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ABSTRACT OF THE DISSERTATION

An Interdisciplinary Analysis of the Concept of Percent

By

Ayme Tomson

Doctor of Philosophy in Cognitive and Information Sciences

University of California, Merced, 2021

Professor Teenie Matlock, Chair

The concept of percent is ubiquitous in modern society. Percent is a common com-

ponent across all forms of communication and occurs along a continuum from small

scale (e.g. the tip after a meal) to large scale (e.g. deciding to evacuate from a natural

disaster) decisions. Yet, the concept of percent is not simple. Percent is a functional

number and therefore takes its conceptual meaning from its functional context. This

dissertation analyses the concept of percent as a complex mathematical tool using

interdisciplinary approaches focused on three key aspects: construction, context, and

comparison. For construction, this work focuses on the inability of the concept of

percent to coalesce as an integration of a network of ideas created from historical

commercial practices and abstract numerical structures over the ages. For context,

natural language processing applications and machine learning approaches are fine-

tuned on a corpus of natural language and show the role of language formality as it

pertains to percent as a functional number in comparative situations of many types.

For comparison, the concept of percent is shown to be most similar to decimals, over

integers and fractions, via a continuous-measures behavioral magnitude comparison

study. These three interdisciplinary approaches present qualitative and quantitative

insights relevant to addressing the known challenges of the concept of percent.

xv



Chapter 1

Percent as a Quantity and Number

1.1 Introduction

One of the most fundamental characteristics of our world is quantity. Every object

exists with quantitative properties such as mass, spatial distance, heat, and temporal

distance. Our embodied interactions with the world allow us to understand these

objects and properties via relations of comparison and ratio. We extend these prop-

erties to create and understand abstract cultural concepts of quantity. We include

ideas of quantity in everyday communication that incorporate both innate and cul-

turally constructed aspects of quantity. Quantity communication has a long history

and has been found in the earliest modern human archaeological records (Marshack,

1991; R. Núñez, 2009). The universality and innateness of quantity can be seen in

that most languages contain special treatment of quantity words (e.g. “1”, “2”, and

“3”) for very small quantities (Hurford, 1987).

Quantity is communicated via multiple modalities (e.g. speech, gesture, symbol) and
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within each modality, quantity has distinct cultural manifestations which also change

temporally. However, individual understanding of quantity communication spans a

vast range depending upon various factors such as educational background and socio-

economic status. Beyond these small quantities, cultures have used reference to body

parts for quantities from “4” to “30” such as the Manus society in New Guinea

where the word for the quantity six literally means “wrist” (Ifrah, 2000). Over time,

linguistic evolutionary processes have allowed for compound references to quantity

and to the eventual compression of these number terms. For example, “mboona“ in

the Ali language refers to the quantity 10 and is a compression of the phrase “moro

boona” meaning literally “two hands” (Dehaene, 2011).

The concept of percent is a ubiquitous yet challenging form of quantity. Percent is

abundant across many arenas in our daily lives yet persists as a difficult concept for

both students and adults to master. These difficulties arise because percent is often

considered, and taught, to be a simple mathematical concept, merely associated to

fraction and decimal numbers. However, Parker and Leinhardt (1995), in their review

of percent in mathematical education, provide an alternative view of percent to that

of a simplified view:

Percent is a multifaceted and complex concept ... rich in relationships,

comparisons, and actions. [Percent is] represented by a numeral and sym-

bol [or word] combination that is commonly converted to decimals and

fractions while being used in comparative situations of many types.

To address the challenges surrounding the concept of percent, we must begin with

an understanding of quantity. In the following sections, first quantity is defined and

its use in language and as information is described. Next, the mental representations

of quantity are examined from a numeric cognition perspective as well as an embod-

2



ied cognition perspective. Lastly, the approaches to learning the cultural aspects of

quantity are discussed. This cognitive scientific approach to understanding quantity

affords the groundwork to understanding the concept of percent. We close this intro-

duction with a summary of percent as quantity and motivate the following chapters

of this dissertation.

1.2 Quantity

Quantity is one of the basic classifications of objects and can be thought of as mag-

nitude comparison. Quantity can be symbolic (e.g. number) or non-symbolic (e.g.

perceptual area or density) and is often thought of in two ways: intensive and exten-

sive (Lewis & Randall, 1923; Tolman, 1917). Extensive quantities are derived from,

and dependent upon, physical properties of an object such as the mass or volume. A

change in the amount of an object also changes the extensive quantities associated

with that object. Intensive quantities are not dependent upon the size of an object

(scale invariant) such as density or concentration. For example, speed (s) is an inten-

sive quantity where s=d/t, and distance (d) and time (t) are extensive quantities.

1.2.1 Magnitude

Magnitude refers to the relative size of an object. Magnitude can be discrete or

continuous, can be ordered, and has relationships of equality and inequality. How

magnitude is measured depends on the type of the object. The mathematical meaning

of magnitude for natural numbers is the size of a set or number of similar objects

grouped together (e.g. “four apples”). The meaning of magnitude for real numbers is

3



defined as a distance from zero along a number line. Magnitude measures can be more

concrete measures such as brightness of luminescence (light), decibels (sound), and

energy (earthquake), or more abstract measures such as area, volume, and density

(shapes). Measurements of magnitude can take a numeric form and be exact or

approximate (e.g. “four” and “thousands”, respectively) or they can take a non-

numerical form and be exact for very small numbers and approximate thereafter

(e.g. “a couple” and “many” respectively). Physical comparisons of magnitudes are

approximate and rely on sensory input such as vision (light), audition (sound), and

haptic response (vibration). This comparison only becomes exact when described

with numbers. Magnitude can be thought of as a basic unit which can be operated

on via comparison relationships such as ratio and proportion.

1.2.2 Ratio and Proportion

Ratio and proportion have been intrinsic to magnitude dating back to Euclid where

relations between magnitudes resulted in whole numbers (Heath et al., 1956). These

relations have evolved to result in real numbers. Ratio is the concept of comparison

between two values or pairs of values and can be written as a/b = c or a : b = c.

Ratio is required to be positive as it expresses comparison between physical objects

and collections of objects. When thought of as a fraction, ratio also cannot have

zero in the denominator, however, in a non-numerical sense, ratio can contain a zero

in the a or b value. For example, a sports win-loss ratio of 4 : 0 where the team

has won 4 games and lost none. Additionally, ratio is considered to be a relational

concept (intensive quantity) which operates on values derived from physical properties

(extensive quantities). Ratios can also be irrational values, such as π. In magnitude

comparison, the size of the ratio between the two magnitudes determines how easily

4



the comparison is made. According to Weber’s law, which states that the ability

to compare ratios is determined by the ratios of the magnitudes (Fechner, Boring,

Howes, & Adler, 1966), the closer the ratio of two magnitudes is to 1 : 1, the harder

they are to discriminate.

Proportion is a relationship between two ratios where a/b = c/d, where a, b, c, and d

are non-zero. Proportion can also be described as a constant ratio k where y = kx and

y and x are quantities. There are two main types of proportion, direct and indirect.

Direct, or linear, proportion is indicated when k is a constant. Indirect, or inverse

linear, proportion occurs when y = k/x and thus y varies inversely with x.

1.3 Quantity in Language

Within language, quantity can be found in many forms: linguistic, pictorial and ges-

tural. Across all of these forms, quantity can be expressed through iconic, indexical,

and symbolic signals. From (H. H. Clark, 1996), we can think of icons as descriptions

of a thing, indices as indicators of a thing, and symbols as demonstrations of a type

of a thing.

Gestures such as hand motions indicating a rise or fall are iconic signals of quantity.

We also demonstrate quantity using dual hand motions along a lateral plane from our

bodies. Iconic pictorial forms of quantity include images of objects as well as graphs,

charts, and figures of numerical data. Numerals, such as “1”, often say how many of a

kind are being referred to. We gesture with fingers, hands, and even whole body parts

to indicate categorical set size (Winter, Perlman, & Matlock, 2013). While ordinal

numbers such as “1st”, or “2nd” show position of an object. Non-numerical linguistic

signals such as quantifiers (e.g. “many”, “most”) are also used to index quantity.
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Numerals and linguistic quantifiers are words or signals that describe the type of,

rather than a distinct quantity of, a concrete or abstract object or set of objects. As

cultural tools, we learn numerals and quantifiers during our childhood developmental

process and are expected to obtain proficiency in communicating and understanding

quantity before reaching adulthood. Linguistic quantifiers such as “more” describe

the position within a quantity relationship where one object is “greater than” another

object.

Communication about quantity is prevalent in everyday decision-making tasks as well

as less frequent high-risk decisions. We compare quantities during important life mo-

ments such as financial decisions (Kruger & Vargas, 2008; Lusardi, 2012) and health-

care choices (Gigerenzer & Edwards, 2003; Peters, Hibbard, Slovic, & Dieckmann,

2007). Each of these decisions requires a basic understanding of quantity. More

complex decisions also require an ability to manipulate the quantity relationships.

However, when quantity is expressed in numeral form difficulties emerge. Often,

quantity is expressed in a simple part-whole relationship which is most easily under-

stood in the form of frequency (e.g. 3 out of ten) but when quantity is expressed

as probability or percent (e.g. .3 or 30%), understanding of the quantity is impaired

(Gigerenzer, 2015a, 2015b; Hill & Brase, 2012; Peters, 2012). Difficulties exist as

probabilities and percentages are the default presentation of quantity for statistics

in areas such as health and medicine, weather, economics, sports, academia, politics,

and crisis and policy communication.

1.3.1 Quantity as Number

Quantity as a tool has varied across time and cultures. One example of this is numer-

als. Numerals have evolved from many places in the world from the Far East (China),
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the Middle East (Mesopotamia), and even Central America (Mayans). Modern base-

ten Arabic numerals arrived in Europe by way of the Mediterranean and Middle

East. Modern number systems, from the natural numbers to the rational numbers,

are thought to exist along one or multiple mental-number-lines which are based on

innate proto-numerical abilities but culturally shaped through reading and writing.

In western cultures which read left-to-right, the number line moves from smallest

numbers (left) to largest numbers (right). This ordering effect is reversed for cultures

that read and write from right to left (Shaki, Fischer, & Petrusic, 2009). However,

modern number systems are not universally used and cultures exist in the world that

have unique forms of quantity signals (Dehaene, 2011, pp. 88-89).

1.3.2 Representations of Quantity

Most adults in cultures that teach numbers have two systems for magnitude represen-

tation. The approximate number system (ANS) and a learned cultural-based system

of numbers and measurement. Modern whole number representations have spatial

correlations and are thought to exist along a mental number line (MNL) with smaller

numbers to the left and larger numbers to the right (for cultures that read and write

from left to right). This MNL is created as a result of symbolic reference which

combines the innate proto-numerical abilities of subitizing and numerosity with cul-

turally created number systems via embodied experiences and enculturation concepts

(Dehaene, 2011; R. E. Núñez, 2011).

However, the innateness of a MNL is controversial across fields (Nieder, 2017; R. E. Núñez,

2017a, 2017b). One argument is for a non-abstract representation for number in

the brain which stems from the existence of “tuning curves” within the human and

monkey brain thought to represent specific numbers (or quantities). However, this
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argument has difficulties both in the definition of “abstraction” and in the lack of “en-

capsulation” of these neuronal populations which activate as a part of larger brain

networks (Dehaene, 2009; Kadosh & Walsh, 2009; R. Núñez, 2009). Other researchers

argue the innate existence of a MNL based on the idea that it is complementary to

the ANS and consists of all real numbers (C. Gallistel, Gelman, & Cordes, 2006).

This “real number” MNL argument is linked to the “continuous” characteristic of

continuous magnitudes. Evidence from animal (Rugani, Vallortigara, Priftis, & Re-

golin, 2015) and infant (Wynn, 2018) studies are used to argue for an innate MNL.

While, cross-cultural numerical cognition studies are often used in support of a cul-

turally instantiated MNL (Cooperrider, Marghetis, & Núñez, 2017). A difficulty in

this controversy is the conflation of “number” and “numerosity” across studies. For

example, animal and infant studies use non-symbolic stimuli and thus fall into the

“numerosity” category while using the term “number” in both results and titles of

research.

1.3.3 Mental Number Line

Embodied Cognitivists have suggested the existence of an everyday naturally continu-

ous number line acquired in childhood and elementary school (Lakoff & Núñez, 2000,

pp. 278-284). In this view, a naturally occurring continuous MNL might exist upon

which whole numbers, integers, rational numbers, and eventually real numbers are

placed as locations along a line. Importantly, these numbers merely rest on the line

and do not construct the line. Two primary MNLs are posited to exist. One along

the horizontal axis and one along the vertical axis. Many studies examine quantity

cognition along one of these axes. Additional studies investigating the MNL have

looked at both the horizontal or vertical axes together (Sixtus, Lonnemann, Fischer,
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& Werner, 2019) as well as in three dimensions (Winter, Matlock, Shaki, & Fischer,

2015).

The horizontal mental number line is thought to arise from cultural practices such as

reading and writing and gives rise to the Spatial-Numerical Association of Response

Code (SNARC) effect where people respond faster to larger numbers with their right

hand and respond faster to smaller numbers with their left hand (Dehaene, Bossini,

& Giraux, 1993; Göbel, Shaki, & Fischer, 2011; R. E. Núñez, 2011). This effect has

been widely observed (Wood, Willmes, Nuerk, Fischer, et al., 2008) and has also

been produced using embodied modalities such as directed pointing (Fischer, 2003)

and body movements (Hartmann, Grabherr, & Mast, 2012).

The vertical mental number line is thought to be related to embodied experiences in

the world. As we interact with fluids in containers and sets of objects in the world.

As we add to them and subtract from them, we learn spatial-numerical associations

such as more is up, and less is down. From these interactions, we create a

vertical mental number line where smaller numbers are associated with lower spatial

position and larger numbers are associated with higher spatial position. Similar to

the horizontal effect, the vertical SNARC effect has been observed in button pushes

(Shaki & Fischer, 2012), eye-gaze (Loetscher, Bockisch, Nicholls, & Brugger, 2010),

head movements (Winter & Matlock, 2013), and body position (Hartmann et al.,

2012) as well as other methodologies.

1.4 Quantity as Information

In language, number terms are often used to assert information. We report quantities

of things such as “three people died”, “that cost four dollars”, “I’m six feet tall”,
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and “six thousand people lost their homes”. We also talk about quantities without

explicitly using number terms such as “there were a lot of fireworks”, “there is a

small risk of infection”, and “most people loved the movie”. Non-numerical quantity

words are called “scalars”. Scalar terms (e.g. “none”, “many”, “all”) are expressions

of degree and thought to operate along continuums (Carston, 1998). For example,

“none” and “all” would be extreme ends of a continuum with “many” falling closer

to “all” than “none” (Van Tiel, Van Miltenburg, Zevakhina, & Geurts, 2016).

Classical views of linguistic quantifiers assign lower boundedness, upper boundedness,

or two-sided (exact) boundedness properties to both number terms and scalar quan-

tities in a similar manner according to truth conditions and based on the Gricean

Maxims of quantity and quality. Importantly, this view assigns the quantity meaning

of an utterance primarily from contextual inference (pragmatics) rather than from any

inherent meaning (semantics) of the number term (Kennedy, 2013). Recent studies

designed to tease apart the semantic and pragmatic aspects of number terms have

found a preference for exact meaning in both adults and developing children using

a covered box task (Huang, Spelke, & Snedeker, 2013) and counting and matching

tasks (Hurewitz, Papafragou, Gleitman, & Gelman, 2006). A full understanding of

quantity in linguistic communication requires further examination of the semantic

and pragmatic meanings of number terms as well as theories of communication.

1.4.1 Semantic Meaning

In isolation, a number term has meaning associated with a cardinal magnitude of a set

such as the number of objects in a group, an ordinal position, and a spatial location

(Lakoff & Johnson, 2008). This semantic meaning provides an exact quantity for

each number term and allows for relational operations such as ratio and part-whole
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and arithmetic operations such as addition and subtraction. Number terms also have

roundedness and sharpness properties associated with the idea of significant digits

where the placeholder of the rightmost non-zero digit signals the level of exactness

(Dehaene, 2011). For example, “120” conveys an exactness for the hundred’s and

ten’s placeholder but an approximate value for the one’s placeholder. Due to the

placeholder effect, the semantic meaning of number terms can convey either a broad

or a narrow two-sided boundedness property.

1.4.2 Pragmatic Interpretation

When number terms are used to convey quantity meaning they often occur within

a linguistic context and acquire a pragmatic meaning derived from the given con-

text according to truth conditions such as Grice’s Maxims of Quality and Quantity.

Historically, number terms have been considered similar to scalar terms within these

utterances (Spector, 2013) such that the contexts convey the quantity information via

scalar implicature and result in three types of quantity expression: lower bounded,

upper bounded, or two-sided bounded (or exact). It is important to note that the

pragmatic meaning is assigned to the utterance which contain number terms and not

to the number terms themselves.

Lower boundedness allows for an “at least” quantity meaning for number terms such

that “3” can mean “at least 3 and maybe more”. This property is similar to the

patterning of scalar terms (e.g. “some”) by leaving open the possibility that higher

quantities are true (Horn, 1972). Horn asserts that utterances with number terms first

have a meaning of lower boundedness and it is only pragmatic meaning that creates

upper or two-sided boundedness. This lower boundedness meaning attribution can be

the result of number terms being considered part of a determiner or adjective meaning
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such as quantification determiners (Barwise & Cooper, 1981), cardinality predicates

(Krifka, 1999), or singular terms (Frege, 1980) and thus open to interpretation based

on syntactic or sentence level evidence.

Upper boundedness is the opposite of lower boundedness and allows for an “at most”

quantity meaning for number terms. The combination of upper and lower bounded-

ness creates a two-sided (or exact) boundedness. Both upper and two-sided bounded-

ness have been thought due to truth conditionals (maxims) or alternatively due to an

exhaustivity operator. An exhaustivity operator allows for parallel assessment of all

possible utterance meanings for all possible quantities greater (n+1, n+2, etc.) than

the given quantity, n, and returns the most reasonable meaning (and quantity, m,

where m ≥ n) and rejects all quantities greater than m (Chierchia, Fox, & Spector,

2012).

More recently, challenges to this account for pragmatic meaning of number terms have

resulted in these same boundedness expressions of quantity due to either underspec-

ification accounts and pragmatic enrichment (Carston, 1998), two-sided semantics

resolved via implicature (Breheny, 2008), or semantic polysemy where only upper

boundedness is addressed via implicature (Geurts, 2006). Finally, a neo-Fregean

challenge rejects the pragmatics approach to number term meaning, and argues

that number term meaning resides entirely in semantics properties with scalar (up-

per/lower boundedness) properties given via scopal interactions with other utterance

constituents (Kennedy, 2013).
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1.4.3 Communicative Theories

The words we speak always happen within a larger conversational context. Theories

looking at speaker’s choices in conversation help shed light on the motivations of

word choice. Straightforward theories of everyday conversation can be found in The

Cooperative Principle and Relevance Theory.

1.4.4 Cooperative Principle

Everyday communication can be described as a cooperative effort where participants

interact with each other in a mutually beneficial manner and can be decomposed into

four maxims: quality, quantity, relevance, and manner. Grice (1975) proposed this

pragmatic principle based on rational theories of expectations in everyday conversa-

tion. Grice’s framework treats rational language as binary with literal utterances in

keeping with the maxims and figurative language as violations of one or more of the

four maxims.

Speakers say only what they believe to be true. Quantifiers, especially numerals,

play an interesting role in truthfulness as people are predisposed to believe numerical

information as true. Thus, numerical quantifiers can be used to relay especially

“truthful” information. On the other hand, hyperbole (exaggeration) is ubiquitous

in everyday language and is a “simple phenomenon, depending only on a salient

quantitative shift toward the extreme end of a scale” (Carston & Wearing, 2015).

Quantifiers are commonly used in a hyperbolic manner to express humor (Stewart &

Kreuz, 2003), to critique or be persuasive (McCarthy & Carter, 2004), or for irony

(Colston & Keller, 1998; Gibbs, 2000). Quantifiers used in hyperbole violate this

maxim of quality.
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Speakers only provide the amount of information necessary for the given conversation,

no more or no less. The type of quantifier used in a speech act provides information

about specificity. General scalar quantifiers such as “most”, “many”, or “few” give

an approximate quantity while numbers provide more concise quantity information.

Thus, speakers can communicate with either a strong (precision) or weak (approxi-

mation) focus on quantity.

Speakers strive to add relevant discourse to a conversation. Numbers often provide

relevant quantity information such as size or ratio. Numbers can describe relations

between objects or events in an objective manner. An interesting use of quantifiers is

scalar hyperbole. In the statement, “I believe you 200 percent,” the speaker infuses

emotional intensity into the statement without losing credibility through the use of

numbers.

The same quantity can be expressed in different ways. Statements like “About 30

percent of women will go on a date just for a free meal” downplay the numerical

quantity involved and allow for focus on non-quantity information (Collisson, Howell,

& Harig, 2020). In contrast, a common approach in communication is to up-play

numerical quantity with emotionally charged (or risk related) issues such as “3 out of

10 Norwegian women experience violence” which focuses on the numerical quantity

(Pieter Wijnen, 2018).

1.4.5 Relevance Theory

Sperber and Wilson (1986) provide a pared-down pragmatic theory of verbal com-

munication based on Grice’s relevance maxim. Relevance Theory (RT) posits that

the maxim of relevance and the human cognition ability to attend to relevance are
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sufficient to describe everyday conversation (Wilson & Sperber, 2012). While Grice’s

cooperative principle describes everyday communication in a binary manner, RT uses

a continuous paradigm with degrees of relevance thus eliminating some violations

of truth conditionals. In RT, a quantity communication contains the intent of the

speaker both to inform the listener of some quantity knowledge and also to draw the

listener’s attention to this intent to inform. While RT is based on a generative model

of language, its focus on how linguistic knowledge (semantics) and non-linguistic

knowledge (pragmatics) interact provides a more embodied cognitive understanding

of everyday quantity communication (Evans & Green, 2018).

1.5 Understanding Quantity

Quantity cognition presents as a unified system that seamlessly operates over an ana-

logue magnitude representation. The idea of an analogue (versus digital for example)

representation for quantity follows from magnitude comparison studies showing in-

herent distance effects (Moyer & Landauer, 1967) and size effects (Meck & Church,

1983). These effects are thought to exist because the underlying representations for

quantity are distributions with the number associated with the quantity as the mean

value of the distribution. These distributions are ordered in some fashion with larger

numbers corresponding to wider distributions. Distance effects result from overlap

between quantity representations. Thus, comparing more similar quantities (e.g. 2

and 3) takes longer time and is less accurate than comparing less similar quantities

(e.g. 2 and 9). The size effect posits that if two comparisons have the same distance

between quantities, the comparison of the larger pair of quantities will take longer and

be less accurate due to the larger overlap of the distributional representations. Since

this early foundational work, hundreds of studies have replicated these effects in both
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humans and animals alike (Dehaene, 2011; C. R. Gallistel & Gelman, 2000). However,

not all researchers agree with the dominant view of these effects (Van Opstal, Gevers,

De Moor, & Verguts, 2008).

Walsh (2003) proposes A Theory of Magnitude (ATOM) where number, time, and

space are part of a generalized magnitude system. Analog Magnitude Representa-

tions (AMR), are primary instantiations of spatial, temporal, numerical, and related

magnitudes, which require no basic unit of measure, and exhibit a sensitivity to ra-

tio. AMRs are found across species. For example, AMRs are found in the foraging

patterns of ducks (Harper, 1982) and fish (Godin & Keenleyside, 1984). AMRs are

thought to underlie learned magnitude discrimination in rats (Meck & Church, 1984),

as well as magnitude habituation and duration studies in infants (VanMarle & Wynn,

2006; Xu & Spelke, 2000). The exact neural realizations of AMRs are unknown, such

as whether they are realized via more neurons firing or a fixed number of neurons fir-

ing more rapidly. However, specific areas of the brain have been found to contribute

to AMR, namely, the intraparietal sulcus of the left and right hemispheres in the

brain.

While it is intuitive to associate continuous representations, such as a line, to AMRs,

an important aspect of AMRs is that they need not be continuous or dense (such

that between any two numbers, another number exists). This follows from the ability

to have sensitivity to ratio using only comparison of discrete sets of objects such as

different size networks of neurons firing. Rather than “analogue” meaning “continu-

ous”, it is suggested that “analogue” refers to the correspondence between parts of a

referent and parts of the object represented (Beck, 2015; Carey, 2000; Maley, 2011).

Suggestions for what AMRs represent have run the gamut of precise integers, real

numbers (C. R. Gallistel & Gelman, 2000), approximate cardinal values (Carey, 2000),
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pure magnitudes (Burge et al., 2010), and numerosity (Dehaene, 2011). Finally, the

idea of AMRs representing numerosity seems most acceptable due to its inherent

approximation and lack of appeal to cultural number systems (Beck, 2015).

1.5.1 Numerosity

Numerosity is the innate ability to approximately estimate collections of discrete mag-

nitude. This ability is based on the approximate number system (ANS), a cognitive

system, which does not rely on symbols such as language or numerals to support the

estimation of magnitude. The ANS plays a dominant role in the development of nu-

merical knowledge; individual differences in the ANS have been shown to predict later

mathematical abilities (Holloway & Ansari, 2009). In humans, the neural corelates

for the ANS have been linked to the intraparietal sulcus with the right IPS linked to

digit recognition and the left IPS to both digit and numeral recognition.

An open question is the structure of this underlying representation system. Outside

of the subitizing range (1-4), a link between symbolic processing and non-symbolic

processing appears to be unidirectional, with symbolic processing influencing non-

symbolic processing (Hutchison, Ansari, Zheng, De Jesus, & Lyons, 2020). Some

argue that representations of numbers are spatial and shared by both the symbolic

and non-symbolic processing systems with bidirectional mappings. Others argue that

the ANS is only affected by non-symbolic quantities and there are no bidirectional

mappings within the system (Buijsman & Tirado, 2019).
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1.5.2 Subitizing

The ability to subitize is considered necessary for quantity cognition, although less

integral than numerosity. Humans and other animals are innately able to distin-

guish visually between up to 3 or 4 objects automatically (Kaufman, Lord, Reese, &

Volkmann, 1949). This subitizing ability is supported by the parallel individuation

system, or object tracking system; a precise non-symbolic system, which allows for

exact discrimination of up to 3 or 4 objects at a time (Feigenson, Dehaene, & Spelke,

2004). However, numerosity processing also plays a role in quantity cognition within

this range (1-4) (Dehaene, 2011). The ability to subitize is also present across sensory

modalities and has been found in the visual domain as well as in the auditory and

haptic domains (Meck & Church, 1983). Recent developmental studies have found a

bidirectional link between symbolic and non-symbolic quantity processing within the

subitizing range (Hutchison et al., 2020).

1.5.3 Ratio Comparison

Recent work has also posited that ratio comparison is another core process of quantity

cognition (Jacob, Vallentin, & Nieder, 2012). Ratio comparison (also proportions)

is thought to have a coding scheme remarkably similar to representations of abso-

lute number (magnitude), with the non-symbolic ratio congruity effect suggesting

primitive architectures for fractional number processing (Matthews & Lewis, 2017).

Neuroimaging habituation studies show similar brain regions activated for both nu-

merosity and ratio comparison processing, namely the intraparietal sulcus. Addition-

ally, distributional activation patterns for ratio comparison suggest similar analogue

coding to that of numerosity (Jacob et al., 2012). Viewing ratio comparison as a
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“more basic, low-level sensory-driven process” (Jacob et al., 2012, p. 159) provides a

framework for relational (fractional) magnitude comparisons and a new approach to

impacting symbolic math performance (Matthews, Lewis, & Hubbard, 2016).

A view of ratio comparison as an innate process parallels known sensitivity to ratio

(Weber’s Law). There is a developmental aspect to ratio comparison processing;

it is limited in early life but becomes more discerning through development. In

habituation tasks, infants have been shown to discern ratios of 1 : 2, but fail for

ratios of 2 : 3 (McCrink & Wynn, 2007). Adults are capable of distinguishing ratios

up to 7 : 8 for multimodal continuous stimuli (Barth, Kanwisher, & Spelke, 2003) with

the capability increasing to ratios up to 11 : 12 for stimuli using sequential magnitudes

(Siegler, 2016). Crucially, ratio comparison operates on both sets of discrete objects

and continuous magnitudes thus providing an account for a perceived “innate real

number system”.

1.6 Quantity as Embodied Cognition

How speakers interact with the world creates associations between concepts and

shapes cognition. In Conceptual Metaphor Theory and Conceptual Blending Theory

these everyday interactions allow for mappings of characteristics of more concrete

concepts onto more abstract concepts to facilitate understanding. Through these em-

bodied cognition theories, a numerical system of quantity can be constructed with

a focus on the grounded aspects of cognition through conceptual metaphors and the

emergent structure of new ideas through conceptual blending.
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1.6.1 Conceptual Metaphor Theory

Conceptual Metaphor (CM) theorists argue that embodied interactions with the world

create our mental conceptions, such as quantity (Lakoff & Johnson, 2008). Lakoff

and Núñez (2000), in their book “Where Mathematics Comes From”, use CMs to

describe how numerical knowledge is acquired throughout a lifetime and throughout

a culture. From an early age, we associate words like “more” with things like liquid

in a container increasing in height. We create a map between these two different

domains of quantity and spatial location where associations such as the word

“more” and the act of observing an increase in liquid create combine to create CMs

such as more is up and less is down. These embodied experiences help create the

individual’s cultural learning of number systems which reinforce our conceptions of

quantity.

According to Lakoff and Núñez, there are four structurally similar grounding CMs

upon which basic ideas of arithmetic exist: arithmetic is object collection,

arithmetic is object construction, the measuring stick metaphor, and

arithmetic as motion along a path. From these four grounding metaphors,

more abstract ideas of modern number systems and higher mathematics are built

via linking metaphors. CMs have also been used to describe cognition at many

levels of quantity cognition from the Spatial-Numerical Association of Response Code

(SNARC) effect (R. Núñez & Marghetis, 2015), which shows that people response

faster to relatively larger numbers on the right and faster to relatively smaller numbers

on the left, to higher level mathematics (R. E. Núñez, 2005) such as the Calculus and

the idea of finite limits and actual infinity.

Contrary to common assumptions, there might not be just one conceptualization

of the mental number line. Lakoff and Núñez (2000, pp. 278-284) describe both
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an everyday naturally continuous number line acquired in elementary and middle

school and a discretized version of a number line acquired through learning higher

mathematics. This duality of number-line-concepts has direct impact on behavioral

studies of quantity cognition and research on numeracy and risk literacy. The concept

of a naturally continuous number line (the Number-Line blend) arises from a blending

of the domains of the CM numbers are points on a line (for naturally

continuous space) where the domain of points on a line maps to the domain of

a collection of numbers. On this number line, the origin maps to the quantity zero

with points to the right being “greater than” points to the left (“less than”). Points

on the line left of the origin map to negative numbers; points at the same location

on the line equal the same number. The absolute value of a number is defined by its

distance from the origin. In this blend, entities are numbers and points at the same

time. It is important to note that numbers on this naturally continuous number line

do not take up any space. They merely occur on the line and do not construct it.

In contrast, multiple CMs (and blends) are needed to conceptualize the discretized

number line: the state-set blend which blends the domain of the special case of

a line for naturally continuous space with point-locations and the domain of a set

of elements. In the state-set blend, properties of naturally continuous space are

associated to relations on elements of the set. To arrive at the blend numbers are

points on a line (for discretized space), the state-set blend is mapped

to the domain of numbers and all three domains are blended together. A critical

distinction of this blend from the one for naturally continuous space is that the

“points” on this line take up “space”, construct the line, and are elements of a set.
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1.6.2 Conceptual Blending

A view related to Conceptual Metaphor Theory is that of Conceptual Blending (CB)

Theory (also called Conceptual Integration or Blending Theory) which includes CMs

as instances of blends. Fauconnier and Turner (2008a) define CBs as networks of

mental spaces that begin with known mental concepts as inputs and result in an

integrated blended mental space where the emergent structure is more than the sum

of its parts. Thus, CBs are crucial for creativity and cultural evolution. In Conceptual

Blending Theory, blended spaces can also serve as input spaces to other blends. This

recurrence of blends creates a way to build increasingly more abstract networks of

concepts. CBs is considered to be central to human thought and imagination and has

been applied to research in various fields such as linguistics, mathematics, computer

science, genetics, and anthropology (Evans & Green, 2018, pp. 400-440). Within

the domains of numerical cognition and mathematics, CB allows for a description of

thinking about mathematical problems in terms of small spatial stories consisting of

actors and events which provides insight into areas such as proof-writing (Bou et al.,

2015; Marghetis & Núñez, 2013). Another area of numerical cognition, closely tied to

quantity cognition, that CBs help clarify is the construction of the modern number

system.

The modern number system (along a mental number line) can be thought of as

a recursive conceptual blending network where each new blended space of number

takes as one of its inputs the old mental space of number. For each new blend of

number, the old numbers and the category number is taken from the old number

input space. From the other input space, elements that cross-map to the old numbers

are fused with that number in the blended space. Elements that do not have a cross-

mapping with old numbers, become new numbers in the blend and thus fill in gaps

22



between the old numbers. Both input spaces contribute structure to the blend, thus

maintaining previous number properties and also extending those properties for the

new numbers (Fauconnier & Turner, 2008a, pp. 242-244). The network begins with

the input mental spaces of points on a line, whole numbers, and containers of objects,

similar to the CMs of arithmetic is object collection and arithmetic is

motion along a path, which result in a blend for the integer numbers. The input

space of integers numbers blends together with proportions and leads to rational

numbers. Additional recursive blends result in the real numbers which blend with

two-dimensional geometric space to arrive at the complex numbers (Turner, 2005).

Two important aspects of quantity cognition are the part-whole relationship and the

proportional relationship. These concepts emerge in the rational number blend. This

particular blend has two drastic consequences where properties of whole numbers are

different from properties of all following number blends. First, whole numbers have

successors such that the number 1 is followed by the number 2 and there are no

numbers in between them, but beginning with rational numbers, there are an infinity

of numbers between any two numbers. Second, in whole numbers each number relates

to a unique magnitude however the proportional input space creates an emergent

structure in the blend that maps an infinite number of rational numbers (i.e.1 =

2/2 = 3/3 = ...) to each unique magnitude (Fauconnier & Turner, 2008a, pp. 242-

244).

1.7 Learning Quantity

How do children acquire an understanding of quantity that is linked to modern num-

bers? Different theories of numerical development have attempted to answer this
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difficult question (Rips, Bloomfield, & Asmuth, 2008). Research on whole number

development has dominated the field. Tasks such as magnitude comparison provide

insight into ways that children might learn the relationships between quantity and

positive integers. Research on rational number development often extends knowledge

of whole numbers with a “whole number bias” affecting rational number development.

Not surprisingly, little work has been done to incorporate the full real numbers into

quantity cognition. However, research on the cognition of higher mathematics might

shed light on how the real numbers are understood (Marghetis & Núñez, 2013).

While it is unclear if all modern numbers are mapped to a single MNL or to different

MNLs, most current research theorizes that the MNL begins with whole number

understanding (Feigenson et al., 2004; Geary, 2006; Gelman & Williams, 1998; Siegler,

2016). However, some researchers contend that real number understanding underlies

all later developmental learning and that symbolic learning limitations restrict access

to this “innate” real number system (C. R. Gallistel & Gelman, 2000).

Various approaches to understanding the developmental learning of modern systems

of number have been suggested. Privileged domain approaches posit a more “natural”

learning of whole numbers than for other types of numbers, such as rational num-

bers (Gelman & Williams, 1998). Evolutionary and conceptual change approaches

also place a “primacy” on whole numbers over rational numbers to varying degrees

(Geary, 2006; Vamvakoussi & Vosniadou, 2010). Integrated approaches focus on the

similarities and differences of whole numbers and rational numbers (Siegler, Thomp-

son, & Schneider, 2011). More recently, a ratio-processing approach suggests that, like

whole numbers, some rational numbers have a form of “primacy” as well (Matthews

& Lewis, 2017). These, often conflicting, theoretical approaches to numerical de-

velopment influence study design and analysis and impact the overall direction of
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numerical cognition research.

1.7.1 Whole Numbers

Whole numbers (also called the natural or counting numbers) are the set of all num-

bers which include all positive integers and zero. A complete understanding of whole

numbers includes properties of closure and discreteness. For closure, the operations

of addition and multiplication on whole numbers result in other whole numbers. Ex-

ample of non-closure would be the operations of subtraction and division on whole

numbers which might not result in other whole numbers. Discreteness describes the

non-continuity of whole numbers such that for each whole number n, there is a direct

successor which can be found by adding the basic unit of one to it to get n+ 1 (e.g.

2 + 1 = 3, 3 + 1 = 4, etc.). Another aspect of whole numbers is that they are infinite

in size which allows for an understanding of potential infinity.

Studies looking at single-digit whole number comparison (e.g. “Which is larger, 3

or 8?”) have shown distance and size effects across different experimental designs

(Cordes, Gelman, Gallistel, & Whalen, 2001; Feigenson et al., 2004; Moyer & Lan-

dauer, 1967). However, studies extending to double-digit comparison have to deal

with effects of perceptual and placeholder differences. Multi-digit notation for mag-

nitude has more than one numeral and the placement of the numeral conveys quan-

tity meaning. This change in quantity notation impacts the logarithmic nature of

the MNL where larger numbers are harder (take longer and are less accurate) to

compare. Double-digit magnitude comparisons such as “Which is larger, 32 or 47?”

show distance effects occurring within a decade (e.g. comparing 51 to 53 or 51 to 57)

but not across decades (e.g. comparing 49 to 51 or 47 to 51). Any size effect seems

mitigated by place congruency which states that it is harder to determine distance if
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the larger number has a smaller value in the unit place (e.g. comparing 37 to 42 is

harder than comparing 32 to 47). These studies have found a more componential than

holistic processing of double-digit whole numbers and are not restricted to magnitude

comparison tasks (Nuerk, Moeller, Klein, Willmes, & Fischer, 2015).

An, often overlooked, aspect of numerical cognition is the integers which extend the

whole numbers to include negative whole numbers. In terms of quantity cognition,

negative numbers might conceptualize a “need” or “desire” for a certain quantity

of objects. Children that have no knowledge of negative numbers appear to use a

rule-based approach in comparing the magnitudes of mixed (positive and negative)

numbers, while adults display an inverse distance effect when comparing the magni-

tude of mixed numbers. This effect provides support to the idea that learning new

symbolic systems restructures magnitude representations (Varma & Schwartz, 2011).

1.7.2 Rational Numbers

Once knowledge of integer numbers has been acquired, the next step is to learn ratio-

nal numbers. Like whole numbers, magnitude comparisons of decimals and fractions

display distance effects. Thus, an analogue representation is thought to exist for

rational numbers (DeWolf et al., 2014). Ratio-dependent responses to magnitude

comparison tasks posit an integrated mental number line for rational numbers across

whole numbers, fractions, and decimals (Hurst & Cordes, 2016). Rational number

learning begins around the 3rd grade for most students and consists mainly of learning

first about fractions and then about decimals. When learning about rational num-

bers, children often have conceptual and operational difficulty because they try to use

their knowledge about whole numbers when dealing with rational numbers (Resnick

et al., 1989). For example, the conceptual belief that “the more digits a number has
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the bigger it is” (Vamvakoussi & Vosniadou, 2004) makes sense with whole numbers

but not with rational numbers such as decimals (e.g. 23 and .203 where the fewer

digits corresponds to the bigger number). An example of an operational difficulty

would be when “multiplication always makes numbers bigger” which is true for whole

numbers but not for proper fractions (Fischbein, Deri, Nello, & Marino, 1985).

Fractions

Fractions are rational numbers, a/b, which contain integers in both the numerator

and denominator position and where b cannot equal zero. Fractions have a unique

notation consisting of multiple integers with a vinculum (fraction bar) separating

the numerator from the denominator. A forward slash is also optional in place of

the vinculum. This added perceptual processing is thought to contribute to the

longer reaction time and lower accuracy of fractional magnitude comparison tasks

compared to whole numbers and decimal magnitude comparison tasks (DeWolf et al.,

2014). Additionally, fractions convey relational information based on the ratio of the

numerator and denominator. In relational reasoning problems, involving discrete or

discretized concepts, fraction results have greater accuracy than decimals. However,

this 2-dimensional nature of fraction notation encourages whole number bias through

componential processing of fraction quantity (DeWolf, Bassok, & Holyoak, 2015).

In ratio-dependent responses, fractional responses show whole number bias via eye-

tracking methods (Hurst & Cordes, 2016).

A ratio-processing approach, using non-symbolic fractional magnitudes, found a con-

gruity effect for overall fraction size (Matthews & Lewis, 2017). This effect as well

as distance effects during magnitude comparisons of fractions suggests a holistic ap-

proach to fraction processing. However, as fraction magnitudes get closer together, a
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whole number bias emerges within the magnitude comparison tasks (DeWolf & Vos-

niadou, 2015). To help combat this, developmental studies have shown that learning

fractions along a number line helps mitigate the whole number bias often found in

rational number comparisons and also outperforms fractional learning based on area

models (e.g. pie charts) (Hamdan & Gunderson, 2017).

Decimals

Decimals reside in the real-number realm and are considered to be continuous in

nature. Decimals are thought to be easier to learn than fractions because we can

conceptualize them as fractions where the denominator increases by a factor of 10

with each place value, for example .5 = 5/10, .05 = 5/100, and .005 = 5/1000.

Children, when learning decimals, are taught to focus on the structural aspects of

decimals. In additive operations, emphasis is put on learning place-value positions

and structural consistency of the decimal point. In magnitude comparison studies,

decimals are processed holistically and are processed faster than fractions: closer to

the speed of processing whole numbers (DeWolf et al., 2014).

1.8 Percent as Quantity

Percent is a quantity because it is a number that represents ratio comparison. The

concept of percent has been assigned the status of a number because it is a ratio

comparison (Usiskin & Bell, 1983) - not to be confused with count-type numbers

such as fractions and decimals. As a quantity, percent has magnitude (the numeral

assigns distance from zero or set size). Percent inherently represents ratio and is often

considered to be a “privileged proportion” (Parker & Leinhardt, 1995). As a ratio
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and proportion, percent is an intensive quantity that represents relationships between

extensive quantities. Percent is an abstract quantity used to describe relationships

between other abstract or concrete quantities.

In language, percent quantity occurs as numerals and words or numerals and a symbol.

Thus percent acts as indexical and symbolic signals in language. Percent numerals are

affected by numeric cognition effects such as roundedness and in language by semantic

and pragmatic effects such as boundedness and relevance. Percent is a generalized

mathematical tool for comparison used extensively in descriptive statistical reporting

and is problematic in decision making. Percent depends on its context to explain its

functional operation (to help construct the percent equation as seen in (1)). This

formulaic approach helps to describe the relationships expressed through the concept

of percent.

percent of base = percentage (1.1)

Within education, percent is a fundamental building block necessary for success in

higher mathematics. The concept of percent is taught at a pivotal point in middle-

school education during the time of rational number learning and this can lead to

conflation of the concept of percent with fractions and decimals. Percent instruction

often emphasizes the similarities between percent and other rational numbers to assist

teachers and students in the learning process. However, this simplified approach to

learning a complex mathematical tool creates challenges to understanding the concept

of percent.
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1.8.1 Delving into the Challenge of Percent

This dissertation approaches the concept of percent from an interdisciplinary cognitive

science perspective. The difficulties surrounding the concept of percent are evaluated

in the following chapters using three different methodologies each looking at a different

aspect of the concept of percent.

In chapter 2, the evolution of the concept of percent is examined using historical

data and conceptual integration (blending). This work emphasizes the construction

of the concept of percent over time as a mathematical tool with many usages and how

challenges have emerged from this construction. This chapter discusses qualitative

issues involving percent as a number and symbol, percent as an abstract (intensive)

quantity, and percent as a shifting signal in language. Additionally, challenges in

using percent in varied contexts are analyzed from a view of conceptual integration.

Chapter 3 addresses the concept of percent in context of language usage and as

information. Using natural language processing (NLP) techniques and a large natural

language corpus supporting varied types of language formality to quantitatively show

how context impacts the functional alternations of the concept of percent and thus

how percent is used in a given context. This chapter focuses on the concept of percent

as a tool - whose functionality is dependent on its context.

In chapter 4, a computer-mouse tracking magnitude comparison study introduces

percent magnitude representations to the rational number space. This behavioral

methods approach highlights the comparison aspect of the concept of percent and

compares and contrasts percent with other rational numbers: integers, fractions,

and decimals. This chapter gives a first cognitive look at quantitative comparisons

between percent and rational numbers.
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The concluding chapter summarizes the concept of percent and current challenges in

understanding this concept. It briefly describes how the above listed chapters address

the concept of percent using a cognitive scientific approach of varied methodologies

and from the different perspectives of construction, context, and comparison. Final

thoughts conclude with suggestions for future work on the concept of percent.
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Chapter 2

Formal Conceptual Blending in the

Concept of Percent

2.1 Introduction

2.1.1 The Concept of Percent

Percent is a common mathematical tool that is taught early and encountered daily.

A quick look at the back of most food products will reveal a mass of information

compressed into percent form. The concept of percent is used to understand ac-

ceptable quantities in health issues, consumer purchases, and even to make planning

decisions in our daily lives. Percentages also compress information about probability

in weather forecasts and newscasts about political polling or the economy (see Figure

2.1 for a summary of percent in public discourse). Young children are often exposed

to common percentages (e.g. 100%, and 50%) and have a basic fractional under-
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standing of the concept of these percentages before exposure to them in elementary

and middle-school education. During rational number learning, children are taught

the concept of percent – often associated as a “type of fraction” or “like a decimal”

number (Parker & Leinhardt, 1995).

Although percent is ubiquitous in everyday life, students and adults have been shown

to have difficulty in understanding the concept of percent (Carpenter, Coburn, Reys,

& Wilson, 1975; Chen & Rao, 2007; Edwards, 1930; Kruger & Vargas, 2008; Scrib-

ner Guiler, 1946). This difficulty may arise from an inability to understand the

complexity of the construction of the concept of percent as it evolved over time to

meet different societal needs. The concept of percent was constructed over many

years, influenced by various sources, and assigned a multitude of tasks. Parker and

Leinhardt (1995) provide an excellent review of the concept of percent and its com-

plexities. Some of the major difficulties surrounding the concept of percent that they

describe are: the competing proto-origins of the concept of percent from the fields of

commerce and mathematics, its definition as a number, and the many usages expected

from percent in everyday tasks. The current study utilizes Parker and Leinhardt’s re-

view, supplemented with additional sources, to build an investigation into the concept

of percent and its evolution over time. We use the approach of conceptual integration

networks to analyze why this commonly used mathematical concept is in some cases

so difficult to understand.

2.1.2 Conceptual Blending

The theory of conceptual blending posits that human thought emerges from the dy-

namic integration of networks of knowledge, memory, and perception (Fauconnier &

Turner, 2008b). Such integration networks can be constructed spontaneously at the
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Figure 2.1: Percent is used to convey information in many areas of modern life across
various forms of communication.

cognitive level. For instance, the verbal agility of people occupied in improvisational

language play during conversation arises through the dynamic construction of con-

ceptual integration networks. Other instances involve the engagement of integration

networks that have been developed and disseminated over time through cultural rit-

uals and artefacts. Examples of these types of culturally shared integration networks

include rituals such as baptisms, weddings, and graduations as well as artefacts such

as compasses, clocks, and computer interfaces.

An example of an integration network from (Fauconnier & Turner, 2008b) is the

solution to the riddle of the Buddhist monk using the conceptual blending approach.

Arthur Koestler presents the riddle in (Koestler, 1964) and attributes its origin to

the Gestalt psychologist Karl Duncker. In the riddle, the monk begins the morning
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meditating at the foot of a mountain. He then journeys along a path to the mountain

peak where he spends several days in further meditation. After these several days, he

descends the mountain along the same path along which he had previously ascended.

The riddle poses the following question: Is there a location on the path that the monk

occupies at the same time of day on the ascending and descending journeys? Koestler

(1964, p. 183) quotes an individual’s intuitive solution of the riddle.

I tried this and that, until I got fed up with the whole thing, but the

image of the monk in his saffron robe walking up the hill kept persisting

in my mind. Then a moment came when, superimposed on this image,

I saw another, more transparent one, of the monk walking down the hill

and I realized in a flash that the two figures must meet at some point

some time - regardless at what speed they walk and how often each of

them stops. Then I reasoned out what I already knew: whether the monk

descends two or three days later comes to the same; so I was quite justified

in letting him descend on the same day, in duplicate so to speak.

Fauconnier and Turner (Fauconnier & Turner, 2008b) analyze the intuitive solution

in terms of structure that emerges through a conceptual blending network. Figure 2.2

shows a diagram of the network involved in the solution. The network integrates four

conceptual spaces. The generic space brings the framework of our general knowledge

of mountain treks, including the involvement of a moving individual ascending or

descending along a path over an extended period of time. The two input spaces bring

the specific knowledge given in the riddle itself, such as a unique individual ascending

the mountain on a unique day and the identical individual descending the mountain

on a unique day not identical to the day of ascent. Within these input spaces, the
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Figure 2.2: Conceptual integration networks can be diagrammed as a series of nodes,
each of which represents a conceptual frame and contains the elements that participate
in the frame. Relations such as identity, as well as properties such as direction,
can be linked and projected across frames. These links are represented by lines.

monk in input space one is linked to the monk in input space two via an identity and

a uniqueness relation, and the day in input space one is linked to the day in input

space two via an analogy relation. By decompression of the uniqueness relation

linking the monk across the two input spaces, the monk in the blended space becomes

two separate individuals who nevertheless still share an identity; and by compression

of the analogy relation linking the days across the two input spaces, the day in

the blended space becomes a single day characterized within this blended space by
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identity and uniqueness relation. This allows us to see that two travellers, one

ascending and the other descending the mountain on the same day must meet each

other along the path at some point in time; and by analogy, the monk ascending and

descending the mountain on separate days must still occupy the same location along

the path at some point in time.

With this example, we have attempted to succinctly introduce the general features of

a conceptual blending analysis, whereby elements with distinct properties are linked

throughout a network of conceptual spaces via a series of vital relations which can

change dynamically through operations such as compression and decompression.

2.1.3 Structure of the Paper

In the following sections, the contributing factors to the construction of the concept

of percent will be discussed in greater detail. The historical origins of the concept

of percent from commercial and mathematical perspectives are analyzed in section 2.

The concept of percent as a tool, both as a number and as a symbol are examined

in section 3. Section 3 also contains descriptions of the various usages that percent

can have in everyday tasks. After showing how the concept of percent has been

constructed, we highlight where this structure is flawed in section 4. We conclude

with suggestions on how to improve both communicative and educational aspects of

the concept of percent. We believe this paper contributes to the current research at

the intersection of math education and numeric cognition and to the study of the

concept of percent more specifically.
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2.2 A History of Percent

The origins of the concept of percent can be traced back to around 300 B.C.E. and can

be divided into two main pathways: commerce and mathematics (Parker & Leinhardt,

1995). Historically, commerce and mathematics were separate arenas of life that did

not overlap. Commerce was an applied domain dealing with interest and taxation

and used in daily commercial enterprise. Mathematics was a theoretical field studied

by the wealthy and privileged. Over the past two millennia, these two arenas have

periodically interwoven and through this intermingling, the concept of percent has

evolved.

2.2.1 Percent and Commerce

The concept of percent within commerce can be traced back to ancient forms of

calculation such as the “Rule of Three” - a computational tool for quick calculation

of interest and tax on any base amount. The “Rule of Three” was a procedural

method, often told in verse and varying across cultures, for finding proportion based

on three given amounts. Importantly, these calculations were additive and part-

whole in nature, where a fixed interest or tax was taken on (or out of) a given base

amount (e.g. 12 sheep were taken out of every 100 sheep). The earliest records of

taxation and interest rates are from India (circa 300 B.C.E.) and were performed

per months per hundreds (Kautilya, 1967). Shortly thereafter in China (200-100

B.C.E.), the Arithmetic in Nine Sections contained the “Rule of Three” as it related

to partnership and shares (Boyer & Merzbach, 1989, p.222). Moving to C.E. times,

Roman usage of percent precursors, instituted during the time of Augustus, were

written in the centesima rerum venalium, regarding taxation 1
100

on goods sold at
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Figure 2.3: Historically, the concept of percent integrates mathematical concepts such
as the idea of proportional equivalence in geometry and socio-economic practices such
as interest and taxation. Inherent in this integration network is a comparison between
quantities – e.g., the length of lines or the quantity of goods bought or sold – to
determine a third quantity. The network evolves to include the privileged base of
100, which is further compressed into the percent symbol (%).

auction (Smith, 1923, p.247). Continued use of the “Rule of Three” was found in

India dating around 499 (W. E. Clark et al., 1930, p.38-39), 628 (Smith, 1958, p.483),

and 1150 C.E. (Datta & Singh, 1962, p.213). As commerce became more complex,

compound interest calculations with a base of 100 were found in India dating back

to circa 850 C.E. (Datta & Singh, 1962, p.220-225). By the end of the Middle Ages,

larger quantities of goods were in appearance and 100 was considered a standard base

number as seen in ledgers in Italy (circa 1200 C.E.). During the Renaissance period,
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the concept of percent was heavily influenced by the standardization of 100 as a base

amount and also the use of the “Rule of Three” as a computational tool. It is at this

time that mathematicians pointed out the proportional nature of the “Rule of Three”

and the concept of percent within commerce started to become multiplicative.

2.2.2 Percent and Mathematics

In mathematics, the concept of percent was multiplicative in nature based on ratios

of geometric and algebraic relationships. In early Greece, Euclid included in the Ele-

ments, theories of proportions for numbers and measures - the mathematical roots of

percent (Heath et al., 1956, p. 114). While around the same time in China, the Arith-

metic in Nine Sections also discussed ratios and proportions (Smith, 1923, 1958). A

key moment in the history of percent occurred in the Renaissance period around 1500

C.E. when Niccolo Tartaglia published the first printed edition of the Elements in

a modern language. Included in the translation were many comments and notes by

Tartaglia revealing a focus on practical application. During this time Tartaglia also

published his own treatise, the Trattato generate di numeri e misure, in which he suc-

cessfully created an encyclopedia of practical mathematics to include measurement

and proportions (Wikisource, 2019). Between these two works, Tartaglia crossed tra-

ditional boundaries and imbued the mathematical world with concern for the practical

applications (including taxation) of everyday mathematics (Gavagna, 2012).

Around the 17th century there is evidence of compression of the percent terms as

well as the use of a percent symbol (per cento → per 100 → p 100→ p cento → per

c◦ → pc◦ → per
◦
◦ →

◦
◦ → %) (Parker & Leinhardt, 1995, p. 430). This compression

helped shift the meaning of the concept of percent from a more concrete quantity

to a more abstract relationship. The concept of percent as a general concept of
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normalization has been linked to the birth of statistics in the late 18th and early

19th centuries (Parker & Leinhardt, 1995, p. 433). Within statistics, large amounts

of data of varying types needed to be compared. A tool was needed for generalized

comparison - percent fit the bill. Within statistics, percent took on several roles to

fill both a need for functional operations as well as descriptive statistics.

2.2.3 A Conceptual Blending Analysis of Percent

Figure 2.3 shows the conceptual integration network associated with the evolution of

the concept of percent. In the network, the conceptual spaces of mathematics and

interest/tax contain elements from the generic space of quantity and, in the latter

instance, the generic space of commerce. The mathematics and interest/tax spaces

contain elements – ratio and proportion in the former and interest and tax in the

latter – that are linked by the vital relation of role. The role linking these elements

can be characterized as “ascertaining” because their function is to learn or discover a

new magnitude or quantity (or sets of magnitudes or quantities) with certainty. For

example, using proportion to find all equivalences classes of a set or using a tax rule

to determine how much wheat a farmer owes to a lord.

When elements are linked across conceptual spaces through the relation of role, they

are also necessarily linked through the relation of analogy. For instance, the Queens

of England and Denmark perform an analogous role in their respective countries, but

they do not share an identity nor are they unique in the sense that they are not a

unified entity. Thus, proportion/ratio and interest/tax are linked across conceptual

spaces not only through the relation of role but also through analogy. However,

when properties of these elements are projected into the spaces associated with the

concept of percent, the analogy relation is compressed into one of identity since
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they are all referenced by the same term or symbol.

Figure 2.4: Percent can be a tool to obtain an increase or decrease in the size of a
single quantity or set. Percent in this case functions as a rate to find the quantity
to be added to the original quantity. The diagram depicts an example found in the
sentence: Items on sale for $50 (with 8% sales tax).

2.3 Percent as a Tool

The concept of percent as a general concept of normalization has been linked to the

birth of statistics in the late 18th and early 19th centuries (Parker & Leinhardt, 1995,

p. 433). According to Parker and Leinhardt, percent broadly always describes propor-

tional relationship between two quantities and can be categorized in two ways: as a
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descriptive statistic or as a functional operator. The functional use of percent is con-

sidered to be the more important mathematical use of the concept of percent (Davis,

1988) and dates back earlier than its descriptive statistical use. The descriptive use

of percent dates back to commercial Italy during the Renaissance and became more

widespread after the birth of statistics (Parker & Leinhardt, 1995).

2.3.1 Functional Operations

The functional use of percent involves the creation of a new quantity or set from an

original referent and a given percent. As a functional operator, percent will already

exist within a given context and then be used to create the relationship between the

original set or quantity and the new set or quantity. This relationship can be increas-

ing or decreasing in nature and can be an additive or multiplicative relationship. In

this context, percent represents a uniform rate (such as tax, interest, discounts, etc.)

that is used to quantify “the magnitude of a functional operator”, usually taking the

form of a fraction or decimal for multiplicative operations (Davis, 1988; Risacher,

1992). In the example in Figure 2.4, percent is multiplied by the original amount to

find the tax amount, which is then added to the original cost of the item to create

the total cost including tax. An example where the percent rate is multiplicative can

be seen in Figure 2.5. Here the original cost of a prescription drug is multiplied by

the rate increase to create the new cost of the drug.

2.3.2 Descriptive Statistics

A major use of percent is as a descriptive statistic. Often in reporting data, it is

beneficial to highlight changes in the data. When percent is used as a descriptive
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Figure 2.5: Percent can be a tool to compute an increase or decrease in the size of
a single quantity or set. Percent in this case functions as a rate of increase to be
multiplied with the original quantity. The diagram depicts an example found in the
sentence: The company increased the drug price of $13.50 per tablet by 5,000 percent.

statistic it often conveys the relationship of one set size to another. The sets can

be of the same object (set and subset) or different objects (set and set). This use

of percent is based on pre-existing referent quantities. In reporting, both referents

need not always be present. It is often the case that one referent quantity must be

inferred from the context, given the referent quantity and the percent. When only

the percent is given, both referent quantities must be inferred. There are two main

forms of percent usage as a descriptive statistic: one percent given to convey a part-

whole description and the comparison of two percent statistics. A use of a percent
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statistic to convey a part-whole description can be seen in Figure 2.6 where the

subset of a larger set is highlighted in a specific way. Figure 2.7 shows a comparison

relationship between two distinct sets and highlights the multiplicative difference. The

percent reveals the proportional relationship of the size of the target set to the size

of the reference set. This example focuses on a decreasing aspect of the proportional

relationship. Due to the flexibility in reporting referents when using percent for

descriptive statistics, it is possible that referent information can be hidden or altered.

Figure 2.6: Percent can be a tool to describe a partial quantity. In this case, a whole
set and a partial set possess a shared quality. The partial set possesses an additional
quality not possessed by the whole set. Percent gives the size of the partial set. The
diagram depicts an example found in the sentence: Fifty percent of the past 16 Field
medalists were IMO participants.
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Figure 2.7: Percent can be a tool to obtain a comparison of the sizes of two entities
or sets. Percent again functions as a comparison operator. The diagram depicts an
example found in the sentence: The number of female CEOs is 6.16% the number of
male CEOs.

2.4 Where the Tool Breaks

Percent is used every day in many arenas of life. Depending on the context, percent

might be working as a descriptive statistic or a functional operator. It could repre-

sent a part-whole relationship or a ratio relationship. Additionally, percent is used

in these situations to compare quantities across many different comparison types.

Unfortunately, percent in these contexts is often misunderstood. Below we list sev-

eral possible reasons for this misunderstanding relating to: processing the symbol as a

compressed mathematical operator, difficulties between part-whole and ratio relation-

ships of percent, and the lack of ability to decompress the many aspects of the concept

of percent in a given situation to correctly determine the appropriate application of

percent within a context.
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2.4.1 Percent Symbol Difficulties

Percent has been defined as a number because it is a ratio comparison concept. In the

1980’s, Usiskin and Bell (1983) assigned number status to 6 types of numerals: counts,

measures, locations, ratio comparison, codes, and formula constants. A problem exists

when percent is taught within rational numbers and a link is formed between count

number types like fractions and decimals. The concept of percent is then thought to

be similar to count numbers rather than ratio comparison numbers. This number-

type confusion can affect how the percent symbol (%) is interpreted and how percent

calculations are performed. For example, a common error in solving percent problems

is when students ignore the percent symbol or treat the percent symbol as a label,

such as the dollar sign (Brueckner, 1930; Edwards, 1930; Kircher, 1926).

2.4.2 Percent Part-Whole and Proper Fractions

The concept of percent is commonly taught following fractions and decimals in middle

school education. During this instruction, an emphasis is often placed on magnitudes

less than one: proper fractions, fractional decimals, and percent equal to or less

than 100. This emphasis highlights the part-whole aspect of the concept of percent

for students and causes difficulties when solving percent problems related to percents

greater than 100 (Parker & Leinhardt, 1995). While historically, the part-whole aspect

of percent was important to commercial calculations, this use of percent related to

concrete amounts and objects. Since the birth of percent as a descriptive statistic,

an abstract application of percent, the ratio aspect of percent is the more apt usage

for generalized comparisons. Simply put, students are primarily taught percent as a

part-whole concept which does not sufficiently prepare them to understand percent
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in its ratio contexts.

2.4.3 Decompression Difficulties

In the above sections, we’ve listed the different ways that percent is used as a tool.

Since around the birth of statistics, the concept of percent has changed from a concept

with a simple application to a concept with multiple applications, dependent upon

context. This shift from a local calculation tool to a global mathematical comparison

tool could only be accomplished through compression of many applications into the

percent concept and the symbol. This is how we can have either a part-whole or

a ratio understanding of percent, depending on context. As a global mathematical

tool, percent is used either functionally or descriptively and across varied types of

comparisons. However, as discussed above, this compression is not taught during

the instruction of the concept of percent. An emphasis on the part-whole aspect

of percent is complemented by a concentration on the percent equation (1) which

leads to formulaic memorization of percent calculations. Rote memorization of the

percent equation requires the ability to parse a given context to find the needed

referents (percent, base, or percentage) which are sometimes not given. This limited

understanding of the concept of percent prevents the student (or future adult) from

being able to properly decompress how a percent is used in context.

percent of base = percentage (2.1)
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2.5 Concluding Remarks

In this study, we have shown how the concept of percent has evolved over time to form

an exceptionally complex network of blended identities and roles being compressed

into a single symbol (%) or a pair of words (percent or percentage). Through an

analysis of the integration network underpinning the concept of percent, as well as

a review of the difficulties people exhibit in handling the concept of percent, we

have described how problems with correct decompression of this complex network

lead to such difficulties. We believe it to be likely that these problems with correct

decompression stem from a lack of resources (linguistic or symbolic) for prompting

such decompression. As illustrated in Figure 2.3, a number of distinct conceptual

spaces are referenced by the same term or symbol. With nothing to indicate which

conceptual space we should be operating in, our navigation through this complex

conceptual network becomes obscured.

We hope that our analysis has revealed some of the beauty and complexity of percent

as an abstract global mathematical tool for comparison. We believe it is possible to

master this tool through an understanding of the compression involved in its creation.

Successful attempts to teach the concept of percent have included a focus on percent

as a proportional operator and a reordering of rational number instruction (Moss

& Case, 1999). The reordering of instruction helps to prevent the part-whole bias

imparted from fractional instruction to percent instruction. By starting with percent

instruction, the ratio aspect can be properly taught before introducing the part-

whole aspect. We believe this study also illustrates the importance of contextual cues

when communicating the concept of percent to help clarify which usage of percent is

required. This study complements previously existing work on the concept of percent

as a proportional operator. Additionally, this interdisciplinary study extends work
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in the fields of mathematical education and cognitive linguistics for the concept of

percent.
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Chapter 3

Percent as a Functional Number in

the Wild

3.1 Introduction

In modern society, percent is a ubiquitous tool of quantity communication. From

an early age and throughout life, the average person comes in frequent contact with

percent across most forms of communication and in many areas of life (See Figure

3.1). While children often have some exposure to the concept of percent before formal

learning, percent is a historically difficult concept for students to master (Carpenter et

al., 1975; Kouba et al., 1988). Percent is difficult within this formal setting because

it is a functional number that always requires some form of calculation with the

degree of difficulty (or type) of calculation being informed by the linguistic context

surrounding the specific usage of percent. This difficulty is further compounded in

that percent in more casual settings can perform a demonstrative function through

hyperbole or other types of figurative language. Context in these cases again informs
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how the concept of percent is to be understood, and the usual calculations associated

with percent in more formal settings may be unhelpful or even nonsensical. In light

of this dependence on context, applied linguistics has the opportunity to play an

important role in developing greater understanding of the concept of percent, thus

contributing to the fields of education, numeric cognition, and numeric discourse.

Figure 3.1: Percent in Public Discourse

percent of base = percentage (3.1)

In the field of mathematical education, Parker and Leinhardt (1995) extensively re-

viewed the concept of percent and provided several ways in which percent operates as

a functional number. At the broadest level, percent alternates into a literal and non-

literal usage. Within the literal usage, percent further alternates among finer-grained
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categorizations. Percent can represent a part-whole quantity or a comparison between

quantities. Percent can also represent a description of a quantity that already exists

or it can represent a newly created quantity. Within mathematics, percent problems

can often be represented as an equation as in (1) where the missing piece of the equa-

tion (either percent, base, or percentage) determines the functional operations needed

to solve the percent problem. In (2), the percent is given as 20% and the base is given

as 250. The task is to solve for the percentage using the information that is given.

Word problems are a more difficult form of percent problems as students must find

the givens and figure out what needs to be solved. To solve percent word problems,

students must use the words provided in the context of the problem description to

conceptually understand how to construct the percent equation from the information

provided. In order to construct the percent equation, the correct “missing” piece of

the equation must be identified and the correct other parts of the equation must be

found. Solving percent word problems is similar to percent “in the wild” – where

percent is used to convey information and individuals are asked to make sometimes

serious life decisions based on the information given within the context.

20% of 250 = (3.2)

Examples of percent in context can be seen in (1)-(4) taken from the COCA corpus.

Example (1) shows a part-whole use of percent with the reference to 12 to 15 per-

cent of a group – here archers of a certain type. According to Parker and Leinhardt

(1995) this is a descriptive usage of percent. In example (2), 5, 000 percent refers

to a literal number. That it refers to a literal number is not immediately apparent

and can only be confirmed through additional context (not provided here) around

the given sentence. In this example, 5, 000 percent indicates a rate of increase from
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the original cost of the drug to its new cost. This is again a descriptive use of per-

cent. The percent in (3) is rather unique. One of the many ways that percent is

used mathematically is in likelihoods. As such, understanding likelihoods assumes an

understanding of percent. In this example, the 1.25 percent is being reported as an

additive increase to an original likelihood. Here percent is used as a comparison and

is descriptive. In example (4), the number 100% refers to an abstract concept (“love”)

that resists objective quantification. Thus, the percent in this context is non-literal

and is used to convey the sense of “completeness” or “wholeness”. Percent in this

case is demonstrative.

If you’re among the 12 to 15 percent of archers who shoot carbon

arrows, you’re pointed in the right direction. (magazine)
(1)

I get that, but if you raise it 5, 000 percent, it seems a bit like a

hostage situation. (spoken)
(2)

Having a good teacher in the fourth grade alone increases by 1.25

percent the likelihood that a student will go to college. (magazine)
(3)

Part black, part white. It doesn’t matter, Mrs. Ryan. This child

will be 100% loved. (movies/TV)
(4)

Across all examples (1)-(4), the percent numbers are all numbers in context. As

numbers, each of these examples is influenced by number characteristics (Dehaene,

2011; Lakoff & Núñez, 2000). Additionally, distance and size effects, impact how

these numbers are understood, where comparisons between quantities are affected

depending on how large the two quantities are and how different in size they are

(Moyer & Landauer, 1967). Other numerical effects are rounding effects (Dehaene,

54



2011) and the pragmatic halo effect (Kao, Wu, Bergen, & Goodman, 2014) which

impact how a number is understood with round numbers being less precise. Moving

from numbers to context, now brings things like syntax and semantics into the picture.

This study examines the functional alternations of percent in terms of percent oper-

ational roles and the context associated with such roles. Here, the term “functional”

hearkens to functional theories of syntax and grammar, which propose that functional

constraints inform the well-formedness of sentences and the phrases constituting those

sentences (Kuno, 1987). The term “alternations” refers to theories of lexical knowl-

edge and semantics, which propose that the context surrounding a word, and the

context affording the use of the word, effects subtle changes in the meaning of the

word (Levin, 1993). In this study, we propose that functional alternations can ac-

count for changes in the meaning of percent. As noted above, how we understand

the concept of percent and what we are able (or not able) to do with it shifts when

we use it in a non-literal, demonstrative sense as opposed to using it in a literal de-

scriptive sense. We expect that contexts that allow for frequent alternations between

demonstrative and descriptive functions, perhaps in some cases requiring frequent

alternations, will be more resistant to predictive modeling than contexts that restrict

such alternations.

This article takes a natural language processing approach to begin answering these

questions by showcasing how well the recent transformer model BERT performs on

classification percent context tasks. The model section describes the BERT model

used to classify the percent contexts for our different studies. The data section pro-

vides meta data for the corpus used in the studies as well as the preprocessing nec-

essary for data preparation. In study 1, we address the broad question of percent

functional alternations between literal and non-literal usage and look for clusters
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within the classifications of the model output along the spectrum of language formal-

ity. In study 2, the linguistic cues associated with percent computations within the

context are analyzed as possible ways to improve the computational model. Finally,

in study 3, we address deeper functional alternations of percent by looking at percent

contexts which include two percent references. A full description of the analysis and

results is presented in the general discussion section of the paper. Additionally, the

article suggests that percent context “in the wild” might be best analyzed through

the functional alternations of percent usage. In addition, we demonstrate the effec-

tiveness of the BERT model for classification of number specific language tasks and

show that adding additional linguistic cues does not significantly improve the model

performance. We believe this paper contributes to the current research at the inter-

section of applied linguistics and numeric cognition and to the study of the concept

of percent more specifically.

3.2 Models

In recent years, pretrained language models have been shown to be effective across

many natural language processing tasks (Devlin, Chang, Lee, & Toutanova, 2019).

One such model, BERT, or Bidirectional Encoder Representations from Transform-

ers, has achieved state-of-the-art performance on multiple natural language process-

ing tasks including dependency parsing, general language understanding, natural lan-

guage inference, question answering, and sentence-pair completion (Merchant, Rahim-

toroghi, Pavlick, & Tenney, 2020). Further studies indicate that BERT models obtain

substantially improved results on tasks such as identification of metaphors (Choi et

al., 2021) and classification of scientific articles (Garćıa-Silva & Gómez-Pérez, 2021).
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BERT is a neural language model that is pretrained on a large general purpose cor-

pus by jointly conditioning on left and right context. As a Transformer model, BERT

consists of multiple layers that each contain multiple attention heads. The attention

heads assign weights to describe the relative importance of all other tokens in pro-

ducing the next representation of the current token (K. Clark, Khandelwal, Levy, &

Manning, 2019). The BERT pretrained model can be fine-tuned to perform specific

downstream tasks through the addition of a single subsequent layer. In studies 1 and

3, we employed the Hugging Face implementations of BERT (bert-base-uncased

and BertForSequenceClassification) with a subsequent tanh layer. Tanh is the hy-

berbolic tangent function which as an activation function overcomes the vanishing

gradient problem in a computationally efficient manner and often converges faster

than other activation functions often employed for multilabel classification.

3.3 Data

Our data was collected from the Corpus of Contemporary American English (COCA)

Davies (2015). COCA is a well cited monitor corpus that contains over 1 billion

words across 30 years (1990-2019). COCA is balanced across eight genres: spoken,

fiction, popular magazines, newspapers, academic texts, fiction, television and movies,

blogs, and web pages. These eight genres provide a variety of linguistic contexts that

represent a spectrum of language formality. On one end of the spectrum, the spoken

and movies/TV genres group together to represent the less formal language genres.

Theses genres tend to contain less structure and formatting and have fewer numbers

overall. The unplanned dialogues and more everyday content in these genres may

contribute to this informal structure. On the opposite end of the spectrum, the

academic genre contains the most structure of all the genres with the fiction genre
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being the second most structured genre within the corpus. The nature of academic

research and fiction writing styles as well as publishing requirements narrows the

structure and vocabulary of these genres. Within the center of the spectrum are the

other genres: magazine, web, blog, and news. To varying degrees each of these center

genres contain both some structure and some everyday conversation as well as the

usage of many numbers. COCA provides interactive websites for the corpus as well as

search-able lists for the top 60,000 most frequent words in the corpus. “Percent” can

be found in that list and so COCA provides extensive corpus information about the

word “percent”. However, COCA does not provide any information for the percent

symbol “%” which is of equal interest in our studies and to percent understanding

“in the wild”. Therefore, we expand our interest in {percent} to include {percent, %,

percentage, percentile}, and any variants of those words within the COCA data.

3.3.1 Data Preprocessing

We separated out all sections from COCA that contained the percent terms of interest

listed above. We then looked at the sub-section level within COCA for instances of

the search terms. On average, the sub-section lengths were about 1000 characters long

and the terms of interest were allowed to be located anywhere within the sub-sections.

Importantly, punctuation was preserved within all data. However, punctuation that

had been added to the corpus as markers (within the spoken genre) was removed,

specifically the “@!” symbols before each speaker as well as the “@” symbol usage

overall within the spoken genre.
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3.4 Study 1

For study 1, we evaluated the use of percent in different contexts through a text

classification task in which a language model was trained to predict genre as labeled

in the COCA corpus. As noted above, the COCA genres represent a spectrum of

language formality with academic and fiction texts comprised of more formal, more

highly structured examples of the use of percent; spoken and movie/TV texts com-

prised of less formal, less highly structured examples; and news, magazine, blog, and

web texts comprised of a mixture of more formal and less formal, more highly struc-

tured and less highly structured examples. We hypothesized that the model would

perform better at classifying genres at the ends of the spectrum – i.e., academic,

fiction, spoken, and movies/TV – than it would at classifying genres in the middle of

the spectrum – i.e., news, magazine, blog, and web. We included a random model as

a baseline model and a decimal model as a control model to compare with the percent

model which was our model of interest.

3.4.1 Data Processing

For study 1, we created control data by separating out all sections from COCA that

contained decimals to the ones and to the hundredths place (e.g. 3.47), as decimal

is often defined in this way. We further cleaned the data to contain only single

instances of a decimal term in each sub-section of context. The data consisted of

randomly sampled sub−sections from the COCA data for percent and for decimal,

evenly distributed across the genres. Each sub−section was labeled with one of the

eight genres. Table 3.1 shows the dataset size by genre for study 1.
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Model Academic Fiction News Magazine Blog Web Spoken Movies/TV TOTAL
BERT
Percent

12685 12750 12282 12459 12255 12280 12672 12744 100127

BERT
Decimal

12704 12750 12188 12645 12282 12366 12583 12750 100268

Table 3.1: Study 1 dataset size by genre.

3.4.2 Methods

We used the Hugging Face (Wolf et al., 2019) implementations of BERT (bert-

base-uncased and BertForSequenceClassification) (as described above) within a

TensorFlow pipeline. For tokenization, we set a maximum sequence length of 256,

padding shorter sequences with zeros and truncating longer sequences. We used a

base model of 12 layers with 768 units and 12 attention heads per layer. For fine-

tuning, we input the last layer embeddings of the classification token ‘[CLS]’ into an

8-dimensional tanh layer (the number of classification labels). We trained the models

for 3 epochs with batch size 32, the Adam algorithm with weight decay (AdamW),

a learning rate of 3e-5, and a cross-entropy loss function. We used 10-fold cross-

validation for training and validation and report the average of the results. We

performed our computations via a Google Colab Research notebook for high-RAM

GPU processing.

3.4.3 Results and Discussion

Using the percent and decimal singles sub-sections data described above, our models

performed the F1-scores seen in Table 3.2. First, we point out in Table 3.2 that

both BERT models perform significantly better than the random baseline model.

The advantages of transfer learning, transformer learning, and bidirectional attention

help the BERT models to perform much better than chance. It is worth noting that
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the “control” decimal model performed much better than the percent model overall.

This was to be expected as there is more variation, or noise, within the percent terms

of interest. The decimal model only has one format for its term of interest (e.g.

1.34), the percent model has several more (e.g. “%”, “percent”, “percentage”) and

introduces issues like changes in part-of-speech for the term of interest.

Model F1 Score Accuracy Precision Recall
Baseline 0.13 0.13 0.13 0.13
BERT Percent 0.87 0.88 0.88 0.88
BERT Decimal 0.96 0.96 0.96 0.96

Table 3.2: Study 1 averaged results across 10-fold cross validation.

Looking more closely into model performance across genres (see Table 2), we see

that the BERT percent model performs very well on the genres at the ends of the

language formality spectrum described above: academic and fiction genres at the

more formal end and spoken and movies/TV genres at the less formal end, which is

in keeping with our hypothesis for the study. The percent model classifies the genres

at the center of the language formality spectrum reasonably well, performing best on

the news genre followed by the magazine genre. The model performs substantially

worse on the blog and web genres with respect to all other genres. One reason that

the percent context in the news genre might stand out is the scripted nature of any

functional alternations – i.e., the descriptive function may be required for more serious

and informative stories and programs whereas the demonstrative function may play

a larger role in human interest and opinion-based stories and programs. The BERT

percent model achieved its worst performance on the web and blog genres. Examining

the COCA blog data, it appears that blogs contain information about news events,

health and fitness regimes, instructional posts, social issues, personal stories, and so

on – all of which create extra noise within the data. Similarly, the web genre is a

general web scrape of the internet which would include content from all of the other
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genres and make it difficult for the model to clearly predict anything unique about

this genre. With respect to the BERT decimal performance across genres, we see

similar trends but improved performance.

Model Academic Fiction News Magazine Blog Web Spoken Movies/TV
BERT
Percent

0.95 1.0 0.91 0.83 0.63 0.63 1.0 1.0

BERT
Decimal

0.97 1.0 0.95 0.90 0.87 0.79 1.0 1.0

Table 3.3: Study 1 accuracy by genre averaged across 10-fold cross-validation.

3.5 Study 2

In this study we turned to the numeric cognition, math education, and linguistic lit-

erature for theoretical guidance and constructed four context features that could be

created computationally from the data. Our aim of study 2 was to see how well we

could improve on the output of a BERT model using theoretically motivated but com-

putationally constructed context features. Based on the ability of the BERT model

attention heads to capture semantic and syntactic information, we hypothesized min-

imal improvement with the addition of the context features. To test this hypothesis,

we constructed a 3 phase approach to the study. Across all 3 phases, we again pre-

dict on genre to investigate the relationship between the concept of percent and the

context of percent. In phase 1, we use the constructed context features to predict

genre; in phase 2, we use the ‘[CLS]’ token BERT embeddings from study 1; and, in

phase 3, we use a combination of the context features and the BERT embeddings.
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3.5.1 Context Features

We annotated the percent data from study 1 according to 4 context features: percent

number range, percent number roundness, other number in context, and direction-

ality in context. In order to create the context features we performed additional

preprocessing of the percent data from study 1. We searched for all number words

in front of percent terms of interest and converted them to numeral form. The two

features: percent number range and percent number roundness correspond to a num-

ber existing directly in front of the percent term of interest (which we will call the

percent number). The other two features: other number in context and directionality

in context search over the entire sub-sections to create the feature sets.

The percent number range feature was divided into 4 labels {within, above, be-

low, none}. This feature was based on the common definition of “percent” as “of a

hundred”. The within label categorizes all values of the percent number n, where

0 ≤ n ≤ 100, the above label is for all n > 100, the below label for all n < 0. The

none label was used to categorize all sub-sections where no percent number exists.

For instances when the percent term of interest occurred as the first word in the

sub-section, the label was none.

The percent number roundness feature was based on the pragmatic halo effect which

states that round numbers are more approximate and thus have a fuzzy value where

the intended meaning is not an exact value as opposed to non-round numbers (Kao et

al., 2014). The feature was divided into 4 labels {round, unround, decimal, none}. We

distinguish between integer and decimal percent numbers and assume no rounding for

the decimal label. The round label categorizes all integer percent numbers that end

with either 5 or 0. The unround label is for all integer percent numbers that end in

numbers other an 5 or 0. The none label was used to categorize all sub-sections were
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no percent number exists. Similarly to the percent number range feature, for instances

when the percent term of interest occurred as the first word in the sub-section, the

label was none.

The other number in context feature was motivated by the question of number fre-

quency across genre. Our section-level rational number survey showed that numbers

occurred frequently throughout COCA and often occurred together. However, the

survey did not scale to the sub-section level of the data. We thought it relevant to

label at the sub-sections level. The other number in context feature was labeled {1,

0}, 1 for other numbers being present in the context, 0 if absent.

The directionality in context feature was labeled {up, down, neutral, none}. This fea-

ture was based on the ratio comparison aspect of percent − the increase or decrease

between compared percents. We created a list of upward and downward direction

terms via linguistic dictionaries and synonym lists. We finalized the upward and

downward list and also ranking on proximity to percent term of interest by commit-

tee consensus. Examples of the up label category words are “increase”, “climb”, “up”,

“hike”, “spike”, and “rise”. The down category included words such as “decrease”,

“down”, “drop”, “fall”, and “loss”. If a word from the down category occurred closer

to the percent term of interest than the label would be down. Likewise, if a word

from the up category was closer than the label would be up. However, on occasion, a

word from the up category and a word from the down category would be equidistant

from the percent term of interest and then the label would be neutral. If none of

the words in either of the direction categories were found in the sub-section then the

label was none.
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That statement is supported by the rapid increase - 15 to 20 per-

cent per year - in the use of herbal remedies and medicinal plant

derivatives worldwide (Consumer Reports 1995).

(5)

In the above example 5 the bold text in the part of the context found by our compu-

tation methods for the feature creation. For the feature labels, this sub-section would

be labeled: {within, round, 1, up}. We processed all percent data from study 1 and

obtained feature sets for our four context feature sets. The context feature set data

were used for study 2.

3.5.2 Data Processing

The data for this study used the preprocessed percent data as described in Section

3.1. We constructed the context feature vectors for phase 1 as described above. For

phase 2, we constructed BERT embedding vectors using the 768-by-N-dimensional

vectors from the CLS token in the last hidden layer of the fine-tuned model from

study 1. The CLS token is often used for classification tasks because it is a good

representation of the raw sequence input (Rogers, Kovaleva, & Rumshisky, 2020).

We scaled the vector values via a minimum-maximum algorithm. For phase 3, we

concatenated the context feature and the scaled BERT embedding vectors to fit the

implemented models. The dataset size by genre is the same as that of the study 1

BERT percent dataset as shown in Table 3.1.

65



3.5.3 Methods

For phase 1, we used the scikit-learn Python package to implement two traditional

machine learning models – i.e, Categorical Näıve-Bayes, and Multi-Layer Perceptron

– using the context feature vectors as described in Section 5.1. We used an exhaustive

grid search to optimize the hyperparameters for the Multi-layer Perceptron model and

found best activation (ReLU), alpha (0.05), hidden layer sizes (50, 100, 50), learning

rate method (adaptive), and solver (Adam). For phase 2, we implemented Multi-

nomial Näıve-Bayes and Multi-Layer Perceptron models using the BERT embedding

vectors. We again used an exhaustive grid search to optimize the hyperparameters for

the Multi-layer Perceptron model and found best activation (tanh), alpha (0.0001),

hidden layer sizes (100, ), learning rate method (adaptive), and solver (stochastic

gradient descent). For phase 3, we implemented Mixed Näıve-Bayes and Multi-Layer

Perceptron models using the concatenated vectors. We again used an exhaustive grid

search to optimize the hyperparameters for the Multi-layer Perceptron model and

found best activation (tanh), alpha (0.0001), hidden layer sizes (50, 50, 50), learning

rate method (adaptive), and solver (stochastic gradient descent).

3.5.4 Results and Discussion

The overall results across the different phases of study 2 can be seen in Tables 3.4

and 3.6. For both the Näıve-Bayes and Multi-Layer Perceptron models, context

features alone do not perform well. Overall, the Näıve-Bayes models outperformed

the Multi-Layer Perceptron models. Using the Näıve-Bayes, the BERT embeddings

performed best but their performance was impaired when concatenated with the

context features. This impairment might reflect the assumption of independence
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within the Näıve-Bayes model. There was implicit dependence between the BERT

embeddings and the context features as both were created from the same raw data

sub-sections. With the Multi-layer Perceptron model, the addition of the context

features to the BERT embeddings also impaired the overall F1-score, perhaps also

due to overlap in the information stored in the BERT embeddings and the context

features. Breaking down the results by genre, we see in Tables 3.5 and 3.7 a similar

trend to that of study 1 by the BERT model. Across all models, the genres at the

center of the language formality spectrum perform the worst. For both Näıve-Bayes

and Multi-Layer Perceptron models, the addition of the context features to the BERT

embeddings did not improve the classification across the language formality spectrum.

Model F1 Score Accuracy Precision Recall
Context Features 0.12 0.17 0.15 0.17
BERT Embeddings 0.85 0.86 0.86 0.86
Combined 0.78 0.82 0.81 0.80

Table 3.4: Study 2 Näıve-Bayes results averaged across 10-fold cross-validation.

Model Academic Fiction News Magazine Blog Web Spoken Movies/TV
Features 0.22 0.14 0.00 0.24 0.00 0.00 0.09 0.27
BERT 0.92 0.99 0.85 0.83 0.64 0.60 0.98 0.98
Combined 0.93 0.95 0.87 0.76 0.55 0.58 0.87 0.76

Table 3.5: Study 2 Näıve-Bayes F1-scores by genre averaged across 10-fold cross-
validation.

Model F1 Score Accuracy Precision Recall
Context Features 0.14 0.18 0.15 0.18
BERT Embeddings 0.78 0.79 0.79 0.79
Combined 0.65 0.70 0.69 0.67

Table 3.6: Study 2 Multi-Layer Perceptron results averaged across 10-fold cross-
validation.
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Model Academic Fiction News Magazine Blog Web Spoken Movies/TV
Features 0.24 0.16 0.12 0.22 0.00 0.00 0.11 0.23
BERT 0.91 0.92 0.78 0.74 0.60 0.59 0.88 0.78
Combined 0.74 0.83 0.68 0.57 0.46 0.46 0.77 0.69

Table 3.7: Study 2 Multi-Layer Perceptron F1-scores by genre averaged across 10-fold
cross-validation.

3.6 Study 3

Study 1 addressed a broad question of functional alternations between literal and

non-literal usage of percent in context. For study 3, we dove deeper into the concept

of percent and extended the context to include two instances of percent in order

to examine the functional alternations of percent at the comparison level. In this

study, we again compared performance of BertForSequenceClassification models on a

genre classification task. Our data for this study was the single instance of percent

data from study 1 and a new set of double instance of percent data for comparison.

We hypothesized that both models would perform equally well at both ends of the

language formality spectrum but that the double model would perform better in the

center of the spectrum due to the additional percent input in the context.

3.6.1 Data Processing

The single instance data is the same data used in study 1. For the double instance

data we processed the sub-sectioned COCA data to remove sub-sections that contain

any combination of exactly two percent terms of interest. We further cleaned the data

in exactly the same manner as the single percent data. After cleaning the percent

data, there was extreme disparity in the sample sizes across the genres (smallest

genre size was fiction) for the double percent data. To address this issue, we chose

to create only one stratified percent double dataset and run the model once without
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cross validation as the sample size was too small. Table 3.8 shows the dataset size by

genre for study 3.

Model Academic Fiction News Magazine Blog Web Spoken Movies/TV TOTAL
BERT
Singles

1267 1275 1224 1241 1231 1232 1271 1275 10016

BERT
Doubles

1585 506 1437 1390 1650 1640 1343 1524 11075

Table 3.8: Study 3 dataset size by genre.

3.6.2 Methods

Our methods for study 3 replicated those of study 1 in terms of the implementations

of BERT and model hyper-parameters. Due to the limited size of the double instance

of percent dataset, instead of 10-fold cross-validation we partitioned the data into

training, validation, and test sets at a ratio of 6:2:2.

3.6.3 Results and Discussion

The percent singles model and percent doubles model performance is shown in Ta-

ble 3.9. Both models performed equally well on the classification task for the data

described above with little overall difference to report. Examining Table 3.11 for a

closer look across genres, we see that the percent singles model performed very well

on the most formal and least formal language genres and performed worst on the

center genres of the language formality spectrum, similar to study 1. We see that

the percent doubles model performed is a similar manner. The drop in the fiction

genre for the doubles model links back to the size of the fiction data sample so it is

not surprising for this to be lower than the singles model. Overall, the inclusion of

a second percent into a context does not seem to improve the models performance.
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These results did not fully support our hypothesis that added percent complexity to

the context would improve the model’s ability to classify across the entire language

formality spectrum. The doubles model did perform equally well to the singles model

across the spectrum but its improved performance in the center came at the cost of

its performance on the external genres. The added complexity of the percent context

seemed to have shifted some of the attention of the doubles model.

Model F1 Score Accuracy Precision Recall
BERT Percent Singles 0.76 0.77 0.76 0.77
BERT Percent Doubles 0.76 0.76 0.76 0.76

Table 3.9: Study 3 results averaged across stratified data.

Model Academic Fiction News Magazine Blog Web Spoken Movies/TV
BERT
Percent Singles

0.90 0.87 0.82 0.61 0.68 0.18 0.99 0.95

BERT
Percent Doubles

0.89 0.80 0.81 0.58 0.70 0.31 0.97 0.95

Table 3.11: Study 3 accuracy by genre averaged across stratified data.

3.7 General Discussion

This article has looked at the concept of percent as it changes “in the wild” from a

natural language processing perspective. In study 1, we computationally confirmed

our intuitions that percent contexts which on the ends of the language formality

spectrum are easier to categorize then contexts in the center of the spectrum. We

tried to further enhance the model in study 2 by creating a custom feature set –

specific to percent problem contexts. Study 2 further showcased the effectiveness of

the BERT model as the addition of the context features to the BERT embedding

only marginally improved the model performance. As BERT has been known to

implicitly code semantic and syntactic information in its embeddings, this outcome is
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not entirely surprising. In study 3 we took a slightly more exploratory approach and

delved deeper into the concept of percent to analyze the BERT model performance on

contexts containing a single percent instance versus two percent instances. Study 3

showed similar results for both models across the differing levels of percent comparison

within contexts. However, for study 3, we were not able to gather sufficient data for

all the genres and this limited the scope of the study.

Through this work, we found that navigating the concept of percent requires some-

thing like code-switching in that functional alternations involve variances in language

and meaning. Genres with more frequent and spontaneous alternations were less pre-

dictable and in a sense more confusing for the model. Genres with less frequent or

more scripted alternations were more predictable and in a sense easier for the model

to understand. Considering that the texts we used across our studies was produced by

people “in the wild”, our findings could have implications for understanding why the

concept of percent can be so difficult to master and for identifying how mastering the

code-switching aspects of the concept of percent might contribute to better outcomes

for students, teachers, and the general public.

For future work, we would like to look more closely into additional BERT model

embeddings as the percent token might offer additional insight to enhance or even

replace that of the ‘[CLS]’ token (this would be relevant only for the single percent

context data). We also want to further annotate the data using human annotation to

further mark each sub-section with additional features of interest: literal, figurative,

ratio, comparison. Lastly, we would like to look more closely into the percent doubles

data. Future work would need to enhance certain genres or find additional data sets

to further explore percent comparison for contexts containing more than one percent

instance.
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Chapter 4

An Introduction of Percent into

Magnitude Comparison Tasks

Using Computer-Mouse Tracking

Methods

4.1 Introduction

Percent is ubiquitous in daily life. From social media and news articles to health and

consumer decisions, percent is often used to express quantity and comparisons. The

concept of percent is a mathematical tool used for generalized comparisons. According

to Parker and Leinhardt (1995), percent is “represented by a numeral and symbol

combination that is commonly converted to decimals and fractions while being used

in comparative situations of many types.” The concept of percent is taught during
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rational number learning and is often conflated with fraction and decimal number

concepts. Although taught early and used often, understanding the concept of percent

still remains a challenge to both students and adults (Carpenter et al., 1975; Chen &

Rao, 2007; Edwards, 1930; Kouba et al., 1988; Kruger & Vargas, 2008; Scribner Guiler,

1946). To address this challenge, we take a numeric cognition approach to exploring

the relationships between percent and other number types within rational number

space.

The field of numeric cognition has well established the importance of understanding

the nature of mental representations of numerical magnitudes. One such way this has

been studied is the distance effect in magnitude comparison tasks, which states that

distinguishing between two numbers is easier the greater the magnitude distance be-

tween them. Distance effects with single digit comparisons have been found to follow

a logarithmic function with comparisons between larger magnitudes being more diffi-

cult, when holding the distance between the numbers constant (Moyer & Landauer,

1967). This distance effect has been observed in children as well as adults (Dehaene,

Dupoux, & Mehler, 1990; C. R. Gallistel & Gelman, 1992; Xu & Spelke, 2000).

For the majority of numeric cognition research, distance effects have been inferred

based on discrete measures such as reaction time and accuracy from button presses.

However, in recent years, related studies have used continuous measures by tracking

hand and eye movements, thus allowing for a rich and dynamic measure of process-

ing over time during “cognition-as-competition” style tasks. Spivey, Grosjean, and

Knoblich (2005) described the cognition-as-competition approach in a language com-

prehension task where the participants were asked to use a computer mouse to choose

a picture the represented the spoken word that was presented to them. The (x, y)

coordinates of the computer mouse-trajectories were used as the continuous measures
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for the study. Spivey et al. found that when the spoken words were phonetically simi-

lar to each other (e.g. CANDY versus CANDLE), the trajectories were pulled towards

the incorrect response early in the process. Thus showing a sensitivity to influence

and dynamic competition during the decision process. This cognition-as-competition

approach is related to embodied cognition where bodily affordances contribute to the

process of cognition.

A similar bodily affordance in numeric processing is the SNARC effect (Spatial-

Numerical Association of Response Codes; (Dehaene et al., 1993)). A SNARC effect

occurs in tasks with numeric stimuli along a continuum. The traditional SNARC

effect is horizontal where participants tend to select smaller numbers faster on the

left and larger numbers faster on the right. However, this is culturally dependent

(see Shaki et al. (2009)). The SNARC effect has also been observed along both the

horizontal and vertical axes together (Sixtus et al., 2019) as well as in three dimen-

sions (Winter et al., 2015). In two recent single-digit magnitude comparison studies,

directed hand trajectories were used as continuous response measures - both showed

distance effects (Santens, Goossens, and Verguts (2011); Song and Nakayama (2008)).

In their numeric comparison task for single-digit integers, Song and Nakayama (2008)

used a visually-guided manual reaching task to provide direct evidence for analogue

representation of (integer) numbers. Song and Nakayama (2008) reported their results

with an emphasis on the SNARC effect. Whereas Santens et al. (2011) emphasized

their results in terms of competitive processing. Santens et al. used an additional

congruent and incongruent manipulation to show that the distance effect remains

independent of congruency.
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4.2 Magnitude Representations

Numeral representation plays a role in the processing of a numeric magnitude. As

integers move from single to multi-digit numerals, the question of holistic versus

componential processing is raised. Overall multi-digit integers seem to be processed

componentially (see (DeWolf et al., 2014) for a brief review of these tasks). DeWolf

et al. (2014) look at magnitude comparison tasks across the rational number realm

to include multi-digit integers, fractions, and decimals and find distance effects for all

three number types.

The numeral representation of fractions, decimals, and percents are different than

integers. Researchers have examined how the numeral representations of fractions

relate to the distance effect. Bonato, Fabbri, Umilta, and Zorzi (2007) found no

distance effect with respect to fraction magnitude comparison. While Schneider and

Siegler (2010) argue that the fraction must be sufficiently difficulty enough to require

an integrated magnitude to get distance effects. Another aspect of fractions is the

dual structure of the format with a numerator and a denominator. DeWolf et al.

(2014) find that fractions are harder to process in a magnitude comparison task than

decimals and multi-digit integers and suggest it is due to this bipartite (a
b
) structure

of fractions.

Decimal numeral representation is very similar to that of integer. The decimal point

is the key difference between these two number formats and often leads to processing

difficulties both in children and adults (Givvin, Stigler, & Thompson, 2011; Rittle-

Johnson, Siegler, & Alibali, 2001). Often, conceptual knowledge from integers (whole

numbers) is applied when processing fraction or decimal numeral representations -

this is referred to as the whole number bias (Hurst & Cordes, 2016; Vamvakoussi &
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Vosniadou, 2004).

Percent is represented more similar to decimal than to fraction. However, there is

often an additional symbol, the “%” symbol (or the word “percent”) that perhaps

adds difficulty to processing a percent representation. Additionally, a percent could

also contain a decimal or fraction numeral (Parker & Leinhardt, 1995).

4.3 Goals of the Present Study

In the current study, we introduced the numeric magnitude for percent. We ex-

amined the similarities and differences of the magnitude representations for percent

compared with the rational number magnitude representations of single digit integers,

decimals, and fractions. We focused on adult performance as each of these number

types should be firmly acquired by adulthood. For the single-digit integers, we sought

to replicate the Song and Nakayama (2008) reaction time and accuracy hand-reaching

results. Across the integers, decimals, and fractions, we sought to conceptually repli-

cate the DeWolf et al. (2014) reaction time and percent error results using values

evenly spaced between 0 and 1. Additionally, we added the magnitudes for quarter

and three-quarter to evaluate the different numeric representations across these com-

monly used magnitudes. We assumed that, based on previous work, decimals would

be processed fastest and with the least amount of error. Fractions would have the

most errors and would be processed the slowest due the the bipartite structure. We

hypothesized, based on the similarity of numeral representation, that percents would

be processed similarly to decimals. We also hypothesized an increase in processing

speed across all number types for the privileged quarter and three-quarter magnitudes

listed above. We also expected to see a distance effect for the percent as well as for
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single-digit integer, decimal, and fraction number type as this is considered indicative

of magnitude comparisons based on an internal mental number line.

4.4 Study Design

4.4.1 Participants

75 undergraduate students at the University of California, Merced (mean age 19.8,

49 females), participated in the study for extra credit. All participants were right-

handed and had normal or correct-to-normal vision. All experimental protocols were

approved by the University of California, Merced, IRB.

4.4.2 Interface

The visual interface consisted of three, equally sized (128x400 pixel) grey rectangles

equally spaced across the top of the 23-inch screen against a black background. The

middle rectangle was centrally located with the other two rectangles equal distance

from the center. The black Arabic digit was presented on the central rectangle (see

Fig 4.1).

4.4.3 Task

Participants were seated 70 cm from the front of the monitor. Seat-height was ad-

justed for appropriate eye-level with monitor. For simplicity, the Integer task will be

described. Before each block, participants were instructed that the reference number
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Figure 4.1: Magnitude comparison task. Participants were asked to use the computer
mouse to select the left square for quantities smaller than the reference number, the
right square for quantities larger than the reference number, and the center square
for quantities equal to the reference number.

for the task would be the number 5. Participants were provided a visual aid at any

time during the task to remind themselves of the reference number and also given

a break between trials with a reminder of the reference number. The participants

clicked out of the break to begin each new trial. For each trial, three rectangular

buttons were presented across the top of the screen. Upon upward movement of the

computer-mouse, an Arabic digit between 1 and 9 appeared in the center rectangu-

lar button. Participants were instructed to click on the left rectangular button for

numbers that were smaller than the reference number (5 for this task), to click on

the right rectangular button for numbers that were larger than the reference number,

and to click on the middle rectangular button when the reference number appeared.

The left-right computer-mouse clicks were not counterbalanced due to interference

with the typical number line arrangement. Participants performed one block of 45

trials with each Arabic digit appearing 5 times. Participants practiced with alpha-
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betic letters “a” to “i” with the reference letter being “e”, each letter was practiced

one time. Participants received feedback at the end of the practice block indicating

accuracy and reaction time. The task was similar for fraction, decimal, and percent

tasks with reference numbers of 1
2
, 0.5, and 50%, respectively.

(a) (b)

Figure 4.2: Conceptual replications of the distance effect from study 3 in DeWolf
et al. (2014) (a) Percent error distributions for magnitudes for percents, fractions,
decimals, and integers. (b) Response time distributions for magnitudes for all number
type tasks. The solid vertical line marks the reference value. See Table A.1 in the
appendix for numerical values related to magnitudes along x-axis.

4.4.4 Data Treatment

All data was assigned distance and magnitude features following Song and Nakayama

(2008) and DeWolf et al. (2014) respectively. The distance feature describes the

absolute distance from the reference number. The magnitude feature provides an

alphabet letter to represent a numeric magnitude (distance from zero).
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Discrete Measures

Accuracy data was centered. For reaction time data, incorrect responses were re-

moved. Reaction time data was log transformed and centered. The log transforma-

tion normalized the time-dependent skew of the data. The centering allowed for a 0

average reaction time for interpretation.

Continuous Measures

For trajectory analysis, we included only correct responses. For each participant,

we temporally normalized the computer-mouse tracking trajectories by resampling

101 equally spaced time points during the trajectory movement and spatially nor-

malized the trajectories by setting common start and end points following Spivey et

al. (2005) using the MouseTrap software (Kieslich, Henninger, Wulff, Haslbeck, &

Schulte-Mecklenbeck, 2019) in R.

4.5 Results

Following DeWolf et al. (2014), we collapsed over ordering of number types for our

statistical analyses. We analyzed the data along two separate tracks: discrete and

continuous measures. For discrete measures, we performed separate linear mixed ef-

fects models for accuracy and reaction time across the magnitude data and report

the results in the following subsection. For both models, the intercept was set to

the percent condition to allow for description of the concept of percent within the

rational number space along these discrete measures. For continuous measures, for

each rational number type, we calculated the maximum absolute deviation (MAD)
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of the trajectories for each distance using the MouseTrap software in R (Kieslich et

al., 2019). We analyzed the MAD results using one-way repeated measures ANOVAs.

For ANOVAs giving significant results, we performed post-hoc TukeyHSD tests to

find significant differences between pairs of distances. For each significant pair found,

we further explored significance along the temporal nature of the trajectories follow-

ing Dale, Kehoe, and Spivey (2007) where 8 or more consecutive t-tests along the

normalized time-path show significance at p < 0.01.

Table 4.1: Mean reaction time (non-transformed) and accuracy as a function of target-
standard distances (SE). The integer data (column 1) is a conceptual replication of
the Song and Nakayama (2008) study. Total time is reported as stimuli was displayed
after computer-mouse movement began.

Integer Fraction Percent Decimal
Total
time (ms)

Accuracy
(%)

Total
time (ms)

Accuracy
(%)

Total
time (ms)

Accuracy
(%)

Total
time (ms)

Accuracy
(%)

Distance 1 977(26) 82(4) 1570(73) 81(3) 977(23) 83(4) 943(26) 87(4)
Distance 2 918(22) 84(4) 1444(75) 83(4) 956(26) 85(4) 885(21) 87(4)
Distance 2.5 - - 1309(56) 83(4) 958(25) 84(4) 961(25) 89(3)
Distance 3 882(20) 85(4) 1309(61) 82(4) 917(23) 85(4) 882(20) 88(4)
Distance 4 892(24) 85(4) 1236(63) 84(4) 910(22) 86(4) 893(23) 89(3)
Standard 869(29) 97(1) 985(29) 97(2) 838(25) 94(2) 834(24) 97(2)

4.5.1 Discrete Measures

We analyzed the discrete measures of reaction time and accuracy from our data using

R (RStudio Team, 2020) and the lme4 software (Bates, Mächler, Bolker, & Walker,

2015). We performed separate linear mixed effects models to analyze the relationships

between reaction time and conditions (integer/fraction/decimal/percent) and between

accuracy and conditions. As fixed effects for both models, we entered the conditions.

As random effects for both models, we had intercepts for participants and magnitudes,

as well as by-participant random slopes for the effect of condition. Residual plots did

not reveal obvious deviations from assumptions from normality or homoscedasticity

upon visual inspection. We obtained p-values by comparing the full model with the
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effect in question against the model without the effect in question using likelihood

ratio tests.

Accuracy

The error distributions (inverse accuracy) at the magnitude level can be seen in

Figure 4.2a. As the magnitude comparisons get farther away from the reference,

error goes down - which shows the numeric distance effect similar to the DeWolf

et al. (2014) study. These results also replicated when averaging across magnitudes

where fraction response time were the highest (M = 16%, SD = 13) compared with

percents (M = 15%, SD = 9), integers (M = 15%, SD = 8) and decimals (M = 11%,

SD = 7) as the lowest. However, decimals errors were marginally higher than integers

in the original study.

The accuracy distributions (inverse error) at the distance level can be seen in Table

4.1. Similar to the Song and Nakayama (2008) study, accuracy increases as distance

from the target-standard increases. The integer column in Table 4.1 contains the

results for the replication study. We see this effect extended across all rational number

types - to include percent. The linear mixed effects model did not provide significant

results in errors based on number type. These results failed to replicate the DeWolf et

al. (2014) study 3 error which showed a significant difference between fraction errors

(higher) and other number type errors (lower). The error model coefficient estimates

with 95% confidence intervals are shown in 4.2.
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Table 4.2: Results for linear mixed model on error

Coefficient
Estimate

Lower 95%
CI Boundary

Higher 95%
CI Boundary

Percent (Intercept) 0.005 -0.066 0.076
Decimals -0.033 -0.090 0.023
Fractions 0.016 -0.034 0.066
Integers -0.001 -0.056 0.053

Response Time

The distribution of response times for correct decisions at the magnitude level can

be seen in Figure 4.2b which again shows the numeric distance effect similar to the

DeWolf et al. (2014) study. Magnitudes closer to the reference took longer in the

comparison task than magnitudes further from the reference number. These results

also replicate the ordering trend when averaging across magnitudes, fraction response

time were the highest (M = 1201 ms, SD = 317) compared with percents (M = 902

ms, SD = 153), decimals (M = 896 ms, SD = 147) and integers (M = 894 ms,

SD = 153) as the lowest. At the distance level, the response distributions (as shown

in Table 4.1) replicate Song and Nakayama (2008) by showing a decreasing linear

trend in the integer column as the distance from the standard (reference) increased.

This effect extends across all rational number types.

For our statistical analysis, the linear mixed effects model showed interesting results

on response time based on number type (see Table 4.3). A likelihood ratio test of the

model with the fixed effects against the model without the effects revealed a significant

difference between the models (χ2(12) = 975.61, p < 0.001). The model shows a

strong difference in the response times between fractions and the other number types.

This result replicates the DeWolf et al. (2014) work for fractions. The model results

also weakly suggest that the percent number type response times are faster than the
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average for rational numbers overall.

Table 4.3: Results for linear mixed model on response time (in log time)

Coefficient
Estimate

Lower 95%
CI Boundary

Higher 95%
CI Boundary

Percent (Intercept) -0.058 -0.112 -0.004
Decimals -0.009 -0.038 0.019
Fractions 0.280 0.214 0.344
Integers 0.002 -0.031 0.034

4.5.2 Continuous Measures

For continuous measures, following Song and Nakayama (2008), we averaged the

computer-mouse trajectories across distances from the reference number. The fol-

lowing results refer to this distanced trajectory data. For the continuous measures

results, we reported each number type results in a separate section below. For the

number types: fraction, decimal, and percent, we also include results for planned

comparisons of the quarter/three-quarter distance.

Integers

The MAD distributions for the integer trajectories are shown in Figure 4.3a. The

mean and standard deviations of the MAD distributions for each distance were for

distance 1 (M = 0.69, SD = 0.19), distance 2 (M = 0.64, SD = 0.18), distance 3

(M = 0.59, SD = 0.16) and finally for distance 4 (M = 0.60, SD = 0.18). Results for

a one-way repeated ANOVA for the integer trajectories showed a significant difference

in MAD based on distance F (3, 253) = 4.09, p < 0.01.. A visualization of the Q-Q

plot for the residual can be seen in Figure 4.3b. A post-hoc TukeyHSD test showed

significant differences between distance-from-reference 3 vs. 1 (p < 0.01) and 4 vs. 1
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(a) (b)

(c) (d)

Figure 4.3: Computer-mouse tracking analysis for integers

(p < 0.05). To assess each pair of trajectories for significance, we followed the above

mentioned approach by Dale et al. (2007) looking for 8 or more consecutive significant

t-tests along the normalized time-path. For distance trajectories 3 vs. 1 (Figure 4.3c),

and 4 vs. 1 (Figure 4.3d), we found significant lengths along the latter-end of the

time-paths of size 17 and 25, respectively.

Fractions

The fraction MAD distributions can be seen in Figure 4.4a. With mean and standard

deviations of the MAD distributions for each distance as distance 1 (M = 0.75,

SD = 0.17), distance 2 (M = 0.75, SD = 0.21), distance 2.5 (M = 0.71, SD = 0.22),

distance 3 (M = 0.69, SD = 0.23) and finally for distance 4 (M = 0.64, SD = 0.22).

The results from the fraction trajectories showed a significant difference in the one-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Computer-mouse tracking analysis for fractions

way repeated ANOVA in MAD F (4, 332) = 3.21, p < 0.05.. The Q-Q plot of the

residuals can be found in Figure 4.4b. A post-hoc TukeyHSD test showed significant

differences between distances 4 vs. 1 and 4 vs. 2 (p < 0.05) with significant lengths

along the latter-end of the 4 vs. 1 (Figure 4.4c) distance trajectory pair of size 17.

The significant length along the 4 vs. 2 (Figure 4.4d) distance trajectory pair was

from the middle to the latter-end and was of size 42. Additionally, we look at the

planned comparisons for the quarter distances for fractions. There is a length of
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interest early on in the trajectory path for the 2 vs. 2.5 distance trajectory pair of

size 13 (Figure 4.4e) distance trajectory pair. However the trajectory path for the 2.5

vs. 3 distance trajectory pair showed no interesting deviations (Figure 4.4f).

(a) (b)

(c) (d)

Figure 4.5: Computer-mouse tracking analysis for decimals

Decimals

The one-way repeated ANOVA’s for decimals for MAD showed no significant differ-

ences between trajectories for distances. The decimal MAD distributions and the Q-Q

plot for the residuals for the model can be found in Figures 4.5a and 4.5b, respec-

tively. The mean and standard deviations of the MAD distributions results for each

distance were distance 1 (M = 0.68, SD = 0.17), distance 2 (M = 0.63, SD = 0.17),

distance 2.5 (M = 0.65, SD = 0.19), distance 3 (M = 0.63, SD = 0.19) and distance

4 (M = 0.63, SD = 0.17). For the decimal quarter distance planned comparisons,
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only the 2.5 vs. 3 (Figure 4.5d) distance trajectory pair showed a significant length

of size 8 along the trajectory paths. The 2 vs. 2.5 (Figure 4.5c) distance trajectory

pair had consecutive t-tests of length size 4 - not long enough to be significant.

Percents

Similar to decimal, the one-way repeated ANOVA’s for percents for MAD showed

no significant differences between trajectories for distances. The percent MAD dis-

tributions can be seen in Figure 4.6a. The mean and standard deviations results of

the MAD distributions for each distance were distance 1 (M = 0.68, SD = 0.19),

distance 2 (M = 0.61, SD = 0.20), distance 2.5 (M = 0.62, SD = 0.19), distance 3

(M = 0.62, SD = 0.20) and distance 4 (M = 0.64, SD = 0.18). Figure 4.6b shows

the Q-Q plots for the model residuals. The percent quarter distance planned com-

parison results showed an interesting lack of significance for both distance trajectory

pairs, 2 vs. 2.5 (Figure 4.6c) and 2.5 vs. 3 (Figure 4.6d), respectively. There were no

consecutive t-tests within either of these planned comparison trajectory pair paths.

4.6 Discussion

This work had three main goals. Our first goal was to introduce the numeric mag-

nitude for percent within the rational numbers. We situated the concept of percent

with respect to the rational number types: single digit integers, decimals, and frac-

tions using a computer-mouse tracking magnitude comparison task that contained

both discrete and continuous measures. Using the discrete measures of accuracy and

response time, we found that within these measures, the concept of percent is more

similar to that of decimals and integers than fractions. Within the response time
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(a) (b)

(c) Distances 2-2.5 (d) Distances 2.5-3

Figure 4.6: Computer-mouse tracking analysis for percents

measure, we found strong indications that the concept of percent is more similar to

that of decimals and integers than fractions. Within the accuracy measure, this trend

was not as well supported as the fraction, percent, and decimal results intermingled.

From the discrete measures, percent representations appear to be processed slightly

faster than the average, much faster than fractions, but slower than both decimals and

integers. Percent magnitude comparison accuracy is marginally worse than average,

much better than fractions, and again worse than integers and decimals.

We further situate percent by looking at the computer-mouse tracking trajectories for

a more fine-grained analysis of the rational number magnitude comparison task. We

used maximum deviation as a metric to compare how much each of these trajectories

departs from a standard output - with deviation in the trajectory interpreted as a pull

towards the reference number in the task. These continuous measures reveal hidden
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differences between the rational numbers that could not be seen in the discrete mea-

sures. For integers and fractions, the trajectories exhibit strong deviation between

the comparisons closest and farthest from the reference number. These results com-

plement the results from the discrete measures and further show that the deviations

between the trajectories occur in the last quarter of the path. The decimal and per-

cent trajectories both had no interesting deviations between pairs of distances based

on maximum deviation. From this we see that percent trajectories compare most to

the decimal trajectories along the maximum deviation metric. Adding the planned

comparison of the quarter distance pairs for fractions, decimals, and percents, we see

that for fractions and decimals there are strong pulls towards the reference when com-

pared to nearest neighboring distance trajectories. However, these deviations occur

early in the trajectory path, unlike the deviations in pairs found through the MAD

metric. The percent distance pair trajectories showed no consecutive deviations along

the path. So in these quarter trajectories, fractions and decimals appear most similar

while percent trajectories are too like its neighboring distance trajectories.

Our second and third goals were the conceptual replications of the (DeWolf et al.,

2014) reaction time and percent error results and the (Song & Nakayama, 2008)

reaction time and accuracy hand-reaching results for integers. The discrete measures

results successfully replicate the numeric distance effect found in study 3 of (DeWolf

et al., 2014). There is some discrepancy in the accuracy replication which we assume

is from our fraction errors being closer to those of the other rational numbers than

in the previous study. The discrete measures also shows the replicated integer results

for the (Song & Nakayama, 2008) study.

90



4.7 Conclusion and Future Work

In this study, we set out to address the challenge of understanding the concept of

percent. We approached this challenge using a rational number comparison task

- as percent is a generalized comparison tool. Through this study, we have been

able to provide both discrete and continuous measures for evaluative percent within

the rational number concept space. For comparison tasks, it appears to be most

similar to the decimal concept overall. Additionally, we were able to conceptually

replicated previous works related to rational numbers and the magnitude comparison

task for integers. From this study, we were able to state several results based on our

hypotheses:

• We affirmed previous work showing that decimals were processed the fastest.

They were slightly less accurate than integers for this study.

• We confirmed that fractions were slowest to be processed and also had the most

errors.

• We showed that percent performed most similarly to decimals. This was shown

in both discrete and continuous measures.

• For the quarter and three-quarter magnitudes, we found mixed results. For

fractions there was a reduction in processing speed and error. Decimals showed

an increase in processing speed but a decrease in errors. The added digit in

these decimal magnitudes could account for the slower processing speed. For

percent, there was an increase in processing speed and errors. It is not yet clear

how these quarter magnitudes are processed in rational number space.

• We found distance effects for all number types.
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This work focused on a general introduction of percent to rational number space.

This broad approach leaves many unanswered questions regarding similarities and

differences between these number types (integer, fraction, decimal, percent). Future

work could expand on this single digit (1 − 9) task to include more complex magni-

tude comparison tasks. Additionally, a more extensive examination of the privileged

percents, 25%, 50%, and 75% might reveal specific patterns within the processing for

these magnitudes.
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Chapter 5

An Integrated View of the Concept

of Percent

5.1 Percent as Quantity and Number

This work was motivated by the challenges to understanding the concept of percent

- a often thought simple concept. Percent, as a generalized tool for comparison, is

used frequently in descriptive statistical reporting and thus plays a problematic role

in decision making processes. Within education, percent is a fundamental building

block for success in higher mathematics - yet students have historically failed to

grasp the concept of percent. Throughout these chapters, the concept of percent has

been shown to be much more than a simple concept, but rather a “multifaceted and

complex concept” used in various situations as a generalized mathematical tool for

comparison (Parker & Leinhardt, 1995).

This body of work began with an introduction of percent as a quantity and num-
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ber. The concept of percent entails a numeral-symbol or numeral-word combination.

Through its numeral, percent expresses quantity magnitude and can be seen as an

indexical and symbolic signal in language. This numeral is affected by numeric (se-

mantic) effects such as distance, size, and rounding effects. The percent term within

a context is also affected by pragmatic properties of boundedness and relevance with

language and communcation. However, percent is primarily a mathematical tool for

generalized comparison. As such, it is an abstract (intensive) quantity that represents

the relationship between other abstract or concrete quantities. Percent is a type of

number that is a ratio comparison and can never directly refer to the count of a set

of objects - only to the relationship between sets. This inability to directly refer to

the count of a set is one way that percent is markedly different from fractions and

decimals. Unfortunately, the concept of percent is taught during rational number

instruction and often conflated with fractions and decimals. This is not surprising

as percent is “commonly converted to decimals and fractions” for comparative oper-

ations (Parker & Leinhardt, 1995).

The difficulties surrounding the concept of percent have been evaluated in chapters 2-

4 using three different interdisciplinary methodologies each looking at 3 key aspects of

the concept of percent. Chapters 2, 3, and 4 looked at the construction of the concept

of percent, percent in context, and percent as a comparison tool, respectively.

5.2 Interdisciplinary Analyses

A qualitative analysis of the evolution of the concept of percent was performed in

chapter 2 using historical data and conceptual integration (blending). Percent was

addressed as a mathematical tool, a number and symbol, an abstract quantity, and
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a shifting signal in language. This work showed how the concept of percent evolved

over time to form a complex network of blended identities and roles being compressed

into a single symbol (%) or a pair of words (percent or percentage). Problems relating

to correct decompression of this complex network - due to a number of distinct con-

ceptual spaces referenced by the same term or symbol - could lead to known percent

problems.

A quantitative analysis of how language context impacts the functional alternations

of the concept of percent was implemented in chapter 3 using natural language pro-

cessing techniques, machine learning, and a large natural language corpus. Percent

was examined as a comparative tool in language and as information. State-of-the-art

Transformer language models were fine-tuned on a custom percent datasets and used

to classify genres along a language formality spectrum. Results from this work con-

firmed intuitive hypotheses that percent contexts in very formal and very informal

language are most easy to classify due to having fewer percent alternations. Very

formal contexts tended to avoid non-literal use of the concept of percent. Very in-

formal contexts made extensive use of non-literal use of the concept of percent. The

genres in the middle of the language formality spectrum had overlapping usage of

literal and non-literal percent alternations and were harder to classify. This work

found that navigating the concept of percent requires something like code-switching

in that functional alternations involve variances in language and meaning.

A computer-mouse tracking magnitude comparison study introduced percent mag-

nitude representations to the rational number space in chapter 4. As percent is a

generalized comparison tool, this work compared and contrasted percent in a magni-

tude comparison task with other rational numbers: integers, fractions, and decimals.

This task employed the descriptive statistic usage of percent where two percents were
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present in a given context (the reference percent was held in memory). Percent was

found to be most similar to decimal and least similar to fraction for this task. Ad-

ditionally, this work replicated and extended previous numeric distance effects for

rational number magnitude comparison as well as confirmed these same numeric dis-

tance effects for the concept of percent. This work provided a first cognitive look at

quantitative comparisons between percent and rational numbers.

These three interdisciplinary analyses have provided a strong integrated argument

for both the complexity of the concept of percent and also why certain difficulties

exist surrounding this concept. This body of work could contribute both qualitative

and quantitative results for the concept of percent to many fields: numeric cogni-

tion, mathematical education, cognitive linguistics, natural language processing, and

decision making sciences and communication.

5.3 Conclusions and Future Work

Hopefully this analysis has revealed some of the beauty and complexity of percent

as an abstract global mathematical tool for comparison. Although there are many

known difficulties in understanding the concept of percent, it is possible to master

this tool through a comprehension of the compression involved in its creation. Based

on this work, there are future endeavors that can facilitate overcoming these per-

cent difficulties such as a change in percent instruction and better communicative

understanding of percent functional alternations in context.

Intervention studies in the past have shifted instruction of rational numbers and

percent to put an emphasis on percent as a comparative tool and proportion. These

studies have been successful but small and often in different countries (Moss & Case,
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1999). It is an enormous effort to change curriculum, especially as a national level.

However, shifting the order of instruction for percent and rational numbers might

be the most simple adjustment to affect the biggest outcome in overcoming percent

difficulties for students.

The concept of percent in communication is fraught with challenges. Statistical re-

porting is inundated with different types of comparative situations and since referents

are not required to be given in a context, confusion abounds. This plays havoc on de-

cision making processes that must be based on statistical reporting. Considering that

the texts for the custom datasets in chapter 3 were produced by people “in the wild”,

our findings could have implications for understanding why the concept of percent

can be so difficult to master and for identifying how mastering the code-switching

aspects of the concept of percent might contribute to better clarity in communication

and decision making processes by the general public.

Future work on the concept of percent could involve greater analysis of the compar-

ative aspects of percent. There are many types of comparison such as increasing or

decreasing, absolute or relative difference, single set or two set comparison, additive

or multiplicative relationships, etc. This dissertation has only begun to scratch the

surface of percent as a generalized comparative tool. Additionally, other natural lan-

guage processing models and technique could be used to analyze percent textual data

with an emphasis on what these models are attending to with respect to percent in

context. Questions relating to context size and percent comparative situations in

context will also need to be addressed. Finally, percent has not been fully situated

within rational number space. Further magnitude comparison studies are needed for

extensive comparison with each rational number using both discrete and continuous

behavioural methods. Percent is more than just magnitude and so studies looking at
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ratio relationships are also needed to complete our understanding of the concept of

percent.
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Appendix A

Magnitude Stimuli for Computer

Mouse Tracking Study

Table A.1: Magnitude Stimuli across all rational number types.

Magnitude Integer Fraction Percent Decimal
A 1 1/10 10% 0.1
B 2 1/5 20% 0.2
C - 1/4 25% 0.25
D 3 3/10 30% 0.3
E 4 2/5 40% 0.4
F 5 1/2 50% 0.5
G 6 3/5 60% 0.6
H 7 7/10 70% 0.7
I - 3/4 75% 0.75
J 8 4/5 80% 0.8
K 9 9/10 90% 0.9

109


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Percent as a Quantity and Number
	Introduction
	Quantity
	Magnitude
	Ratio and Proportion

	Quantity in Language
	Quantity as Number
	Representations of Quantity
	Mental Number Line

	Quantity as Information
	Semantic Meaning
	Pragmatic Interpretation
	Communicative Theories
	Cooperative Principle
	Relevance Theory

	Understanding Quantity
	Numerosity
	Subitizing
	Ratio Comparison

	Quantity as Embodied Cognition
	Conceptual Metaphor Theory
	Conceptual Blending

	Learning Quantity
	Whole Numbers
	Rational Numbers

	Percent as Quantity
	Delving into the Challenge of Percent


	Formal Conceptual Blending in the Concept of Percent
	Introduction
	The Concept of Percent
	Conceptual Blending
	Structure of the Paper

	A History of Percent
	Percent and Commerce
	Percent and Mathematics
	A Conceptual Blending Analysis of Percent

	Percent as a Tool
	Functional Operations
	Descriptive Statistics

	Where the Tool Breaks
	Percent Symbol Difficulties
	Percent Part-Whole and Proper Fractions
	Decompression Difficulties

	Concluding Remarks

	Percent as a Functional Number in the Wild
	Introduction
	Models
	Data
	Data Preprocessing

	Study 1
	Data Processing
	Methods
	Results and Discussion

	Study 2
	Context Features
	Data Processing
	Methods
	Results and Discussion

	Study 3
	Data Processing
	Methods
	Results and Discussion

	General Discussion

	An Introduction of Percent into Magnitude Comparison Tasks Using Computer-Mouse Tracking Methods
	Introduction
	Magnitude Representations
	Goals of the Present Study
	Study Design
	Participants
	Interface
	Task
	Data Treatment

	Results
	Discrete Measures
	Continuous Measures

	Discussion
	Conclusion and Future Work

	An Integrated View of the Concept of Percent
	Percent as Quantity and Number
	Interdisciplinary Analyses
	Conclusions and Future Work

	Bibliography
	Appendix Magnitude Stimuli for Computer Mouse Tracking Study

