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ABSTRACT

In 1965, Ron Douglas proved that if X is a closed subspace of an L1-space

and X is isometric to another L1-space, then X is the range of a con-

tractive projection on the containing L1-space. In 1977 Arazy–Friedman

showed that if a subspace X of C1 is isometric to another C1-space (pos-

sibly finite dimensional), then there is a contractive projection of C1 onto

X. In 1993 Kirchberg proved that if a subspace X of the predual of a von

Neumann algebra M is isometric to the predual of another von Neumann

algebra, then there is a contractive projection of the predual of M onto

X.

We widen significantly the scope of these results by showing that if a

subspace X of the predual of a JBW ∗-triple A is isometric to the predual

of another JBW ∗-triple B, then there is a contractive projection on the

predual of A with range X, as long as B does not have a direct summand

which is isometric to a space of the form L∞(Ω,H), where H is a Hilbert

space of dimension at least two. The result is false without this restriction

on B.
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1. Introduction and background

1.1. Introduction. In 1965, Douglas [10] proved that the range of a contrac-

tive projection on an L1-space is isometric to another L1-space. At the same

time, he showed the converse: if X is a closed subspace of an L1-space and X is

isometric to another L1-space, then X is the range of a contractive projection.

Both of these results were shortly thereafter extended to Lp-spaces, 1 < p <∞
by Ando [2] and Bernau–Lacey [7]. The first result fails for L∞-spaces as shown

by work of Lindenstrauss–Wulbert [31] in the real case and Friedman–Russo [17]

in the complex case. But not by much—the image of a contractive projection

on L∞ is a Cσ-space.

Moving to the non-commutative situation, it was already known in 1978

through the work of Arazy–Friedman [4], which gave a complete description

of the range of a contractive projection on the Schatten class C1, that the range

of such a projection is isometric to a direct sum of C1 spaces. Moreover, in

1977, Arazy–Friedman [3] showed that if a subspace X of Cp 1 ≤ p <∞, p �= 2

is isometric to another Cp-space (possibly finite dimensional), then there is a

contractive projection of Cp onto X . In 1992, Arazy–Friedman [5] extended

and expanded their earlier results on C1 to Cp, 1 < p <∞, p �= 2.

Generalizing the 1978 work of Arazy–Friedman on C1 to an arbitrary noncom-

mutative L1-space, namely the predual of a von Neumann algebra, Friedman–

Russo [19] showed in 1985 that the range of a contractive projection on such

a predual is isometric to the predual of a JW ∗-triple, that is, a weak∗-closed
subspace of B(H,K) closed under the triple product xy∗z + zy∗x. Important

examples of JW ∗-triples besides von Neumann algebras and Hilbert spaces

(H = B(H,C)) are the subspaces of B(H) of symmetric (or anti-symmetric) op-

erators with respect to an involution, and spin factors. Actually, the Friedman–

Russo result was valid for projections acting on the predual of a JW ∗-triple,
not just on the predual of a von Neumann algebra.

A far reaching generalization of both the 1977 work of Arazy–Friedman (in

the case p = 1) and the 1965 work of Douglas was given by Kirchberg [28]

in 1993 in connection with his work on extension properties of C∗-algebras.
Kirchberg proved that if a subspace X of the predual of a von Neumann algebra

M is isometric to the predual of another von Neumann algebra, then there is a

contractive projection of the predual of M onto X .
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In view of the result of Friedman–Russo mentioned above, it is natural to ask

if the result of Kirchberg could be extended to preduals of JBW ∗-triples (the

axiomatic version of JW ∗-triples), that is, if a subspace X of the predual of a

JBW ∗-triple M is isometric to the predual of another JBW ∗-triple N , then

is there a contractive projection of the predual of M onto X? We show that

the answer is yes as long as the predual of N does not have a direct summand

which is isometric to L1(Ω, H) where H is a Hilbert space of dimension at least

two (Theorem 1 in Subsection 1.2). To see that this restriction is necessary,

one has only to consider a subspace of L1 spanned by two or more independent

standard normal random variables. Such a space is isometric to L2 but cannot

be the range of a contractive projection on L1 since by the result of Douglas it

would also be isometric to an L1-space, and therefore one dimensional (consider

the extreme points of its unit ball).

1.2. Projective rigidity. The main result. A well-known and useful re-

sult in the structure theory of operator triple systems is the “contractive pro-

jection principle,” that is, the fact that the range of a contractive projection on

a JB∗-triple is linearly isometric in a natural way to another JB∗-triple (Kaup,

Friedman–Russo). Thus, the category of JB∗-triples and contractions is stable

under contractive projections.

To put this result, and this paper, in proper prospective, let B be the category

of Banach spaces and contractions. We shall say that a sub-category S of B is

projectively stable if it has the property that whenever A is an object of S
and X is the range of a morphism of S on A which is a projection, then X is

isometric (that is, isomorphic in S) to an object in S. Examples of projectively

stable categories (some mentioned already) are, in chronological order,

(1) L1; contractions (Grothendieck 1955 [21]),

(2) Lp, 1 ≤ p <∞; contractions (Douglas 1965 [10], Ando 1966 [2], Bernau–

Lacey 1974 [7], Tzafriri 1969 [38]),

(3) C∗-algebras; completely positive unital maps (Choi–Effros 1977 [9]),

(4) �p, 1 ≤ p <∞; contractions (Lindenstrauss–Tzafriri 1978 [30]),

(5) �p-direct sums of Cp (Schatten classes), 1 ≤ p <∞, p �= 2; contractions

(Arazy–Friedman 1978 [4] 1992 [5]),

(6) JC∗-algebras; positive unital maps (Effros–Stormer 1979 [14]),

(7) TROs (ternary rings of operators); complete contractions (Youngson

1983 [41]),
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(8) JB∗-triples; contractions (Kaup 1984 [27], Friedman–Russo 1985 [19]),

(9) �p-direct sums of Lp(Ω, H), 1 ≤ p < ∞, H Hilbert space; contractions

(Raynaud 2004 [35]).

For a survey of results about contractive projections and their ranges in Köthe

function spaces and Banach sequence spaces, see [34].

It follows immediately that if S is projectively stable, then so is the category

S∗ of spaces whose dual spaces belong to S. It should be noted that TROs, C∗-
algebras and JC∗-algebras are not stable under contractive projections and

JB∗-triples are not stable under bounded projections.

By considering the converse of the above property, one is lead to the following

definition which is the focus of the present paper. A sub-category S of B is

projectively rigid if it has the property that whenever A is an object of S
and X is a subspace of A which is isometric to an object in S, then X is the

range of a morphism of S on A which is a projection. Examples of projectively

rigid categories are fewer in number (all are projectively stable), namely,

(1) �p, 1 < p <∞, contractions (Pelczynski 1960 [33]),

(2) Lp, 1 ≤ p <∞, contractions (Douglas 1965 [10], Ando 1966 [2], Bernau–

Lacey 1974 [7]),

(3) Cp, 1 ≤ p <∞, contractions (Arazy–Friedman 1977 [3]),

(4) Preduals of von Neumann algebras, contractions (Kirchberg 1993 [28]),

(5) Preduals of TROs, complete contractions (Ng–Ozawa 2002 [32]),

(6) Cp, 1 ≤ p <∞, p �= 2; complete contractions (LeMerdy, Ricard, Roydor

2009 [29]).

The result by Ng and Ozawa fails in the category of operator spaces with

complete contractions. Referring to Kirchberg’s paper, Ng and Ozawa conjec-

tured that “a similar statement holds for JC∗-triples.” While we found that

this is not true in general, we have been able to prove the following which, in

view of the counterexample mentioned earlier, is the best possible.

Theorem 1: Let X be a subspace of the predual A∗ of a JBW ∗-triple A. If X
is isometric to the predual of another JBW ∗-triple, then there is a contractive

projection P on A∗ such that X = P (A∗)⊕�1Z, where Z is isometric to a direct

sum of spaces of the form L1(Ω, H) where H is a Hilbert space of dimension at

least two, P (A∗) is isometric to the predual of some JBW ∗-triple with no such

L1(Ω, H)-summand, and P (Z) = 0.
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In particular, the category of preduals of JBW ∗-triples with no summands of

the above type is projectively rigid. The proof of Theorem 1 will be achieved in

Corollaries 6.8 and 6.9. Theorem 2 in Subsection 4.3 and Theorem 3 in Section

6, are key steps in the proof of Theorem 1.

As has been made clear, JB∗-triples are the most natural category for the

study of contractive projections. It is important to note that JB∗-triples are

also justified as a natural generalization of operator algebras as well as because

of their connections with complex geometry. Indeed, Kaup showed in [26] that

JB∗-triples are exactly those Banach spaces whose open unit ball is a bounded

symmetric domain. Kaup’s holomorphic characterization of JB∗-triples directly
led to the proof of the projective stability of JB∗-triples in [27] mentioned above.

Many authors since have studied the interplay between JB∗-triples and infinite

dimensional holomorphy (see [15], [39], [40] for surveys).

Preduals of JBW ∗-triples have been called pre-symmetric spaces ([11]) and

have been proposed as mathematical models of physical systems ([16]). In this

model the operations on the physical system are represented by contractive

projections on the pre-symmetric space.

acknowledgments. The authors thank the referee for a meticulous report,

which included many suggestions for improving and clarifying the exposition.

The authors also thank Timur Oikhberg for a useful discussion.

2. Preliminaries

2.1. JBW ∗
-triples. A Jordan triple system is a complex vector space V

with a triple product {·, ·, ·} : V ×V ×V −→ V which is symmetric and linear

in the outer variables, conjugate linear in the middle variable and satisfies the

Jordan triple identity (also called the main identity),

{a, b, {x, y, z}} = {{a, b, x}, y, z}− {x, {b, a, y}, z}+ {x, y, {a, b, z}}.
The triple product is also written {xyz}. A complex Banach space A is called

a JB∗-triple if it is a Jordan triple system such that for each z ∈ A, the linear

map

D(z) : v ∈ A �→ {z, z, v} ∈ A

is Hermitian, that is, ‖eitD(z)‖ = 1 for all t ∈ R, with non-negative spectrum

in the Banach algebra of operators generated by D(z), and ‖D(z)‖ = ‖z‖2. A
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summary of the basic facts about JB∗-triples can be found in [37] and some

of the references therein, such as [26], [18], and [20]. The operators D(x, y)

and Q(x, y) are defined by D(x, y)z = {xyz} and Q(x, y)z = {xzy}, so that

D(x, x) = D(x) and we define Q(x) to be Q(x, x). We use the notation x3 for

{xxx}.
A JB∗-triple A is called a JBW ∗-triple if it is a dual Banach space, in which

case its predual, denoted by A∗, is unique (see [6] and [22]), and the triple

product is separately weak* continuous. Elements of the predual are referred

to as normal functionals. It follows from the uniqueness of preduals that an

isomorphism from a JBW ∗-triple onto another JBW ∗-triple is automatically

normal, that is, weak*-continuous. We will use this fact repeatedly in the paper.

The second dual A∗∗ of a JB∗-triple is a JBW ∗-triple.
The JB∗-triples form a large class of Banach spaces which include C∗-

algebras, Hilbert spaces, spaces of rectangular matrices, and JB∗-algebras. The
triple product in a C*-algebra A is given by

{x, y, z} =
1

2
(xy∗z + zy∗x).

In a JB∗-algebra with product x ◦ y, the triple product making it into a JB∗-
triple is given by {x, y, z} = (x ◦ y∗) ◦ z + z ◦ (y∗ ◦ x)− (x ◦ z) ◦ y∗.
An element e in a JB∗-triple A is called a tripotent if {e, e, e} = e in which

case the map D(e) : A −→ A has eigenvalues 0, 1/2 and 1, and we have the

following decomposition in terms of eigenspaces,

A = A2(e)⊕A1(e)⊕A0(e),

which is called the Peirce decomposition of A. The k/2-eigenspace Ak(e) is

called the Peirce k-space. The Peirce projections from A onto the Peirce

k-spaces are given by

P2(e) = Q2(e), P1(e) = 2(D(e)−Q2(e)), P0(e) = I − 2D(e) +Q2(e)

where, as noted above, Q(e)z = {e, z, e} for z ∈ A. The Peirce projections are

contractive, and weak*-continuous if A is a JBW ∗-triple. In the latter case, we

denote their action on A∗ by Pj(e)∗, that is, (Pj(e)∗)∗ = Pj(e).

A powerful computational tool connected with Peirce decompositons is the

so-called Peirce calculus, which states that

{Ak(u), Aj(u), Ai(u)} ⊂ Ak−j+i(u),
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{A0(u), A2(u), A} = {A2(u), A0(u), A} = 0,

where it is understood that Aj(u) = 0 if j �∈ {0, 1, 2}.
For any tripotent v, the space A2(v) is a JB∗-algebra under the product

x · y = {xvy} and involution x� = {vxv}. We use implicitly in Lemmas 3.7

and 3.8 the correspondence between projections in A2(v) and tripotents of A

majorized by v and the fact that the order on such tripotents (defined below)

coincides with the order in the JB∗-algebra A2(v) ([12, Lemma 2.4]).

Tripotents u and v are compatible if {Pk(u), Pj(v) : k, j = 0, 1, 2} is a

commuting family. This holds for example if u ∈ Ak(v) for some k. Tripotents

u, v are collinear if u ∈ A1(v) and v ∈ A1(u), notation v�u, and rigidly

collinear if A2(u) ⊂ A1(v) and A2(v) ⊂ A1(u).

Tripotents u, v are orthogonal if u ∈ A0(v), that is, {uvv} = 0. More

generally, arbitrary elements x, y are orthogonal if D(x, y) = 0, and we write

x ⊥ y if this is the case. Since ‖x‖3 = ‖{xxx}‖ holds in a JB∗-triple and for

orthogonal elements x and y we have {x + y, x + y, x + y} = {xxx} + {yyy},
it follows that ‖x + y‖ ≤ 21/3max(‖x‖, ‖y‖) and by iteration that ‖x + y‖ ≤
23

−n

max(‖x‖, ‖y‖), so that ‖x + y‖ = max(‖x‖, ‖y‖) for orthogonal elements

x, y. The converse is false in general, but is true in case one of x, y is a tripotent

(as pointed out to us independently by R. Hügli and A. Peralta, [25, Th. 4.1]).

This latter fact is needed in Lemma 6.1.

For tripotents u, v, the following four statements are equivalent: D(u, v) =

0, D(v, u) = 0, {uuv} = 0, {vvu} = 0. (By symmetry, the only non-trivial

assertion to prove is that {vvu} = 0 ⇒ D(v, u) = 0; assuming {vvu} = 0, by

the main identity, {vuv} = {vu{vvv}} = 2{vv{vuv}}, so that {vuv} ∈ A1(v),

and by Peirce calculus, {vuv} ∈ A2(v), so that {vuv} = 0. Again by the main

identity (written in operator notation),

[D(v, v), D(v, u)] = D(v, u) +D(v, {vvu}) = D(v, u)

and

[D(v, u), D(v, v)] = D({vuv}, v)−D(v, {uvv}) = 0.

Hence D(v, u) = 0, as required.) We note here for use in the proof of Lemma 6.3

that the result just proved also holds for arbitrary elements (see [8, Lemma 1],

a reference which was pointed out to the authors by the referee).
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In the case of a tripotent u in a JBW ∗-triple A with predual A∗, there is a

corresponding Peirce decomposition of the normal functionals:

A∗ = A2(u)∗ ⊕A1(u)∗ ⊕A0(u)∗

in which A2(u)∗ is linearly spanned by the normal states of the JBW ∗-algebra
A2(u). The norm exposed face {f ∈ A∗ : f(u) = 1 = ‖f‖} is automatically a

subset of A2(u)∗ and coincides with the set of normal states of A2(u).

The set of tripotents in a JBW ∗-triple, with a largest element adjoined, forms

a complete lattice under the order u ≤ v if v− u is a tripotent orthogonal to u.

This lattice is isomorphic to various collections of faces in the JBW ∗-triple and
its predual ([12]). A maximal element of this lattice other than the artificial

largest element is simply called a maximal tripotent, and is the same as an

extreme point of the unit ball of the JBW ∗-triple. Equivalently, a maximal

tripotent is one for which the Peirce 0-space vanishes, and it is also referred to

as a complete tripotent.

Given a JBW ∗-triple A and f in the predual A∗, there is a unique tripotent

vf ∈ A, called the support tripotent of f , such that f ◦ P2(vf ) = f and

the restriction f |A2(vf ) is a faithful positive normal functional on the JBW ∗-
algebra A2(vf ). The support tripotent of f is the smallest tripotent on which

f assumes its norm. It is known that for any tripotent u, if f ∈ Aj(u)∗ (j =

0, 1, 2), then vf ∈ Aj(u). The converse is true for j = 0 or 2 but fails in general

for j = 1 (however, see the proof of Lemma 5.1).

We shall occasionally use the joint Peirce decomposition for two orthogonal

tripotents u and v, which states that

A2(u+ v) = A2(u)⊕A2(v)⊕ [A1(u) ∩ A1(v)],

A1(u+ v) = [A1(u) ∩ A0(v)]⊕ [A1(v) ∩ A0(u)],

A0(u+ v) = A0(u) ∩ A0(v).

Let A be a JB∗-triple. For any a ∈ A, there is a triple functional calculus,

that is, a triple isomorphism of the closed subtriple C(a) generated by a onto the

commutative C*-algebra C0(SpD(a, a)∪{0}) of continuous functions vanishing
at zero, with the triple product fgh (see [26, Cor.1.15]). Any JBW ∗-triple has

the propertly that it is the norm closure of the linear span of its tripotents.

This is a consequence of the spectral theorem in JBW ∗-triples, which states

that every element has a representation of the form x =
∫
λduλ analogous to
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the usual spectral theorem for self-adjoint operators, in which {uλ} is a family

of tripotents [12, Lemma 3.1].

For any element a in a JBW ∗-triple, there is a least tripotent, denoted by

r(a) and referred to as the support of a, such that a is a positive element in the

JBW ∗-algebra A2(r(a)) ([12, Section 3]). It is known that y ⊥ u is equivalent

to r(y) ⊥ u for a tripotent u. For each element a of norm one in a JBW ∗-triple
A, denote by u(a) the unique tripotent of A for which

{f ∈ A∗ : f(a) = ‖f‖ = 1} = {f ∈ A∗ : f(u(a)) = ‖f‖ = 1}.
The tripotent u(a) is the supremum of the set of tripotents u with {uau} = u

and is the weak*-limit of the sequence {a2n+1} ([12, Lemmas 3.2,3.4]).

A closed subspace J of a JBW ∗-triple A is an ideal if {AAJ} ∪ {AJA} ⊂ J

and a weak∗-closed ideal J is complemented in the sense that

J⊥ := {x ∈ A : D(x, J) = 0}
is also a weak∗-closed ideal andA = J⊕J⊥. A tripotent u is said to be a central

tripotent if A2(u)⊕A1(u) is a weak∗-closed ideal. In this case A2(u)⊕A1(u)

is orthogonal to A0(u). This definition is implicit in [22, 2.7] where instead the

notion of central e-projection is defined. Our definition of central tripotent

differs from the one in [13, p. 262].

A tripotent u is an abelian tripotent if A2(u) is an associative triple, that

is, the identity {xy{abc}} = {{xya}bc} holds (See [22, Definition 4.8]). The

structure theory of JBW ∗-triples has been well developed, using these and

other concepts in [23] and [24].

The following lemma, [18, Lemma 1.6], will be used repeatedly.

Lemma 2.1: If u is a tripotent in a JBW ∗-triple and x is a norm one element

with P2(u)x = u, then P1(u)x = 0. Put another way, x = u+ q where q ⊥ u.

2.2. Some general lemmas.

Lemma 2.2: Let uλ be a family of tripotents in a JBW ∗-triple B and suppose

supλ uλ exists.

(a) If uλ ⊥ y for some element y ∈ B, then supλ uλ ⊥ y.

(b) If uλ ∈ B1(t) for some tripotent t, then supλ uλ ∈ B1(t).

Proof. (a) If y ⊥ uλ for all λ, then r(y) ⊥ uλ. If we let z = supuλ and

z = z2 + z1 + z0 be the Peirce decomposition with respect to r(y), then
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by Peirce calculus, uλ = {uλzuλ} = {uλz0uλ} so that by Lemma 2.1,

z0 = uλ + bλ with bλ ⊥ uλ. Therefore r(z0) ≥ uλ, which implies

z ≤ r(z0) ∈ B0(r(y)) and so z ∈ B0(r(y)) and therefore z ⊥ y.

(b) Write supuλ = x2+x1+x0 with respect to t. Since D(uλ, uλ)(supuλ) =

uλ, by Peirce calculus we have D(uλ, uλ)x1 = uλ and D(uλ, uλ)x2 =

D(uλ, uλ)x0 = 0. By (a), x2 ⊥ supuλ and x0 ⊥ supuλ so that 0 =

D(x2, x2)(x2 + x1 + x0) = {x2x2x2} + {x2x2x1}. By Peirce calculus,

{x2x2x2} = {x2x2x1} = 0, so that x2 = 0.

Similarly, 0 = D(x0, x0)(x2 + x1 + x0) = {x0x0x0} + {x0x0x1},
{x0x0x0} = {x0x0x1} = 0, so that x0 = 0.

Lemma 2.3: If x and y are orthogonal elements in a JBW ∗-triple and if z is

any element, then

D(x, x)D(y, y)z = {x{xzy}y}.
In other words, D(x, x)D(y, y) = Q(x, y)2 for orthogonal x, y.

Proof. By the main identity,

{zy{xxy}} = {{zyx}xy} − {x{yzx}y}+ {xx{zyy}},
and the term on the left and the first term on the right are zero by

orthogonality.

Lemma 2.4: If w is a maximal tripotent, and if u and v are tripotents with

v ∈ B1(u) ∩B2(w) and u ∈ B1(w), then B1(w) ∩B0(u) ⊂ B0(v).

Proof. Let x be a tripotent in B1(w) ∩B0(u). By Peirce calculus with respect

to w, D(x, x)v = 2D(x, x)D(u, u)v = 2{x{xvu}u} = 0 so that x ⊥ v. The

spectral tripotents of an element x ∈ B1(w) ∩B0(u) also lie in B1(w) ∩B0(u),

and the result follows.

3. Local Jordan multipliers

In this section, we define and establish some properties of Jordan multipliers,

and introduce the pullback map, which is a key concept in this paper.

Let ψ : B∗ → A∗ be a linear isometry, where A and B are JBW ∗-triples.
Then ψ∗ is a normal contraction of A onto B and, by a standard separation

theorem, ψ∗ maps the closed unit ball of A onto the closed unit ball of B. Let

w be an extreme point of the closed unit ball of B. Since (ψ∗)−1(w) ∩ ballA is
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a non-empty weak∗-compact convex set, it has an extreme point v, and in fact

v is an extreme point of the closed unit ball of A.

Lemma 3.1: With the above notation, ψ∗[A1(v)]⊂B1(w) and P2(w)ψ
∗[A2(v)]=

B2(w).

Proof. If f is a normal state of B2(w), then ψ(f) has norm one and ψ(f)(v) =

f(ψ∗(v)) = f(w) = 1 so that ψ(f) is a normal state of A2(v). Now let x1 ∈
A1(v) and suppose ψ∗(x1) = y2 + y1 with 0 �= y2 ∈ B2(w) and y1 ∈ B1(w).

There is a normal state of f of B2(w) such that f(y2) �= 0. Then ψ(f)(x1) =

f(ψ∗(x1)) = f(y2) �= 0, a contradiction since ψ(f), being a state of A2(v),

vanishes on A1(v).

To prove the second statement, let z ∈ B2(w). Then z = ψ∗(a2+a1) with aj ∈
Aj(v) and, by the first statement, z = P2(w)z = P2(w)ψ

∗(a2)+P2(w)ψ
∗(a1) =

P2(w)ψ
∗(a2).

3.1. A construction of Kirchberg. The following lemma was proved by

Kirchberg [28, Lemma 3.6(ii)] in the case of von Neumann algebras. His proof,

which is valid for JBW ∗-algebras, is repeated here for the convenience of the

reader.

Lemma 3.2: Let T be a normal unital contractive linear map of a JBW ∗-
algebra X onto another JBW ∗-algebra Y , which maps the closed unit ball of

X onto the closed unit ball of Y . For a projection q ∈ Y , let a ∈ X be of norm

one such that T (a) = 1Y − 2q. If c is the self-adjoint part of a, then

(i) T (c2) = T (c)2,

(ii) T (x ◦ c) = T (x) ◦ T (c) for every x ∈ X .

Proof (Kirchberg [28, Lemma 3.6(ii)]). With a ∈ X such that T (a) = 1Y − 2q,

let c = (a + a∗)/2. Since T is a positive unital map on X , T (c) =

(T (a) + T (a∗))/2 = (T (a) + T (a)∗)/2 = 1Y − 2q and, by Kadison’s genera-

lized Schwarz inequality ([36]), 1Y ≥ T (c2) ≥ T (c)2 = (1Y − 2q)2 = 1Y , which

proves (i).

Define a continuous Y -valued bilinear form T̃ on Xs.a. by

T̃ (x, z) = T (x ◦ z)− T (x) ◦ T (z).
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By Kadison’s inequality again, T̃ (x, x) = T (x2) − T (x)2 ≥ 0 so that for any

state ρ of Y , the Schwarz inequality for positive bilinear functionals yields

|ρ ◦ T̃ (x, y)| ≤ [ρ ◦ T̃ (x, x)]1/2[ρ ◦ T̃ (y, y)]1/2 ≤ ‖T̃ (x, x)‖1/2‖T̃ (y, y)‖1/2.
Then by the Jordan decomposition for normal functionals, for any element

ρ ∈ Y∗,
|ρ ◦ T̃ (x, y)| ≤ 4‖T̃ (x, x)‖1/2‖T̃ (y, y)‖1/2.

Since T̃ (c, c) = 0 we have T̃ (c, z) = 0 for all z ∈ Xs.a., and (ii) follows.

With the notation of Lemma 3.2, define a Jordan multiplier (with respect

to the data (X,Y, T )) to be any element of the set

M(X,Y, T ) = {x ∈ X : T (x ◦ z) = T (x) ◦ T (z) for all z ∈ X}.
Corollary 3.3: Let ψ : B∗ → A∗ be a linear isometry, where A and B are

JBW ∗-triples. Let w be an extreme point of the closed unit ball of B and

let v be an extreme point of the closed unit ball of A with ψ∗(v) = w. We

set V = P2(w)ψ
∗|A2(v) and note that V is a normal unital contractive (hence

positive) map of A2(v) onto B2(w). Then

(a) For each projection q ∈ B2(w), there is an element a ∈ A2(v) of norm

one such that V (a) = w − 2q.

(b) If c is the self-adjoint part of the element a in (a), then

(i) V (c2) = V (c)2,

(ii) V (x ◦ c) = V (x) ◦ V (c) for every x ∈ A2(v).

Proof. Part (a) follows from Lemma 3.1 and part (b) follows from Lemma 3.2.

With the notation of Corollary 3.3, a Jordan multiplier (with respect to the

pair of extreme points w ∈ B, v ∈ A with ψ∗(v) = w) is any element of the set

M =M(A2(v), B2(w), V )

= {x ∈ A2(v) : V (x ◦ y) = V (x) ◦ V (y) for all y ∈ A2(v)},
where V = P2(w)ψ

∗|A2(v). We shall let s denote the support of the positive uni-

tal normal mapping V , that is, s = inf{p : p is a projection in A2(v), V (p)=w}.
Note that s is a multiplier by Lemma 3.2.

The following two lemmas could easily have been stated and proved if A2(v)

and B2(w) were replaced by arbitrary JBW ∗-algebras and V was replaced by a

normal unital contraction with support s mapping the closed unit ball onto the

closed unit ball. This fact will be used explicitly in the proof of Lemma 3.13.
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In the rest of Section 3, A and B denote JBW ∗-triples, ψ : B∗ → A∗ is a

linear isometry, and V = P2(w)ψ
∗, where w is a maximal tripotent of B.

Lemma 3.4: Let x ∈ A2(s) be such that 0 ≤ x ≤ s and V (x) is a projection q

in B2(w). Then x ∈M .

Proof. We have V (2x−s) = 2q−w and, by the functional calculus, ‖2x−s‖ ≤ 1.

Then Lemma 3.2 shows that 2x−s ∈ A2(s) is a multiplier with respect to (w, v),

hence 2x− s ∈M and x ∈M .

Lemma 3.5: (a) M is a unital JBW ∗-subalgebra of A2(v).

(b) V |M is a normal unital Jordan ∗-homomorphism of M onto B2(w)

satisfying V ({xyx}) = {V (x)V (y)V (x)} for all x ∈M, y ∈ A2(v).

(c) V |M2(s) is a normal unital Jordan ∗-isomorphism ofM2(s) onto B2(w),

where M2(s) = A2(s) ∩M .

Proof. M is clearly a weak∗-closed self-adjoint linear subspace of A2(v). To

prove it is a JBW ∗-subalgebra, it suffices to show that if c = c∗ ∈ M , then

c2 ∈M , equivalently that Ṽ (c2, c2) = 0, where Ṽ (x, y) = V (x◦y)−V (x)◦V (y).

Using the Jordan algebra identity, namely (b ◦ a2) ◦ a = (b ◦ a) ◦ a2), and the

fact that c is a self-adjoint multiplier, we have V (c2) ◦ V (c2) = V (c)2 ◦ V (c)2 =

V (c)◦(V (c)◦V (c)2) = V (c)◦(V (c)◦V (c2)) = V (c)◦(V (c◦c2)) = V (c◦(c◦c2)) =
V (c2 ◦ c2). Thus Ṽ (c2, c2) = V (c2 ◦ c2)− V (c2) ◦ V (c2) = 0, proving (a).

By the definition of multiplier, V is a Jordan ∗-homomorphism of M into

B2(w). To show that it is onto, let q be a projection in B2(w). By Corollary 3.3

there is a self-adjoint multiplier c with V (c) = w−2q and so q = (w−V (c))/2 =

V ((v − c)/2). By the spectral theorem in B2(w), B2(w)s.a. ⊂ V (M) proving

that B2(w) ⊂ V (M) and hence B2(w) = V (M). The last statement in (b)

follows from the relation {xyx} = 2x ◦ (x ◦ y∗)− y∗ ◦ x2.
To prove (c), note that the kernel of V |M2(s) is a JBW

∗-subalgebra ofM2(s)

and is hence generated by its projections. If it contained a non-zero projection

p then we would have V (s−p) = w, contradicting the fact that s is the support

of V . Thus the kernel of V |M2(s) is zero. Finally, since V (P2(s)m) = V (m) for

any m ∈M , V |M2(s) maps onto B2(w).

3.2. The pullback map.

Remark 3.6: Starting with an extreme point w ∈ B, every choice of extreme

point v ∈ A with ψ∗(v) = w determines the objects V, s,M . This notation will
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prevail throughout this section. For use in the next three lemmas, we define

φ : B2(w) →M2(s) to be the inverse of the Jordan ∗-isomorphism V |M2(s).

Lemma 3.7: If u = supλ uλ in the lattice of tripotents of B, where each uλ

is a tripotent majorized by a fixed maximal tripotent w, then u ∈ B2(w) and

φ(u) = supλ φ(uλ) in the lattice of tripotents of A.

Proof. In A2(s), φ(uλ) ≤ supλ φ(uλ) ≤ φ(u) ≤ s so that uλ = V (φ(uλ)) ≤
V (supλ φ(uλ)) ≤ u ≤ w and therefore u = supλ uλ ≤ V (supλ φ(uλ)) ≤ u. Thus

u = V (supλ φ(uλ)) and, since u is a projection in B2(w) and supλ φ(uλ) ≥ 0,

supλ φ(uλ) is a multiplier by Lemma 3.4. Therefore φ(u) = φ(V (supλ φ(uλ)) =

supλ φ(uλ) ≤ φ(u), proving the lemma.

Lemma 3.8: Let f be a normal functional on B and let w be a maximal tripo-

tent in B with vf ≤ w, giving rise to v,M, s in A and φ : B2(w) → M2(s).

Recall that vf denotes the support tripotent of f . Then vψ(f) = φ(vf ).

Proof. Since B2(vf ) ⊂ B2(w), f ∈ B2(w)∗. Thus

〈ψ(f), s〉 = 〈ψ(P2(w)∗f), s〉 = 〈f, P2(w)ψ
∗(s)〉 = f(w) = f(vf ) = ‖f‖ = ‖ψ(f)‖,

so that vψ(f) ≤ s is a projection in A2(s).

We also have

〈φ(vf ), ψ(f)〉 = 〈P2(w)ψ
∗(φ(vf )), f〉 = 〈vf , f〉 = ‖f‖ = ‖ψ(f)‖,

and therefore

(1) φ(vf ) ≥ vψ(f).

Let b = P2(w)ψ
∗(vψ(f)) so that 0 ≤ b ≤ w in B2(w) and

〈b, f〉 = 〈ψ∗(vψ(f)), f〉 = 〈vψ(f), ψ(f)〉 = ‖ψ(f)‖ = ‖f‖.
Thus b belongs to the weak∗-closed face in B generated by f (that is,

{x ∈ B : ‖x‖ = 1, 〈x, f〉 = ‖f‖}) and therefore by [12, Theorem 4.6], b = vf + c

with c ⊥ vf .

We then have vf + c = b = P2(w)ψ
∗(vψ(f)) ≤ P2(w)ψ

∗(φ(vf )) = vf , so that

c ≤ 0. The JB∗-subalgebra generated in B2(w) by the orthogonal elements

vf and c is associative and is thus representable as continuous functions on a

locally compact space. The function representing c cannot take on a negative

value, since by orthogonality, so would the function represented by b. Thus
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c = 0 and P2(w)ψ
∗(vψ(f)) = P2(w)ψ

∗(φ(vf )). By Lemma 3.4, vψ(f) ∈ M2(s)

and the result follows since P2(w)ψ
∗ is one to one on M2(s).

From the previous two lemmas, we can deduce the following lemma, which

in turn will be strengthened in Lemma 3.15 to require only that u ∈ B2(w) for

some maximal tripotent w. Moreover, Lemma 3.15 holds more generally for

arbitrary elements of B.

Lemma 3.9: With the above notation, if u is any tripotent in B and w is

a maximal tripotent with u ≤ w, then φ(u) depends only on u and ψ. More

precisely, if w′ ≥ u is another maximal tripotent and if v′ is a maximal tripotent

in A with ψ∗(v′) = w′ and if M ′ and s′ are the corresponding objects such that

P2(w
′)ψ∗ is a Jordan ∗-isomorphism of M ′

2(s
′) onto B2(w

′), and φ′ denotes

(P2(w
′)ψ∗|M ′

2(s
′))−1, then φ(u) = φ′(u).

Proof. By Zorn’s lemma, we may write u = supλ vfλ for some family fλ of

normal functionals on B. Writing uλ for vfλ , we have

φ(u) = φ(sup uλ) = supφ(uλ)

and

φ′(u) = φ′(supuλ) = supφ′(uλ).

By Lemmas 3.7 and 3.8, φ(uλ) = vψ(fλ) and φ
′(uλ) = vψ(fλ).

Definition 3.10: The pullback of a tripotent u ∈ B is defined to be the element

φ(u) in Lemma 3.9. By this lemma, we may unambiguously denote it by uψ.

Thus uψ is the unique tripotent of A such that for any maximal tripotent

w majorizing u and any maximal tripotent v of A with ψ∗(v) = w, giving rise

to the space of multipliers M and the support s of P2(w)ψ
∗|A2(v), we have

uψ ∈M2(s) and P2(w)ψ
∗(uψ) = u. Note that in this situation, s = wψ.

We next improve the last assertion in Lemma 3.5 by replacing V |M2(s) by

ψ∗|M2(s).

Lemma 3.11: ψ∗ agrees with V on M2(s). In particular, ψ∗(uψ) = u for every

tripotent u of B and ψ∗|M2(s) is a normal unital Jordan ∗-isomorphism of

M2(s) onto B2(w).

Proof. We use the notation of Lemma 3.5. Since V (s) = w, we have ψ∗(s) =
w+x1 where x1 = P1(w)ψ

∗(s). Then by Lemma 2.1, x1 = 0, so that ψ∗(s) = w.
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It suffices to show that ψ∗ maps projections of M2(s) into B2(w). So let p

be any projection in B2(w). Since V (pψ) = p, we have ψ∗(pψ) = p+ y1 where

y1 = P1(w)ψ
∗(pψ). Since p ≤ w and y1 ∈ B1(w), P2(p)y1 = {p{py1p}p} = 0

by Peirce calculus with respect to w, so that by Lemma 2.1, y1 ⊥ p. Similarly,

ψ∗(s− pψ) = w − p− y1 and, by Lemma 2.1, y1 ⊥ w − p. Hence y1 ∈ B0(w) =

{0}.

The following lemma will be improved in Lemma 5.4 to include the case of

the Peirce 2-space. As it stands, it extends the first statement of Lemma 3.1.

Lemma 3.12: Let v be a tripotent in B. Then

(a) ψ∗(A1(vψ)) ⊂ B1(v) +B0(v),

(b) ψ∗(A0(vψ)) ⊂ B0(v).

Proof. Let f be a normal state of B2(v). Then 〈ψ(f), vψ〉 = f(v) = 1 = ‖f‖ =

‖ψ(f)‖ so that ψ(f) is a normal state of A2(vψ) and hence ψ[B2(v)∗] ⊂ A2(vψ)∗.
Now if x ∈ A1(vψ) and f ∈ B2(v)∗ is arbitrary, 〈f, ψ∗(x)〉 = 〈ψ(f), x〉 = 0

and therefore ψ∗(x) ∈ B1(v) +B0(v). This proves (a).

Now let x ∈ A0(vψ) and suppose ‖x‖ = 1. Then ‖vψ ± x‖ = 1 and therefore

by Lemma 3.11,

‖v ± P2(v)ψ
∗(x)‖ = ‖P2(v)ψ

∗(vψ)± P2(v)ψ
∗(x)‖

≤ ‖ψ∗(vψ)± ψ∗(x)‖ = ‖ψ∗(vψ ± x)‖ ≤ 1,

and since v is an extreme point of the unit ball ofB2(v), we have P2(v)ψ
∗(x) = 0.

We now have ‖v+P1(v)ψ
∗(x)+P0(v)ψ

∗(x)‖ = ‖v+ψ∗(x)‖ = ‖ψ∗(vψ+x)‖ ≤ 1

and, by Lemma 2.1, P1(v)ψ
∗(x) = 0.

Lemma 3.13: Suppose ψ∗(x) = v for a tripotent v ∈ B and an element x ∈ A

with ‖x‖ = 1. Then x = vψ + q for some q ⊥ vψ .

Proof. Let w be a maximal tripotent of B majorizing v and let v′ be a maximal

tripotent of A with ψ∗(v′) = w.

If z ∈ A2(vψ), then z = {vψ{vψzvψ}vψ}. Since vψ is a multiplier with re-

spect to A2(v
′), for all c ∈ A2(v

′) we have P2(w)ψ
∗(vψ ◦ c) = v ◦ P2(w)ψ

∗(c).
Using this and the general formula {zyz} = 2z ◦ (z ◦ y∗) − y∗ ◦ z2 we obtain

P2(w)ψ
∗{vψzvψ} = {v, P2(w)ψ

∗(z), v}. For the same reason, P2(w)ψ
∗(z) =

{v, P2(w)ψ
∗{vψzvψ}, v} = {v{v, P2(w)ψ

∗(z), v}v} ∈ B2(v), proving that
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P2(w)ψ
∗[A2(vψ)] ⊂ B2(v). In fact, P2(w)ψ

∗[A2(vψ)] = B2(v), since if p is any

projection in B2(v), then pψ ≤ vψ , so that pψ ∈ A2(vψ) and P2(w)ψ
∗(pψ) = p.

Decomposing x = x2 + x1 + x0 with respect to vψ , we notice that by Lemma

3.12, P2(v)ψ
∗(x2) = v, and since P2(v)ψ

∗ is a contractive unital, hence positive,

hence self-adjoint map of A2(vψ) onto B2(v), P2(v)ψ
∗(x′2) = v where x′2 is the

self-adjoint part of x2 in A2(vψ).

Now x′2 is a norm one self-adjoint element of the JBW ∗-algebra A2(vψ) which

P2(v)ψ
∗ maps to the identity v of B2(v). Thus by Lemma 3.2, we see that x′2

is a multiplier with respect to A2(vψ).

We show next that vψ is the support of the map P2(v)ψ
∗. Let p ≤ vψ be a

projection with P2(v)ψ
∗(p) = v. Then P2(w)ψ

∗(p) = v, so that by Lemma 3.4,

p ∈M2(s), and since P2(w)ψ
∗ is one-to-one there, p = vψ .

Now, since vψ is the support of the map P2(v)ψ
∗, it is a multiplier with

respect to A2(vψ), and we have x′2 = vψ by Lemma 3.5 (replacing B2(w) there

by B2(v) and A2(v) by A2(vψ)).

Thus x2 = x′2 + ix′′2 = vψ + ix′′2 with x′′2 self-adjoint and, by a familiar

argument, if x′′2 �= 0, then ‖x2‖ = ‖vψ + ix′′2‖ > 1, a contradiction. We now

have x2 = vψ and the proof is completed by applying Lemma 2.1 to show that

x1 = 0.

Definition 3.14: Suppose x lies in B and let w be a maximal tripotent majorizing

r(x). The Jordan∗-isomorphism (ψ∗|M2(s))
−1 of B2(w) onto M2(s) carries

B2(r(x)) onto M2((r(x)ψ). We let xψ denote the image of x under this map so

that ψ∗(xψ) = x. This is an extension of the pullback of a tripotent defined in

Definition 3.10.

The following lemma shows that xψ may be computed using any maximal

tripotent w for which x ∈ B2(w), that is, r(x) need not be majorized by w.

This fact will be critical in the proofs of Theorem 2 and elsewhere in this paper

(for example, Lemmas 5.7 and 6.2).

Lemma 3.15: Suppose x is an element in B2(w), where w is a maximal tripo-

tent not necessarily majorizing r(x). Let M be the space of multipliers cor-

responding to a choice of maximal tripotent v such that ψ∗(v) = w. Then

xψ = (ψ∗|M2(wψ))
−1(x).

Proof. We shall consider first the case that x = u is a tripotent. Let w′ be

a maximal tripotent majorizing u, so that by Lemma 3.12, ψ∗|M ′
2(s

′) is a
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Jordan∗-isomorphism onto B2(w
′), uψ = (ψ∗|M ′

2(s
′))−1(u) and let m denote

(ψ∗|M2(s))
−1(u). Here, of course, s = wψ and s′ = w′

ψ .

Since ψ∗(m) = u, by Lemma 3.13, m = uψ + q with q ⊥ uψ. Furthermore,

ψ∗(q) = 0.

Note that since m and uψ are tripotents, cubing the relation m = uψ + q

shows that q is also a tripotent. We claim that uψ and q belong to A2(s). First

of all, since m ∈ A2(s), we have A2(m) ⊂ A2(s), and since uψ ≤ m and q ≤ m,

uψ, q ∈ A2(m) ⊂ A2(s), proving the claim.

It remains to show that q = 0. To this end, note first that in A2(s), {qqs} =

q ◦ q∗ and {mqs} = m ◦ q∗. Using this and the fact that m is a multiplier, with

V = P2(w)ψ
∗, we have

V (q◦q∗) = V {qqs} = V {mqs} = V (m◦q∗) = V (m)◦V (q∗) = V (m)◦V (q)∗ = 0.

Now we have V (s − q ◦ q∗) = w so that, by Lemma 3.4, s − q ◦ q∗ ∈ M2(s).

Thus q ◦ q∗ ∈M2(s) and, since V is bijective on M2(s), q ◦ q∗ = 0 and q = 0.

Having proved the lemma for tripotents, we now let x =
∫
λduλ be the

spectral decomposition of x and let w′ be a maximal tripotent majorizing r(x).

Then for any spectral tripotent uS , we have uS ∈ B2(w) and uS ≤ w′ so

that, by the special case just proved, (uS)ψ = φ(uS) where φ = (ψ∗|M2(s))
−1.

Approximating x by y =
∑
λiuSi , we have

yψ = (ψ∗|M ′
2(s

′))−1
(∑

λiuSi

)
=

∑
λi(ψ

∗|M ′
2(s

′))−1(uSi)

=
∑

λiφ(uSi)

= φ(y),

which completes the proof, as the maps in question are continuous.

Remark 3.16: We will henceforth refer to elements xψ as multipliers without

specifying the Peirce 2-space containing x. By embedding two orthogonal ele-

ments x and y of B into B2(w) for some maximal tripotent w, it follows that

xψ ⊥ yψ. This fact will be used explicitly in the rest of this paper.

4. Analysis of tripotents and pullback of the Peirce 1-space

Our next goal is to prove, in the case where B has no summand isometric to

L∞(Ω, H), that the pullback map respects Peirce 1-spaces, that is, if u is any

tripotent in B1(w) for some maximal tripotent w, then uψ ∈ A1(wψ). This
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will be achieved in this section (see Theorem 2 below) after some analysis of

tripotents in a JBW ∗-triple.

4.1. Rigid collinearity.

Proposition 4.1: If u is a tripotent in B1(w) and w is a maximal tripotent,

then the element 2{uuw}, which we shall denote by wu, is a tripotent in B2(w)

which is collinear to u and ≤ w. Moreover, u and wu are rigidly collinear.

The proof will be contained in Lemmas 4.2 to 4.6 in which the standing

assumption is that w is a tripotent in B and u is a tripotent in B1(w). This

proposition was proved in [23, Lemma 2.5] for w not necessarily maximal but

under the additional assumption that B2(u) ⊂ B1(w), which follows from the

maximality of w. On the other hand, Lemmas 4.3 and 4.4 are stated here with

an assumption weaker than maximality and will be used in that form later on.

For this reason, we include the proof of Proposition 4.1 here.

Lemma 4.2: If w is maximal, then B2(u) ⊂ B1(w).

Proof. If x ∈ B2(u), then x = P2(u)x = {u{uxu}u} ∈ B1(w) by Peirce calculus

with respect to w and the maximality of w.

Lemma 4.3: If {uwu} = 0 (in particular, if w is maximal), then wu ∈ B1(u).

Proof. By the main identity,

{wuu} = {wu{uuu}} = {{wuu}uu}− {u{uwu}u}+ {uu{wuu}}
and the middle term is zero by assumption. Hence

wu/2 = {wuuu}/2 + {uuwu}/2 = {uuwu}.
Lemma 4.4: If {uwu} = 0 and u �= 0 (in particular, if w is maximal), then wu

is a nonzero tripotent and wu ≤ w.

Proof. Clearly wu is non-zero since u �= 0 does not lie in B0(w). By the main

identity,

{uu{www}} = {{uuw}ww} − {w{uuw}w}+ {ww{uuw}}
so that

{w{uuw}w} = 2{{uuw}ww} − {uuw} = 2{uuw} − {uuw} = {uuw},
proving that wu is a self-adjoint element of B2(w).
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It remains to show that wu is an idempotent in B2(w). To this end use the

main identity to obtain

{wuwwu} = 2{wuw{uuw}}
= 2 [{{wuwu}uw} − {u{wwuu}w}+ {uu{wuww}}] .(2)

Since wu ∈ B2(w), the third term in the bracket on the right is equal to

{uuwu} = wu/2 by Lemma 4.3. It remains to show that the first two terms on

the right side of (2) cancel out. In the first place, by the main identity

u/2 = {uu{wwu}}
= {{uuw}wu} − {w{uuw}u}+ {ww{uuu}}
= {{uuw}wu} − {w{uuw}u}+ u/2,

so that {{uuw}wu} = {w{uuw}u}, that is, {wwuu} = {wuwu}.
On the other hand, by the main identity,

{uwwu} = 2{uw{wuu}}
= 2[{{uww}uu} − {w{wuu}u}+ {wu{uwu}}]
= 2[u/2− {wwuu}/2 + 0] = u− {wwuu},

and it now follows that {uwwu} = {wwuu} = u/2, proving that the first two

terms in (2) do cancel out.

Lemma 4.5: If w is maximal, then B2(u) ⊂ B1(wu).

Proof. By the joint Peirce decomposition and Lemma 4.2,

B2(u) ⊂ B1(w) = B1(wu) ∩B0(w − wu) +B1(w − wu) ∩B0(wu).

Now

2D(u, u)(w − wu) = wu − 2D(u, u)wu = wu − wu = 0,

so that u ⊥ (w − wu) and therefore B2(u) ⊥ (w − wu). This shows that

B2(u) ⊂ B1(wu) ∩B0(w − wu) ⊂ B1(wu).

Lemma 4.6: If w is maximal, then B2(wu) ⊂ B1(u) (this completes the proof

of the rigid collinearity of wu and u).

Proof. Let x ∈ B2(wu). By Lemma 4.3 and Peirce calculus with respect to u,

{wu, P0(u)x,wu} ∈ B2(u) and, by Lemma 4.5, B2(u) ⊂ B1(wu). By compat-

ibility of u and wu, P0(u)x ∈ B2(wu) and, by Peirce calculus with respect to
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wu, P0(u)x = {wu{wu, P0(u)x,wu}wu} = 0, since the middle term belongs to

B1(wu), as just shown. On the other hand, by Lemma 4.5, P2(u)x ∈ B1(wu) so

that P2(u)x = 0 also.

The next two lemmas give important properties of wu. Note that by defini-

tion, w = wu if and only if w ∈ B1(u).

Lemma 4.7: If u ∈ B1(w) and w is maximal, then B1(w) ∩ B0(u) ⊂ B0(wu).

In particular, if wu = w (hence u�w), then u is maximal.

Proof. The first statement holds by Lemma 2.4.

Suppose now that w = wu so that u�w. We shall show that B0(u) ⊂ B0(w),

which implies the second assertion. By Lemma 4.6, B2(w) = B2(wu) ⊂ B1(u).

If x ∈ B0(u) = [B0(u)∩B2(w)] + [B0(u)∩B1(w)], say x = x2 + x1 with respect

to w, then by the first statement, x1 ∈ B0(wu) = B0(w) = 0. On the other

hand, x2 ∈ B2(w) ∩B0(u) ⊂ B1(u) ∩B0(u), so x2 = 0.

Lemma 4.8: Suppose that tripotents u1, u2 ∈ B1(w) with w a maximal tripo-

tent in B. If u1 ≤ u2 then wu1 ≤ wu2 and wu2−u1 = wu2 − wu1 .

Proof. If u1 ≤ u2, then u2 − u1 ⊥ u1, {wu1u2} = {wu1u1} and

wu2−u1 = 2{w, u2 − u1, u2 − u1}
= 2{w, u2 − u1, u2} − 2{w, u2 − u1, u1}
= 2{wu2u2} − 2{wu1u1} − 0 = wu2 − wu1 .

On the other hand, if v1, v2 ∈ B1(w) and v1 ⊥ v2, then by Lemma 4.7,

v2 ⊥ wv1 and, since wv1 ⊥ w − wv1 ,

{wv1wv1wv2} = 2{wv1wv1{wv2v2}}
= 2{{wv1wv1w}v2v2} − 2{w{wv1wv1v2}v2}+ 2{wv2{wv1wv1v2}}
= 2{{wv1wv1wv1}v2v2} − 0 + 0 = 2{wv1v2v2} = 0.

Combining the results of the previous two paragraphs, if u1 ≤ u2, then

u1 ⊥ u2 − u1, wu2−u1 ⊥ wu1 , (wu2 − wu1) ⊥ wu1 so that wu1 ≤ wu2 .

4.2. Central tripotents.

Lemma 4.9: Let w be a maximal tripotent of B and suppose that v

is a tripotent ≤ w, u is a tripotent in B1(w) and u�v. Then either

B1(w) ∩B1(u) ∩B0(v) �= 0 or u is a central tripotent in B.
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Proof. If v = w then we are in the situtation of the second sentence in Lemma

4.7, so u is maximal, hence central. So we assume v �= w. Suppose that

B1(w) ∩ B1(u) ∩ B0(v) = 0 and let e ∈ B1(v) ∩ B1(w − v) ⊆ B2(w) be a

tripotent. We proceed to show, using Peirce calculus, that e = 0 and then that

u is central.

We first note that, by the joint Peirce decomposition,

B1(w) = B1(v) ∩B0(w − v) +B1(w − v) ∩B0(v),

and therefore u ∈ B1(w) ∩ B1(v) ⊂ B0(w − v) so w − v ∈ B0(u). Then

{u, e, w − v} ∈ B1(w) ∩ B1(u) ∩ B0(v) = 0 and {uev} ∈ B2(v) ∩ B1(w) ⊂
B2(w) ∩ B1(w) = 0, so that {uew} = {u, e, w − v} + {uev} = 0. Clearly

{euw} = 0 as well.

We next show that u ⊥ e. By the main identity, {uee} = {ue{eww}} =

{{uee}ww}−{e{euw}w}+ {ew{uew}}. The last two terms are zero and, since

{uee} ∈ B1(w), the first term is equal to {uee}/2. Hence {uee} = 0 and u ⊥ e.

Finally, we show that e = 0. Note that {uve} ∈ B1(w) ∩ B1(u) ∩ B0(v) so

{uve} = 0 and, by Peirce calculus with respect to w, {vue} = 0. Hence, by

the main identity, 0 = {vu{uve}} = {{vuu}ve} − {u{uvv}e} + {uv{vue}} =

{vve}/2− {uue}/2+ 0 = e/4.

From the fact just proved, namely, that B1(v) ∩ B1(w − v) = 0, it follows

from the joint Peirce decomposition that B2(w) = B2(v)⊕B2(w− v), which by

[22, Theorem 4.2(2)] implies that B = C ⊕D where C and D are orthogonal

weak*-closed ideals generated by B2(v) and B2(w−v), respectively. Again from

[22, Theorem 4.2 (3)], C = B2(v) ⊕ B1(v) so that v is a maximal tripotent in

C. Since u�v, Lemma 4.7 assures that u is a maximal tripotent of C, so that

C = B2(u)⊕B1(u), showing that u is a central tripotent.

The proof of the following remark is identical to the proofs of Lemmas 4.3

and 4.4. Recall that, as noted above, those two lemmas are valid without

assuming the maximality of w there and u here.

Remark 4.10: Let w be a maximal tripotent and let u ∈ B1(w) be a tripotent.

Assume that u is not a central tripotent of B and that wu �= w. Let a be a

non-zero tripotent of B1(u)∩B0(wu)∩B1(w) (which is non-zero by Lemma 4.9).

Then ua (:= 2{aau}) is a tripotent ≤ u by Lemma 4.4, noting that {aua} = 0

by Peirce calculus with respect to wu. Also, ua lies in B1(a) by Peirce calculus

since P2(a)u = {a{aua}a} = 0.
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Lemma 4.11: With the notation of Remark 4.10, wua�ua.
Proof. By assumption, a ∈ B1(w). Therefore ua := 2{uaa} ∈ B1(w) and the

result follows from Proposition 4.1.

Proposition 4.12: Let B be a JBW ∗-triple with no direct summand of the

form L∞(Ω, H), where H is a Hilbert space of any positive dimension. Then

every tripotent of B is the supremum of the non-central tripotents that it ma-

jorizes.

Proof. Given a tripotent u in B, let v denote the supremum of all non-central

tripotents majorized by u, or zero, if there are none. Let us suppose that u �= v.

By the definition of v, u− v is a central tripotent and any tripotent majorized

by u− v is also a central tripotent. Hence u− v is an abelian tripotent, that is,

B2(u− v) is associative and hence a commutative C∗-algebra.
We thus now know that B2(u− v)⊕B1(u− v) is a weak∗-closed ideal which

is an �∞ summand of B containing a complete (=maximal) abelian tripotent,

namely u − v. By [23, Theorem 2.8] (see also [23, p. 277] for the definition of

type I1 and [23, Proposition 2.3] for the other terminology used in this theorem),

B2(u− v)⊕B1(u− v) is a direct sum of spaces of the form L∞(Ωm, Hm) where

Hm is a Hilbert space of dimension m for a family of cardinal numbers m. This

contradicts our assumption, proving that u = v

4.3. Pullback of the Peirce 1-space. We are now ready to prove the main

result of this section.

Theorem 2: Assume that the JBW ∗-triple B has no direct summand of the

form L∞(Ω, H), where H is a Hilbert space of dimension at least two. Suppose

w ∈ B is a maximal tripotent and u is a tripotent in B1(w). If A is a JBW ∗-
triple and ψ : B∗ → A∗ is an isometry into, then uψ ∈ A1(wψ).

Proof. Since commutative JBW ∗-triples have no Peirce 1-spaces, it follows eas-

ily using a joint Peirce decomposition of w that we may assume B also has no

summands L∞(Ω), so that the hypothesis of Proposition 4.12 holds. Thus we

can write u = supλ∈Λ uλ where each uλ is a non-central tripotent belonging to

B1(w), by Lemma 4.2. Then by Lemma 4.9 and Definition 4.10, for each λ ∈ Λ,

vλ := supa(uλ)a exists, where the supremum is over all non-zero tripotents a in

B1(uλ) ∩B0(wuλ
) ∩B1(w).
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We claim that u = supλ∈Λ vλ . Indeed, setting v = supλ vλ, if v �= u we

would have that u− v is the supremum of non-central tripotents majorized by

u − v and hence by u. Let uλ0 be one of these non-central tripotents. Then

vλ0 ≤ uλ0 ≤ u− v, which contradicts v = supλ vλ. This proves the claim.

Explicitly, we have proved

u = sup
λ

sup
aλ

{(uλ)aλ : aλ ∈ B1(w) ∩B1(uλ) ∩B0(wuλ
)}

and this is the same as

u = sup{(uλ)aλ : λ ∈ Λ, aλ ∈ B1(uλ) ∩B0(wuλ
) ∩B1(w)}.

In the rest of this proof, we shall use the fact, just established, that u is the

supremum of a family of tripotents va for certain v ≤ u and certain tripotents

a ∈ B1(v)∩B0(wv)∩B1(w) where, by the argument at the end of Remark 4.10,

va lies in B1(a). Note that Lemma 3.15 will be used several times, as indicated

below.

We note first that wva , va ∈ B2(wv+a) and va ∈ B1(wv). Indeed, from va ≤ v

we have from Lemma 4.8 that wva ≤ wv so wva ∈ B2(wv) ⊂ B2(wv+a). On the

other hand, by Lemma 4.5, va ∈ B1(a)∩B2(v) ⊂ B1(a)∩B1(wv) ⊂ B2(wv+a).

We claim next that (va)ψ ∈ A1((wu)ψ). Indeed, since by Lemma 4.8,

wv ⊥ wu − wv, we have, by Remark 3.16 and the joint Peirce decomposition,

(3) A1((wv)ψ) ∩ A0((wu − wv)ψ) ⊂ A1((wu)ψ).

Since wv, va ∈ B2(wv + a) and {wvwvva} = va/2, it follows (using Lemma

3.15) that {(wv)ψ, (wv)ψ , (va)ψ} = (va)ψ/2 so (va)ψ lies in A1((wv)ψ). Also,

v ⊥ w − wv since

{w − wv, w − wv, v} = {wwv} − {wvwv} − {wwvu}+ {wvwvv}
= {wwv} − {wvwvv} − {wvwvv}+ {wvwvv}
= {wwv} − {wvwvv} = v/2− v/2 = 0.

Hence va ≤ v lies in A0(w − wv) ⊆ A0(wu − wv). Embedding va and wu − wv

in B2(va + wu − wv), we see that (va)ψ lies in A0((wu − wv)ψ) and the claim

follows from (3).

We now have from Lemma 3.7 and Lemma 2.2 that uψ ∈ A1((wu)ψ). As

before, u ⊥ (w − wu), so application of Lemma 3.15 and Remark 3.16 yields

uψ ∈ A0((w−wu)ψ). Finally, uψ ∈ A1((wu)ψ)∩A0((w−wu)ψ) ⊂ A1(wψ).
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5. The space of local multipliers

In this section, we establish some deeper properties of Jordan multipliers.

We retain the notation of the previous two sections, that is, ψ : B∗ → A∗ is

a linear isometry, where A and B are JBW ∗-triples and w is an extreme point

of B giving rise to the objects v,M, s in A. We also assume that B satisfies the

condition in Theorem 2, that is, it has no direct summand of the form L∞(Ω, H)

where H is a Hilbert space of dimension at least two.

Lemma 5.1: ψ[B1(w)∗] ⊂ A1(s)∗.

Proof. If f ∈ B1(w)∗, then vf ∈ B1(w) and, by Lemma 3.8 and Theorem 2,

vψ(f) = (vf )ψ ∈ A1(s).

To show that ψ(f) ∈ A1(s)∗, let g = ψ(f) and Peirce decompose it with

respect to s: g = g2+g1+g0. Since 〈g0, A0(s)〉 = 〈g,A0(s)〉 = 〈f, ψ∗[A0(s)]〉 = 0

we have g0 = 0. It remains to show g2 = 0. We may assume that ‖f‖ = 1.

Since g = g2 + g1 and vg ∈ A1(s), g1(vg) = g(vg) = 1 = ‖g‖ ≥ ‖g1‖ so that

‖g1‖ = 1 and g1 ∈ A2(vg)∗. Since obviously g ∈ A2(vg)∗, we have g2 ∈ A2(vg)∗.
By [18, Lemma 1.1], we have ‖λg2+ g1‖ = ‖g2+ g1‖ = 1 for every complex λ of

modulus 1. The local argument given in [1, Theorem 3.1] can be easily extended

to apply to JBW ∗-algebras to show that g1 is a complex extreme point of the

unit ball of the predual of the JBW ∗-algebra A2(vg), and thus we must have

g2 = 0.

Corollary 5.2: ψ∗(A2(s)) ⊂ B2(w).

Proof. If x ∈ A2(s), let ψ
∗(x) = y2 + y1 be the Peirce decomposition of ψ∗(x)

with respect to w. If f ∈ B1(w)∗, then 〈f, y1〉 = 〈f, ψ∗(x) − y2〉 = 〈f, ψ∗(x)〉 =
〈ψ(f), x〉 = 0 since ψ(f) ∈ A1(s)∗ and x ∈ A2(s). Thus y1 = 0.

In view of this Corollary, we may improve the statement of Lemma 3.4 by

replacing V by ψ∗ We restate this improved lemma here.

Lemma 5.3: Let x ∈ A2(s) be such that 0 ≤ x ≤ s and ψ∗(x) is a projection

in B2(w). Then x ∈M2(s).

The following is the announced improvement of Lemma 3.12.

Lemma 5.4: Let u be a tripotent in B. Then

(a) ψ∗(A1(uψ)) ⊂ B1(u) +B0(u),
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(b) ψ∗(Aj(uψ)) ⊂ Bj(u) for j = 0, 2.

Proof. Part (a) and the case j = 0 of part (b) have been proved in Lemma 3.12.

To prove the case j = 2 of (b), note first that by Lemma 5.3 uψ ∈ M2(s).

(Recall that uψ ≤ s ≤ v where v is a maximal tripotent of A with ψ∗(v) = w

and w is a maximal tripotent majorizing u.)

If x ∈ A2(uψ), then x = {uψ{uψxuψ}uψ} and, by definition of multiplier

and using Corollary 5.2, ψ∗(uψ ◦ c) = u ◦ ψ∗(c) for all c ∈ A2(v). Using this

and the general formula {xyx} = 2x ◦ (x ◦ y∗)− y∗ ◦ x2 we obtain ψ∗{uψxuψ}
= {u, ψ∗(x), u}. For the same reason, ψ∗(x) = {u, ψ∗{uψxuψ}, u} =

{u{u, ψ∗(x), u}u} ∈ B2(u), proving the case j = 2 of (b).

Lemma 5.5: Suppose x ∈ A. If ψ∗(x2n+1) = (ψ∗(x))2n+1 for all positive

integers n, then x = (ψ∗(x))ψ + q, where q ⊥ (ψ∗(x))ψ .

Proof. We may assume ‖x‖ = 1. LetW (x) be the JBW ∗-triple generated by x.

By assumption and weak∗-continuity, ψ∗ restricts to an isomorphism of W (x)

onto W (ψ∗(x)). For each closed subset S of (0, 1], if we let uS ∈ W (x) be the

corresponding spectral tripotent for x, then ψ∗(uS) is the spectral tripotent vS

of ψ∗(x) (or zero, if S has no intersection with the spectrum of ψ∗(x)).
Choose a maximal tripotent w ≥ r(ψ∗(x)). If ψ∗(uS) is not zero, then by

Lemma 3.13, uS = (vS)ψ + qS where qS is a tripotent which is perpendicular to

(vS)ψ.

Now suppose S∩T = ∅ and uS and uT are non-zero. Then uT ⊥ uS and hence

(uT )ψ and qT are each orthogonal to (vS)ψ and qS (subtripotents of orthogonal

tripotents are orthogonal).

We now use approximation to show that x = (ψ∗(x))ψ+q, where q⊥(ψ∗(x))ψ .
Indeed, approximate x as a norm limit of finite sums y =

∑
λiuSi with the Si

disjoint, and
∑
uSi = r(x) = r(y). Then y =

∑
λiuSi =

∑
λi[(vSi)ψ + qSi ] =

(
∑
λivSi)ψ +

∑
λiqSi = (ψ∗(y))ψ + q where, since qSi ⊥ (vSj )ψ for all i, j,

the element q =
∑
λiqSi is orthogonal to

∑
λi(vSi)ψ = (ψ∗(y))ψ . The result

follows from continuity.

Note that by the spectral theorem, Theorem 2 is valid for arbitrary elements

x ∈ B1(w). We now extend Theorem 2 to not necessarily maximal tripotents.

Lemma 5.6: If u is any tripotent of B and if x ∈ B1(u), then xψ ∈ A1(uψ).
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Proof. Consider first a tripotent v ∈ B1(u). Write

vψ = P2(uψ)vψ + P1(uψ)vψ + P0(uψ)vψ := (vψ)2 + (vψ)1 + (vψ)0.

Then for any f ∈ B1(u)∗ with f(v) = 1 = ‖f‖, by Lemma 5.4

1 = f(v) = ψ(f)(vψ) = ψ(f)((vψ)2 + (vψ)1 + (vψ)0)

= f(ψ∗[(vψ)2] + ψ∗[(vψ)1] + ψ∗[(vψ)0])

= f [ψ∗[(vψ)1]] = ψ(f)[(vψ)1].

Moreover, by [12, Theorem 4.6] and Lemma 3.8, (vψ)1 = vψ(f)+bf = (vf )ψ+bf

where bf ⊥ vψ(f).

Let us now write, as in Lemma 3.9, v = supλ vgλ where {gλ} is an orthogonal

family of normal functionals on B1(u). Note that gλ(v) = gλ(vgλ) = 1 = ‖gλ‖
so that, for each λ, (vψ)1 = vψ(gλ) + bλ, where bλ ⊥ vψ(gλ). This implies

that the associated tripotent u((vψ)1) defined as in Subsection 2.1 verifies

u((vψ)1) ≥ vψ(gλ) and therefore u((vψ)1) ≥ supλ vψ(gλ). Indeed, by orthogonal-

ity, ((vψ)1)
2n+1 = vψ(gλ)+ b2n+1

λ so that in the limit, u((vψ)1) = vψ(gλ)+u(bλ).

For notation’s sake, in this paragraph, let x := (vψ)1 and w := supλ vψ(gλ).

From the property {u(x), x, u(x)} = u(x), we have P2(u(x))x = u(x), so that

by Lemma 2.1, x = u(x) + c with c ⊥ u(x). Since u(x) ≥ w, say u(x) = w +w′

where w′ is a tripotent orthogonal to w, we now have x = w+w′+ c, with both

w′ and c orthogonal to w. Thus

(4) (vψ)1 = sup
λ
vψ(gλ) + b

for some element b ⊥ supλ vψ(gλ).

By Lemma 3.7, we now have

(5) sup
λ
vψ(gλ) = sup

λ
(vgλ)ψ = (sup

λ
vgλ)ψ = vψ = (vψ)2 + (vψ)1 + (vψ)0.

For notation’s sake, in this paragraph, let y = vψ. It follows from (4) and (5)

that −b = (y2+y0) ⊥ y, orD(y2+y0, y2+y0)(y2+y1+y0) = 0. This yields, upon

expansion and comparison of Peirce components, that {y2y2y2} = 0 = {y0y0y0}
so that y2 = y0 = 0. Thus, vψ lies in A1(uψ).

The lemma follows easily for an arbitrary x ∈ B1(u) by considering the

spectral decomposition of x.
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Lemma 5.7: Let u and v be compatible tripotents in B (in particular, if u is a

tripotent in B1(v)) and let x be an element in B2(v). Then

Pj(uψ)xψ = (Pj(u)x)ψ for j = 0, 1, 2.

In particular, Pj(uψ)xψ is a multiplier for j = 0, 1, 2.

Proof. Since u and v are compatible, Pj(u)x = P2(v)Pj(u)x ∈ B2(v) so that,

by Lemma 3.15,

(6) xψ = (P2(u)x+P1(u)x+P0(u)x)ψ = (P2(u)x)ψ +(P1(u)x)ψ +(P0(u)x)ψ .

From Lemma 5.6, (P1(u)x)ψ ∈ A1(uψ) and, by Remark 3.16, (P0(u)x)ψ ∈
A0(uψ). Again by Lemma 3.15,

(P2(u)x)ψ = ({u{uxu}u})ψ = ({u{u, P2(u)x, u}u})ψ
= ({uψ{uψ, (P2(u)x)ψ , uψ}uψ}),

so that (P2(u)x)ψ ∈ A2(uψ).

By the uniqueness of Peirce decompositions and (6), Pj(uψ)xψ = (Pj(u)x)ψ .

6. Proof of the main results (Theorems 3 and 1)

We again assume in this section that the JBW ∗-triple B satisifes the condition

in Theorem 2, that is, it has no direct summands of the form L∞(Ω, H), where

H is a Hilbert space of dimension at least two.

Lemma 6.1: Suppose v is a tripotent in B. Further suppose that x is a tripotent

in B1(v) with {x, v, x} = 0 and {xψ, vψ, xψ} = 0. Then ψ∗{xψ, xψ, vψ} =

{x, x, v}. Furthermore, {xψ, xψ, vψ} = yψ for some y ∈ B.

Proof. We note first that, as shown in Lemma 4.4, p := 2D(x, x)v is a

self-adjoint projection in B2(v). By Peirce arithmetic, using the assumption

{xvx} = 0, p lies in B1(x) and, by Lemma 5.6, pψ lies in A1(xψ). By this fact,

the compatibility of pψ and xψ , and the fact that pψ ≤ vψ , we have

2D(pψ, pψ)D(xψ , xψ)vψ = 2D(xψ, xψ)D(pψ, pψ)vψ = 2D(xψ, xψ)pψ = pψ.

Similarly to the calculation above,

q := 2{xψ, xψ, vψ}
is a self-adjoint projection in A2(vψ) and, since q ◦ pψ = 2{{xψxψvψ}vψpψ} =

2D(pψ, pψ)D(xψ , xψ)vψ = pψ, q ≥ pψ and it follows that ψ∗(q) ≥ p.
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NowD(x, x)(v−p) = {xxv}−{xxp} = p/2−p/2 = 0. Hence, xψ is orthogonal

to vψ − pψ. By this orthogonality and compatibility, and since pψ ≤ vψ ≤ wψ

(w is a maximal tripotent majorizing v) so that {pψpψvψ} = pψ,

D(vψ − pψ, vψ − pψ)D(xψ , xψ)vψ = D(xψ , xψ)D(vψ − pψ, vψ − pψ)vψ

= D(xψ , xψ)(vψ − pψ) = 0,

showing vψ − pψ is orthogonal to q. We then have

‖v − p± ψ∗(q)‖ ≤ ‖vψ − pψ ± q‖ = 1

so that v−p is orthogonal to ψ∗(q). Since, as shown above, ψ∗(q) ≥ p, it follows

(using Lemma 5.4 to ensure that ψ∗(q) ∈ B2(v)) that ψ∗(q) = p. This proves

the first statement. The second follows immediately from Lemma 5.3, since vψ

is majorized by wψ for a maximal tripotent w ∈ B and ψ∗ takes the positive

element 2{xψ, xψ, vψ} ∈ A2(wψ) to a projection in B2(w).

Lemma 6.2: Suppose that y and z lie in B2(w) for a maximal tripotent w and

that x lies in B1(w). Then

{xψ, yψ, zψ}
is a multiplier belonging to A1(wψ)∩A2([r(x) + r(z0)]ψ) (where z0=P0(r(x))z),

and ψ∗{xψ, yψ, zψ} = {x, y, z}.
Proof. Suppose first that x is a tripotent. Let yj denote Pj(x)y and (yψ)j =

Pj(xψ)yψ for j = 0, 1, 2. Similarly for z. By Lemma 5.7, replacing u, v, x there

by x,w, y, respectively, we have (yj)ψ = (yψ)j and similarly (zj)ψ = (zψ)j , for

j = 0, 1, 2.

Note that in the expansion

{xψ, yψ, zψ} =

{
xψ,

∑
i

(yψ)i,
∑
j

(zψ)j

}
=

∑
i,j

{xψ, (yψ)i, (zψ)j},

seven of the nine terms are zero, five of them since y2 = P2(x)y = {x{x, y, x}x}
= 0 by the maximality of w (so also z2 = 0), and two others since xψ is

orthogonal to (yψ)0 and (zψ)0. Hence

(7) {xψ, yψ, zψ} = {xψ, (y1)ψ, (z1)ψ}+ {xψ, (y1)ψ , (z0)ψ}.

Let uS be a spectral tripotent of y1. By Peirce calculus with respect to w
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and wψ, {uS, x, uS} = 0 and {(uS)ψ, xψ , (uS)ψ} = 0. Therefore, by Lemma

6.1, {xψ, (uS)ψ , (uS)ψ} is a multiplier in A2(xψ) and ψ∗{xψ, (uS)ψ, (uS)ψ} =

{xuSuS}. Passing to the limit using the spectral theorem shows that

{xψ, (y1)ψ, (y1)ψ} is a multiplier in A2(xψ) and ψ
∗{xψ, (y1)ψ, (y1)ψ} = {xy1y1}.

Of course, the same holds for z: {xψ, (z1)ψ, (z1)ψ} is a multiplier in A2(xψ) and

ψ∗{xψ, (z1)ψ, (z1)ψ} = {xz1z1}.
By Lemma 3.15, (y1)ψ + (z1)ψ = (y1 + z1)ψ. Hence the same statement

holds for {xψ, (y1)ψ + (z1)ψ , (y1)ψ + (z1)ψ}. Thus the statement holds for

{xψ, (y1)ψ, (z1)ψ}+ {xψ, (z1)ψ, (y1)ψ}. Explicitly,
{xψ, (y1)ψ , (z1)ψ}+ {xψ, (z1)ψ , (y1)ψ}

is a multiplier in A2(xψ) and

ψ∗({xψ , (y1)ψ, (z1)ψ}+ {xψ, (z1)ψ, (y1)ψ}) = {xy1z1}+ {xz1y1}.
Replacing z by iz shows that the statement holds for {xψ, (y1)ψ , (z1)ψ} and

{xψ, (z1)ψ, (y1)ψ} individually. This proves, in the case that x is a tripotent,

that the first term in the right side of (7) is a multiplier in A2(xψ) ∩ A1(wψ)

and ψ∗ is multiplicative on this term.

We now consider the second term in the right side of (7), still in the case

that x is a tripotent. Since x ⊥ z0 (recall that z0 = P0(x)z), we can choose a

maximal tripotent w′ such that B2(x + r(z0)) ⊂ B2(w
′), so that xψ and (z0)ψ

are multipliers in A2(xψ + r(z0)ψ) = A2([x+ r(z0)]ψ) ⊂ A2(w
′
ψ). We next note

that for every a ∈ A,

(8) ψ∗{xψ, a, (z0)ψ} = {x, ψ∗(a), z0}.
Indeed, by Peirce calculus {xψ, a, (z0)ψ} = {xψ, P2(w

′
ψ)a, (z0)ψ} and, by prop-

erties of multipliers and the Jordan algebra relation,

(9) {abc} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗

(cf. Lemma 3.5), and Lemma 5.4,

ψ∗{xψ, a, (z0)ψ} = ψ∗{xψ, P2(w
′
ψ)a, (z0)ψ} = {x, ψ∗(P2(w

′
ψ)a), z0}

= {x, P2(w
′)ψ∗(a), z0}

= {x, ψ∗(a), z0},
proving (8). In particular, ψ∗{xψ, (y1)ψ, (z0)ψ} = {x, y1, z0} so that

ψ∗{xψ, yψ, zψ} = {x, y1, z1}+ {x, y1, z0} = {x, y, z}.
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We still must show that {xψ, (y1)ψ , (z0)ψ} is a multiplier. By the joint Peirce

decomposition and the relation D(u, u) = P2(u) + P1(u)/2,

P2(xψ + r(z0)ψ)(y1)ψ = [P2(xψ) + P2(r(z0)ψ) + P1(xψ)P1(r(z0)ψ)](y1)ψ

= P1(r(z0)ψ)(y1)ψ

= [2D(r(z0)ψ, r(z0)ψ)− 2P2(r(z0)ψ)](y1)ψ

= 2D(r(z0)ψ, r(z0)ψ)(y1)ψ .

The right side of the preceding equation is a triple product of multipliers

in A2(wψ), and is hence a multiplier in A2(wψ) by (9) and the fact that the

multipliers form a Jordan algebra. Hence P2(xψ + r(z0)ψ)(y1)ψ is a multiplier

in A2(wψ). Since {xψ(y1)ψ(z0)ψ} = {xψ, P2(xψ + r(z0)ψ)(y1)ψ , (z0)ψ}, using
Lemma 3.15, {xψ(y1)ψ(z0)ψ} is a multiplier in A2([x + r(z0)]ψ). This proves

the lemma in the case that x is a tripotent.

Now let x be an arbitrary element of B1(w). Approximate it by sums x̃ =∑
λiui, where the elements ui ∈ B1(w) are orthogonal spectral tripotents with∑
ui = r(x). Decomposing y and z with respect to r(x) = r(x̃), it follows as in

(7) that

(10) {x̃ψyψzψ} = {x̃ψ, (y1)ψ , (z1)ψ}+ {x̃ψ, (y1)ψ , (z0)ψ}.
By the previous discussion surrounding (7), with y, z there replaced by y1, z1 ∈

B2(w) and since ui ∈ B1(w), {(ui)ψ, (y1)ψ , (z1)ψ}, which lies in A2(r(x)ψ) by

Peirce calculus, is a sum of a multiplier in A2((ui)ψ) ⊆ A2(r(x)ψ) and a mul-

tiplier belonging to A1(wψ) which must also lie in A2((r(x))ψ). Also, ψ∗ is

multiplicative on these products. Hence the first term in the right side of (10)

is a multiplier in A2(r(x)ψ) ⊆ A2([r(x) + r(z0)]ψ) and ψ∗ is multiplicative on

it.

The second term equals
∑
λi{(ui)ψ , (y1)ψ, (z0)ψ}. Since z0 ⊥ ui (recall that

z0 = P0(r(x))z), the same argument used above shows that {(ui)ψ , (y1)ψ, (z0)ψ}
is a multiplier in A2([ui + r(z0)]ψ) ⊆ A2([r(x) + r(z0)]ψ) and that ψ∗ is mul-

tiplicative on these products. Hence the second term in (10) is a multiplier in

A2(r(x)ψ) ⊆ A2([r(x) + r(z0)]ψ) and ψ∗ is multiplicative on it. The lemma is

proved.

Lemma 6.3: If q lies in A0(vψ) for some maximal tripotent v ∈ B, then

ψ∗{q, x, y} = 0 for all x, y ∈ A; in particular, ψ∗{q, q, x} = 0 for all x ∈ A.

Also, q ⊥ xψ for all x ∈ B, that is, A0(vψ) ⊥ {xψ : x ∈ B}.



324 M. NEAL AND B. RUSSO Isr. J. Math.

Proof. Let z be a maximal tripotent in A0(vψ) such that q/‖q‖ is a self-adjoint

element with respect to z (see [22, Lemma 3.12(1)]). Clearly vψ+ z is maximal.

Because ψ∗ preserves orthogonality with vψ and v is maximal, ψ∗(q) = ψ∗(z) =
0 and therefore ψ∗ maps the self-adjoint element vψ+q/‖q‖ to the unit v ofB2(v)

and maps vψ+z to v. By Corollary 3.3, vψ+q/‖q‖ is a multiplier in A2(vψ+z).

Since vψ is a multiplier there, so is q. On the other hand, if we let x = x2+x1+x0

be its Peirce decomposition with respect to vψ , then {qqx} = {q, q, x1 + x0} so

that ψ∗{qqx} = ψ∗{qqx1} since {qqx0} ∈ A0(vψ). If we now expand x1 in its

Peirce decomposition with respect to z, say x1 = (x1)2 + (x1)1 + (x1)0, then

{qqx1} = {q, q, (x1)2+(x1)1} and, since vψ and z are compatible, (x1)2+(x1)1 ∈
A2(z) + A1(z) ∩ A1(vψ) ⊂ A2(vψ + z). Since q is a multiplier in A2(vψ + z),

we now have ψ∗{qqx1} = {ψ∗(q), ψ∗(q), ψ∗((x1)2 + (x1)1)} = 0, proving that

ψ∗{qqx} = 0.

Letting x, y ∈ A and Peirce decomposing them with respect to vψ, we have

(11) ψ∗{qxy} = ψ∗{q, x1 +x0, y2 + y1 + y0} = ψ∗{q, x0, y1 + y0}+ψ∗{qx1y2}.
Since {qx1y2} ∈ A1(z) (by Peirce calculus), we have

{qx1y2} = 2{z, z, {qx1y2}} = 2{z, vψ + z, {qx1y2}}
and therefore, since z is a multiplier in A2(vψ + z), ψ∗{qx1y2} =

ψ∗(z) ◦ ψ∗{qx1y2} = 0. Thus the second term on the right side of (11) is zero.

For the first term on the right side of (11), we have

(12) ψ∗{q, x0, y1 + y0} = ψ∗{q, x0, y1}+ ψ∗{q, x0, y0}
and the second term in (12) is zero since {q, x0, y0} ∈ A0(vψ). Peirce decom-

posing x0 and y1 with respect to z and expanding the first term in (12) leads

to

ψ∗{q, x0, y1} =ψ∗{q, (x0)2, (y1)2}+ ψ∗{q, (x0)2, (y1)1}
+ ψ∗{q, (x0)1, (y1)1}+ ψ∗{q, (x0)1, (y1)0}.

The first and third terms here are zero since (y1)2 and {q, (x0)1, (y1)1} belong

to A1(vψ) ∩ A2(z), which is zero since vψ ⊥ z. The second term is zero since

{q, (x0)2, (y1)1} lies in A1(vψ) ∩ A1(z) ⊆ A2(vψ + z) and {q, (x0)2, (y1)1} =

2{z, z, {q, (x0)2, (y1)1}} = 2{z, vψ + z, {q, (x0)2, (y1)1}} so that

ψ∗{q, (x0)2, (y1)1} = ψ∗(z) ◦ ψ∗{q, (x0)2, (y1)1} = 0.

The proof that the fourth term is zero is similar. This proves that ψ∗{qxy} = 0.
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To prove the last statement, it may be assumed that both q and x are tripo-

tents. Decompose xψ with respect to q: xψ = (xψ)2 + (xψ)1 + (xψ)0 and

note that by the first two parts of this lemma, ψ∗((xψ)2 + (xψ)1) = 0, so

that ψ∗((xψ)0) = x. By Lemma 3.13, (xψ)0 = xψ + q̃ where q̃ ⊥ xψ . Thus

q̃ = −(xψ)2 − (xψ)1 is orthogonal to (xψ)2 + (xψ)1 + (xψ)0. Considering the

components of

0 = D((xψ)2 + (xψ)1, (xψ)2 + (xψ)1 + (xψ)0)(xψ)2

we immediately see that {(xψ)2(xψ)2(xψ)1} = 0, so that (xψ)2 ⊥ (xψ)1 and

therefore {(xψ)1(xψ)1(xψ)2} = 0 and ((xψ)2)
3 = 0, (xψ)2 = 0. Considering 0 =

D((xψ)1, (xψ)1 + (xψ)0)(xψ)1 we see that (xψ)1 = 0. The lemma follows.

Corollary 6.4: If x ∈ B2(w) for a maximal tripotent w and y, z ∈ B1(w),

then {yψ, xψ, zψ} = 0.

Proof. Let α := {yψ, xψ, zψ}. By Peirce calculus with respect to wψ, α ∈
A0(wψ) so, by Lemma 6.3, yψ, zψ, xψ ⊥ α. By the main identity,

{ααα} = {αα{yψxψzψ}} = {{ααyψ}xψzψ}− {yψ{ααxψ}zψ}+ {yψxψ{ααzψ}}
and each term is zero, hence α = 0.

Lemma 6.5: Suppose xψ is a multiplier belonging to A1(wψ) for a maximal

tripotent w ∈ B and that yψ is a multiplier belonging to A2(wψ). Then

{xψ, xψ , yψ} is a multiplier and ψ∗ is multiplicative on this product.

Proof. Suppose first that x is a tripotent. By Corollary 6.4, {xψyψxψ} = 0 and

hence P2(xψ)yψ = 0. Then by Lemma 5.7,

{xψxψyψ} = D(xψ , xψ)yψ = (P2(xψ) + P1(xψ)/2)yψ

= P1(xψ)yψ/2 = (P1(x)y)ψ/2,

proving that {xψ, xψ , yψ} is a multiplier. Moreover, ψ∗{xψxψyψ} = P1(x)y/2 =

(2D(x, x) − 2P2(x))y/2 = {xxy}, since by Peirce calculus with respect to the

maximal tripotent w, {xyx} = 0.

For the general case it suffices to assume that x is a finite sum
∑
λixi of

pairwise orthogonal tripotents xi in B1(w). By the special case just proved,

{(xi)ψ(xi)ψyψ} is a multiplier and ψ∗ is multiplicative on it. Therefore,

{xψ, xψ , yψ} =
∑

λ2i {(xi)ψ(xi)ψyψ}
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is also a multiplier and ψ∗ is multiplicative on it.

Lemma 6.6: Suppose that z is a tripotent in B and that w is maximal tripotent

in B. Then, letting z2 = P2(w)z and z1 = P1(w)z, we have zψ = (z2)ψ + (z1)ψ.

Proof. It follows from Corollary 6.4 and Lemmas 6.2 and 6.5 that

ψ∗[((z2)ψ + (z1)ψ)
3] = z.

Indeed,

((z2)ψ + (z1)ψ)
3 =

2∑
i,j,k=1

{(zi)ψ, (zj)ψ, (zk)ψ},

and ψ∗ is multiplicative on each term on the right side as follows. For the

terms corresponding to (i, j, k) = (2, 2, 2) and (1, 1, 1), this is because ψ∗ is

a Jordan homomorphism on the set of local multipliers. For the terms corre-

sponding to (i, j, k) = (2, 2, 1) and (1, 2, 2) (which are the same), this is because

of Lemma 6.2. For the terms corresponding to (i, j, k) = (2, 1, 1) and (1, 1, 2)

(which are the same), this is because of Lemma 6.5. For the term corresponding

to (1, 2, 1), this is because of Corollary 6.4 and the maximality of w. For the

term corresponding to (2, 1, 2), this is because of Peirce calculus. Thus

(13) ψ∗[((z2)ψ + (z1)ψ)
3] =

2∑
i,j,k=1

{zizjzk} = (z2 + z1)
3 = z3 = z,

as required.

Now if we Peirce decompose ((z2)ψ + (z1)ψ)
3 with respect to wψ we obtain

(14) P2(wψ)[((z2)ψ + (z1)ψ)
3] = ((z2)ψ)

3 + 2{(z2)ψ, (z1)ψ , (z1)ψ},

(15) P1(wψ)[((z2)ψ + (z1)ψ)
3] = ((z1)ψ)

3 + 2{(z2)ψ, (z2)ψ , (z1)ψ},
and

P0(wψ)[((z2)ψ + (z1)ψ)
3] = 0.

By Lemma 6.5, the right side of (14) is a sum of three multipliers, and hence

a multiplier itself in A2(wψ).

On the other hand, the first term on the right side of (15) is obviously a

multiplier in A2(r(z1)ψ) ⊆ A2([r(z1) + r(P0(r(z1))z2)]ψ). By Lemma 6.2, the

second term is also a multiplier in A2([r(z1)+r(P0(r(z1))z2)]ψ). Hence the sum

is a multiplier. It follows that ((z2)ψ+(z1)ψ)
3 is again a sum of two multipliers

(z′2)ψ+(z′1)ψ, where the indices indicate Peirce components of z′ with respect to
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w. Since ψ∗((z′2)ψ+(z′1)ψ) = z′2+z
′
1, (13) tells us that z = z′2+z

′
1, and therefore

z2 = z′2, z1 = z′1 and (z2)ψ +(z1)ψ is a tripotent. We may use Lemma 5.5 (with

x there equal to the tripotent (z2)ψ +(z1)ψ) to see that (z2)ψ +(z1)ψ = zψ + q,

where q ⊥ zψ and ψ∗(q) = 0.

To show that q = 0, suppose first that z is maximal. It follows from Lemma

6.3 that q ⊥ [(z2)ψ + (z1)ψ], from which it follows that q = 0. Now suppose z

is a general tripotent less than a maximal tripotent v. Let u = v − z. Then

(z2)ψ+(z1)ψ+(u2)ψ+(u1)ψ = zψ+q+uψ+p = vψ+p+q = (v2)ψ+(v1)ψ+p+q.

Note that (z2)ψ + (u2)ψ = (z2 + u2)ψ = (v2)ψ and therefore

(v2)ψ + (z1)ψ + (u1)ψ = (v2)ψ + (v1)ψ + p+ q,

which tells us that p+ q ∈ A1(wψ). Repeating this argument with −u instead

of u shows that p− q ∈ A1(wψ) so that both p and q belong to A1(wψ).

From (z2)ψ + (z1)ψ = zψ + q with q ∈ A0(zψ) ∩ A1(wψ) and zψ =

(zψ)2+(zψ)1+(zψ)0 (Peirce decomposition with respect to wψ) we have q⊥(zψ)1;

indeed, 0 = {zψqq} = {(zψ)2qq} + {(zψ)1qq} + {(zψ)0qq} and all three terms

are zero since they lie in different Peirce spaces.

Thus (z1)ψ = (zψ)1 + q with q ⊥ (zψ)1 and therefore

(16) r(z1)ψ = r((zψ)1) + q with q ⊥ r((zψ)1).

By (16), ψ∗(r((zψ)1)) = r(z1) showing, by Lemmas 3.4 and 3.5(c), that

r(z1)ψ = r((zψ)1), that is q = 0.

Theorem 3: Let ψ denote an isometry of B∗ into A∗ where A and B are

JBW ∗-triples. Assume thatB has no L∞(Ω, H) summand, whereH is a Hilbert

space of dimension at least two. Let C be the weak*-closure of the linear span of

all multipliers: C := spw∗{xψ|x ∈ B}. Then C is a JBW ∗-subtriple of A, and

ψ∗ restricted to C is a weak* bi-continuous isomorphism onto B with inverse

x �→ xψ for x ∈ B.

Proof. We first consider three tripotents u, v and w in B and show that

{uψ, vψ, wψ} is a sum of multipliers and that ψ∗ is multiplicative on this prod-

uct. Choose a maximal tripotent z ≥ v and decompose with respect to it:

u = u2 + u1 and w = w2 + w1. It follows from Lemma 6.6 and Corollary 6.4

that the above product equals

{(u2)ψ, vψ, (w2)ψ}+ {(u1)ψ , vψ, (w2)ψ}+ {(u2)ψ, vψ , (w1)ψ}.
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The first product satisfies the desired conditions by the work in Section 3.

The second and third products also satisfy these conditions by Lemma 6.2. It

follows from Section 3 and separate weak*-continuity of the triple product that

C is a weak*-closed subtriple of A and that ψ∗ restricted to C is a weak*-

continuous homomorphism onto B. Let C = I⊕K where K denotes the kernel,

which is a weak*-closed ideal and I is the complementary ideal K⊥. Suppose u
is a tripotent in B. Let P and P⊥ be the projections of C onto I and K. P (uψ)

and P⊥(uψ) are orthogonal tripotents that sum to uψ and ψ∗(P (uψ)) = u. By

Lemma 3.13, P (uψ) = uψ+ q where q ⊥ uψ. Hence q = −P⊥(uψ), which forces

q3 = 0 because q ⊥ Puψ − uψ = q. Thus K = 0 and ψ∗ is a weak*-continuous

isomorphism from C onto B.

An immediate consequence of the proof is the following corollary.

Corollary 6.7: Retain the notation of the theorem. Then C = {xψ|x ∈ B}.
The next two corollaries constitute a proof of Theorem 1.

Corollary 6.8: Suppose that A, B, C and ψ are as in Theorem 3. Let

φ denote the inverse of ψ∗|C and let P : A∗ → A∗ be the linear map with

P ∗ = φ ◦ ψ∗ (which exists by the automatic weak* continuity of JBW ∗-triple
isomorphisms). Then P is a contractive projection of A∗ onto ψ(B∗)

Proof. For f ∈ B∗ and a ∈ A, 〈P (ψ(f)), a〉 = 〈f, ψ∗(φ(ψ∗(a))〉 = 〈f, ψ∗(a)〉 =
〈ψ(f), a〉. The statement follows.

In the next corollary we use the following fact from the structure theory of

JBW ∗-triples: every JBW ∗-triple U can be decomposed into an �∞-direct sum

of orthogonal weak*-closed ideals U1 and U2, where U1 is a direct sum of spaces

of the form L∞(Ω, C), with C a Cartan factor, and U2 has no abelian tripotents

(see [24, (1.16)] and [23, (1.7)]). In particular, since Hilbert spaces are Cartan

factors, we can write B = B1 ⊕ B2 where (B1)∗ is an �1 direct sum of spaces

isomorphic to L1(Ωλ, Hλ), where Hλ is a Hilbert space of dimension at least

two, and (B2)∗ has no non-trivial �1-summand of the from L1(Ω, H), with H a

Hilbert space of dimension at least two.

Corollary 6.9: Suppose that A and B are JBW ∗-triples and ψ is an isom-

etry from B∗ into A∗, and let B = B1 ⊕ B2 be the decomposition described
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above. Then there is a contractive projection P from A∗ onto ψ((B2)∗) which
annihilates ψ((B1)∗)

Proof. Denote by ψi the restriction of ψ to (Bi)∗. It is immediate from the

previous corollary that there exists a contractive projection P from A∗ onto

ψ2((B2)∗) with P ∗ = φ2 ◦ ψ∗
2 . Suppose f ∈ ψ1((B1)∗). Pick a tripotent

u ∈ B2. Using Lemmas 3.7 and 3.8,

uψ2 = φ2(u) = φ2(sup
λ
vgλ) = sup

λ
φ2(vgλ) = sup

λ
vψ2(gλ)

for a family of pairwise orthogonal normal functionals gλ ∈ (B2)∗ (see the proof

of Lemma 3.9). Since f ⊥ ψ2(gλ), f(vψ2(gλ)) = 0 and so, by [22, (3.23)],

f(uψ2) = 0. Hence f(φ2(u)) = 0. It follows that f(φ2((ψ2)
∗(A))) = 0 and

P (f) = 0.
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