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A machine learning study on spinodal clumping
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Possible observables of baryon number clustering due to the instabilities occurring at a first order
QCD phase transition are discussed. The dynamical formation of baryon clusters at a QCD phase
transition can be described by numerical fluid dynamics, augmented with a gradient term and an
equation of state with a mechanically unstable region. It is shown that the dynamical description
of this phase transition, in nuclear collisions, will lead to the formation of dense baryon clusters
at the phase boundary. State-of-the-art machine learning methods find that the coordinate space
clumping leaves characteristic imprints on the spatial net density distribution in almost every event.
On the other hand the momentum distributions do not show any clear event-by-event features. It
is shown that the ’third order’ cumulant, the skewness, shows a peak at the beam energy where the
system, created in the heavy ion collision, reaches the deconfinement phase transition.

INTRODUCTION

The QCD phase structure is still an unsolved mystery
of high energy nuclear physics. Several heavy-ion ex-
periments are currently performed or in preparation at
RHIC, SPS-CERN, GSI, FAIR, NICA and JPARC-HI,
with the goal to experimentally verify the structure of
the QCD interaction. FEffects from the non-equilibrium
features and critical phenomena are one possible venue
for this experimental verification. Recently it was sug-
gested that a new approach based on modern machine-
learning methods can be useful as neural networks are
powerful tools for extracting information from complex
datasets [1]. In this work we present results where this
method was used to identify special phase space features
of a ’first order’ phase transition, features that appear
through instabilities in domains away from phase equi-
librium, which are expected to occur in nuclear collisions.

THE SETUP

A framework that is capable of correctly reproducing
the underlying physics of the conjectured spinodal de-
composition is relativistic fluid dynamics augmented with
a gradient term to ensure the proper dispersion relation
as expected for spinodal decomposition [2]. In addition,
we implement an equation of state that is mechanically
unstable in the phase-coexistence region at large densi-
ties. This model was introduced in previous works [2-5]
and can be used to describe nuclear collisions at various
incident beam energies. In our calculations the spinodal
instabilities that occur during the evolution are seeded
by the fluctuations present in the initial state, generated
with the UrQMD model [6-8].

We will focus on two equations of state that differ only

with respect to the instabilities associated with the phase
transition. They are identical outside of the spinodal re-
gion of the phase diagram, but within the phase coex-
istence region they differ significantly [4]. The spinodal
equation of state has a mechanically unstable region with
a negative square of the isothermal speed of sound ¢? < 0
while the stable partner equation of state is obtained by
means of a Maxwell construction. In the following events
calculated with these equations of state will be referred
to as either ’Spinodal’ or "Maxwell” events respectively.

RESULTS

First we test a convolutional neural networks (CNN)
performance for detecting the baryon clumping in coor-
dinate space as expected from the spinodal equation of
state (for more details on the network structure and how
it works we refer to [9]). About 20000 Pb+Pb colli-
sion events are generated at a beam energy of Fj,, =
3.5 A GeV, for each equation of state. The time evolution
of the system is stopped at the point in time where the
density fluctuations are strongest, at ¢ =3 fm/c. From
each event an ’image’ is then generated, containing in-
formation on the net baryon density distribution in the
transverse spatial X — Y plane for Z = 0. This image is
used as input for the CNN and the output of this network
is a binary classification on whether an input is from a
spinodal or from a Maxwell event.

Figure 1 shows the resulting accuracy and loss during
the training stage for the training dataset and for an in-
dependent validation set. A rather good accuracy of 95%
is reached. In addition figure 1 shows the distribution of
probabilities that the network assigns to the images to
belong to either class. These indicate that the network
is usually very ’certain’ about its decision.
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FIG. 1. Left: Training and validation accuracy as well as training loss for the CNN employed to distinguish spinodal from
Maxwell events, using the coordinate space density distributions. Right: The number of training samples of each class that
where assigned a given probability to belong to the corresponding class. The probabilities where assigned by the CNN through
the supervised training. Generally a very high probability to be in the correct class is assigned by the network, with the
probabilities of the spinodal events to be identified correctly being slightly higher.

To understand what the network considers to be rele-
vant for the classifications, we show in figure 2 two ex-
amples of the normalized input density distributions for
each class. We chose those examples which were assigned,
by the network, the highest probabilities to be in either
class, i.e. these images can be considered the most ’Spin-
odal’ and most 'Maxwell’ like events according to the
CNN.

Next, the baryon distributions in momentum space
were investigated. Here the connection of the final mo-
mentum space distributions to the baryon clumping dur-
ing the early compression phase evolution is less obvi-
ous. To obtain the 'final” information on the momenta of
all particles we run the fluid dynamical simulation until
a later time. Baryons are then produced on an isoen-
ergy density hyper-surface, that is below the coexistence
energy density at e ~ 600 MeV/fms, by sampling the
Cooper-Frye equation [10]. We compare results obtained
with a varying number of test particles in the Cooper-
Frye procedure. In this way, we take into account differ-
ent scenarios of hadron production, i.e. global conserva-
tion as well as exact local conservation.

Two different network types are trained on the final
momentum space distributions, a CNN as well as a Point
Cloud Network (PCN). The PCN is able to process par-
ticle vector information as input. Again the details of
these networks can be found in [9]. Figure 3 shows the
result of the training. Only a rather low accuracy of uo
to 54 % can be achieved for the momentum space from
the PCN. This indicates that in momentum space the
two classes of events show a strong overlap and can not
be distinguished clearly on an event-by-event basis.

Using ‘conventional’ statistical methods to distinguish
spinodal events from Maxwell events we find an inter-

esting behaviour of the third order net-baryon num-
ber cumulant, the skewness, when the system under-
goes the spinodal separation. These cumulants are de-
fined by K1 = M = (N) , Ky = 0% = <(5N)2> ,
K3 = So® = ((0N)?) , where 6N = N — (N) and N
is the number of particles in a given experimental accep-
tance window. The brackets denote an event average.
The beam energy dependence of these observables has
been published recently by the STAR collaboration [12].

The energy dependence of the skewness is presented in
Fig. 3 where a clear enhancement is seen at the beam
energy with the strongest clustering (Ejap, = 3.5 A GeV).
However, we also show the recent preliminary results of
the HADES collaboration as a band at a lower beam en-
ergy. This shows that within the current systematic un-
certainties it will be difficult to make any definite state-
ments on the existence of a phase transition .
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FIG. 2. Normalized density distributions in the transverse plane (for Z=0 fm) for several nuclear collisions. Shown are for each
class the two events which where assigned, by the network, the highest probability to be in either class, spinodal or maxwell.
One can clearly see systematic differences. While the Maxwell events are more smooth, the spinodal events show clear signs of
domain formation. This indicates, that the clustering is indeed the relevant feature that is identified by the network.
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FIG. 3. Left: Validation accuracy for the CNN and the PCN, comparing the spinodal equation of state and the Maxwell
construction for TP=1 and TP=20 in momentum space. The PCN shows a better performance than the CNN, but both network
structures display only a very low validation accuracy just above 50%. Right: The normalized skewness of the net baryon number
distribution in the rapidity window of —0.5 < y < 0.5 for several incident beam energies (in the lab frame). Results for TP=1
and TP=20 are compared. A peak is found for the beam energy that produces the largest effect of the spinodal decomposition.
Preliminary results of the HADES collaboration are shown as green band. Within such uncertainty no conclusions can be
drawn [11].
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