class PNP
∥ (ΘP

2). The class PNP
∥ is the class of problems solvable using a P

machine having parallel access to an NP oracle. The class ΘP
2 was introduced in [64] and

named in [65]. The class ΘP
2 was shown to be equivalent to PNP

∥ by Hemachandra [66].

The Vertex Cover Member problem is the following. Given a graph G := (V,E) and

a vertex w ∈ V , the question is if there exists a minimum sized vertex cover containing

w. The problem was shown to be complete for PNP
∥ by [67].

97

Committee Winner Verification Problem Chapter 5

Restricted Preference Domains. In this work, we consider two well-studied notions

of restricted preference domains, namely, single-peaked and single-crossing preferences

domains.

Single-Peaked Preference Domains. A preference profile is said be single-peaked if

there exists an ordering σ over the candidates C such that the preference of every voter

v has the following structure: v has a favorite candidate c (sometimes called the “peak”

for v), and the further away a candidate d ̸= c is from c in σ, the less it is preferred by

the voter v. A formal definition is as follows:

Definition 3 (Single-Peaked Domain) A preference ≻∈ L(C) over a set of candi-

dates C is called single-peaked with respect to an order ≻′∈ L(C) if, for every pair of

candidates x, y ∈ C, we have x ≻ y whenever we have either c ≻′ x ≻′ y or y ≻′ x ≻′ c,

where c ∈ C is the candidate at the first position of ≻. A profile P = (≻i)i∈[n] is called

single-peaked with respect to an order ≻′∈ L(C) if ≻i is single-peaked with respect to ≻′

for every i ∈ [n].

Single-Crossing Preference Domains. A preference profile is said to belong to the

single-crossing domain if it admits a permutation of the voters such that for any pair of

candidates a and b, there is an index j⟨a, b⟩ such that either all voters vj with j < j⟨a, b⟩

prefer a over b and all voters vj with j > j⟨a, b⟩ prefer b over a, or vice versa. The formal

definition is as follows.

Definition 4 (Single-Crossing Domain) A profile P = (≻i)i∈[n] of n preferences over

a set C of candidates is called a single-crossing profile if there exists a permutation σ of

[n] such that, for every pair of distinct candidates x, y ∈ C, whenever we have x ≻σ(i) y

and x ≻σ(j) y for two integers i and j with 1 ≤ σ(i) < σ(j) ≤ n, we have x ≻σ(k) y for

every σ(i) ≤ k ≤ σ(j).

98

Committee Winner Verification Problem Chapter 5

5.1 Chamberlin-Courant Voting Rule

In this section, we show the coNP-completeness of Chamberlin-Courant Winner

Verification in the setting of rankings for the ℓ1-Borda misrepresentation score. The

argument for membership is, in brief, the following: a rival committee with a better

misrepresentation score is a valid certificate for the No instances of CCWV. This is

an efficiently computable certificate since it is easy to compute the Chamberlin-Courant

score of a given committee. We now turn to the proof of hardness.

Theorem 17 Chamberlin-Courant Winner Verification is coNP-hard in the

setting of rankings for the ℓ1-Borda misrepresentation score.

Proof: We show a reduction from c-3-Hitting Set to the CCWV problem. Let

⟨U,F ; k⟩ be an instance of c-3-Hitting Set with n elements in the universe U and m

sets of size three in the family F . We construct a profile P over alternatives A as follows.

First, we introduce one candidate corresponding to each element of the universe U , k

“dummy” candidates, and a large number of “filler” candidates, that is:

A := {cu | u ∈ U}︸ ︷︷ ︸
C

∪ {d1, . . . , dk}︸ ︷︷ ︸
D

∪ {z1, . . . , zt}︸ ︷︷ ︸
Z

,

where t = 3(mk)2. Also, for every 1 ≤ i ≤ k, and for every X ∈ F , introduce a vote

v(i,X) that places the candidates corresponding to the elements in X in the top three

positions, followed by di, followed by 3mk candidates from Z. We ensure that we use

distinct candidates from Z in the top 3mk+4 positions of all the voters, in other words,

no candidate from Z appears twice in the top 3mk + 4 positions. Note that t is chosen

to be large enough to make this possible. This is followed by the candidates in U \ X

ranked in an arbitrary order followed by the remaining filler candidates which are also

ranked in an arbitrary order.

99

Committee Winner Verification Problem Chapter 5

In this instance, note that a committee corresponding to a hitting set has a score of

at most 2mk, while the score of the committee D is 3mk. In the constructed instance, we

now ask if the committee D consisting of k dummy candidates is a winning committee.

This completes the construction of the instance. We now turn to the equivalence of two

instances.

In the forward direction, suppose we have a Yes instance of c-3-Hitting Set then

this implies that there does not exist any hitting set of size at most k. Recall that the

misrepresentation score for a committee consisting of a hitting set is at most 2mk, while

noting that any such committee must have size greater than k. Now, we show that for

all other committees of size at most k, the misrepresentation score is greater than 3mk.

Lemma 31 Consider an instance ⟨A, V,D⟩ of CC-winner Verification based on a Yes-

instance of c-3-Hitting Set ⟨U,F ; k⟩. For any feasible committee C ′ ⊆ A of size k different

from D, the ℓ1-Borda misrepresentation score of C ′ is greater than 3mk.

Proof: Let U ′, D′ and Z ′ denote, respectively, the candidate subsets C ′ ∩C, C ′ ∩D

and C ′ ∩ Z. Since C ′ is different from D, there is at least one candidate from D that

does not belong to C ′ (the only other possibility is that C ′ is a superset of D, but this

is not possible since |C ′| = |D| = k). Without loss of generality, suppose d1 /∈ C ′.

Now consider the votes given by V ′ := {v(1, X) | X ∈ F}. We claim that there are

at least |Z ′| + 1 voters in V ′ whose misrepresentation score for the committee C ′ is

strictly greater than three. Indeed, if not, then it is straightforward to verify that U ′

combined with an arbitrarily chosen element from each set not hit by U ′ comprises a

subset of size at most |U ′| + |Z ′| ≤ k which intersects every set in F , contradicting our

assumption that F has no hitting set of size at most k. To see this, observe that every

vote in V ′ that has a misrepresentation score of three or less is necessarily represented

by a candidate from U ′, since d1 /∈ C ′, and therefore, the sets corresponding to all of

100

Committee Winner Verification Problem Chapter 5

these votes are hit by U ′, and the remaining sets can be hit “trivially” since there are at

most |Z ′| of them. Now consider the voters who have a “high” misrepresentation score:

V ′′ := {v(1, X) | X ∈ F and τ(v(1, X), C ′) > 3}, where τ(v(1, X), C ′) is the Borda score

of the highest-ranked candidate of C ′ according to v(1, X), with respect to the ranking of

v(1, X). By the argument in the previous paragraph, we have that |V ′′| > |Z ′|. Recalling

that every vote has distinct filler candidates in the top 3mk positions after di, by the

pigeon-hole principle, we conclude that there is at least one vote v(1, X) in V ′′ such that

ZX ∩ Z ′ = ∅, where ZX denotes the filler candidates that appear in the top 3mk + 4

positions of the vote v(1, X). Since the candidates occupying the top four positions of

this vote do not belong to C ′ either, it follows that the misrepresentation score of v(1, X)

for C ′ is greater than 3mk, and this concludes our argument.

The committee D has a misrepresentation score of 3mk. Using Lemma 31, since F

has no hitting set of size at most k, we have that D is a winning committee among all

feasible committees, as desired.

In the reverse direction, we start with the assumption that D is a winning committee.

Therefore, the optimal misrepresentation for the constructed election instance is 3mk.

Observe that if there exists a hitting set S of size at most k, then the committee C ′

formed using the corresponding candidates of hitting set will have a misrepresentation

score of at most 2mk, as discussed above. Thus, D would not be a winning committee,

a contradiction — and this implies that ⟨U,F ; k⟩ was indeed a Yes-instance of c-3-

Hitting Set. This completes the argument of equivalence.

Next, we show an analogous result for ℓ∞-Borda misrepresentation score. We note

that our arguments are similar to the previous result, although the construction is simpler

in this case.

Theorem 18 Chamberlin-Courant Winner Verification is coNP-hard in the

101

Committee Winner Verification Problem Chapter 5

setting of rankings for the ℓ∞-Borda misrepresentation score.

Proof: We reduce from c-3-Hitting Set to our problem. Let ⟨U,F ; k⟩ be an

instance of c-3-Hitting Set with n elements in the universe U and m sets of size three

in the family F . We construct a profile P over alternativesA as follows. We introduce one

candidate corresponding to each element of the universe U , and k “dummy” candidates,

that is:

A := {cu | u ∈ U}︸ ︷︷ ︸
C

∪ {d1, . . . , dk}︸ ︷︷ ︸
D

Also, for every 1 ≤ i ≤ k, and for every X ∈ F , introduce a vote v(i,X) that places the

candidates corresponding to the elements in X in the top three positions, followed by di,

followed by the candidates in U \X ranked in an arbitrary order.

In this instance, note that a committee corresponding to a hitting set has a score

of at most 2, while the score of the committee D is 3. In the constructed instance, we

now ask if the committee D consisting of k dummy candidates is a winning committee.

This completes the construction of the instance. We now turn to the equivalence of two

instances.

In the forward direction, suppose we have a Yes instance of c-3-Hitting Set. This

implies that there does not exist any hitting set of size at most k. Recall that the mis-

representation score for a committee consisting of a hitting set is at most 2, while noting

that any such committee must have size greater than k. We show that the misrepresenta-

tion score of any k-sized committee other than D has a strictly greater misrepresentation

score than 3.

Lemma 32 For a constructed CCWV instance based on Yes-instance of c-3-Hitting

Set, for any feasible committee C ′ ⊆ A of size k different from D, the ℓ∞-Borda mis-

representation score of C ′ is greater than 3.

102

Committee Winner Verification Problem Chapter 5

Proof: Let U ′, and D′ denote, respectively, the candidate subsets C ′∩C, and C ′∩D.

Since C ′ is different from D, and |C ′| = |D| = k, there is at least one candidate from D

that does not belong to C ′. Without loss of generality, suppose d1 /∈ C ′. Now consider

the votes given by V ′ := {v(1, X) | X ∈ F}. We claim that at least one voter in V ′ whose

misrepresentation score for the committee C ′ is strictly greater than three. Indeed, if not,

then given that d1 /∈ C ′, it is straightforward to verify that U ′ is a subset candidates of

size at most k which intersect every set in F , contradicting our assumption that F has

no hitting set of size at most k. To see this, observe that every vote in V ′ that has a

misrepresentation score of three or less is necessarily represented by a candidate from U ′,

since d1 /∈ C ′, and therefore, the sets corresponding to all of these votes are hit by U ′.

This completes the argument for Lemma 32.

Note that the committee with k dummy candidates D has misrepresentation score

3. Using Lemma 32, since F has no hitting set of size at most k, we have that D is a

winning committee among all feasible committees, as desired.

For the reverse direction, we are given that D is a winning committee for the con-

structed CCWV instance. Hence, the optimal misrepresentation score is 3. It is easy to

see that if there exists a hitting set S of size at most k, then the committee C ′ formed

using the corresponding hitting set candidates is at most 2. Thus, if there exists a hit-

ting set, D is not a winning committee – this contradicts the case we are in. Therefore,

⟨U,F ; k⟩ was a Yes-instance of c-3-Hitting Set.

5.2 Monroe Voting Rule

In this section, we show an analogous set of results for the case of Monroe Voting

rule. Specifically, we will show that Monroe Winner Verification problem is coNP-

complete for both ℓ1, ℓ∞ Borda-misrepresentation functions.

103

Committee Winner Verification Problem Chapter 5

First, we briefly describe the argument for membership to coNP: We recall that,

given a committee S, one can compute its Monroe misrepresentation score in polynomial

time [58, 68]. Note that this is not as straightforward as evaluating the misrepresenta-

tion score of a Chamberlin-Courant committee due to the strict assignment conditions

for the Monroe rule. However, the problem admits an efficient algorithm by a reduction

to the minimum cost maximum flow problem. Let the S be a part of input for Monroe

Winner Verification problem. Furthermore, let the misrepresentation score of S be

r. Consider a committee C ′ of at most k candidates with misrepresentation r′ such that

r′ < r. Notice that C ′ is a valid efficient certificate for No-instance of our problem

(because we can compute r′ in polynomial time using by computing the minimum cost

maximum flow efficiently). Hence, by comparing the misrepresentation scores of commit-

tee S and the guessed rival committee C ′ under Monroe voting rule, we can efficiently

verify the No-instances of the problem. Therefore, We conclude that Monroe Winner

Verification is in coNP.

Towards establishing the coNP-hardness of Monroe Winner Verification, we

reduce from a special version of Hitting Set, which we refer to as Bounded Occur-

rence Exact Hitting Set (BOEHS for brevity). Here, the instance is ⟨U,F ; k⟩,

where U is a finite universe with 3q elements, F is a collection of three-sized subsets

of U such that every element of U appears in exactly three sets, and the question is if

there exists a subset S of size k = q that hits every set. Note that |U | = 3q and |S| = q

combined with the frequency assumption imply that if S is a solution, then every set is

hit exactly once.

The NP-hardness of BOEHS follows from the duality of Hitting Set and Set Cover. In

particular, consider the problem of X3C with bounded occurrences [12]. In this problem,

we are given a collection of three-sized subsets of an universe U with 3q elements where

every element occurs in exactly three sets, and the question is if there is a collection of

104

Committee Winner Verification Problem Chapter 5

q subsets whose union is U . Note that these sets must necessarily be disjoint. Given an

instance ⟨U,F ; q⟩ of X3C with bounded occurrences, we obtain an instance of BOEHS

by taking the dual (note that |F| = |U | = 3q):

U ′ = {uX | X ∈ F};F = {Yu | u ∈ U} where Yu = {uX | u ∈ X}; k = q.

The equivalence of these instances is easy to verify and implies the NP-hardness

of BOEHS. For our reductions, we reduce from c-BOEHS, which is the complement

problem and is coNP-complete.

Theorem 19 Monroe Winner Verification is coNP-hard in the setting of rankings

for the ℓ1-Borda misrepresentation score.

Proof: We note that our construction is similar to the one used in Theorem 17.

We show a reduction from c-BOEHS to our problem. Let ⟨U,F ; k⟩ be an instance of

c-BOEHS with 3q elements in the universe U and 3q sets of size three in the family F

(note that here k = q). We construct a profile P over alternatives A as follows. First, we

introduce one candidate corresponding to each element of the universe U , k “dummy”

candidates, and a large number of “filler” candidates, that is:

A := {cu | u ∈ U}︸ ︷︷ ︸
C

∪ {d1, . . . , dk}︸ ︷︷ ︸
D

∪ {z1, . . . , zt}︸ ︷︷ ︸
Z

,

where t = 3(3qk)2. Also, for every 1 ≤ i ≤ k, and for every X ∈ F , introduce a vote

v(i,X) that places the candidates corresponding to the elements in X in the top three

positions, followed by di, followed by 9qk candidates from Z. We ensure that we use

distinct candidates from Z in the top 9qk + 4 positions of all the voters, in other words,

105

Committee Winner Verification Problem Chapter 5

no candidate from Z appears twice in the top 9qk + 4 positions. Note that t is chosen

to be large enough to make this possible. This is followed by the candidates in U \ X

ranked in an arbitrary order followed by the remaining filler candidates, also ranked in

an arbitrary order.

In the constructed instance, consider a committee S ′ ⊆ C of size k corresponding to

a Bounded Occurrence Exact Hitting Set. For each s ∈ S ′, we assign exactly

3k votes to s. In particular, for each i ∈ [k], s represents exactly 3 votes v(i,Xj) for

j ∈ [3] such that set Xj contains the element corresponding to candidate s. Note that

such a committee S has the dissatisfaction score of at most 6qk. Consider the committee

D. Here, each di ∈ D represents 3q voters v(i,X) for X ∈ F . The misrepresentation

score of the committee D is 9qk . In the constructed instance, we now ask if the com-

mittee D consisting of k dummy candidates is a winning committee. This completes the

construction of the instance. We now turn to the equivalence of two instances.

In the forward direction, suppose we have a Yes instance of c-BOEHS. This implies

that there does not exist any hitting set of size at most k. Recall that the misrepre-

sentation score for a committee consisting of a hitting set is at most 6qk, while noting

that any such committee must have size greater than k. Now, we show that for all other

committees of size at most k, the misrepresentation score is greater than 9qk.

Lemma 33 Consider an instance ⟨A, V,D⟩ of Monroe-winner Verification based on a

Yes-instance of c-BOEHS ⟨U,F ; k⟩. For any feasible committee C ′ ⊆ A of size k

different from D, the ℓ1-Borda misrepresentation score of C ′ is greater than 9qk.

Proof: Let U ′, D′ and Z ′ denote, respectively, the candidate subsets C ′ ∩C, C ′ ∩D

and C ′ ∩ Z. Since C ′ is different from D, there is at least one candidate from D that

does not belong to C ′ (the only other possibility is that C ′ is a superset of D, but this

is not possible since |C ′| = |D| = k). Without loss of generality, suppose d1 /∈ C ′.

106

Committee Winner Verification Problem Chapter 5

Now consider the votes given by V ′ := {v(1, X) | X ∈ F}. We claim that there are

at least |Z ′| + 1 voters in V ′ whose misrepresentation score for the committee C ′ is

strictly greater than three. Indeed, if not, then it is straightforward to verify that U ′

combined with an arbitrarily chosen element from each set not hit by U ′ comprises a

subset of size at most |U ′| + |Z ′| ≤ k which intersects every set in F , contradicting our

assumption that F has no hitting set of size at most k. To see this, observe that every

vote in V ′ that has a misrepresentation score of three or less is necessarily represented

by a candidate from U ′, since d1 /∈ C ′, and therefore, the sets corresponding to all of

these votes are hit by U ′, and the remaining sets can be hit “trivially” since there are at

most |Z ′| of them. Now consider the voters who have a “high” misrepresentation score:

V ′′ := {v(1, X) | X ∈ F and τ(v(1, X), C ′) > 3}, where τ(v(1, X), C ′) is the Borda score

of the highest-ranked candidate of C ′ according to v(1, X), with respect to the ranking of

v(1, X). By the argument in the previous paragraph, we have that |V ′′| > |Z ′|. Recalling

that every vote has distinct filler candidates in the top 9qk positions after di, by the

pigeon-hole principle, we conclude that there is at least one vote v(1, X) in V ′′ such that

ZX ∩ Z ′ = ∅, where ZX denotes the filler candidates that appear in the top 9qk + 4

positions of the vote v(1, X). Since the candidates occupying the top four positions of

this vote do not belong to C ′ either, it follows that the misrepresentation score of v(1, X)

for C ′ is greater than 9qk, and this concludes our argument.

Recall that the misrepresentation for D is 9qk. Hence, using Lemma 33, it is easy

to see that D is a winning committee for elections constructed from the Yes instance of

c-BOEHS.

In the reverse direction, we assume D is a winning committee for the constructed

election instance. Hence, the optimal misrepresentation score is 9qk. Notice that if there

exists a hitting set of size at most k, then the misrepresentation of the committee C ′

formed using the candidates corresponding to the elements in the hitting set is at most

107

Committee Winner Verification Problem Chapter 5

6qk. Hence, if there exists a hitting set, D is not a winning committee – this contradicts

the case we are in. Therefore, ⟨U,F ; k⟩ was a Yes-instance of c-BOEHS.

The Monroe Winner Verification problem is coNP complete for ℓ∞-Borda mis-

representation score in the setting of rankings. The argument for membership is similar

to the one described at the beginning of this section, and to show the hardness, we again

reduce from c-BOEHS. Due to similarity of arguments with Theorem 18, we omit the

details.

5.3 Elections with Approval Preferences

In this section, we turn to the approval ballots setting. We begin with the Chamberlin-

Courant voting rule. A membership argument described at the start of Section 5.1 works

for the case of approval ballots as well. Although we again reduce from the c-3-Hitting

Set problem, the arguments have to account for a non-positional misrepresentation func-

tion.

Theorem 20 Chamberlin-Courant Winner Verification is coNP-hard even when

the preferences are presented as approval ballots for the ℓ1-Borda misrepresentation score.

Proof: Let ⟨U,F ; k⟩ be an instance of c-3-Hitting Set. Recall that this is a Yes-

instance if and only if for all S ⊆ U , with |S| ≤ k, there existsX ∈ F such that S∩X = ∅.

We construct a profile P over alternatives A as follows. First, we introduce one candidate

corresponding to each element of the universe U , and k “dummy” candidates, that is:

A := {cu | u ∈ U}︸ ︷︷ ︸
C

∪ {d1, . . . , dk}︸ ︷︷ ︸
D

108

Committee Winner Verification Problem Chapter 5

Also, for every 1 ≤ i ≤ k − 1, and for every X ∈ F , introduce a vote v(X, i) that

approves the candidates corresponding to the elements in X along with di. For i = k,

we introduce the same set of voters with the same candidate approval scheme except for

one arbitrarily chosen voter which does not approve dk.

We note that in the constructed instance, the score of a committee corresponding to

a hitting set is zero whilst the score of committee with k dummy candidates D is one. In

this instance, we ask if the committee with k-dummy candidates is a winning committee.

In the forward direction, we have a ‘YES’ instance of c-3-Hitting Set. Hence,

⟨U,F ; k⟩ does not admit hitting set of size at most k. Recall that the misrepresentation

score of the committee corresponding to a hitting set is zero, but in this case, any such

committee will have size strictly greater than k. Now, we show that for all other commit-

tees, there exists at least one voter, which contributes positively to misrepresentation;

hence, their misrepresentation score is at least one.

Lemma 34 For a constructed CCWV instance based on Yes-instance of c-3-Hitting

Set, for any feasible committee C ′ ⊆ A of size k different from D, the ℓ1 misrepresenta-

tion score of C ′ is strictly positive.

Proof: Let U ′, and D′ denote, respectively, the candidate subsets C ′∩C, and C ′∩D.

Since C ′ is different from D, and |C ′| = |D| = k, there is at least one candidate from D

that does not belong to C ′. Without loss of generality, suppose d1 /∈ C ′. Now consider

the set of votes given by V ′ := {v(1, X) | X ∈ F}. We claim that there is at least one

voter vj ∈ V ′ such that C ′ does not contain any approved candidate for vj. Indeed, if

not, then given that d1 /∈ C ′, it is straightforward to verify that U ′ is a subset candidates

of size at most k which intersect every set in F , contradicting our assumption that F

has no hitting set of size at most k. To see this, observe that every vote in V ′ that has

zero misrepresentation is necessarily represented by a candidate from U ′, since d1 /∈ C ′,

109

Committee Winner Verification Problem Chapter 5

and therefore, the sets corresponding to all of these votes are hit by U ′.

Recall that the committee D has a misrepresentation score of one. Hence, using

Lemma 34, since F has no hitting set of size k, D is a winning committee, as desired.

In the reverse direction, we assume D is a winning committee for the constructed

CCCW instance. Hence, the optimal misrepresentation score is one. It is easy to see

that if there exists a hitting set of size at most k, then the misrepresentation score for a

committee C ′ formed using candidates corresponding to the elements of the hitting set

is zero (since in that case, the committee will contain at least one approved candidate

for each voter). Thus, if there exists a hitting set, D is not a winning committee – this

contradicts the case we are in. Therefore, ⟨U,F ; k⟩ was a Yes-instance of c-3-Hitting

Set.

This completes the argument of equivalence.

The Monroe Winner Verification problem is coNP complete for ℓ1-Borda mis-

representation score in the setting of approval ballots. The argument for membership is

similar to the one described at the beginning of this section, and to show the hardness,

we again reduce from c-BOEHS. Due to similarity of arguments with Theorem 20, we

omit the details.

With the results from Sections 5.1, 5.2 and 5.3, we have proved the following theorem.

Theorem 21 Winner Verification for Chamberlin-Courant and Monroe is coNP-

complete in the setting of approval ballots and rankings. In the latter setting, the result

holds for the ℓ1 and ℓ∞-Borda misrepresentation functions.

5.4 Efficient Algorithms on Restricted Preferences

In this section, we consider theWinner Verification problem on the single-peaked

(SP) and the single-crossing (SC) domain for the Chamberlin-Courant voting rule. We

110

Committee Winner Verification Problem Chapter 5

refer the reader to Section 5.0.2 for the definitions of SP, SC domains.

Recall that our definition of election winner allows more than one committee to be

the simultaneous winners for the election. In particular, for scoring based rules such as

the Chamberlin-Courant rule and the Monroe rule, all the committees with size at most

k achieving the minimum dissatisfaction score belong to the set of winning committees.

Recall that the dissatisfaction score for a committee is computed by assigning each voter

to a candidate in the committee and then accounting for the position of this assigned

candidate in the voter’s preference order.

For a committee C, let score(C) be the dissatisfaction score of C for the given elec-

tion. For the Chamberlin-Courant rule, we can find a winning committee using dynamic

programming algorithms for each of single-peaked [68] and single-crossing [69] domains.

Given a committee, one can compute its dissatisfaction score in O(mn) worst-case time

for the Chamberlin-Courant rule by assigning each voter to its most preferred candidate

in the committee. Let opt be the optimal dissatisfaction score, i.e., dissatisfaction score

corresponding to a winning committee. Hence, given an election instance with single-

peaked or the single-crossing preference domain, opt can be computed in polynomial

time.

Given an instance of the Winner Verification problem with an input election

E = (C, V) with SP or SC preference domain, and a k-sized committee S; first we

compute the optimal dissatisfaction score opt in polynomial time. Next, we compute

score(S). At this stage, it is easy to observe that S is a winning committee if and only

if score(S) = opt. Results from [68] and [70] also give polynomial-time algorithms for

computing a winning committee for Chamberlin-Courant voting rule on single-peaked

and single-crossing preferences respectively for ℓ1-Borda dissatisfaction score in the case

of rankings. Hence, We summarize our result as follows:

111

Committee Winner Verification Problem Chapter 5

Theorem 22 Chamberlin-Courant Winner Verification can be solved in poly-

nomial time for both ℓ1, ℓ∞-Borda dissatisfaction score on each of single-peaked and single-

crossing domains.

112

Chapter 6

Candidate Winner Verification

Problem

In this chapter, we consider the Candidate Winner problem. Recall that in the

Candidate Winner problem, we are given an election E = (C, V)1, a committee size

k, and a candidate c ∈ C, we ask if c belongs to some optimal k-sized committee, in other

words, if there exists S ⊆ C such that c ∈ S, |S| = k, and S is a winning committee. We

consider this problem under Chamberlin-Courant and Monroe voting rule under min-sum

(ℓ1) and min-max (ℓ∞) aggregation function for rankings, and min-sum aggregation for

approval ballots. We refer the reader to Section 5.0.2 for the formal definitions of voting

rules and aggregation functions. For the Chamberlin-Courant rule, we refer to the above

problem as Chamberlin-Courant Candidate Winner CCCW and for the Monroe

rule we refer to it as Monroe Candidate Winner MCW.

Our main result in this chapter is the θP2 -hardness for the Candidate Winner prob-

lem in (almost) all the cases we consider for general preferences and we complement this

hardness results by solving the problem in polynomial time when input preferences follow

1Recall that for Chapter 6 we represent the set of candidates by C.

113

Candidate Winner Verification Problem Chapter 6

the single-peaked or single-crossing property (refer to Section 5.0.2 for the formal defini-

tions of the single-peaked/single-crossing preference domains). Election problems have a

long history of computational hardness. For example, Bartholdi et al. [71] showed that

determining winners for many, otherwise excellent, voting rules are NP-hard. Prominent

examples of such single winner (k=1) rules include Kemeny’s voting rule [72], and Lewis

Caroll’s rule (Dodgson Rule, [61]). Moreover, some of these single winner rules seem

to be substantially harder than any NP-completeproblem — they are complete for the

complexity class PNP
∥ [67]. Papadimitriou and Zachos [64] were the first to introduce

the class PNP
∥ . Any language in this class can be decided in polynomial time using a

polynomial number of parallel access to an NPoracle. Notice that, parallel access forbids

adaptive queries and only allows ‘batch’ queries to an NPoracle (see Section 5.0.2 for

more details).

6.0.1 Results and Organization of the Chapter

Our main result is to show θP2 -completeness for the Candidate Winner problem.

The argument for membership in θP2 is nontrivial in this case (as opposed to Winner

verification membership in coNP from the previous chapter), so we defer the details

to the individual sections. In Section 6.1 and 6.2 we consider the Chamberlin-Courant

and Monroe rule, respectively and show θP2 -completeness in the case of min-sum (ℓ1) and

min-max (ℓ∞) ranking. Next, we consider the case of approval elections in Section 6.3

and show that the problem still remains hard for both CC and Monroe even in this

case. Finally, in Section 6.4, we show that the Candidate Winner can be solved in

polynomial time in all scenarios and complement our hardness results.

We note that the Candidate Winner problem was shown to be ΘP
2 -complete for

the Chamberlin-Courant rule, for the utilitarian aggregation mechanism, in the setting of

114

Candidate Winner Verification Problem Chapter 6

rankings [59]2. We show the analogous result for the egalitarian version of the rule, and

also for both aggregation mechanisms in the context of the Monroe rule. Although these

reductions are executed in a similar spirit, the different settings do require nontrivial

techniques in the constructions.

6.1 Chamberlin-Courant Voting Rule

In this section, we consider the Chamberlin-Courant Candidate Winner prob-

lem. For a given voting rule, the input to the problem is ⟨C, V, c, k⟩, and the question is

if there exists a winning committee of size k containing the candidate c under the given

voting rule for the election E = (C, V). We investigate two variants of CCCW – the

ℓ1-Borda, and ℓ∞-Borda misrepresentation functions for rankings.

We first consider the case of the ℓ1-Borda misrepresentation. We start with a member-

ship argument, and later establish the hardness. Recall the class θP2 , the membership to

the class can be shown by giving a polynomial-time algorithm with parallel access to NP

oracle. We use the NP oracle queries to obtain answer to the following variant of CCCW:

so we ask if there exists a k-sized committee containing c which has misrepresentation

score at most s (for some integer s). Note that the worst possible misrepresentation score

in an instance with m candidates and n voters is mn so we only need polynomial guesses

to obtain the optimal score. Thus, our algorithm P “guesses” the target score and finds

the score of the optimal CC committee, and then the algorithm also finds an optimal CC

committee that contains c. Note that overall, we only need 2mn queries. Observe that

with an input target misrepresentation score, both types of our queries above belong to

NP. Once we find the global optimal score and the optimal score of when c belongs to the

committee, we compare the two optimal scores to decide whether there exists an optimal

2This result was independently discovered by the authors of the present work, while following up on
a weaker version of the from [60].

115

Candidate Winner Verification Problem Chapter 6

CC committee of size k containing c.

We now turn to the reduction to demonstrate hardness. We recall that the following

result was independently shown in [60].

Theorem 23 Chamberlin-Courant Candidate Winner is ΘP
2 -hard for the ℓ1-

Borda misrepresentation score.

Proof: We reduce from the ΘP
2 -complete problem Vertex Cover Member.

Recall that we are given a graph G := (V,E), and a vertex w ∈ V , the question is if there

exists a minimum sized vertex cover containing w. Given an instance ⟨G := (V,E), w⟩

of Vertex Cover Member we construct an instance of CC Candidate Winner

as follows. Let the set of candidates be C := Cv ∪ D ∪ D′, where Cv denotes the set

of n candidates corresponding to vertices of G, and D and D′ denote type I and type

II dummy candidates, respectively. Let ∆ denote a set of nm + n2 + 1 type I dummy

candidates, and ∆′ denote a set of (n+2)m+2n2+2 type II dummy candidates. We note

that the subsets of dummy candidates specified explicitly in different votes are always

chosen so that there are no repeated dummy candidates in the explicitly defined blocks,

in other words, the chosen dummy candidates are always distinct. Also, D (D′) is the

union of all the ∆’s (∆′’s) specified in the profile, which is given by the following three

blocks of voters:

• Block 1: We construct m votes corresponding the edges in G. For an edge (u, v)

we add:

cu ≻ cv ≻ ∆′ ≻ Cv \ {cu, cv} ≻ rest

where “rest” denotes the set of remaining candidates placed in an arbitrary order.

• Block 2: For the desired vertex w from the Vertex Cover Member instance,

we pick an arbitrary edge incident on w (say (w, x)) in G, and add m+1 copies of

116

Candidate Winner Verification Problem Chapter 6

the following vote:

cw ≻ cx ≻ ∆ ≻ Cv \ {cw, cx} ≻ rest

• Block 3: We add n votes of the form:

∆ ≻ cw ≻ Cv \ cw ≻ rest

In the constructed CC Candidate Winner instance, we ask if there exists an

optimal committee of size n containing cw. Before showing the equivalence of the two

instances, we establish the following lemma.

Lemma 35 Let q be the size of an optimal vertex cover in G. Then, following holds for

any committee C ′ of size n in the constructed election instance:

1. If C ′ contains d′ ∈ D′, then C ′ is not an optimal committee.

2. If C ′ does not contain exactly q candidates corresponding to an optimal vertex cover,

then C ′ is not optimal.

Proof: Suppose the candidate d′ in C ′ belongs to the ∆′ that appears after ca, cb

for a voter in Block 1 corresponding to the edge (a, b) in G. Consider a commit-

tee C formed by replacing d′ with ca in C ′. Since ca appears before d′ in all votes,

misrepresentation(C) < misrepresentation(C ′) (note that for any optimal committee,

every candidate in the committee represents at least one vote). Hence, no optimal com-

mittee contains any candidate from D′. This completes the proof of the first statement.

Towards showing the second statement, we first analyze the CC score of a committee C

which contains q candidates corresponding to an optimal vertex cover, and the remaining

(n − q) candidates from D which appear in the top positions of (n − q) votes in Block

3. The misrepresentation for C in Block 1 is at most m, in Block 2 it is at most m + 1.

117

Candidate Winner Verification Problem Chapter 6

In Block 3, for those votes that are not represented by the top candidate already, the

misrepresentation for C is at most (|∆| + n − 1) per vote since all the voters in Block

3 are represented by some candidate in Cv in the worst case. Hence, we have that

misrepresentation(C) ≤ 2m+ 1 + (|∆|+ n− 1)× q.

Now, let C ′ be an optimal committee which does not contain q candidates correspond-

ing to some optimal vertex cover. Since C ′ is optimal, C ′ ∩ D′ = ϕ. We will consider

following cases:

• |C ′ ∩ Cv| > q: In this case, C ′ contains at most (n − q − 1) candidates from D.

Hence, the misrepresentation of C ′ from Block 3 is at least |∆| × (q + 1) which is

greater than the misrepresentation score for C. This contradicts the optimality of

C ′.

• |C ′ ∩ Cv| ≤ q: Since the size of an optimal vertex cover is q, any committee C ′

with at most q candidates from Cv does not include any candidates corresponding

to the endpoint of at least one edge due to the case we are in (i.e. C ′ does not

contain candidates corresponding to optimal vertex cover). Hence, C ′ incurs a

misrepresentation of at least |∆′| from one of the votes in Block 1 which implies

misrepresentation(C ′) > misrepresentation(C).

This completes the proof for Lemma 35.

We now turn to the proof of equivalence. In the forward direction, given an optimal

vertex cover of size q containing w, we construct an optimal committee C ′ by choosing

q candidates corresponding to the vertex cover, and (n − q) candidates from the set D

which appears in the top position of exactly (n−q) votes from Block 3. By Lemma 35, we

already know that any optimal committee must contain candidates corresponding to an

optimal sized vertex cover. Therefore, it suffices to show that committees corresponding

to optimal vertex covers not containing cw are not optimal. Indeed, this follows from the

118

Candidate Winner Verification Problem Chapter 6

fact that in Block 2, cw is the top candidate in exactly (m + 1) votes, and in Block 3,

cw leads all other candidates from the set Cv. Hence, it is easy to verify that an optimal

committee must contain cw.

In the reverse direction, given an optimal committee C ′ containing cw, we need to

construct an optimal vertex cover for G which includes the vertex w. Since C ′ is optimal,

using Lemma 35 we know C ′ ∩ Cv is an optimal vertex cover of G. Also we are given

that cw ∈ C ′; therefore, we have that the vertex cover corresponding to C ′ is an optimal

vertex cover containing cw, as desired.

Now, we show that CCCW is ΘP
2 -hard in the setting of rankings for the ℓ∞-Borda

misrepresentation function. The argument for membership is similar to the previous case

with only difference that in this case the worst case score is m.

Theorem 24 Chamberlin-Courant Candidate Winner is ΘP
2 -hard for the ℓ∞-

Borda misrepresentation score.

Proof: As before, we reduce from Vertex Cover Member. Given an instance

⟨G := (V,E), w⟩ of Vertex Cover Member we construct an instance of CCCW as

follows. Let the set of candidates be C := Cv ∪ D ∪ D′, where Cv denotes the set of

n candidates corresponding to vertices of G, and D and D′ denote type I and type II

dummy candidates respectively. Let ∆ denote a set ofm+n+1 type I dummy candidates,

and ∆′ denote a set of 2 type II dummy candidates. We note that the subsets of dummy

candidates specified explicitly in different votes are always chosen so that there are no

repeated dummy candidates in the explicitly defined blocks, in other words, the chosen

dummy candidates are always distinct. We construct the set of voters as the following

three blocks:

• Block 1: We construct (n+2) copies of each of m votes corresponding to the edges

119

Candidate Winner Verification Problem Chapter 6

in G. Specifically, for an edge (u, v) we add (n+ 2) copies of the vote:

cu ≻ cv ≻ ∆ ≻ Cv \ {cu, cv} ≻ rest,

where rest denotes the set of remaining candidates in some arbitrary order.

• Block 2: We add the following n votes:

v1 := ∆′ ≻ d1,1 ≻ d′ ≻ ∆ ≻ Cv ≻ rest

...

vi := ∆′ ≻ di,1 ≻ . . . ≻ di,i ≻ d′ ≻ ∆ ≻ Cv ≻ rest

...

vn := ∆′ ≻ dn,1 ≻ . . . ≻ dn,n ≻ d′ ≻ ∆ ≻ Cv ≻ rest

• Block 3: We also add (n+2) copies of the following vote to force d′ in any optimal

committee:

d′ ≻ ∆ ≻ rest

In the constructed CCCW instance, we ask if there exists an optimal committee of

size n + 1 containing cw. This completes the construction for our reduction. We now

state a lemma analogous to Lemma 35.

Lemma 36 Let q be the size of an optimal vertex cover in G such that q ≥ 2. Then, the

following holds for any committee C ′ of size n+ 1 in the constructed election instance:

1. Any optimal committee contains candidate d′

2. If C ′ contains d ∈ D, then C ′ is not an optimal committee

120

Candidate Winner Verification Problem Chapter 6

3. If C ′ does not contain exactly q candidates corresponding to an optimal vertex cover,

then C ′ is not optimal.

Proof: Consider a committee C which contains q candidates corresponding to an

optimal vertex cover, candidate d′, and n− q candidates dj,q+1 for j ∈ {n− q+1, n− q+

2, . . . , n}. It is easy to see that the misrepresentation for this committee is q+2 (note that

misrepresentation from Block 1 is at most one since we pick candidates corresponding

to vertex cover, and misrepresentation from Block 2 is exactly q + 2 since votes vj for

j ∈ {n− q + 1, n− q + 2, . . . , n} are represented by candidate in position q + 3) and the

votes vj for j ∈ {1, 2, . . . , n− q} are represented by d′.

Given committee C, from the construction of Block 3, it is clear that d′ belongs to

any optimal committee. Note that in an optimal committee, every candidate represents

at least one voter. Hence, given committee C and committee size n + 1, if a candidate

d ∈ D belongs to C ′ and represents some vote in Block 1 then, we know that C ′ does not

contain candidates corresponding u, v such that cu, cv ∈ Cv. Given we have n+ 2 copies

of each edge vote, C ′ is not an optimal committee.

It is easy to see that if C ′ does not contain candidates corresponding to vertex cover

then misrepresentation score of C ′ is at least n+m+1 and C ′ is not an optimal committee

(since we have n+2 copies of every edge). Next, if C ′ contains strictly more than q vertex

candidates then the misrepresentation score of C ′ from Block 2 is strictly greater than

q + 2 which implies C ′ is not optimal. This completes the proof of Lemma 36.

Next, we show proof of equivalence. In the forward direction, given an optimal

vertex cover V ′ of size q containing w, we construct a committee C as described in the

paragraph one of the proof of Lemma 36. We claim that C is an optimal committee.

Using Lemma 36 we know that any optimal committee contains exactly q candidates

corresponding to an optimal vertex cover, and contains candidate d′. From the structure

121

Candidate Winner Verification Problem Chapter 6

of Block 2, it is easy to observe that in order to minimize the overall misrepresentation

from Block 2, the only way is to choose the candidates from position q + 3 for voters vj

for j ∈ {n− q+1, n− q+2, . . . , n}. Note that first q voters from Block 2 are represented

by d′ while staying within the misrepresentation limit of q + 2.

In the reverse direction, let C ′ be an optimal committee containing cw. Using

Lemma 36, we know that C ′ ∩ Cv is an optimal vertex cover. Hence, we can recover

an optimal vertex cover containing cw, concluding the argument.

6.2 Monroe Voting Rule

In this section, we turn to the Monroe Candidate Winner problem. Recall that

the input is ⟨C, V, c, k⟩, and the question is if there exists a Monroe winning committee of

size k containing c. We demonstrate that the problem is complete for ΘP
2 in the setting

of rankings for both the ℓ1-Borda and ℓ∞-Borda misrepresentation functions.

Since the argument of membership is similar as presented at the start of Section 6.1,

we omit that for brevity. We first consider the case of the ℓ1-Borda misrepresentation

and demonstrate the hardness.

Theorem 25 Monroe Candidate Winner is ΘP
2 -hard in the case of rankings for the

ℓ1-Borda misrepresentation score.

Proof: We again reduce from the ΘP
2 -complete problem Vertex Cover Mem-

ber. Given an instance ⟨G := (V,E), w⟩ of Vertex Cover Member we construct

an instance of Monroe Candidate Winner as follows. Let the set of candidates be

C := Cv ∪D∪D′∪S, where Cv denotes the set of n candidates corresponding to vertices

of G and D and D′ denote type I and type II dummy candidates respectively. Let ∆

122

Candidate Winner Verification Problem Chapter 6

denote a set of n4m type I dummy candidates, and ∆′ denote a set of 2(n4m) type II

dummy candidates. We note that the subsets of dummy candidates specified explicitly

in different votes are always chosen so that there are no repeated dummy candidates in

the explicitly defined blocks, in other words, the chosen dummy candidates are always

distinct. Also, D (D′) is the union of all the ∆’s (∆′’s) respectively specified in the

profile, which is given by the following five blocks of voters:

• Block 1: We construct m votes corresponding to the edges in G. For an edge

(u, v) we add:

cu ≻ cv ≻ ∆′ ≻ Cv \ {cu, cv} ≻ rest

where “rest” denotes the set of remaining candidates placed in an arbitrary order.

• Block 2: For the desired vertex w from the Vertex Cover Member instance,

we pick an arbitrary edge incident on w (say (w, x)) in G, and add m+1 copies of

the following vote:

cw ≻ cx ≻ ∆′ ≻ Cv \ {cw, cx} ≻ rest

• Block 3: We add n votes of the form:

∆ ≻ cw ≻ Cv \ {cw} ≻ rest

• Block 4: For each candidate dj ∈ Ds, we add the vote:

dj ≻ ∆′ ≻ rest.

• Block 5: Let Dα be a subset of dummy candidates d ∈ D such that d appears in

the top position for one of the votes in Block 3. Note that |Dα| = n. Furthermore,

123

Candidate Winner Verification Problem Chapter 6

let N = 2(m+ n+ 1). For each v ∈ {Cv ∪D′′} and ℓ ∈ [N], we add the following

vote:

v ≻ Ds ≻ ∆′ ≻ rest

In the constructed Monroe Candidate Winner instance, we ask if there exists an

optimal committee of size 2n + 1 containing cw. Before showing the equivalence of the

two instances, we establish the following lemma.

Lemma 37 Let q be the size of an optimal vertex cover in G. Then, the following holds

for any optimal committee C ′ of size 2n+ 1 in the constructed election instance:

1. C ′ does not contain any d′ ∈ D′.

2. S ⊂ C ′.

3. C ′ contains exactly q candidates corresponding to an optimal vertex cover.

Proof: First, we analyze the Monroe score of a committee C which contains all n+1

special candidates S, q candidates corresponding to an optimal vertex cover (S ′), and the

remaining (n− q) candidates from D which appear in the top positions of (n− q) votes

in Block 3. Note that in any Monroe committee C ′, each candidate represents exactly

N votes. We now describe the Monroe assignment for C. Each vote in Block 1 and 2

is represented by one of the top two candidates such that the corresponding vertex (v)

belongs to the vertex cover (S ′). The misrepresentation for C in Block 1 is at most m,

and in Block 2 it is at most m + 1. In Block 3, exactly n − q votes are represented by

their first choice. For those votes that are not represented by the top candidate already,

the misrepresentation for C is at most (|∆|+ n− 1) per vote since all the votes in Block

3 are represented by the candidate in Cv for that vote in the worst case. In Block 4, all

votes are represented by their top choice yielding zero misrepresentation. Votes in Block

124

Candidate Winner Verification Problem Chapter 6

5 are represented as follows: For each candidate ci corresponding to a vertex u ∈ S ′,

if cu represents t votes from first 3 blocks, then cu also represents (N − t) votes from

Block 5 among the ones she appears at the first position. Similarly, for d ∈ {D ∩ C},

d represents N − 1 votes among the ones she appears at the top position. Next, each

special candidate s ∈ S represent (N − 1) votes in Block 5, yielding misrepresentation

score at most (n + 1)(N − 1) for each s. Hence, the total misrepresentation for C is

strictly less than n4m+ 3mn2 + 3n3 < 2(n3m2 + n4m) for large enough n.

Towards showing the first statement, consider a committee C∗ which contains d′ ∈ D′.

In any Monroe assignment, d′ has to represent N votes. Observe that d′ appears in first

(n4m) positions exactly once, hence, misrepresentation(C∗) > misrepresentation(C). To

show the second statement, consider a committee C∗ which excludes a special candidate

s ∈ S. It is easy to see that misrepresentation(C∗) > misrepresentation(C) even if we only

consider misrepresentation from a single vote from Block 4 with s at the first position.

We now turn to statement 3. Now, let C∗ be an optimal committee which does not

contain q candidates corresponding to some optimal vertex cover. We use statements 1

and 2 to analyze the following two cases:

• |C∗ ∩ Cv| > q: In this case, C∗ contains at most (n − q − 1) candidates from D.

Hence, the misrepresentation of C∗ from Block 3 is at least |∆| × (q + 1) which is

greater than the misrepresentation score for C. This contradicts the optimality of

C∗.

• |C∗ ∩ Cv| ≤ q: Since the size of an optimal vertex cover is q, any committee C∗

with at most q candidates from Cv does not include any candidates corresponding

to the endpoint of at least one edge due to the case we are in (i.e., C∗ does not

contain candidates corresponding to an optimal vertex cover). Hence, C∗ incurs a

misrepresentation of at least |∆′| from one of the votes in Block 1 which implies

125

Candidate Winner Verification Problem Chapter 6

misrepresentation(C∗) > misrepresentation(C).

This completes the proof for Lemma 37.

We now turn to the proof of equivalence. In the forward direction, given an optimal

vertex cover of size q containing w, we construct an optimal committee C ′ by choosing q

candidates corresponding to the vertex cover, (n − q) candidates from the set D which

appears in the top position of exactly (n − q) votes from Block 3, all n + 1 special

candidates S. We compute the Monroe assignment of C ′ is the same way we did for

committee C ′ in Lemma 37. By Lemma 37, we already know that any optimal committee

must contain all candidates from S, and candidates corresponding to an optimal sized

vertex cover. Therefore, it suffices to show that committees corresponding to an optimal

vertex covers not containing cw are not optimal. Indeed, this follows from the fact that

in Block 2, cw is the top candidate in exactly (m+ 1) votes, and in Block 3, cw leads all

other candidates from the set Cv. Hence, it is easy to verify that an optimal committee

must contain cw.

In the reverse direction, given an optimal committee C ′ containing cw, we need to

construct an optimal vertex cover for G which includes the vertex w. Since C ′ is optimal,

using Lemma 37 we know C ′ ∩ Cv is an optimal vertex cover of G. Since we are given

that cw ∈ C ′, we have that the vertex cover corresponding to C ′ is an optimal vertex

cover containing cw, as desired.

Next, for consider ℓ∞-Borda misrepresentation function, the membership argument to

θP2 is similar to previous case. We note that our reduction is similar as well to reduction

in Theorem 24 so we skip the details.

126

Candidate Winner Verification Problem Chapter 6

6.3 Elections with Approval Preferences

Next, we turn to the case of approval ballots. We note that the argument of mem-

berships is analogues to the case of ranking preferences so we skip the details. We now

show the θP2 -harndess.

Theorem 26 Chamberlin-Courant Candidate Winner is ΘP
2 -hard even in the

case of approval ballots for the ℓ1-Borda misrepresentation score.

Proof: We reduce from Vertex Cover Member. We note that the argument in

this case is relatively simpler. Given an instance ⟨G := (V,E), w⟩ of Vertex Cover

Member we construct an instance of CCCW as follows. Let the set of candidates be,

C := Cv ∪ D where Cv denotes the set of n candidates corresponding to vertices of G,

and D denotes the set of n dummy candidates.

• Block 1: we construct 2n copies of each of the m votes corresponding to the edges

in G. In particular, for i ∈ [m], let (u, v) be the ith edge. Then, we add 2n copies

of vote vi such that vi approves the candidates corresponding to the edge (cu, cv),

and she disapproves all other candidates.

• Block 2: For the desired vertex w from Vertex Cover Member instance, we

add the vote vw such that vw disapproves all candidates except cw.

• Block 3: We add two copies of each of the following n votes {v1, v2, . . . , vn} such

that vi only approves a unique dummy candidate di and disapproves all other

candidates.

In the constructed CCCW instance, we ask if there exists an optimal committee of

size n containing cw. Next, we establish the following structural lemma.

127

Candidate Winner Verification Problem Chapter 6

Lemma 38 Let q be the size of an optimal vertex cover in G. Then, for any optimal

committee C ′ of size n, C ′ contains exactly q candidates corresponding to an optimal

vertex cover.

Proof: We give a proof by contradiction. Consider a committee C which contains

q candidates corresponding to an optimal vertex cover, and (n − q) candidates from

D. The misrepresentation for C in block 1 is zero, and in block 2 it is at most 1. In

block 3, the misrepresentation is exactly 2q since for exactly 2(n − q) votes in block

3, C ′ contains the dummy candidates approved by these voters. Hence, the overall

misrepresentation(C) ≤ 1 + 2q.

Let C ′ be an optimal committee which does not contain q candidates corresponding

to some optimal vertex cover. We will consider following cases:

• |C ′ ∩ Cv| > q: In this case, C ′ contains at most (n − q − 1) candidates from D.

Hence, the misrepresentation of C ′ from block 3 is at least 2 × (q + 1) which is

greater than the misrepresentation score for C. This contradicts the optimality of

C ′.

• |C ′ ∩ Cv| ≤ q: Since the size of an optimal vertex cover is q, any committee C ′

with at most q candidates from Cv does not include any approved candidates for n

votes corresponding to at least one edge due to the case we are in (i.e. C ′ does not

contains candidates corresponding to an optimal vertex cover). Hence, C ′ incurs a

misrepresentation of at least 2n from 2n votes corresponding to an edge in Block

1 which implies misrepresentation(C ′) > misrepresentation(C). This completes the

proof of Lemma 38.

Next, we turn to the proof of equivalence. In the forward direction, given an optimal

vertex cover of size q containing w, we construct an optimal committee C ′ by choosing q

128

Candidate Winner Verification Problem Chapter 6

candidates corresponding to the vertex cover, and arbitrarily chosen (n − q) candidates

from the set D. By Lemma 38, we already know that any optimal committee must

contain candidates corresponding to an optimal sized vertex cover (hence, at most n− q

dummy candidates). Therefore, it suffices to show that committees corresponding to an

optimal vertex cover not containing cw are not optimal. This is easy to see from a vote

in Block 2 which only approves cw. Hence, optimal committee must contain cw.

In the reverse direction, given an optimal committee containing cw, in the light of

Lemma 38 we know C ′ ∩Cv is an optimal vertex cover of G. Since we are given cw ∈ C ′,

we have that the vertex cover corresponding to C ′ is an optimal vertex cover containing

cw, as desired.

The Monroe Candidate Winner problem in θP2 -complete for ℓ1-Borda misrepre-

sentation score in the setting of approval ballots. The argument of membership is similar

as before, and to show the hardness, we again reduce from the Vertex Cover Member

problem. Due to similarity of arguments with Theorem 26, we omit the details.

We summarize our results from Sections 6.1, 6.2 and 6.3 in the following theorem:

Theorem 27 Candidate Winner for Chamberlin-Courant and Monroe is complete

for ΘP
2 in the setting of approval ballots and rankings. In the latter setting, the result

holds for the ℓ1 and ℓ∞-Borda misrepresentation functions.

6.4 Efficient Algorithms on Restricted Preference

In this section, we consider the Candidate Winner problem on the single-peaked

(SP) and the single-crossing (SC) domain for the Chamberlin-Courant voting rule. We

refer the reader to Section 5.0.2 for the definitions of SP, SC domains.

We start with ℓ1-Borda dissatisfaction score for the single-peaked preference domain.

Let E = (C, V), k, c be the input to a CCCW instance where the election contains

129

Candidate Winner Verification Problem Chapter 6

single-peaked preferences of the voters, k is the size of the committee, and c is the desired

input candidate. We compute a winning committee, and the optimal dissatisfaction score

opt for E in polynomial time. Let

v′ := c ≻ ({C \ c} in any single-peaked order).

We construct an election E ′ with same set of candidates, and with the following set

of voters: V ′ = V ∪ (mn+ 1) · v′ i.e., V ′ contains V , and additionally contains (mn+ 1)

copies of the vote v′. Clearly, election E ′ contains single-peaked preferences with the

same linear ordering of the candidates as in election E. Next, we compute the optimal

dissatisfaction score opt′ for election E ′. We return Yes for the CCCW instance if

opt = opt′, otherwise we return No.

Next, we show the correctness of our algorithm.

Lemma 39 For a given instance ⟨C, V, k, c⟩ of CCCW, there exists a winning commit-

tee containing c iff opt = opt′.

Proof: First, we assume that opt = opt′. We observe that opt < mn + 1 as any

committee can have a dissatisfaction score at most mn in E. Furthermore, for election E ′,

any committee S, with score(S) < mn+1 has to include candidate c. This is because for

any k-sized committee which does not contain c, (mn + 1) copies of vote v′ contributes

positively towards its dissatisfaction score. Since opt = opt′, the optimal committee for

election E ′ (say S ′) includes candidate c. Hence, S ′ is a winning committee for election

E containing candidate c.

In the other direction, we assume a k-sized winning committee S for the election E ′

containing candidate c. As V ⊂ V ′, score(S) ≥ opt. It is easy to see that S attains

a dissatisfaction score opt in election E ′ since the additional (mn + 1) copies of v′ do

130

Candidate Winner Verification Problem Chapter 6

not incur any dissatisfaction as these voters are represented by their top choice c. This

completes the proof of Lemma 39.

For ℓ∞-Borda dissatisfaction score, let E = (C, V), k, c be an input instance of

CCCW where E contains single-peaked preferences. We compute a winning committee,

and the optimal dissatisfaction score opt for E in polynomial time. Let

V ∗ := {v ∈ V | v ranks candidate c in top opt positions}

i.e., V ∗ ⊆ V is a set of voters which rank c in top opt positions. We construct an election

E ′ with the same set of candidates, and set V ′ = V \V ∗. It is easy to see that election E ′

contains single-peaked preferences. Next, we compute the optimal dissatisfaction score

opt′ for the election E ′ with committee size k − 1. Notice that if there exists an optimal

committee S of size k containing c for the election E, then each voter in set V \V ∗ must

have at least one candidate from a set of k − 1 candidates S \ c in top opt positions.

Hence, we return Yes for the CCCW instance if opt′ ≤ opt, otherwise we return No.

This completes the description, and a brief argument of correctness.

Next, we consider ℓ1-Borda dissatisfaction score for the single-crossing preference

domain.

Description of the algorithm. Let ⟨C, V, k, c⟩ be an instance of CCCW where

V = {v1, v2, . . . , vn} is a set of voters in a single-crossing order. For 0 < i ≤ j ≤ n,

Li,j = {vi, vi+1, . . . , vj} be a subset of V .

First, we compute the optimal dissatisfaction score opt for the input election instance.

Next, we iterate through all n(n + 1)/2 valid choices of i, j, and select the contiguous

block Li,j ⊆ V . For each iteration, we assume that candidate c represents the selected

set of voters (Li,j). Let V1 = {vi′ | 1 ≤ i′ < i, and V2 = {vj′ | j < j′ ≤ n}. Furthermore,

let E1 = (C, V1), and E2 = (C, V2) be two sub-elections. It is easy to observe that E1, E2

131

Candidate Winner Verification Problem Chapter 6

contains single-crossing preferences with the same order on voters. At this stage, we

go over all choices of 0 ≤ k1, k2 ≤ k such that k1 + k2 = k − 1. We compute optimal

committees S1, S2 of size k1, k2 for elections E1, E2 respectively. Let score(c) be the total

dissatisfaction score from block Li,j for when it is represented by candidate c. If for some

“guess” of tuple (i, j, k1, k2), score(S1)+ score(S2)+ score(c) = opt then we return Yes,

otherwise we return No 3.

Refer to Algorithm 3 for the pseudocode of the algorithm. It is easy to see that our

algorithm runs in polynomial time.

Algorithm 3 CCCW on single-crossing preferences

Input: E = (C, V), k, c
1: Compute optimal dissatisfaction score opt for SC election E
2: for i ∈ {1, 2, . . . , n}; j ∈ {1, 2, . . . , n} | 0 < i ≤ j ≤ n do
3: Select contiguous block of votes Li,j ← {vi, vi+1, . . . , vj}
4: Let V1 ← {v1, . . . , vi−1}, V2 ← {vj+1, . . . , vn}; E1 = (C, V1), E2 = (C, V2)
5: for 0 ≤ k1, k2 ≤ k such that k1 + k2 = k − 1 do
6: Compute S1 ← optimal committee for E1, S2 ← optimal committee for E2

7: Compute score(c)← total dissatisfaction score from Li,j represented by c
8: if score(S1) + score(S2) + score(c) = opt then
9: return Yes
10: return No

Proof of correctness. We show the following lemma:

Lemma 40 Algorithm 3 returns Yes if and only if the input CCCW instance admits

a winning committee containing c.

Proof: First, we assume that S ′ is a k-sized winning committee containing c.

Define Li,j ⊆ V as the contiguous block of voters represented by c where vi, vj are first

and last voters in the block respectively. Note that Li,j always exists as Skowron et

al. [69, Lemma5] showed that for single-crossing elections, there exists an assignment

3Note that Algorithm 3 assumes that for an optimal committee containing c, c represents at least one
voter. We can eliminate the case when c does not represent any candidate by checking if the optimal
scores for k and k − 1-sized committees are the same

132

Candidate Winner Verification Problem Chapter 6

of voters such that each candidate in a winning committee represents a contiguous set

according to the single-crossing ordering of voters. Let C1 ⊆ S ′ be the set of candidates

representing voters {v1, . . . , vi−1}, and C2 ⊆ S ′ be the set of candidates representing votes

{vj+1, . . . , vn}. For k1 = |C1| and k2 = |C2|, let S1 and S2 be the optimal committees

computed by Algorithm 3 for elections E1 and E2 defined by block Li,j (where i, j are

defined by the committee S ′). It is easy to see, score(S1) ≤ score(C1) for voters in

election E1. This is because S1 is an optimal k1-sized committee for E1. Similarly,

score(S2) ≤ score(C2). Note that score(c) for the block of voters Li,j is the same in both

the committee S ′ and the committee S = S1 ∪ S2 ∪ c computed by Algorithm 3. Hence,

score(S1) + score(S2) + score(c) ≤ score(C1) + score(C2) + score(c) = score(S ′) = opt.

Therefore, Algorithm 3 returns Yes.

In the other direction, we assume that Algorithm 3 returnsYes. In this case, we claim

that S = S1 ∪ S2 ∪ c is a valid k-sized winning committee. Assuming we are in the case

when optimal dissatisfaction score for a (k−1)-sized optimal committee is strictly greater

than a k-sized optimal committee, we observe that S1 ∩ S2 = S1 ∩ {c} = S2 ∩ {c} = ∅.

Otherwise, we can construct a k-sized committee with a dissatisfaction score strictly less

than opt, a contradiction. Since score(S1) + score(S2) + score(c) = score(S) = opt, we

conclude that S is a winning committee containing c.

Lemma 40 completes the argument for proof of correctness of Algorithm 3.

Since the dynamic programming algorithm to compute a winning committee in the

case of ℓ1-Borda dissatisfaction score on single-crossing domains for the Chamberlin-

Courant voting rule [69] also works for ℓ∞-Borda dissatisfaction score, Algorithm 3 works

as it is for ℓ∞-Borda misrepresentation score as well. We summarize our results as follows:

Theorem 28 Chamberlin-Courant Candidate Winner can be solved in polyno-

mial time for both ℓ1, ℓ∞-Borda dissatisfaction score on each of single-peaked and single-

133

Candidate Winner Verification Problem Chapter 6

crossing domains.

Remark 2 Note that most of our algorithms from Section 6.4 build on an efficient sub-

routine for computing a winning committee and, in turn, computing the optimal dis-

satisfaction score opt. Finding the optimal dissatisfaction score in the case of ℓ1-Borda

dissatisfaction function is known to be NP-complete for Monroe voting rule on both single-

peaked [68], and single-crossing [69] preference domains. Skowron et al. [69] showed an

efficient algorithm for computing a winning committee in case of ℓ∞-Borda dissatisfac-

tion score for Monroe voting rule on a restricted preference domain where the preferences

are both single-peaked and single-crossing. We notice that we can efficiently solve the

Winner Verification problem whenever opt can be computed in polynomial time; hence,

it can be solved efficiently for the case of single-peaked and single-crossing preferences.

Furthermore, Skowron et al. [69, Lemma 17] show that for each optimal committee, there

exists an assignment of voters to candidates such that each candidate represents a con-

tiguous set of voters according to the single-crossing ordering. Observe that we exploit

exactly this property in Algorithm 3; hence, Algorithm 3 can be used to efficiently solve

the Candidate Winner problem for ℓ∞-Borda dissatisfaction function for Monroe rule

on single-peaked and single-crossing preference domain. We pose the question of compu-

tational complexity for the remaining scenarios (compared to the cases considered for the

Chamberlin-Courant rule) in the case of Monroe voting rule as an open problem.

We summarize our results from Section 5.4 and Section 6.4 in the following theorem:

Theorem 29 Winner Verification and Candidate Winner for Chamberlin-Courant

are polynomial-time solvable for each of single-peaked and single-crossing preference do-

mains in the setting of rankings. The result holds for the ℓ1 and ℓ∞-Borda misrepresen-

tation functions.

134

Chapter 7

Fair Covering of Points in Euclidean

Space

In this chapter, we study a problem of fair covering of heterogeneous points using unit

radius balls in Rd. As described earlier (in Section 1.1), given a set P of n points in

Rd each of which is colored by one of t colors, the fair covering problem aims to cover

the maximum number of points using k unit-radius balls such that the coverage for each

color is in proportion to its size. More precisely, let C be a family of k unit radius balls, ci

be the number of the points of color i that are covered by C, and ni be the total number

of points of color i, for i ∈ {1, . . . , t}. Then we say that the covering C is fair if

⌊ρi · c∗⌋ ≤ ci ≤ ⌈ρi · c∗⌉

for all i ∈ {1, . . . , t}, where c∗ =
∑t

i=1 ci and ρi = ni/n for i ∈ {1, . . . , t}. Among all

fair coverings, we want the one that maximizes the total coverage c∗. We note that fair

coverings always exist, because an empty covering trivially satisfies the fairness condition

but covers no points.

135

Fair Covering of Points in Euclidean Space Chapter 7

Achieving strict fair covering can be computationally hard, so we also define the

notion of approximately fair covering. A covering C is called ε-fair for some ε ∈ [0, 1], if

(1− ε) · ⌊ρi · c∗⌋ ≤ ci ≤ (1 + ε) · ⌈ρi · c∗⌉

for all i ∈ {1, . . . , t}. The goal of the approximately fair covering problem is then to find

an ε-fair covering that maximizes the number of covered points.

The topic of algorithmic fairness has received significant attention recently [73, 74,

75, 76, 77, 78, 79, 80], especially with the increasing use of machine learning in policy

and decision making. Our work in this chapter explores the computational implications

of fairness as a constraint in geometric optimization by focusing on the specific problem

of covering by unit balls, or equivalently, fixed-radius facility location. The different

colors in our input represent different demographic groups and proportionality is one

of the most basic forms of fairness, requiring that each group’s share in the solution

is proportional to its size. The proportional fairness can be easily extended to weighted

sharing by assigning nonuniform weights to different points or color classes and measuring

fairness on the overall covered weights. The fair covering problem can also be viewed as

fair clustering under the k-center measure when each cluster is constrained to have unit

radius.

In this chapter, we investigate the aforementioned (approximately) fair covering prob-

lem under the discreteness and bounded-ply constraints defined below. We require the

balls used in the covering to be chosen from a given candidate set of unit-radius balls

(discreteness), and any point in the plane to be covered by at most p chosen disks where

p is a given constant (bounded-ply). Formally, the input of the problem consists of a

set P of n points in Rd each of which is colored with one of the t-colors, a candidate

set B of m unit-radius balls in Rd, a number k that is the budget of balls to be used,

136

Fair Covering of Points in Euclidean Space Chapter 7

and a number p which is the bound on the ply of the covering. Our goal is to find a

(approximately) fair covering for P using at most k balls in B such that any point in the

plane (not only points from P) is covered by at most p balls and we cover the maximum

number of points in P .

7.0.1 Results and Organization of the Chapter

Our main results are the following:

• We show that there exists an exact algorithm solving the fair covering problem in

R1 in O(m3+m2nt) time. Alternatively, the problem can also be solved in O(nmk)

time (Section 7.1).

• We show that the fair covering problem in R1 is NP-hard if the number of colors

is part of the input. We also show that the problem is W[1]-hard parameterized by

the number of covering balls k (Section 7.2).

• For a fixed d ≥ 2 and a fixed number of colors, we present a PTAS (Polynomial Time

Approximation Scheme) for the approximately fair covering problem (Section 7.3).

• We present an exact algorithm solving the unconstrained (without discreteness or

bounded ply) fair covering problem in R1 in O(nt+2) time (Section 7.4).

For our algorithmic results in Section 7.1 and in Section 7.3, first, we present our

approach for the case of p = 1, i.e., the disks used in the covering are required to be

disjoint; near the end of each of these sections, we add a discussion about necessary

changes to adapt our approach for p > 1 (i.e., the bounded ply case).

137

Fair Covering of Points in Euclidean Space Chapter 7

7.1 Polynomial time Algorithm in One-dimension

In the first section we consider the problem in one dimension. Let P = {p1, . . . , pn}

be a set of n points on the real line each of which belongs to one of the t color classes,

and let B = {B1, . . . , Bm} be the candidate set of unit intervals on the line. (Technically

speaking, a unit-radius ball in one dimension would be an interval of length 2, but a unit-

length interval seems more natural, so that we shall use unit intervals in the following

discussion. Note that the problem with intervals of length 2 is equivalent to the problem

with unit intervals by simply scaling the points and the intervals.) Our goal is to cover the

maximum number of points using at most k intervals in B forming a bounded ply cover

under the fair covering constraint. We show that an optimal covering can be computed

in polynomial time when the number t of colors is fixed.

For simplicity, we describe our algorithm for t = 2 and use red/blue as the two colors

for easier reference. The extension to an arbitrary number of colors is straightforward.

We start with the case when ply is equal to one i.e., the problem of finding a cover

consisting of disjoint intervals in B.

Given integers r and b, we define an (r, b)-covering to be a subset of B consisting of

disjoint intervals that covers exactly r red and b blue points. An optimal (r, b)-covering is

an (r, b)-covering that uses the minimum number of intervals. We solve the fair covering

problem by computing an optimal (r, b)-covering for all r, b ∈ {1, . . . , n}. Without loss

of generality, we assume that the unit intervals B1, . . . , Bm are sorted in the left-to-

right order. Let r(Bi) and b(Bi) be the number of the red and blue points covered by

Bi, respectively. For each i ∈ {1, . . . ,m}, let πi < i be the largest integer such that

Bπi
∩Bi = ∅; we assume π1 = 0. We make a left-to-right pass over the set of input points

and the intervals on the real line, and compute πi, r(Bi), b(Bi) for all i ∈ {1, . . . ,m}.

Define F [i, r, b] as the size of an optimal (r, b)-covering using only intervals in {B1, . . . , Bi}.

138

Fair Covering of Points in Euclidean Space Chapter 7

For the pairs (r, b) such that no (r, b)-covering exists, we set F [i, r, b] =∞. It is easy to

see that F satisfies the following recurrence.

Claim 3

F [i, r, b] = min

 F [i− 1, r, b]

1 + F [πi, r − r(Bi), b− b(Bi)]

The above recurrence immediately allows us to compute the table F using dynamic

programming, which is shown in Algorithm 4. The base case for the dynamic program

is F [i, 0, 0] = 0 for all i ∈ {1, . . . ,m} and F [0, r, b] =∞ for all r, b ∈ {1, . . . , n}.

Algorithm 4 Computing the F -table

Input: a set P of points on the line and the set of intervals B
1: Compute πi, r(Bi), b(Bi) for i ∈ {1, . . . ,m}
2: Initialize m× r × b sized table with value ∞
3: for i ∈ {0, . . . ,m}; r, b ∈ {0, . . . , n} do
4: F [i, r, b]← min{F [i− 1, r, b], 1 + F [πi, r − r(Bi), b− b(Bi)]}
5: return F

Lemma 41 Algorithm 4 can be implemented in worst-case time O((n+m) log(n+m)+

mn2).

Proof: Sorting P and B takesO((n+m) log(n+m)) time. Computing πi, r(Bi), b(Bi)

for all i ∈ {1, . . . ,m} takes additional linear time. After that the F -table can be computed

in O(mn2) time.

Once the F -table is computed, we can solve the fair covering problem by checking all

entries in the table for which the (r, b)-covering is fair and has F [m, r, b] ≤ k. Among all

such valid pairs, we return the pair (r∗, b∗) with the maximum r∗+b∗. Clearly, c∗ = r∗+b∗

is the optimum of the problem instance. We therefore have the following result.

Theorem 30 The disjoint fair covering problem in R1 with t = 2 colors can be solved

in O((n+m) log(n+m) +mn2) time.

139

Fair Covering of Points in Euclidean Space Chapter 7

The dynamic program easily extends to the case of t > 2 colors, by using a (t + 1)-

dimensional DP table.

Theorem 31 The disjoint fair covering problem in R1 can be solved in O((n+m) log(n+

m) +mnt) time.

Extension to bounded ply

We now present a generalization of the dynamic programming algorithm from the

previous section to find coverings with a constant ply. In other words, we now want to

solve the (r, b)-covering problem when any point on the line can be covered by at most p

intervals. Recall that we are looking for coverings C with at most k-disks. Let C(P) ⊆ P

be the subset of points covered under C. We say C is minimal if for ci ∈ C, the covering

C ′i = C \ ci covers only a subset of points covered by C, i.e., C ′i(P) ⊂ C. Next, we state a

structural lemma for minimal coverings in one dimension shown in [81, Lemma 3].

Lemma 42 Any minimal covering in R1 has ply at most 2.

We refer the reader to [81] for the proof of Lemma 42.

Let B1, . . . , Bm be the sorted order of the intervals from left to right. For each

i ∈ {1, . . . ,m}, let πi < i be the largest index such that Bπi
∩ Bπi+1 = ∅; let the

minimum value of πi be 0. We make a left-to-right pass over the intervals, and store

the index i in a set S if Bi ∩ Bi+1 = ∅ according to their order of discovery. Using the

monotonicity property of πi (i.e. πi ≥ πi−1), we can compute πi for i ∈ {2, . . . ,m} with

one pass over the set of intervals and the set S.

We retain the definition of F [i, r, b] from the previous result. It is easy to see that

F [i, r, b] satisfies the following the recurrence.

140

Fair Covering of Points in Euclidean Space Chapter 7

Claim 4

F [i, r, b] = min

F [i− 1, r, b],

min
πi≤j≤i

ℓi,j + F [j, r − ri,j, b− bi,j]

where ℓi,j is the minimum number of unit intervals required to cover the interval [x−, x+]

where x− is the left endpoint of Bj+1 and x+ is the right endpoint of Bi, and ri,j (resp.,

bi,j) is the number of red (resp., blue) points contained in [x−, x+].

The idea of the recurrence is as follows: First term F [i−1, r, b] considers the case when

Bi is not included in the cover. Next, we take a minimum over at most m terms where

we consider the case when Bi is included in the cover, and we “guess” the optimal length

of a contiguous covered interval ending with Bi. Hence, our approach is exhaustive. The

base cases for our recurrence are F [i, 0, 0] = 0 for all i ∈ 0, . . . ,m, and F [0, r, b] = ∞

for r, b ∈ {1, . . . , n}. Next, we present a dynamic programming algorithm to efficiently

compute the F table.

Algorithm 5 Computing the F -table

Input:P,B
1: Compute πi for i ∈ {1, . . . ,m}
2: Initialize m× r × b sized table with value ∞
3: for i ∈ {0, . . . ,m}; r, b ∈ {0, . . . , n} do
4: F [i, r, b]← min{F [i− 1, r, b], min

πi≤j≤i
ℓi,j + F [j, r − ri,j, b− bi,j]}

5: return F

Lemma 43 Algorithm 5 can be implemented in worst-case time O(n2m2 +m3).

Proof: Sorting P and B takes O((n + m) log(n + m)) time. Computing πi takes

O(m) time using the procedure described earlier. We compute ℓi,j for all
(
m
2

)
pairs in

advance. For a given pair (i, j) such that j < i, we can find ℓi,j in O(m) time with a

following procedure: We include interval Bj in the covering. At this stage, Bj is the

rightmost interval in the constructed partial covering. Next, in each iteration, we include

141

Fair Covering of Points in Euclidean Space Chapter 7

Bj′ in the covering, such that j′ ≤ i is the largest index such that Bj′ has a non-zero

intersection with the rightmost interval in the partial covering. We then update the

rightmost interval to Bj′ . We repeat the procedure until we include Bi in the covering.

Note that both Bj, Bi will always be included in a minimum sized covering assuming no

two intervals are identical. Overall, all ℓi,j values are computed in O(m3) time.

After that each F -table entry can be computed in O(m) time as follows: We can look-

up F [i−1, r, b] in a constant time. Next, for the case when Bi is included in the covering,

we need to compute at most m terms (i− πi to be exact). Each of these terms involves

a constant time look up for the respective ℓi,j, and a previously computed F -table entry.

There are mn2 entries in the F -table; hence, the overall running time is bounded by

O(n2m2 +m3).

Once the F -table is computed, we can solve the fair covering problem in the same

way as described previously for p = 1 case. We therefore obtain the following result.

Theorem 32 The fair covering problem in R1 with t = 2 colors can be solved in O(n2m2+

m3) time.

The result can be easily generalized to t > 2 colors, by using a t+ 1 dimensional DP

table.

Theorem 33 The fair covering problem in R1 can be solved in O(ntm2 +m3) time.

Remarks. Recall that the fair covering problem we investigate is defined with the

discreteness and bounded ply constraints. In fact, the problem without each of these

two constraints can also be solved using similar dynamic programming approaches. We

defer the details to the end (Section 7.4) because our main focus is the problem with

discreteness and bounded ply constraints.

142

Fair Covering of Points in Euclidean Space Chapter 7

7.2 NP-hardness andW[1]-hardness of Fair Covering

In this section, we show that the one-dimensional fair covering problem is NP-hard if

the number of colors t is large even for a disjoint cover (i.e., the case when p = 1). We

also show that the problem is W[1]-hard parameterized by the number of intervals k.

Theorem 34 The one-dimensional fair covering problem with Ω(n) colors is NP-hard.

Proof: We reduce the well-known Exact Cover problem (which is known to be

NP-complete [82]) to our problem. Given a ground set U , a family F of subsets of U ,

and an integer ℓ, the Exact Cover problem is to decide if there exists a S ⊆ F of size

ℓ that contains each element of U exactly once. The construction is described below.

Construction. Given an instance of Exact Cover with U = {u1, u2, . . . , un},

F = {S1, S2, . . . , Sm}, and an integer ℓ, we construct a set of points P , and a set of

centersM as follows. The ith element of U is associated with color i; thus, there are n

color classes. We also introduce an additional color 0, which we call special. The set of

points is organized in the following three groups.

1. Basic Points: For each set Si ∈ F , we introduce |Si| points, placed arbitrarily

within the interval [3i, 3i + 1). Each point has the color of its element. The

intervals corresponding to Si and Sj, i ̸= j, are distance 2 apart, which ensures

that any unit interval of B can cover points of at most one such group.

2. Balancers: We add extra points for each color i to ensure that all colors i =

1, 2, . . . , n end up with the same number of points. Specifically, let f ∗ be the

maximum number of sets to which an element belongs, and let fi be the number of

sets containing the element ui. We introduce f ∗−fi points of color i in the interval

[3(m+ i), 3(m+ i) + 1)].

143

Fair Covering of Points in Euclidean Space Chapter 7

Figure 7.1: Constructed fair covering instance for an Exact Cover instance U =
{1, 2, 3}, F = {(1, 3), (2), (1, 2)}, ℓ = 2. We introduce red (1), green (2), and blue (3)
colors corresponding to the elements in the universe, and we also introduce cyan as the
special color. First five points are introduced in the basic points group. Since f ∗ = 2
(where f ∗ is a maximum number of sets to which an element of U belongs to), next, we
introduce one blue point so that each color except for cyan has exactly two points. At
last, we introduce 4 cyan points as enforcers (since f ∗ = ℓ = 2).

3. Enforcers: Finally, we introduce ℓf ∗ points of color 0 (special color), at locations

3(m+n+1), 3(m+n+2), . . . , 3(m+n+ℓf ∗). These are needed in our construction

to enforce the fair covering condition. Refer to Figure 7.1.

Finally, the set of centersM is defined as follows.

• For each Si ∈ F , we add a center at 3i+1/2, which allows all points of that group

to be covered by one unit interval.

• Each enforcer point is also a center. We do not need centers for the balancers—their

role is primarily to make all color classes have equal size.

Finally, we fix the number of covering intervals to be k = 2ℓ.

We now argue that the Exact Covering instance is a yes instance if and only if

our fair covering instance admits a k-covering with at least n+ ℓ points.

For the forward direction of the proof, suppose S ⊆ F is an exact cover of size ℓ, and

T = {i | Si ∈ S} be the set of indices. Then we build a covering C as follows. We place

first ℓ intervals centered at 3i + 1/2 for i ∈ T , and the remaining ℓ intervals are placed

at 3(m+ n+ j) for j = 1, 2, . . . , ℓ covering one special colored point each. Since S is an

exact cover, C contains exactly n+ ℓ points. The covering is also fair, since all the colors

i = 1, 2, . . . , n have the same number of points f ∗, and the special color 0 has ℓf ∗ points.

In the covering, each of the color classes i = 1, 2, . . . , n has one covered point and the

special color has ℓ points.

144

Fair Covering of Points in Euclidean Space Chapter 7

For the reverse direction, let C be the fair covering with at least n + ℓ points. We

observe that a fair covering necessarily contains the same number of points, say z, for

each color i = 1, 2, . . . , n, and contains exactly ℓz points of the special color. For z = 2, to

cover 2ℓ special colored points only, we need all 2ℓ intervals. Hence, for any fair covering,

we get z < 2. This implies that for the covering C, z = 1 to meet the overall covering

requirement. Since, we need ℓ intervals to cover ℓ special colored points, it is easy to see

that the remaining ℓ intervals cover exactly one point of every other color. Hence, the

intervals covered corresponds to an Exact Cover.

In the reduced instance above, the number of intervals is dependent only upon the

size of the Exact Cover (ℓ). The Exact Cover problem is known to be W[1]-hard

parameterized by ℓ [83]. Hence, the analogous results for the fair covering problem is

summarized as follows:

Theorem 35 The fair covering problem is W[1]-hard parameterized by the number of

covering balls (k).

In dimensions d ≥ 2, the maximum coverage problem is NP-hard [19], and W[1]-hard

[84], even without the fairness constraint.

7.3 PTAS using Shifting Technique

In this section, we describe a PTAS for the approximately fair covering problem in

any fixed dimension d. Specifically, given an approximate factor ε ∈ [0, 1], we want to

compute an ε-fair covering of P (using at most k balls in B) such that the number of

points covered is at least (1 − ε) · opt, where opt is the size of an optimal fair covering

of P . In other words, the approximation is bi-criteria: one criterion is on the fairness

of covering while the other one is on the quality of the solution (i.e., the number of the

145

Fair Covering of Points in Euclidean Space Chapter 7

points covered). We first describe our algorithm for p = 1 (a disjoint cover), and later

generalize our approach for any constant p. For the simplicity of exposition, we describe

the algorithm in two dimensions (d = 2) and for two colors (t = 2). The extension to

higher dimensions and the general case of t > 2 colors is straightforward.

7.3.1 Shifted Partitions & Approximate Covering

When solving the fair covering problem in R1, we were able to compute an optimal

(r, b)-covering for any (r, b) pair. This seems quite difficult in higher dimensions, and

so we resort to solving an approximate version of this problem as follows. We want to

compute a table Γ [1 . . . n, 1 . . . n] of integers such that for each pair (r, b), we have the

following:

1. Γ [r, b] is at least the size of an optimal (r, b)-covering, and

2. there exists r∗ ∈ [(1− ε)r, r] and b∗ ∈ [(1− ε)b, b] such that Γ [r∗, b∗] is at most the

size of an optimal (r, b)-covering.

For convenience, we call such a table Γ an ε-approximate covering table (ε-ACT) for the

instance (P,B). Note that to solve the approximately fair covering problem, it suffices

to compute an ε-ACT.

Lemma 44 Given an ε-ACT Γ for (P,B), one can solve the approximately fair covering

problem in polynomial time.

Proof: Suppose an optimal fair covering covers r0 red points and b0 blue points.

We call a pair (r, b) with r, b ∈ {1, . . . , n} feasible if (1) an (r, b)-covering is fair and (2)

there exists r∗ ∈ [(1 − ε)r, r] and b∗ ∈ [(1 − ε)b, b] such that Γ [r∗, b∗] ≤ k. We compute

all feasible pairs, which can clearly be done in polynomial time given Γ , and find the

feasible pair (r, b) that maximizes r + b. By definition, we can find r∗ ∈ [(1 − ε)r, r]

146

Fair Covering of Points in Euclidean Space Chapter 7

and b∗ ∈ [(1 − ε)b, b] such that Γ [r∗, b∗] ≤ k. Note that an (r∗, b∗)-covering is ε-fair.

Furthermore, r + b ≥ opt since (r0, b0) is feasible, hence r∗ + b∗ ≥ (1− ε) · opt. Because

Γ is an ε-ACT, there exists an (r∗, b∗)-covering using at most k (disjoint) disks in B.

Therefore, r∗ + b∗ is a (1 − ε)-approximate solution for the approximately fair covering

problem.

In order to compute an ε-ACT Γ , we use the shifting technique [17]. Let h = h(ε)

be an integer parameter to be determined later. For an integer i ∈ Z, let □i,j denote the

h×h square [i, i+h]× [j, j+h]; we say □i,j is nonempty if it contains at least one point

in P . We first compute the index set I = {(i, j) : □i,j is nonempty}. This can be easily

done in time polynomial in n and h, by computing for each p ∈ P , the O(h2) squares □i,j

that contains p. For each (i, j) ∈ I, define Pi,j = P ∩□i,j and Bi,j = {B ∈ B : B ⊆ □i,j}.

In the next step, we compute a 0-ACT Γi,j for each (Pi,j,Bi,j) with (i, j) ∈ I. We will

show later in Section 7.3.2 how to compute Γi,j in (ni,j+mi,j)
O(h2) time, where ni,j = |Pi,j|

and mi,j = |Bi,j|. At this point, let us assume we have the 0-ACTs Γi,j and finish the

description of our PTAS. We have the following key observation.

Lemma 45 Let {P1, . . . , Ps} be a partition of P and B1, . . . ,Bs ⊆ B be disjoint sub-

sets such that the disks in Bi do not cover any points in P\Pi. Given 0-ACTs for

(P1,B1), . . . , (Ps,Bs), we can compute a 0-ACT for (P,
⋃s

i=1 Bi) in polynomial time.

Proof: Computing a 0-ACT for (P,
⋃s

i=1 Bi) is equivalent to computing for all pairs

(r, b) the size of the smallest (r, b)-covering of (P,
⋃s

i=1 Bi). Since the disks in Bi can

only cover the points in Pi, the entire problem instance can be divided into independent

sub-problems (P1,B1), . . . , (Ps,Bs). This allows us to solve the problem in polynomial

time using dynamic programming; see Algorithm 6.

For x, y ∈ {0, . . . , h − 1}, let Lx,y be the set of all integer pairs (i, j) such that

i mod h = x and j mod h = y (See Figure 7.2a). We write Ix,y = I ∩ Lx,y.

147

Fair Covering of Points in Euclidean Space Chapter 7

Algorithm 6 Computing the 0-ACT

Input: Γ1, . . . , Γs, where Γi is a 0-ACT for (Pi,Bi)
1: Initialize a s× n× n table F with value ∞
2: for t ∈ {1, . . . , s}; r, b ∈ {1, . . . , n} do
3: F [t, r, b]← min0≤r′≤r

0≤b′≤b

{Γt[r
′, b′] + F [t− 1, r − r′, b− b′]}

4: Γ ∗[r, b] = F [s, r, b] for all r, b ∈ {1, . . . , n}.
5: return Γ ∗

O

(a)

p1
p6

p3 p7

p5

p2

p4

(b)

Figure 7.2: (a) The squares □i,j for (i, j) ∈ L1,0, with h = 2. (b) An illustration of the
boundary points. The outer square is □i,j and the inner square is [i+2, i+ h− 2]× [j +
2, j+h− 2], with h = 12. The points in the gray region (i.e., p2, p4, p5) are the boundary
points in □i,j.

Lemma 46 For all x, y ∈ {0, . . . , h − 1}, the squares □i,j for (i, j) ∈ Ix,y are interior-

disjoint and cover all points in P .

Proof: Note that the squares □i,j for (i, j) ∈ Lx,y are interior-disjoint and cover the

entire plane R2 (see Figure 7.2a for an example). It directly follows that the squares □i,j

for (i, j) ∈ Ix,y are interior-disjoint. Consider a point p ∈ P and let (i, j) ∈ Lx,y such

that p ∈ □i,j. Clearly, (i, j) ∈ I as □i,j is nonempty and hence (i, j) ∈ Ix,y. Therefore,

all points in P are covered by the squares □i,j for (i, j) ∈ Ix,y.

Fix x, y ∈ {0, . . . , h−1}. We know by Lemma 46 that {Pi,j : (i, j) ∈ Ix,y} is a partition

of P and the collections Bi,j for (i, j) ∈ Ix,y are disjoint. Furthermore, the disks in Bi,j do

not cover any point in P\Pi,j. Therefore, we can apply Lemma 45 to compute a 0-ACT

Γ (x,y) for (P,
⋃

(i,j)∈Ix,y Bi,j) in polynomial time. We do this for all x, y ∈ {0, . . . , h− 1}.

148

Fair Covering of Points in Euclidean Space Chapter 7

Finally, we construct the table Γ by setting Γ [r, b] = minx,y∈{0,...,h−1} Γ
(x,y)[r, b]. We

shall show that Γ is a 12h−12
h2 -ACT for (P,B). To this end, we introduce some notions.

For a point p ∈ P and a square □i,j, we say p is a boundary point in □i,j if p ∈ □i,j

and p /∈ [i + 2, i + h − 2] × [j + 2, j + h − 2] (See Figure 7.2b). Now consider some

x, y ∈ {0, . . . , h− 1}. We say p ∈ P conflicts with the pair (x, y) if p is a boundary point

in □i,j where (i, j) ∈ Ix,y is the (unique) pair such that p ∈ □i,j. One can easily see that

each point p ∈ P conflicts with exactly h2 − (h− 2)2 pairs (x, y).

Lemma 47 For any P ′ ⊆ P , there exists some x, y ∈ {0, . . . , h − 1} such that the

number of red (resp., blue) points in P ′ conflicting with (x, y) is at most 12h−12
h2 · n′

red

(resp., 12h−12
h2 · n′

blue), where n′
red (resp., n′

blue) is the total number of red (blue) points in

P ′.

Proof: Define δredx,y (resp., δbluex,y) as the number of the red (resp., blue) points in P ′

that conflict with (x, y). Because any point p ∈ P conflicts with exactly h2 − (h − 2)2

pairs (x, y), we have

h−1∑
x=0

h−1∑
y=0

δredx,y = n′
red(h

2 − (h− 2)2) = n′
red(4h− 4).

Therefore, the number of the pairs (x, y) such that δredx,y ≥ 3n′
red(4h − 4)/h2 is at most

h2/3. Equivalently, the number of the pairs (x, y) such that δredx,y < 3n′
red(4h − 4)/h2

is at least 2h2/3. For the same reason, the number of the pairs (x, y) such that δbluex,y <

3n′
blue(4h−4)/h2 is at least 2h2/3. Since 2h2/3+2h2/3 > h2, there exists at least one pair

(x, y) that simultaneously satisfies δredx,y < 3n′
red(4h− 4)/h2 and δbluex,y < 3n′

blue(4h− 4)/h2.

This completes the proof of the lemma.

Now we are ready to prove that Γ is a 12h−12
h2 -ACT.

Lemma 48 Γ is a 12h−12
h2 -ACT for (P,B).

149

Fair Covering of Points in Euclidean Space Chapter 7

Proof: Set η = 12h−12
h2 . By the definition of a η-ACT, we have to verify that

(1) Γ [r, b] is at least the size of a smallest (r, b)-covering of (P,B) and (2) there exist

r∗ ∈ [(1− η)r, r] and b∗ ∈ [(1− η)b, b] such that Γ [r∗, b∗] is at most the size of a smallest

(r, b)-covering of (P,B). Condition (1) is clearly true. Indeed, for all x, y ∈ {0, . . . , h−1},

Γ (x,y)[r, b] is the size of the smallest (r, b)-covering of (P,
⋃

(i,j)∈Ix,y Bi,j) and hence is at

least the size of a smallest (r, b)-covering of (P,B). Next, we verify condition (2). Let

B′ ⊆ B be a smallest (r, b)-covering of (P,B) and P ′ ⊆ P be the points covered by the

disks in B′ (hence P ′ consists of r red points and b blue points). By Lemma 47, there exist

x, y ∈ {0, . . . , h − 1} such that the number of red (resp., blue) points in P ′ conflicting

with (x, y) is at most ηr (resp., ηb). Let B′′ = B′ ∩ (
⋃

(i,j)∈Ix,y Bi,j) and P ′′ ⊆ P ′ be

the points covered by the disks in B′′. Suppose P ′′ consists of r∗ red points and b∗ blue

points. Note that any disk in B′\B′′ can only cover the points in P that conflict with

(x, y). Therefore, any point in P ′ that does not conflict with (x, y) must be contained in

P ′′, which implies that r∗ ∈ [(1 − η)r, r] and b∗ ∈ [(1 − η)b, b]. Since Γ (x,y) is a 0-ACT

for (P,
⋃

(i,j)∈Ix,y Bi,j), we have Γ
(x,y)[r∗, b∗] ≤ |B′′| ≤ |B′|. It follows that condition (2) is

also true.

We set h to be the smallest integer such that 12h−12
h2 ≤ ε; clearly, h = O(1/ε). Then

by the above lemma, Γ is an ε-ACT for (P,B). In this way, we obtain a PTAS for the

fair covering problem in R2.

Theorem 36 There exists a (1− ε)-approximation algorithm for the fair covering prob-

lem in R2 which runs in nO(1)mO(1/ε2) time.

Proof: In our algorithm, the most time-consuming work is the computation of each

Γi,j for (i, j) ∈ I, which takes n
O(1)
i,j m

O(h2)
i,j time as claimed before. All the other work can

be done in time polynomial in h, n, m. Since I = O(h2n), the overall time complexity

of our algorithm is (n+m)O(h2), i.e., nO(1)mO(1/ε2).

150

Fair Covering of Points in Euclidean Space Chapter 7

The algorithm can be straightforwardly generalized to higher dimensions and the case

t > 2, resulting in the following theorem.

Theorem 37 There exists a (1−ε)-approximation algorithm for the t-color fair covering

problem in Rd which runs in nO(t)mO(1/εd) time.

7.3.2 Computing the 0-ACTs Γi,j

We now discuss the only missing piece in our algorithm above: the computation of

the tables Γi,j. Recall that Γi,j is a 0-ACT for (Pi,j,Bi,j). We show that each Γi,j can be

computed in n
O(1)
i,j m

O(h2)
i,j time where ni,j = |Pi,j| and mi,j = |Bi,j|. The key observation

is the following.

Lemma 49 For r, b ∈ {1, . . . , ni,j}, an (r, b)-covering of (Pi,j,Bi,j) is of size at most

⌊h2/π⌋.

Proof: Recall that an (r, b)-covering of (Pi,j,Bi,j) consists of disjoint disks in Bi,j.

All disks in Bi,j are contained in the h × h square □i,j. The area of □i,j is h2 and the

area of a unit-disk is π. Therefore, any subset of disjoint disks in □i,j is of size at most

⌊h2/π⌋.

With the above observation, we can compute Γi,j as follows. We enumerate all subsets

of Bi,j of size at most ⌊h2/π⌋, and keep the ones that consist of disjoint disks. In this way,

we obtain all (r, b)-coverings of (Pi,j,Bi,j) for all r, b ∈ {1, . . . , ni,j}. By checking these

coverings one by one, we can find the smallest (r, b)-covering for all r, b ∈ {1, . . . , ni,j},

and hence compute Γi,j. The total time cost is n
O(1)
i,j m

O(h2)
i,j .

7.3.3 Extension to bounded ply

In this section, we give an extension of our algorithm when each point in the plane can

be covered by at most a constant number p of disks (also known as constant ply) instead

151

Fair Covering of Points in Euclidean Space Chapter 7

of disjoint disks. Our overall approach remains the same as the procedure described in

the Subsection 7.3.1, i.e., to solve the approximately fair covering problem, we compute

ε-ACT Γ from h2 partitions of the plane. Note that in the previously described approach

to obtain 0-ACTs Γi,j, in other words to solve (r, b)-covering problem for all values of

r, b exactly in a constant sized square, we used the enumeration algorithm from the

Subsection 7.3.2 which returns disjoint coverings. However, we now want to compute

coverings for 0-ACTs Γ with ply at most p. In other words, we need to solve the (r, b)-

covering problem exactly in a constant sized square for coverings with ply at most p. To

this end, we show the following lemma analogous to Lemma 49:

Lemma 50 For r, b ∈ {1, . . . , ni,j}, an (r, b)-covering of (Pi,j,Bi,j) with ply at most p is

of size at most ph2.

Proof: Note that we want an (r, b)-covering of (Pi,j,Bi,j) consists of subset of disks

from Bi,j with ply at most p. Furthermore, all the disks in Bi,j are contained in the h×h

square □i,j.

Consider a unit square s in □i,j. Observe that the distance of any point in s from its

midpoint is at most 1/
√
2; in particular, the distance is strictly less than 1. Hence, a unit

radius disk with its center inside s will cover the midpoint of s. Since we are looking for

coverings with ply at most p, s can contain at most p disk centers. Note that □i,j can be

partitioned into h2 disjoint unit squares, hence, an (r, b)-covering of (Pi,j,Bi,j) with ply

at most p can be of size at most ph2.

Using lem:constant-sized-square, we can compute Γi,j as follows. We enumerate all

subsets of Bi,j of size at most ph2. For each such subset, we compute its ply in (ph)O(1)

time by computing the arrangement of all disks in the subset. In this way, we can

obtain all (r, b)-coverings of (Pi,j, Bi,j) with ply at most p for all r, b ∈ {1, . . . , ni,j}.

By checking these coverings one by one, we can find the smallest (r, b)-covering for all

152

Fair Covering of Points in Euclidean Space Chapter 7

r, b ∈ {1, . . . , ni,j}. Hence, for computing Γi,j, the total time complexity is n
O(1)
i,j m

O(ph2)
i,j ,

and for constant p the time complexity is n
O(1)
i,j m

O(h2)
i,j . This gives us the following result.

Theorem 38 For coverings with a constant ply, there exists a (1 − ε)-approximation

algorithm for the fair covering problem in R2 which runs in nO(1)mO(1/ε2) time.

As before, our algorithm can be generalized straightforwardly to higher dimensions

and the case t > 2; hence, we obtain the following theorem analogous to our last approx-

imation scheme.

Theorem 39 There exists a (1−ε)-approximation algorithm for the t-color fair covering

problem in Rd which runs in nO(t)mO(1/εd) time.

We note that the running time when p is unbounded is nO(t)mO(p/εd).

7.4 Unconstrained Fair Covering in 1D

Our algorithmic results in previous sections provide an efficient way to compute a fair

covering (or an approximate fair covering) with discreteness and bounded ply constraints.

We now describe an efficient algorithm to solve the fair covering problem in 1D without

any restrictions. We note that our algorithm in this section is similar to the algorithm

from Section 7.1. Recall the fair covering problem without restrictions: Given a set of n

points on a line each colored with one of the t colors, and a budget k, we want to find

a covering with maximum number of points so that each color is covered in proportion

to its size. Notice that in this case the input does not contain the candidate set B or a

bound of ply p. For a thorough description, we refer the reader to the beginning of this

chapter.

We now turn to the description of our algorithm. Similar to the previous section,

we describe our approach for t = 2 (i.e., for a set of red and blue points on a line).

153

Fair Covering of Points in Euclidean Space Chapter 7

We solve the fair covering problem, again by computing an optimal (r, b)-covering for all

r, b ∈ {1, . . . , n}. Without loss of generality, the points p1, . . . , pn are sorted in left-to-

right order. For each i ∈ {1, . . . , n}, let πi < i be the largest index such that the distance

between pπi
and pi+1 is greater than 1 (suppose pn+1 = ∞); if such an index does not

exist, we set πi = 0. Since π1 ≤ · · · ≤ πn, we can compute all πi in O(n) time by making

a left-to-right pass over the set of input points p1, . . . , pn.

Define F [i, r, b] as the size of an optimal (r, b)-covering that covers no points in

P{p1, . . . , pi}. We compute F [i, r, b] for all (i, r, b) tuples. For the pairs (r, b) such that

no (r, b)-covering exists, we set F [i, r, b] = ∞. We now give a recurrence to computer

F [i, r, b].

Claim 5

F [i, r, b] = min

F [i− 1, r, b],

min
0≤j≤πi

(ℓi,j + F [j, r − ri,j, b− bi,j])

where ℓi,j is the minimum number of unit intervals required to cover set of points {pj+1, . . . , pi},

and ri,j (resp., bi,j) is the number of red (resp., blue) points covered by these ℓi,j intervals.

The idea of the above recurrence as follows: The first term F [i− 1, r, b] considers the

case when pi is not covered. Next, we take a minimum over at most i terms where we

consider the case when pi is covered. We “guess” the rightmost uncovered point. Since we

are not allowed to cover pi+1, if pi is covered, then all points in {pπi+1, . . . , pi} are covered.

Therefore, the rightmost uncovered point must have index smaller than or equal to πi.

The recurrence relation from Claim 5 points us to a dynamic programming procedure

shown in Algorithm 7 to efficiently compute the table F . The base cases for the dynamic

program is F [i, 0, 0] = 0 for all i ∈ 0, . . . , n and F [0, r, b] =∞ for all r, b ∈ {1, . . . , n}.

Lemma 51 Algorithm 7 can be implemented in worst-case time O(n4).

154

Fair Covering of Points in Euclidean Space Chapter 7

Algorithm 7 Computing the F -table

Input: The set of points P
1: Compute πi for i ∈ {1, . . . , n}
2: Initialize n× r × b sized table with value ∞
3: for i ∈ {0, . . . , n}; r, b ∈ {0, . . . , n} do
4: F [i, r, b]← min{F [i− 1, r, b], min

0≤j≤πi

(ℓi,j + F [j, r − ri,j, b− bi,j])}

5: return F

Proof: Sorting P takes O(n log n) time. Computing πi for i ∈ {1, . . . , n} takes

overall O(n) time using the monotonicity of πi (i.e., πi+1 ≥ πi). After that the F -table

can be computed in O(n4) time as there are n3 entries in the table, and each entry takes

O(n) time for at most n look-ups. Note that ℓi,j can be computed in a constant time

given the coordinates of pj+1 and pi, in particular, ℓi,j = ⌈(pi − pj+1)⌉.

We recall that after F -table is computed, we can solve the fair covering problem by

checking all entries in the table for which the (r, b)-covering is fair and has F [n, r, b] ≤ k.

Among all such valid pairs, we return the pair (r∗, b∗) with the maximum r∗+b∗. Clearly,

c∗ = r∗ + b∗ is the optimum of the problem instance. We therefore summarize the main

result of this section as follows.

Theorem 40 The unconstrained fair covering problem in R1 with t = 2 colors can be

solved in O(n4) time.

Observe that it is straightforward to generalize our approach for arbitrary number of

colors using a dynamic program with a t + 1-dimensional DP table. Hence, we obtain

the following theorem:

Theorem 41 The unconstrained fair covering problem in R1 can be solved in O(nt+2)

time.

155

Fair Covering of Points in Euclidean Space Chapter 7

7.5 Bibliographic Notes

The problem of covering points by balls or other geometric shapes has a long history

in computational geometry, operations research, and theoretical computer science, due

to its natural connections to clustering and facility location problems [85, 17, 86, 87, 88].

It is known that covering a set of two-dimensional points with a minimum number of

unit disks is NP-hard, and so is the problem of maximizing the number of points covered

by k unit disks [19, 84, 89, 90]. The setting of minimum ply coverage for all points in the

plane has been studied recently in [91], and minimum ply coverage only of input points

is considered in [92] and the following works. Recently, a number of researchers have

considered clustering and covering problems with an additional constraint of fairness. In

this setting, the input consists of points belonging to different colors (classes), and the

goal is to find a solution where each cluster has approximately equal representation of all

colors [93, 78, 94, 95, 96]. These formulations are different from our model because we

allow individual clusters to be unbalanced as long as in aggregate each color receives its

fair share. This non-local form of fair representation seems much harder than requiring

each cluster to locally meet the balance condition. In another line of work, [97, 76, 98]

consider a colorful variant of the k-center problem where the goal is to satisfy a minimum

coverage for each color type. The colorful covering however does not achieve fairness

because some color classes can have arbitrarily high representation in the output, as

long as other colors meet the minimum threshold. In fact, enforcing the fairness by

controlling both the lower and the upper bounds of representation seems to be a much

harder problem, as suggested by some of our hardness results in one dimension.

156

Chapter 8

Conclusion and Open Problems

In this dissertation, we studied the committee selection problem where the goal is to

choose a fixed number of candidates based on voters’ preferences. This problem captures

many real-life scenarios such as choosing representatives in a democracy, staff hiring, jury

selection, etc. Our work investigates four natural committee selection problems dealing

with some of the crucial aspects of committee selection such as winner determination,

fault tolerance, and fairness. We made progress towards a better understanding of these

problems by making clean theoretical formulations for these problems, and designing a

family of non-trivial approximation and exact algorithms for them. Although we leave

some questions unanswered, this dissertation will hopefully serve as an important first

step in the study of these class of problems.

We began the discussion in Chapter 2 with the multiwinner elections in Euclidean

space under minimax Chamberlin-Courant voting rules. First, we settle the complexity

of the winner determination problem by showing it is NP-hard for dimensions d ≥ 2,

but we followed that up with several (nearly-optimal) approximation bounds which are

elusive in the non-Euclidean setting. We believe that our approximation algorithms are

robust and will generalize to many other interesting questions, for instance, most of our

157

Conclusion and Open Problems Chapter 8

algorithmic results (except for Theorem 5) extend to the recently studied egalitarian

k-median rules [99] when considered for the Euclidean elections.

In our work, we considered the min-max (ℓ∞ aggregation function. At a quick glance,

we believe that our NP-hardness proof from Theorem 1 holds for the ℓ1-aggregation func-

tion as well. Usually, the approximability of min-max and min-sum variants of a problem

differs significantly. For example, for the k-center clustering strong inapproximability re-

sults are known (even in a Euclidean space) but there are several approximation schemes

are known for k-means clustering [100, 101]. Therefore, a natural open problem to con-

sider is the following:

Open Problem 1 (Winner Determination) Does the winner determination problem

admits better approximation bounds under the min-sum (ℓ1) scoring function?

Going further in this direction, resolving the complexity and approximation bounds

for other important voting rules, such as the utilitarian general class of OWA rules [37, 7]

for the Euclidean elections. An interesting avenue to consider is Exploring Euclidean

elections when the positions of voters and candidates are known only approximately, for

instance, each placed at some unknown point in a disk. Such data uncertainty naturally

exists in many real-world applications. Notice that such a setting with uncertainty relates

to the necessary and possible winner problems under incomplete preferences [102].

Open Problem 2 (Winner Determination) What is the complexity of finding a

winning committee under the Chamberlin-Courant voting rule for Euclidean elections

when the candidate/voter positions are given as a probability distribution in a compact

set?

In Chapters 3 and 4, we introduce a novel fault-tolerance model and study its com-

plexity on Euclidean elections under Chamberlin Courant rule (CC-rule). For one-

dimensional instances, we give polynomial-time algorithms to solve these problems and

for d ≥ 2, we show NP-hardness, and present several (greedy based) constant factor

158

Conclusion and Open Problems Chapter 8

approximations and an FPT approximation scheme.

Our work suggests several new and exciting research directions for achieving fault-

tolerance in committees, such as (1) extending our results to other commonly used scoring

functions such as k-median or k-means [103], (2) Investigating fault tolerance on the ordi-

nal voter preference models for various well-known committee selection rules. Intuitively,

it seems that dealing with fault-tolerance is computationally easier when an optimal win-

ner computation is polynomial time (we show this with 1d and single-peaked elections).

It is interesting to further investigate this intuition on other voting scenarios from [31, 33].

Next, in Chapters 5 and 6, we consider (Committee) Winner Verification (WV) and

the Candidate Winner (CW) problem, respectively. We settle the complexity of these two

problems for Chamberlin-Courant and Monroe voting rule by showing Winner Verifica-

tion problem to be coNP-complete and Candidate Winner problem to be θP2 complete for

both rankings and approval ballots. On the positive side, we show that for single-peaked

and single-crossing preferences, both the problems can be solved in polynomial time for

Chamberlin-Courant rule.

With the backdrop of the above hardness results in the (general) unstructured setting,

it is interesting to study these two problems on restricted preference domains. In our

work, we only give positives results for the Chamberlin-Courant rule but the following

directions are interesting:

Open Problem 3 (Winner Verification Problems) Are WV and CW polynomial-

time solvable under the Monroe voting rule on single-peaked or single-crossing prefer-

ences?

Open Problem 4 (Winner Verification Problems) What is the complexity of WV

and CW for (multidimensional) Euclidean elections under Chamberlin-Courant and Mon-

roe rule?

We believe that WV and CW will remain NP-hard even in Euclidean elections but

159

we hope that one can obtain polynomial-time algorithms with good approximation guar-

antees in this case.

Finally, in Chapter 7, we study max covering of (multicolored) points in Rd using unit

radius balls under fairness constraints (in particular, we consider proportional fairness).

We proved that the problem is NP-hard even in one dimension when the number of

color groups is large. When the number of colors is fixed, we presented a polynomial

time exact algorithm in one dimension, and a PTAS in any fixed dimension. Our work

suggests many interesting open problems, including whether one can achieve a constant

factor approximation significantly faster than our PTAS, and whether the PTAS can be

achieved for covering with arbitrary ply.

160

Bibliography

[1] N. Betzler, A. Slinko, and J. Uhlmann, On the computation of fully proportional
representation, Journal of Artificial Intelligence Research 47 (2013) 475–519.
(Cited on pages 2, 4, 16, 46, 48, and 58)

[2] R. Bredereck, A. Kaczmarczyk, and R. Niedermeier, On coalitional manipulation
for multiwinner elections: Shortlisting, Autonomous Agents and Multi-Agent
Systems 35 (2021), no. 2 38. (Cited on pages 2 and 48)

[3] E. J. Friedman, V. Gkatzelis, C.-A. Psomas, and S. Shenker, Fair and efficient
memory sharing: Confronting free riders, in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 1965–1972, 7, 2019. (Cited on pages 2
and 48)

[4] A. Goel, A. K. Krishnaswamy, S. Sakshuwong, and T. Aitamurto, Knapsack
voting for participatory budgeting, ACM Transactions on Economics and
Computation (TEAC) 7 (2019) 1–27. (Cited on pages 2 and 48)

[5] T. Lu and C. Boutilier, Budgeted social choice: From consensus to personalized
decision making, in Twenty-Second International Joint Conference on Artificial
Intelligence, pp. 280–286, 2011. (Cited on pages 2, 4, 16, and 48)

[6] S. Maiyya, V. Zakhary, D. Agrawal, and A. E. Abbadi, Database and distributed
computing fundamentals for scalable, fault-tolerant, and consistent maintenance of
blockchains, Proceedings of the VLDB Endowment 11 (2018), no. 12. (Cited on
pages 2 and 48)

[7] P. Skowron, P. Faliszewski, and J. Lang, Finding a collective set of items: From
proportional multirepresentation to group recommendation, Artificial Intelligence
241 (2016) 191–216. (Cited on pages 2, 48, and 158)

[8] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India, 2006.
(Cited on pages 2 and 17)

[9] M. Sipser, Introduction to the theory of computation, ACM Sigact News 27
(1996), no. 1 27–29. (Cited on page 2)

161

[10] S. Arora and B. Barak, Computational complexity: a modern approach.
Cambridge University Press, 2009. (Cited on page 2)

[11] J. R. Chamberlin and P. N. Courant, Representative deliberations and
representative decisions: Proportional representation and the borda rule, American
Political Science Review 77 (1983), no. 3 718–733. (Cited on pages 3, 16, and 93)

[12] T. F. Gonzalez, Clustering to minimize the maximum intercluster distance,
Theoretical computer science 38 (1985) 293–306. (Cited on pages 4, 48, 81,
and 104)

[13] L. Yu, H. Chan, and E. Elkind, Multiwinner elections under preferences that are
single-peaked on a tree, in Twenty-Third International Joint Conference on
Artificial Intelligence, 2013. (Cited on pages 4 and 16)

[14] P. Skowron, L. Yu, P. Faliszewski, and E. Elkind, The complexity of fully
proportional representation for single-crossing electorates, Theoretical Computer
Science 569 (2015) 43–57. (Cited on pages 4, 16, and 46)

[15] E. Elkind, M. Lackner, and D. Peters, Structured preferences, Trends in
computational social choice (2017) 187–207. (Cited on pages 4, 16, and 46)

[16] M. de Berg and A. Khosravi, Optimal binary space partitions in the plane, in
International Computing and Combinatorics Conference, pp. 216–225, Springer,
2010. (Cited on pages 5, 18, and 61)

[17] D. S. Hochbaum and W. Maass, Approximation schemes for covering and packing
problems in image processing and VLSI, Journal of the ACM (JACM) (1985)
130–136. (Cited on pages 8, 11, 83, 147, and 156)

[18] B. L. Monroe, Fully proportional representation, American Political Science
Review 89 (1995), no. 4 925–940. (Cited on pages 9, 93, and 96)

[19] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, Optimal packing and covering
in the plane are NP-complete, Information processing letters (1981) 133–137.
(Cited on pages 11, 145, and 156)

[20] C. Sonar, S. Suri, and J. Xue, Multiwinner elections under minimax
chamberlin-courant rule in euclidean space, 2022. (Cited on pages 13 and 62)

[21] C. Sonar, S. Suri, and J. Xue, Fault Tolerance in Euclidean Committee Selection,
in 31st Annual European Symposium on Algorithms (ESA 2023) (I. L. Gørtz,
M. Farach-Colton, S. J. Puglisi, and G. Herman, eds.), vol. 274 of Leibniz
International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),
pp. 95:1–95:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. (Cited
on page 13)

162

[22] C. Sonar, P. Dey, and N. Misra, On the complexity of winner verification and
candidate winner for multiwinner voting rules, in Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences on Artificial
Intelligence, pp. 89–95, 2021. (Cited on pages 13 and 90)

[23] D. Lokshtanov, C. Sonar, S. Suri, and J. Xue, Fair covering of points by balls., in
CCCG, pp. 26–32, 2020. (Cited on page 13)

[24] Ú. Hébert-Johnson, C. Sonar, S. Suri, and V. Surianarayanan,
Anonymity-preserving space partitions, in 32nd International Symposium on
Algorithms and Computation (ISAAC 2021), Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021. (Cited on page 13)

[25] N. Misra, C. Sonar, P. Vaidyanathan, and R. Vaish, Equitable division of a path,
arXiv preprint arXiv:2101.09794 (2021). (Cited on page 14)

[26] V. Himakunthala, A. Ouyang, D. Rose, R. He, A. Mei, Y. Lu, C. Sonar,
M. Saxon, and W. Wang, Let’s think frame by frame with VIP: A video infilling
and prediction dataset for evaluating video chain-of-thought, in Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing
(H. Bouamor, J. Pino, and K. Bali, eds.), (Singapore), pp. 204–219, Association
for Computational Linguistics, Dec., 2023. (Cited on page 14)

[27] D. Rose, V. Himakunthala, A. Ouyang, R. He, A. Mei, Y. Lu, M. Saxon, C. Sonar,
D. Mirza, and W. Y. Wang, Visual chain of thought: Bridging logical gaps with
multimodal infillings, arXiv preprint arXiv:2305.02317 (2023). (Cited on page 14)

[28] D. Peters, Recognising multidimensional euclidean preferences, in Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, pp. 642–648, 2017.
(Cited on page 15)

[29] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of discrete and
computational geometry. CRC press, 2017. (Cited on page 33)

[30] N. H. Mustafa and S. Ray, Improved results on geometric hitting set problems,
Discrete & Computational Geometry 44 (2010) 883–895. (Cited on page 39)

[31] E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko, Properties of multiwinner
voting rules, Social Choice and Welfare 48 (2017), no. 3 599–632. (Cited on
pages 46 and 159)

[32] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon, Multiwinner voting: A new
challenge for social choice theory, Trends in computational social choice 74
(2017), no. 2017 27–47. (Cited on pages 46 and 90)

163

[33] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon, Committee scoring rules:
Axiomatic characterization and hierarchy, ACM Transactions on Economics and
Computation (TEAC) 7 (2019), no. 1 1–39. (Cited on pages 46, 90, and 159)

[34] H. Aziz, P. Faliszewski, B. Grofman, A. Slinko, and N. Talmon, Egalitarian
committee scoring rules, in Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pp. 56–62, International Joint
Conferences on Artificial Intelligence Organization, 7, 2018. (Cited on page 46)

[35] M. T. Godziszewski, P. Batko, P. Skowron, and P. Faliszewski, An analysis of
approval-based committee rules for 2d-euclidean elections, Proceedings of the
AAAI Conference on Artificial Intelligence 35 (2021), no. 6 5448–5455. (Cited on
page 46)

[36] K. Munagala, Z. Shen, and K. Wang, Optimal algorithms for multiwinner
elections and the chamberlin-courant rule, EC ’21: Proceedings of the 22nd ACM
Conference on Economics and Computation (2021) 697–717. (Cited on pages 46
and 90)

[37] P. Skowron, P. Faliszewski, and A. Slinko, Achieving fully proportional
representation: Approximability results, Artificial Intelligence 222 (2015) 67–103.
(Cited on pages 46, 90, and 158)

[38] J. Byrka, P. Skowron, and K. Sornat, Proportional approval voting, harmonic
k-median, and negative association, in 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018), vol. 107, p. 26, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. (Cited on page 46)

[39] O. A. Davis, M. J. Hinich, and P. C. Ordeshook, An expository development of a
mathematical model of the electoral process, American political science review 64
(1970), no. 2 426–448. (Cited on page 47)

[40] K. Arrow, Advances in the spatial theory of voting. Cambridge University Press,
1990. (Cited on page 47)

[41] C. Sonar, S. Suri, and J. Xue, Multiwinner elections under minimax
chamberlin-courant rule in euclidean space, in Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22 (L. D. Raedt,
ed.), pp. 475–481, International Joint Conferences on Artificial Intelligence
Organization, 7, 2022. (Cited on page 47)

[42] N. Misra and C. Sonar, Robustness radius for chamberlin-courant on restricted
domains, in International Conference on Current Trends in Theory and Practice
of Informatics, pp. 341–353, Springer, 2019. (Cited on page 58)

164

[43] N. Misra, C. Sonar, and P. Vaidyanathan, On the complexity of
chamberlin-courant on almost structured profiles, in International Conference on
Algorithmic Decision Theory, pp. 124–138, Springer, 2017. (Cited on page 58)

[44] C. Sonar, Problems in computational social choice on restricted domains, 2019.
(Cited on page 58)

[45] V. Nagarajan, B. Schieber, and H. Shachnai, The euclidean k-supplier problem, in
Integer Programming and Combinatorial Optimization: 16th International
Conference, IPCO 2013, Valparáıso, Chile, March 18-20, 2013. Proceedings 16,
pp. 290–301, Springer, 2013. (Cited on page 74)

[46] D. S. Hochbaum and D. B. Shmoys, A unified approach to approximation
algorithms for bottleneck problems, Journal of the ACM (JACM) 33 (1986), no. 3
533–550. (Cited on page 81)

[47] E. Elkind, P. Faliszewski, J.-F. Laslier, P. Skowron, A. Slinko, and N. Talmon,
What do multiwinner voting rules do? an experiment over the two-dimensional
euclidean domain, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31 of AAAI’17, pp. 494–501, 2017. (Cited on page 90)

[48] T. Lu and C. E. Boutilier, The unavailable candidate model: a decision-theoretic
view of social choice, in Proceedings of the 11th ACM conference on Electronic
commerce, pp. 263–274, 2010. (Cited on page 90)

[49] A. Grivet Sébert, N. Maudet, P. Perny, and P. Viappiani, Preference aggregation
in the generalised unavailable candidate model, in International Conference on
Algorithmic Decision Theory, pp. 35–50, Springer, 2021. (Cited on page 90)

[50] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe, Llull and
copeland voting computationally resist bribery and constructive control, J. Artif.
Intell. Res. 35 (2009) 275–341. (Cited on page 90)

[51] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe, Anyone but him: The
complexity of precluding an alternative, Artificial Intelligence 171 (2007), no. 5-6
255–285. (Cited on page 90)

[52] S. Chaudhuri, N. Garg, and R. Ravi, The p-neighbor k-center problem,
Information Processing Letters 65 (1998), no. 3 131–134. (Cited on page 90)

[53] S. O. Krumke, On a generalization of the p-center problem, Information
processing letters 56 (1995), no. 2 67–71. (Cited on page 90)

[54] S. Khuller, R. Pless, and Y. J. Sussmann, Fault tolerant k-center problems,
Theoretical Computer Science 242 (2000), no. 1-2 237–245. (Cited on page 90)

165

[55] C. Swamy and D. B. Shmoys, Fault-tolerant facility location, ACM Transactions
on Algorithms (TALG) 4 (2008), no. 4 1–27. (Cited on page 90)

[56] M. Hajiaghayi, W. Hu, J. Li, S. Li, and B. Saha, A constant factor approximation
algorithm for fault-tolerant k-median, ACM Transactions on Algorithms (TALG)
12 (2016), no. 3 1–19. (Cited on page 90)

[57] T. Lu and C. Boutilier, Budgeted social choice: From consensus to personalized
decision making, in Twenty-Second International Joint Conference on Artificial
Intelligence, pp. 280–286, 2011. (Cited on page 93)

[58] A. D. Procaccia, J. S. Rosenschein, and A. Zohar, On the complexity of achieving
proportional representation, Social Choice and Welfare 30 (2008) 353–362. (Cited
on pages 93 and 104)

[59] R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, P. Skowron, and
N. Talmon, Robustness among multiwinner voting rules, CoRR abs/1707.01417
(2017) [arXiv:1707.0141]. (Cited on pages 93 and 115)

[60] R. Bredereck, P. Faliszewski, A. Kaczmarczyk, R. Niedermeier, P. Skowron, and
N. Talmon, Robustness among multiwinner voting rules, in 10th International
Symposium of Algorithmic Game Theory (SAGT), pp. 80–92, 2017. (Cited on
pages 93, 115, and 116)

[61] C. L. Dodgson, A method of taking votes on more than two issues, in Classics of
Social Choice, pp. 288–297, University of Michigan Press (Reprinted in 1995),
1876. (Cited on pages 94 and 114)

[62] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe, Exact analysis of dodgson
elections: Lewis carroll’s 1876 voting system is complete for parallel access to np,
Journal of the ACM (JACM) (1997) 806–825. (Cited on page 94)

[63] M. Lackner and P. Skowron, Consistent approval-based multi-winner rules, in
Proceedings of the 2018 ACM Conference on Economics and Computation,
pp. 47–48, ACM, 2018. (Cited on page 96)

[64] C. H. Papadimitriou and S. K. Zachos, Two remarks on the power of counting, in
Theoretical Computer Science, pp. 269–275. Springer, 1982. (Cited on pages 97
and 114)

[65] K. W. Wagner, Bounded query classes, SIAM Journal on Computing 19 (1990),
no. 5 833–846. (Cited on page 97)

[66] L. A. Hemachandra, The strong exponential hierarchy collapses, Journal of
Computer and System Sciences 39 (1989), no. 3 299–322. (Cited on page 97)

166

http://xxx.lanl.gov/abs/1707.0141

[67] E. Hemaspaandra, H. Spakowski, and J. Vogel, The complexity of Kemeny
elections, Theoretical Computer Science 349 (2005), no. 3 382–391. (Cited on
pages 97 and 114)

[68] N. Betzler, A. Slinko, and J. Uhlmann, On the computation of fully proportional
representation, Journal of Artificial Intelligence Research 47 (2013) 475–519.
(Cited on pages 104, 111, and 134)

[69] P. Skowron, L. Yu, P. Faliszewski, and E. Elkind, The complexity of fully
proportional representation for single-crossing electorates, Theoretical Computer
Science 569 (2015) 43–57. (Cited on pages 111, 132, 133, and 134)

[70] P. Skowron, L. Yu, P. Faliszewski, and E. Elkind, The complexity of fully
proportional representation for single-crossing electorates, in International
Symposium on Algorithmic Game Theory, pp. 1–12, Springer, 2013. (Cited on
page 111)

[71] J. Bartholdi, C. A. Tovey, and M. A. Trick, Voting schemes for which it can be
difficult to tell who won the election, Social Choice and welfare 6 (1989), no. 2
157–165. (Cited on page 114)

[72] J. G. Kemeny, Mathematics without numbers, Daedalus 88 (1959), no. 4 577–591.
(Cited on page 114)

[73] J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan, Human
decisions and machine predictions, The quarterly journal of economics 133
(2018), no. 1 237–293. (Cited on page 136)

[74] M. B. Zafar, I. Valera, M. Rodriguez, K. Gummadi, and A. Weller, From parity to
preference-based notions of fairness in classification, in Advances in Neural
Information Processing Systems, pp. 229–239, 2017. (Cited on page 136)

[75] X. Chen, B. Fain, L. Lyu, and K. Munagala, Proportionally Fair Clustering, in
International Conference on Machine Learning, pp. 1032–1041, 2019. (Cited on
page 136)

[76] X. Jia, K. Sheth, and O. Svensson, Fair Colorful k-Center Clustering, in Integer
Programming and Combinatorial Optimization, pp. 209–222, Springer, 2020.
(Cited on pages 136 and 156)

[77] A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, and T. Wagner, Scalable
fair clustering, arXiv preprint arXiv:1902.03519 (2019). (Cited on page 136)

[78] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii, Fair clustering
through fairlets, in Advances in Neural Information Processing Systems,
pp. 5029–5037, 2017. (Cited on pages 136 and 156)

167

[79] M. Kleindessner, P. Awasthi, and J. Morgenstern, Fair k-Center Clustering for
Data Summarization, in International Conference on Machine Learning,
pp. 3448–3457, 2019. (Cited on page 136)

[80] L. E. Celis, V. Keswani, D. Straszak, A. Deshpande, T. Kathuria, and N. K.
Vishnoi, Fair and diverse DPP-based data summarization, arXiv preprint
arXiv:1802.04023 (2018). (Cited on page 136)

[81] S. C. Nandy, S. Pandit, and S. Roy, Covering points: Minimizing the maximum
depth, in CCCG, pp. 37–42, 2017. (Cited on page 140)

[82] R. M. Karp, Reducibility among combinatorial problems, in Complexity of
computer computations, pp. 85–103. Springer, 1972. (Cited on page 143)

[83] R. G. Downey and M. R. Fellows, Fixed-parameter tractability and completeness
ii: On completeness for W[1], Theoretical Computer Science 141 (1995), no. 1-2
109–131. (Cited on page 145)

[84] D. Marx, Efficient approximation schemes for geometric problems?, in European
Symposium on Algorithms, pp. 448–459, 2005. (Cited on pages 145 and 156)

[85] E. M. Arkin and R. Hassin, Approximation algorithms for the geometric covering
salesman problem, Discrete Applied Mathematics 55 (1994), no. 3 197–218. (Cited
on page 156)

[86] N. Megiddo and K. J. Supowit, On the complexity of some common geometric
location problems, SIAM journal on computing 13 (1984), no. 1 182–196. (Cited
on page 156)

[87] C. Toregas, R. Swain, C. ReVelle, and L. Bergman, The location of emergency
service facilities, Operations research 19 (1971), no. 6 1363–1373. (Cited on
page 156)

[88] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang, Two-tiered constrained relay
node placement in wireless sensor networks: Computational complexity and
efficient approximations, IEEE Transactions on Mobile Computing 11 (2011),
no. 8 1399–1411. (Cited on page 156)

[89] T. M. Chan and E. Grant, Exact algorithms and APX-hardness results for
geometric packing and covering problems, Computational Geometry 47 (2014),
no. 2 112–124. (Cited on page 156)

[90] K. L. Clarkson and K. Varadarajan, Improved approximation algorithms for
geometric set cover, Discrete & Computational Geometry 37 (2007), no. 1 43–58.
(Cited on page 156)

168

[91] T. Biedl, A. Biniaz, and A. Lubiw, Minimum ply covering of points with disks and
squares, arXiv preprint arXiv:1905.00790 (2019). (Cited on page 156)

[92] T. Erlebach and E. J. van Leeuwen, Approximating geometric coverage problems,
in Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1267–1276, 2008. (Cited on page 156)

[93] C. Rösner and M. Schmidt, Privacy Preserving Clustering with Constraints, in
45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. (Cited
on page 156)

[94] S. Bera, D. Chakrabarty, N. Flores, and M. Negahbani, Fair algorithms for
clustering, in Advances in Neural Information Processing Systems, pp. 4955–4966,
2019. (Cited on page 156)

[95] S. Ahmadian, A. Epasto, R. Kumar, and M. Mahdian, Clustering without
over-representation, in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 267–275, 2019. (Cited
on page 156)

[96] M. Schmidt, C. Schwiegelshohn, and C. Sohler, Fair coresets and streaming
algorithms for fair k-means, in International Workshop on Approximation and
Online Algorithms, pp. 232–251, Springer, 2019. (Cited on page 156)

[97] S. Bandyapadhyay, T. Inamdar, S. Pai, and K. Varadarajan, A Constant
Approximation for Colorful k-Center, in 27th Annual European Symposium on
Algorithms (ESA 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
(Cited on page 156)

[98] G. Anegg, H. Angelidakis, A. Kurpisz, and R. Zenklusen, A Technique for
Obtaining True Approximations for k-Center with Covering Constraints, in
International Conference on Integer Programming and Combinatorial
Optimization, pp. 52–65, Springer, 2020. (Cited on page 156)

[99] S. Gupta, P. Jain, S. Saurabh, and N. Talmon, Even more effort towards
improved bounds and fixed-parameter tractability for multiwinner rules,
Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence (IJCAI-21) (2021). (Cited on page 158)

[100] J. Matoušek, On approximate geometric k-clustering, Discrete & Computational
Geometry 24 (2000), no. 1 61–84. (Cited on page 158)

[101] D. Feldman, M. Monemizadeh, and C. Sohler, A ptas for k-means clustering based
on weak coresets, in Proceedings of the twenty-third annual symposium on
Computational geometry, pp. 11–18, 2007. (Cited on page 158)

169

[102] S. Gaspers, V. Naroditskiy, N. Narodytska, and T. Walsh, Possible and necessary
winner problem in social polls, arXiv preprint arXiv:1302.1669 (2013). (Cited on
page 158)

[103] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc.,
1988. (Cited on page 159)

170

	Curriculum Vitae
	Abstract
	Introduction
	Problems Studied and Our Contributions
	Organization of Chapters
	Permissions and Attributions

	Winner Determination Under the Chamberlin-Courant Rule
	Hardness Results
	Approximation using epsilon-nets
	Bicriterion Approximation by Relaxing the Committee Size
	Approximation by combining Cardinal and Ordinal Score
	Bibliographic notes

	Fault-Tolerant Committee Selection (FTCS)
	Optimal Replacement Problem
	Fault-Tolerance Score
	Optimal Fault-Tolerance Committee

	FTCS in Multidimensional Instances
	NP-hardness Results
	Constant factor Approximations
	Bicriterion Approximation Scheme
	Bibliographic notes

	Committee Winner Verification Problem
	Chamberlin-Courant Voting Rule
	Monroe Voting Rule
	Elections with Approval Preferences
	Efficient Algorithms on Restricted Preferences

	Candidate Winner Verification Problem
	Chamberlin-Courant Voting Rule
	Monroe Voting Rule
	Elections with Approval Preferences
	Efficient Algorithms on Restricted Preference

	Fair Covering of Points in Euclidean Space
	Polynomial time Algorithm in One-dimension
	NP-hardness and W[1]-hardness of Fair Covering
	PTAS using Shifting Technique
	Unconstrained Fair Covering in 1D
	Bibliographic Notes

	Conclusion and Open Problems
	Bibliography

