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Programming and Runtime Support to Blaze FPGA Accelerator 
Deployment at Datacenter Scale

Muhuan Huang1,2,*, Di Wu1,2,*, Cody Hao Yu1,*, Zhenman Fang1, Matteo Interlandi1, Tyson 
Condie1, and Jason Cong1

1University of California Los Angeles

2Falcon Computing Solutions, Inc

Abstract

With the end of CPU core scaling due to dark silicon limitations, customized accelerators on 

FPGAs have gained increased attention in modern datacenters due to their lower power, high 

performance and energy efficiency. Evidenced by Microsoft’s FPGA deployment in its Bing 

search engine and Intel’s 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is 

considered one of the most promising approaches to sustain future datacenter growth. However, it 

is quite challenging for existing big data computing systems—like Apache Spark and Hadoop—to 

access the performance and energy benefits of FPGA accelerators.

In this paper we design and implement Blaze to provide programming and runtime support for 

enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze 

abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for 

big data processing applications to easily utilize those accelerators. Our Blaze runtime implements 

an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads 

on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently 

share them among multiple computing tasks in the cluster. Experimental results using four 

representative big data applications demonstrate that Blaze greatly reduces the programming 

efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the 

system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a 

conventional CPU-only cluster.

Keywords

FPGA-as-a-service; heterogeneous datacenter

Categories and Subject Descriptors

C.1.3 [Computer Systems Organization]; Heterogeneous (hybrid) systems

Request permissions from permissions@acm.org.
*Author names are listed in alphabetical order.

HHS Public Access
Author manuscript
Proc ACM Symp Cloud Comput. Author manuscript; available in PMC 2017 March 15.

Published in final edited form as:
Proc ACM Symp Cloud Comput. 2016 October ; 2016: 456–469. doi:10.1145/2987550.2987569.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Modern big data processing systems, such as Apache Hadoop [1] and Spark [47], have 

evolved to an unprecedented scale. As a consequence, cloud service providers, such as 

Amazon, Google and Microsoft, have expanded their datacenter infrastructures to meet the 

ever-growing demands for supporting big data applications. However, due to the problem of 

dark silicon [21], simple CPU core scaling has come to an end, and thus CPU performance 

and energy efficiency has become one of the primary constraints in scaling such systems. To 

sustain the continued growth in data and processing methods, cloud providers are seeking 

new solutions to improve the performance and energy efficiency for their big data 

workloads.

Among various solutions that harness GPU (graphcs processing unit), FPGA (field-

programmable gate array), and ASIC (application-specific integrated circuit) accelerators in 

a datacenter, the FPGA-enabled datacenter has gained increased attention and is considered 

one of the most promising approaches. This is because FPGAs provide low power, high 

energy efficiency and reprogrammability to customize high-performance accelerators. One 

breakthrough example is that Microsoft has deployed FPGAs into its datacenters to 

accelerate the Bing search engine with almost 2x throughput improvement while consuming 

only 10% more power per CPU-FPGA server [33]. Another example is IBM’s deployment 

of FPGAs in its data engine for large NoSQL data stores [13]. Moreover, Intel, with the 

$16.7 billion acquisition of Altera, is providing closely integrated CPU-FPGA platforms for 

datacenters [12], and is targeting the production of around 30% of the servers with FPGAs in 

datacenters by 2020 [6].

With the emerging trend of FPGA-enabled datacenters, one key question is: How can we 
easily and efficiently deploy FPGA accelerators into state-of-the-art big data computing 
systems like Apache Spark [47] and Hadoop YARN [42]? To achieve this goal, both 

programming abstractions and runtime support are needed to make these existing systems 

programmable to FPGA accelerators. This is challenging for the following reasons.

1. Unlike conventional CPU and GPU targeted programs, compiling an FPGA 

program can take several hours, which makes existing runtime systems that use 

dynamic code generation for CPU-GPU datacenters, such as Dandelion [35], 

HadoopCL [22] and SWAT [23], not applicable for FPGAs.

2. State-of-the-art big data systems like Apache Hadoop and Spark compile to the 

Java Virtual Machine (JVM), while FPGA accelerators are usually manipulated 

by C/C++/OpenCL. Even with predesigned FPGA accelerators, there are still 

excessive programming efforts required to i) integrate them with the JVM, ii) 

share an accelerator among multiple threads or multiple applications, and iii) 

share an FPGA platform by multiple accelerators of different functionalities.

3. A straightforward JNI (Java Native Interface) integration of FPGA accelerators 

can diminish or even degrade the overall performance (up to 1000X slowdown) 

due to the overwhelming JVM-to-native-to-FPGA communication overhead [15].
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4. It usually takes several seconds to reprogram an FPGA into a different 

accelerator (with a different functionality). A frequent FPGA reprogramming in 

a multi-accelerator scenario can significantly degrade the overall system 

performance. This raises a fundamental question: Do we manage ”the hardware 
platform itself” or ”the logical accelerator (functionality) running on top of the 
hardware platform” as a resource?

To address these challenges, we design and implement Blaze: a framework that provides a 

programming abstraction and runtime support for easy and efficient FPGA deployments in 

datacenters. This paper describes the Blaze architecture and makes the following 

contributions.

1. Programming APIs that enable big data processing applications to leverage 

FPGA accelerators to perform task-level work. We abstract FPGA accelerators as 

a service (FaaS), which decouples the hardware accelerator development of data 

processing tasks (i.e., Spark transformations) and big data processing logic (i.e., 

scheduling tasks, shuffling data, etc.).1

2. Policies for managing logical accelerator functionality —instead of the physical 

hardware platform itself—as a resource, where better scheduling decisions can 

be made to optimize the system throughput and energy efficiency.

3. An efficient runtime to share FPGA accelerators in data-centers, where an FaaS 

framework is implemented to support sharing of accelerators among multiple 

threads and multiple applications in a single node. Also, an accelerator-centric 

scheduling is proposed for the global accelerator management to alleviate the 

FPGA reprogramming overhead for multi-accelerators. Finally several well-

known optimization techniques—such as data caching and task pipelining—are 

employed to reduce the JVM-to-FPGA communication overhead.

4. An open-source prototype that is compatible with existing ecosystems like 

Apache Spark with no code changes and YARN with a lightweight patch. Our 

goal is to bring FPGA accelerator developers, big data application developers, 

and system architects together, to blaze the deployment of accelerators in 

datacenters.2

2. Background

There has been great success in programming frameworks that enable efficient development 

and deployment of big data applications in conventional datacenters, i.e., composed of 

general-purpose processors. In this section we briefly introduce Apache Spark [47]— our 

target big data processing framework— and the Hadoop YARN resource manager [42], 

which we use to expose FPGA resources in a cluster environment. We also give a quick 

tutorial of FPGA accelerators.

1While Blaze does support GPU accelerators as well, this paper will mainly focus on FPGA accelerators which have not been studied 
before.
2Blaze can be downloaded from github: https://github.com/UCLA-VAST/blaze. Blaze has already been used by multiple groups at 
Intel Labs to deploy accelerators composed of the Intel-Altera Heterogeneous Accelerator Research Platforms (HARP CPU-FPGA 
platforms).

Huang et al. Page 3

Proc ACM Symp Cloud Comput. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/UCLA-VAST/blaze


2.1 Apache Spark

Apache Spark [47] is a widely used fast and general large-scale data processing framework. 

It exposes a programming model based on Resilient Distributed Datasets (RDDs) [46]. The 

RDD abstraction provides transformations (e.g., map, reduce, filter, join, etc.) and actions 
(e.g., count, collect) that operate on datasets partitioned over a cluster of nodes. A typical 

Spark program executes a series of transformations ending with an action that returns a 

singleton value (e.g., the record count of an RDD) to the Spark driver program, which could 

then trigger another series of RDD transformations.

Spark caches reused data blocks in memory, often achieving significant performance 

speedup over the Hadoop MapReduce [1] on iterative applications such as machine learning. 

Recent studies [9, 32] show that Spark applications are often computation-bound instead of 

IO or network bound in conventional Hadoop applications. This motivates us to leverage 

FPGAs to further accelerate the computation.

Spark can be run standalone on a cluster, or with a resource manager like Hadoop YARN 

[42]. For each Spark application submitted to the YARN cluster, a set of containers (see 

Section 2.2) is gathered from the resource manager matching the available resources and the 

application con-figuration. For each acquired container, the Spark context launches an 

executor: a JVM instance providing the base runtime for the execution of the actual data-

processing computation (i.e., tasks), and managing the application data.

2.2 Apache YARN

YARN (Yet Another Resource Negotiator) is a widely used cluster resource management 

layer in the Hadoop system that allocates resources, such as CPU and memory, to multiple 

big data applications (or jobs). Figure 1 shows a high-level view of the YARN architecture. 

A typical YARN setup would include a single resource manager (RM) and several node 

managers (NM) installations. Each NM typically manages the resources of a single machine, 

and periodically reports to the RM, which collects all NM reports and formulates a global 

view of the cluster resources. The periodic NM reports also provide a basis for monitoring 

the overall cluster health at the RM, which notifies relevant applications when failures occur.

A YARN job is represented by an application master (AM), which is responsible for 

orchestrating the job’s work on allocated containers i.e., a slice of machine resources (some 

amount of CPU, RAM, disk, etc.). A client submits an AM package—that includes a shell 

command and any files (i.e., binary executable configurations) needed to execute the 

command—to the RM, which then selects a single NM to host the AM. The chosen NM 

creates a shell environment that includes the file resources, and then executes the given shell 

command. The NM monitors the containers for resource usage and exit status, which the 

NM includes in its periodic reports to the RM. At runtime, the AM uses an RPC interface to 

request containers from the RM, and to ask the NMs that host its containers to launch a 

desired program. Returning to Figure 1, we see the AM instance running with allocated 

containers executing a job-specific task.

To manage heterogeneous computing resources in the datacenter and provide placement 

control, YARN recently introduced a mechanism called label-based scheduling. 
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Administrators can specify labels for each server node and expose the label information to 

applications. The YARN resource manager then schedules the resource to an application 

only if the node label matches with the application-specified label. Examples of node labels 

can be an FPGA or GPU, which indicate that the nodes are equipped with a special hardware 

platform.

2.3 FPGAs

A field-programmable gate array (FPGA) is a reconfigurable integrated circuit with much 

lower power consumption compared to CPUs and GPUs. Since an FPGA is essentially 

customizable hardware, it can achieve significant performance speedup despite its low clock 

frequency. Many factors contribute to the efficiency of FPGA. For example, application-

specific computation pipelines can be designed to avoid the conventional instruction fetching 

and decoding overhead. The data access can also be customized to significantly improve the 

data reuse. Processing elements of customized computation pipelines can also be duplicated 

to scale the performance by data parallelism. Because of these techniques and FPGA’s 

energy efficiency, it has been widely adopted in recent years for accelerating the 

computation-intensive kernels in standalone applications; it achieved 18x to more than 300x 

kernel speedups [16, 18, 28, 48].

An FPGA implementation is usually based on a hardware description languages (HDL) such 

as Verilog and VHDL, and it requires a comprehensive knowledge of hardware. Recent 

development of high-level synthesis (HLS) [19] allows programmers to use a C-based 

language to design FPGA accelerators. However, the learning-curve for FPGA programming 

is usually very steep for software programmers, since the optimal implementation still 

requires a significant amount of FPGA-specific knowledge.

Due to the power wall and dark silicon [21], FPGA acceleration has become increasingly 

promising, and OpenCL has emerged as a standard framework for FPGA programming. 

However, there are several fundamental differences between OpenCL applications for FPGA 

and GPU. Since the architecture of GPU is fixed, GPU programs can be compiled using a 

just-in-time (JIT) compiler on the fly. FPGAs, on the other hand, are flexible on the 

architecture level, but require a much longer compilation time (often several hours). This 

means that an FPGA accelerator has to be generated in advance as a library, and loaded in an 

OpenCL host program at runtime. Moreover, the OpenCL support for FPGAs is still at an 

early stage compared to that for GPUs. For example, the Xilinx OpenCL implementation 

does not support FPGA accelerator sharing by multiple applications. This further motivates 

our FaaS design for transparent and efficient FPGA accelerator sharing.

3. Blaze System Overview

We design Blaze as a generic system to enable big data applications to easily access FPGA 

accelerators and implement it as a third-party package that works with existing ecosystems 

(i.e., Apache Spark and Hadoop YARN), with lightweight changes. Here we give an 

overview of the Blaze programming and runtime support and discuss how we address the 

challenges listed in Section 1.
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To provide an easy-to-use programming interface, we abstract FPGA accelerators as a 

service (FaaS) and propose to decouple the software development of big data applications 

and the hardware development of FPGA accelerators. This means hardware experts can 

make the best effort to optimize the accelerator design without being burdened with 

application complexity, and software developers do not need to be aware of tedious 

hardware details to take advantage of accelerators. Currently, Blaze provides a set of APIs 

for Spark programs to offload map computations onto accelerators without any change to the 

Spark framework. All Spark programmers have to do is to register the pre-defined FPGA 

accelerators (developed by hardware experts) into Blaze as a service, and call the Blaze API 

to access the customized accelerators. All the accelerator sharing and management logic are 

transparently handled by our Blaze runtime.

The Blaze runtime system integrates with Hadoop YARN to manage accelerator sharing 

among multiple applications. As illustrated in Figure 2, Blaze includes two levels of 

accelerator management. A global accelerator manager (GAM) oversees all the accelerator 

resources in the cluster and distributes them to various user applications. Node accelerator 

managers (NAMs) sit on each cluster node and provide transparent accelerator1 access to a 

number of heterogeneous threads from multiple applications. After receiving the accelerator 

computing resources from GAM, the Spark application begins to offload computation to the 

accelerators through NAM. NAM monitors the accelerator status, handles JVM-to-FPGA 

data movement and accelerator task scheduling. NAM also performs a heartbeat protocol 

with GAM to report the latest accelerator status.

We summarize the key features of Blaze as follows.

1. FPGA accelerators as a service (FaaS). The most important role of NAM in 

Blaze runtime is providing transparent FaaS shared by multiple application jobs 

(run on the same node) that request accelerators in a fashion similar to software 

library routines. Each “logical accelerator” library routine exposes a predefined 

functionality to a Spark program, and can be composed of multiple “physical 

accelerators” on multiple hardware platforms (e.g., two FPGAs, or one FPGA 

and one GPU). FaaS automatically manages the task scheduling between logical 

and physical accelerators. For example, multiple physical accelerators can be 

allocated for a single logical accelerator for performance-demanding 

applications, while one physical accelerator can be shared across multiple logical 

accelerators if each has a low utilization of that physical accelerator.

2. Accelerator-centric scheduling. In order to solve the global application 

placement problem considering the overwhelming FPGA reprogramming 

overhead, we propose to manage the logical accelerator functionality, instead of 

the physical hardware itself, as a resource to reduce such reprogramming 

overhead. We extend the label-based scheduling mechanism in YARN to achieve 

this goal: instead of configuring node labels as ‘FPGA’, we propose to use 

accelerator functionality (e.g., ‘KMeans-FPGA’, ‘Compression-FPGA’) as node 

labels. This helps us to differentiate applications that are using the FPGA devices 

to perform different computations. Therefore, we can delay the scheduling of 

accelerators with different functionalities onto the same FPGA to avoid 
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reprogramming as much as possible. Different from the current YARN solution, 

where node labels are configured into YARN’s configuration files, node labels in 

Blaze are con-figured into NAM through command-line. NAM then reports the 

accelerator information to GAM through heartbeats, and GAM configures these 

labels into YARN.

3. Hiding JVM-to-FPGA communication. We also employ well-known 

techniques such as data caching and task pipelining in FaaS to hide the 

overwhelming JVM-to-native-to-FPGA communication overhead.

4. Fault tolerance. The FaaS design in each NAM also helps the fault tolerance of 

the system. Whenever a fault in the accelerator hardware occurs, NAM can 

allocate different hardware to fulfill the request, or fallback to CPU execution 

when no more accelerators are available.

5. Facilitating rolling upgrades. FaaS makes it easy to configure heterogeneous 

accelerator resources on compute nodes in the datacenter, facilitating rolling 

upgrades of next-generation accelerator hardware and making the system 

administration of large-scale heterogeneous data-centers more scalable.

In summary, the easy-to-use programming interface, transparent FaaS, and the accelerator-

centric scheduling of Blaze makes FPGA accelerator deployment at datacenter scale much 

easier than existing approaches. Note that the FaaS framework for NAM is provided as a 

third-party package without any change to Apache Spark, while accelerator-centric 

scheduling for GAM and NAM is provided as a lightweight patch to Hadoop YARN. In 

Section 4 and Section 5, we will present more details about the Blaze programming interface 

and runtime implementation.

4. Blaze Programming Interface

In this section we first describe the programming interfaces of Blaze from two aspects: how 

to write a big data application that invokes FPGA accelerators, and how to design and 

register an FPGA accelerator into Blaze. Then we present our support for data serialization 

during data transfer between JVM and accelerators.

4.1 Application Programming Interface

We implement Blaze as a third-party package that works with the existing Spark framework3 

without any modification of Spark source code. Thus, Blaze is not specific to a particular 

version of Spark. Moreover, the Blaze programming model for user applications is designed 

to support accelerators with minimal code changes. To achieve this, we extend the Spark 

RDD to AccRDD which supports accelerated transformations. We explain the detailed usage 

of AccRDD in Listing 1 with an example of logistic regression.

3Blaze also supports C++ applications with similar interfaces, but we will mainly focus on Spark applications in this paper.
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Listing 1

Blaze application example (Spark Scala)

val points = sc.textFile(filePath).cache()val train = 
blaze.wrap(points)for (i <- 0 until ITERATIONS) {
   bcW = sc.broadcast(weights)
   val gradients = train.map(
         new LogisticAcc(bcW) ).reduce(a + b)
   weights -= gradients}class LogisticAcc(w: Broadcast_var[V])
      extends Accelerator[T, U] {
   val id: String = "LRGradientCompute"
   def call(p: T): U = {
      localGradients.compute(p, w.value)
   }
   ...}

In Listing 1, training data samples are loaded from a file and stored to an RDD points, and 

are used to train weights by calculating gradients in each iteration. To accelerate the 

gradient calculation with Blaze, first the RDD points needs to be extended to AccRDD 

train by calling the Blaze API wrap. Then an accelerator function, LogisticAcc, can be 

passed to the .map transformation of the AccRDD. This accelerator function is extended 

from the Blaze interface Accelerator by specifying an accelerator id and an optional 

compute function for the fall-back CPU execution. The accelerator id specifies the desired 

accelerator service, which in the example is “LRGradient-Compute”. The fall-back CPU 

function will be called when the accelerator service is not available. This interface is 

provided with fault-tolerance and portability considerations. In addition, Blaze also supports 

caching for Spark broadcast variables to reduce JVM-to-FPGA data transfer. This will be 

elaborated in Section 5.3.

The application interface of Blaze can be used by library developers as well. For example, 

Spark MLlib developers can include Blaze-compatible codes to provide acceleration 

capabilities to end users. With Blaze, such capabilities are independent of the execution 

platform. When accelerators are not available, the same computation will be performed on 

CPU. In this case, accelerators will be totally transparent to the end users. In our evaluation, 

we created several implementations for Spark MLlib algorithms such as logistic regression 

and K-Means using this approach.

4.2 Accelerator Programming Interface

For accelerator designers, the programming experience is decoupled with any application-

specific details. An example of the interface implementing the “LRGradientCompute” 

accelerator in the prior subsection is shown in Listing 2.

Listing 2

Blaze accelerator example (C++)

class LogisticTask : public Task {public:
    LogisticTask(): Task(NUM_ARGS)
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    // overwrite the compute function
    virtual void compute() {
       int num_elements = getInputLength(...);
       double *in = (float*)getInput(...);
       double *out = (float*)getOutput(...);
       // perform computation
       ...
    }};

Our accelerator interface hides details of FPGA accelerator initialization and data transfer by 

providing a set of APIs. In this implementation, for example, the user inherits the provided 

template, Task, and the input and output data can be obtained by simply calling getInput 

and getOutput APIs. No explicitly OpenCL buffer manipulation is necessary for users. 

The runtime system will prepare the input data and schedule it to the corresponding task. 

The accelerator designer can use any available programming framework to implement an 

accelerator task as long as it can be integrated with an interface in C++.

4.3 Serialization Support

The input and output data of Spark tasks need to be serialized and deserialized respectively 

before they are transferred to and from accelerator platforms. Blaze implementation includes 

its own (de)serializer for primitive data types, because the existing Java version is not 

sufficient for handling the data layout for accelerators. In addition, Blaze also provides an 

interface to users to implement their own (de)serializer methods. As a result, users are 

allowed to use arbitrary data types in the Spark application as long as the corresponding 

(de)serializer is able to process data to match the accelerator interface.

5. Blaze Runtime Support

In this section, we present our Blaze runtime support, including the FaaS implementation to 

share accelerators among multiple heterogeneous threads in a single node, accelerator-

centric scheduling to alleviate the FPGA reprogramming overhead, communication 

optimization to alleviate the JVM-to-FPGA overhead, and fault tolerance and security 

support.

5.1 FPGA-as-a-Service (FaaS)

Blaze facilitates FaaS in NAM through two levels of queues: task queues and platform 
queues. The architecture of NAM is illustrated in Figure 3. Each task queue is associated 

with a “logical accelerator”, which represents an accelerator library routine. When an 

application task requests a specific accelerator routine, the request is put into the 

corresponding task queue. Each platform queue is associated with a “physical accelerator”, 

which represents an accelerator hardware platform such as an FPGA board. The tasks in task 
queue can be executed by different platform queues depending on the availability of the 

implementations. For example, if both GPU and FPGA implementations of the same 

accelerator library routine are available, the task of that routine can be executed on both 

devices.
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This mechanism is designed with three considerations: 1) application-level accelerator 

sharing, 2) minimizing FPGA reprogramming, and 3) efficient overlapping of data transfer 

and accelerator execution to alleviate JVM-to-FPGA over- head. We elaborate the first two 

considerations in the rest of this subsection, and discuss 3) in Section 5.3.

In Blaze, accelerator devices are owned by NAM rather than individual applications. The 

reasoning behind this design is our observations that in most big data applications, the 

accelerator utilization is less than 50%. If the accelerator is owned by a specific application, 

then much of the time it will be spent in idle, wasting energy. The application-level sharing 

inside NAM is managed by a scheduler that sits between application requests and task 
queues. In this paper, a simple first-come-first-serve scheduling policy is implemented. We 

leave the exploration of different policies to future work.

The downside of providing application sharing is the additional overheads of data transfer 

between the application process and NAM process. For latency-sensitive applications, Blaze 

also offers a reservation mode where the accelerator device is reserved for a single 

application, i.e., a NAM instance will be launched inside the application process.

The design of the platform queue focuses on mitigating the large overhead in FPGA 

reprogramming. For a processor-based accelerator such as GPU to begin executing a 

different “logical accelerator”, it simply means loading another program binary, which 

incurs minimum overhead. With FPGA, on the other hand, the reprogramming takes much 

longer. An FPGA device contains an array of logic cells, and the programming is effectively 

configuring the logic function and connection of each cell. Each con-figuration is called a 

“bitstream”, and it typically takes 1~2 seconds to program an FPGA with a given bitstream. 

Such a reprogramming overhead makes it impractical to use the same scheme as the GPU in 

the runtime system. In Blaze, a second scheduler sits between task queues and platform 
queues to avoid frequent reprogramming of the same FPGA device. More details about the 

scheduling policy will be presented in the next subsection.

5.2 Accelerator-centric Scheduling

In order to mitigate the FPGA reprogramming overhead, it is better to group the tasks that 

need the same accelerator to the same set of nodes. The ideal situation is that each cluster 

node only gets the tasks that are requesting the same accelerator, in which case FPGA 

reprogramming is not needed. Figure 4 illustrates that grouping accelerator tasks can reduce 

FPGA reprogramming overhead.

By managing logical accelerator functionality as a resource, we propose an accelerator-

locality-based delay scheduling policy to dynamically partition the cluster at runtime, 

avoiding launching mixed FPGA workloads on the same cluster node as much as possible. 

During accelerator allocation in GAM, we consider the nodes in the following order as 

scheduling priorities: 1) the idle nodes that do not have any running containers; 2) the nodes 

that run similar workloads; 3) the nodes that run a different set of workloads. Specifically, 

we define an affinity function to describe ith node’s affinity to an application as , 

where nacc is the number of containers on this node that use the same logical accelerator (or 

label), and n is the total number of containers on this node. A node with higher affinity 

Huang et al. Page 10

Proc ACM Symp Cloud Comput. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



represents a better scheduling candidate. An idle node which has zero running containers has 

the highest affinity and is considered the best scheduling candidate. GAM tries to honor 

nodes with higher accelerator affinity by using the so-called delay scheduling.

At runtime, each NAM periodically sends a heartbeat to the GAM, which represents a 

scheduling opportunity. The GAM scheduler does not simply use the first scheduling 

opportunity it receives. Instead, it may skip a few scheduling opportunities and wait a short 

amount of time for a scheduling opportunity with a better accelerator affinity. In our 

implementation, we maintain a threshold function for each application, which linearly 

decreases as the number of missed scheduling opportunities increases. A container is 

allocated on a node only if the node’s accelerator affinity is higher than the threshold 

function.

5.3 Hiding JVM-to-FPGA Communication

In order for a Spark program to transfer data to an FPGA accelerator, the data has to be first 

moved from JVM to the native machine, and then moved to the FPGA device memory 

through a PCIe connection. Such data movement between the host CPU and FPGA 

accelerators sometimes can diminish or even degrade the overall system performance [15]. 

To mitigate such overhead, Blaze adopts the following well-known techniques within the 

FaaS framework.

1. Task pipelining. Most datacenter workloads will have multiple threads/tasks 

sharing the same accelerator, which creates an opportunity to hide data transfer 

with task execution by pipelining: the task queue in NAM adopts an 

asynchronous communication scheme that overlaps JVM-to-FPGA data 

communication with FPGA accelerator execution.

2. FPGA data caching. Many big data applications like machine learning use 

iterative algorithms that repeatedly perform computation on the same set of input 

data. This provides the opportunity to cache the data on the FPGA device 

memory and thus avoid the most time-consuming native-to-FPGA data 

movement through PCIe. To be more specific, our FaaS framework implements a 

Block Manager to maintain a data reuse table that records the mapping from the 

native data block to the FPGA device memory block. For the case of OpenCL, 

Block Manager manages a table of cl buffer objects which are mapped to 

device memory. A flag is used to indicate whether the programmer wants Blaze 

to cache an input data block. In Spark, the flag is automatically assigned if the 

user specifies .cache() for the input RDD.

3. Broadcast data caching. Most data analytic frameworks such as Spark support 

data sharing across the cluster nodes. In Spark, this is provided as broadcast data. 

Similarly, Blaze also supports a broadcast data caching to minimize data transfer 

across the cluster nodes. A broadcast block only needs to be transferred to the 

NAM once, and it will be cached inside the Block Manager throughout the 

application’s life cycle.
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5.4 Fault Tolerance and Security Issues

Fault tolerance is inherent in our proposed transparent accelerator scheduling. All 

accelerator-related errors are caught at the application level, and the CPU implementation 

will be used to resume the execution. Errors of accelerators in NAM are handled in a similar 

fashion as Spark or YARN. A counter is used for each accelerator task per platform, keeping 

track of the number of errors incurred. If the failure is persistent for one accelerator task, it 

will be removed from NAM’s configuration. This information will also be propagated to 

GAM in the heartbeat signals, and GAM will remove the corresponding label for this node.

Based on the description of the Blaze accelerator interface in Section 4.2, the accelerator 

task implementation only has access to its private input data through the provided interface, 

such as getInput(). The data can only be assigned by NAM based on the dependency, and 

all input data is read-only. Our underlying platform implementation is based on existing 

accelerator runtime systems such as OpenCL, so we rely on the runtime implementation to 

guarantee security at the device level. In general, the security issues in FPGA-enabled 

datacenters will be an open and interesting direction for future work.

6. Experimental Results

Now we evaluate the programming efforts and system performance of deploying FPGA 

accelerators in datacenters using Blaze. First we present the hardware and software setup, 

and describe the four representative large-scale applications we chose that cover two 

extremes: iterative algorithms like machine learning, and streaming algorithms like 

compression and genome sequencing. We evaluate the programming efforts to write these 

applications using Blaze in terms of lines-of-code (LOC). Then we evaluate the overall 

system speedup and energy savings for each individual application by putting FPGA 

accelerators into the cluster. We also analyze the FaaS overhead and break down the 

performance improvement of each optimization. Finally, we analyze multi-job executions 

and the efficiency of our accelerator-centric scheduling policy in the global accelerator 

management.

6.1 Experimental Setup

The experimental platform we use is a local standard CPU cluster with up to 20 nodes, 

among which 4 nodes4 are integrated with FPGA cards using PCI-E slots. Each server has 

dual-socket Intel Xeon E5-2620v3 CPUs with 12 cores in total and 64GB of main memory. 

The FPGA card is AlphaData ADM-PCIE-7V3, which contains a Xilinx Virtex-7 

XC7VX690T-2 FPGA chip and 16GB of on-board DDR3 memory. The FPGA board can be 

powered by PCI-E alone and consumes around 25W, which makes it deployable into 

commodity datacenters.

The software framework is based on a community version of Spark 1.5.1 and Hadoop 2.6.0. 

The accelerator compilation and runtime are provided by the vendor toolkits. For the 

4We are planning to install more FPGA cards in the near future.
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AlphaData FPGA cards, we use the OpenCL flow provided by the Xilinx SDAccel tool-

chain, where the OpenCL kernels will be synthesized into bitstreams to program the FPGA.

We choose a set of four representative compute-intensive large-scale applications. They 

cover two extremes: iterative machine learning algorithms like logistic regression and K-

means clustering, and streaming algorithms like genome sequencing analysis and Apache 

Parquet compression.

1. Logistic regression (LR). The baseline LR is the training application 

implemented by Spark MLlib [11] with the LBFGS algorithm. The software 

baseline uses netlib with native BLAS library. The computation kernels we select 

are the logistic gradients and the loss function calculation. The kernel 

computation takes about 80% of the total application time.

2. K-Means clustering (KM). The KM application is also implemented using 

Spark MLlib, which uses netlib with native BLAS library. The computation 

kernel we select is the local sum of center distances calculation. The datasets 

used in KM are the same as LR, and the percentage of kernel computation time is 

also similar to LR.

3. Genome sequences alignment (GSA). The GSA application is from the open-

source Cloud Scale BWAMEM (CS-BWAMEM) software suite [17], which is a 

scale-out implementation of the BWAMEM algorithm [29] widely used in the 

bioinformatics area. The algorithm aligns the short reads from the sequencer to a 

reference genome. We mainly focus on the alignment step in this application 

which uses the Smith-Waterman algorithm, as we did in a prior case study [15].

4. Apache Parquet compression (COMP). Apache Parquet [2] is a compressed 

and efficient columnar data representation available to any project in the Hadoop/

Spark ecosystem. Such columnar data generally have good compression rates 

and thus are often compressed for better spatial utilization and less data 

communication. We mainly focus on the compression (deflater) step, which is 

computation-bound and common through various applications. We use two 

software baselines: 1) the Java Gzip implementation that uses both the LZ77 

algorithm and Huffman encoding, which has a better compression ratio but low 

throughput; and 2) the open-source Snappy implementation [10] that uses a JNI 

wrapper to call the C++ Snappy library based on the LZ77 algorithm, which has 

a lower compression ratio but better throughput.

The input data for LR and KM are based on a variant of the MNIST dataset [8] with 8 

million records, and is sampled such that on average each node will process 2–4GB of data. 

The data set of GSA is a sample of HCC1954, which is a single person’s whole genome. 

The input data for COMP is the first 100 kilo short reads in HCC1954.

The FPGA accelerators for all applications are designed in-house. The accelerator 

specifications for LR and KM can be found in [18], and the Smith-Waterman 

implementation is based on [16]. Our FPGA accelerator is designed based on the Gzip 

implementation with both the LZ77 algorithm and Huffman encoding. Table 1 presents an 

Huang et al. Page 13

Proc ACM Symp Cloud Comput. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overview of the accelerator speedup compared to the 12-thread CPU software baseline in 

terms of throughput improvement. We set --num-executors to 1 and --executor-

cores to 12 in Spark. For COMP, 12 independent streams on the CPU are used to take 

advantage of all cores. The accelerator design details are omitted in this paper, since our 

focus is on evaluating the integration benefits of FPGA accelerators into big data 

applications using Blaze.

Currently, we only run the kernel computation on FPGAs for FPGA-related experiments as a 

proof-of-concept. We will consider efficient CPU-FPGA co-working in our future work, 

which will provide higher performance than our current reported results.

6.2 Programming Efforts

We begin the analysis by showing Blaze’s benefits in reducing the deployment efforts of 

integrating existing FPGA accelerators to big data applications. The results are shown in 

Table 2, where the lines of code (LOC) breakdown is listed for the selected applications. The 

hardware code to design the accelerators is exactly the same between manual and Blaze 

implementations and decoupled from software developers, so it is excluded in this 

comparison. As an illustration of complexity of accelerator designs, it usually takes an 

experienced hardware engineer around 4 to 24 weeks to implement an efficient FPGA 

accelerator kernel, which is a big overhead for big data application developers like Spark 

programmers. In this paper the LR, KM, GSA, and COMP accelerators take a senior 

graduate student 4, 4, 24, and 16 weeks to implement and optimize. Column ‘App’ in Table 

2 shows code changes needed to modify the big data applications so as to access accelerators 

in the application code. Column ‘ACC-setup’ shows the code changes for PCIe data transfer 

and accelerator invocation through OpenCL. Finally, column ‘Partial FaaS’ shows the code 

changes needed to enable sharing accelerators among multiple threads within the 

application.

Although using LOC to represent the programming efforts is not entirely accurate, it 

provides a rough illustration of the difference between each implementation method. Among 

the breakdown of LOCs, most of the “ACC-setup” code for accelerator control can be reused 

as long as the accelerator is fixed. We can see that deploying FPGA accelerators in big data 

applications using Blaze is very easy, with less than 10 LOC changes in the application, and 

a one-time 100 LOC changes for accelerator setup. Without Blaze, even a manual design for 

partial FaaS to support accelerator sharing among multi-threads within a single application 

requires 325 to 896 LOC changes for every application.

6.3 Overall System Performance and Energy Gains for Single Application

Figure 5 demonstrates the single-node system speedup5 and energy reduction for our 

application case studies using Blaze and FPGA accelerators. For each individual job, we 

measure the overall job time and estimate the overall energy consumption based on the 

average power measured during application runtime. As mentioned earlier, we only run the 

5For Figure 5, 6, and 7, the experiments are done by configuring --executor-cores to 12 and --num-executors to the 
number of nodes in Spark.
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kernel computation on FPGAs. Compared with the CPU baseline, the system with FPGA 

achieved 1.7× to 3× speedup on overall system throughput, and 1.5× to 2.7× improvement 

on system energy consumption. (Note that FPGAs introduce an additional 25 watts per node 

into the system; therefore the achieved energy efficiency is slightly smaller than the 

performance speedup numbers.) This confirms that computation-intensive big data 

applications can take full advantage of FPGA acceleration with Blaze.

Moreover, we compare the performance of a 4-node cluster with FPGAs to the CPU-only 

clusters with 4-node, 8-node, and 12-node. As shown in Figure 6, for LR and KM, a 4-node 

cluster with FPGA accelerators enabled can provide roughly the same throughput as a 

cluster of 12 CPU nodes. This indicates that we can reduce the conventional datacenter size 

by 3× by putting an FPGA into each server node, while achieving the same throughput.

Finally, Figure 7 presents the execution time breakdown of Spark jobs (the entire application 

instead of the kernel task execution time) on a 4-node cluster before and after FPGA 

acceleration. The results confirm that machine learning workloads such as LR and KM are 

computationally intensive, and the computation kernels benefit from FPGA acceleration. 

Note that the data load and preprocessing part in the original Spark program remain on the 

CPU, i.e., it is not accelerated by FPGA.

6.4 FaaS Overhead Analysis

To evaluate the potential overhead that Blaze introduces to provide FaaS, we evaluate the 

performance of Blaze integration against a reference manual integration. To make the 

analysis simple, we focus on the streaming COMP application. We first measure the 

normalized compression throughput to the reference manual design for 1-core and 12-core 

cases. As shown in Figure 8(a), for the two software baselines, the native Snappy 

implementation is around 10× faster than the Java Gzip implementation. For the single-core 

version, a manual integration of the compression FPGA accelerator achieves around 8.5× 

speedup over Snappy, while a Blaze integration achieves around 5.6× speedup. When there 

are 12 cores, the fully parallelized software implementation gets significant speedup, while 

Blaze integration and manual integration achieve similar performance, which is 1.7× better 

than Snappy.

Then we analyze why Blaze integration has more overhead than manual integration in the 

single-core case. We break down the execution time into FPGA kernel execution, JVM-to-

native and native-to-FPGA data movement, and private-to-shared memory movement in 

Blaze native. The detailed breakdown is illustrated in Figure 8(b). As we can see, Blaze 

introduces the overhead of moving data from application private memory to the Blaze shared 

memory, which is required to manage accelerator sharing by multiple applications and costs 

around 50% more execution time. Figure 8(b) also confirms that the overwhelming JVM-to-

FPGA communication overhead occupies 76% of the total execution time in the single-core 

COMP application. Due to the multi-thread nature in big data applications, such overhead 

can be alleviated using task pipelining (and data caching) that is transparently supported by 

our FaaS framework in Blaze. As a result, we see a comparable performance between Blaze 

integration and manual integration when there are 12 cores.
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6.5 Breakdown of FaaS Optimizations

We show the breakdown of performance improvements by each JVM-to-FPGA 

communication optimization in Figure 9. We start from a naive FaaS without task pipelining 

or data caching, and then gradually add task pipelining and data caching. For each FaaS 

setup, we evaluate the FPGA kernel time and the task time. The task time represents the 

targeted accelerating kernel instead of the entire application, which includes both the time of 

data transfer to and from FPGA via PCIe and FPGA kernel time. FPGA kernel time stays 

the same across different cases since the total computation that needs to be performed on the 

FPGA remains the same.

As shown in Figure 9, a naive offloading of workload to accelerator may result in a slow-

down rather than a speedup, e.g., 6.71× slowdown for LR and 6.95× slowdown for KM, due 

to the aforementioned JVM-to-FPGA overhead. By enabling data pipelining, the total time 

can be accelerated by a factor of 2.8× to 3.8×. For iterative computation of LR and KM, data 

caching provides a huge performance improvement since most of the data transfer is 

mitigated. Since all the data in GSA and COMP is processed only once, the results with and 

without data caching are identical, and thus omitted in Figure 9.

The benefits of task pipelining and data caching can be better illustrated using the 

accelerator utilization metric. In Figure 10 we show the different utilization patterns of 

running a single application LR on an FPGA. The accelerator utilization is defined as the 

ratio of accelerator execution time in a sampled interval of application execution time. The 

accelerator utilization is consistently low in the case without caching or pipelining shown in 

the first part of the figure, since the accelerator keeps waiting for data to be transferred from 

the application. In the second part, when pipelining is enabled, the accelerator can reach 

high utilization periodically. This is because at the beginning of each iteration the first batch 

of data needs to be transferred before the accelerator can start, but once the pipeline begins, 

the accelerator can be kept busy with data continuously flowing in. Once data caching is 

enabled, the accelerator utilization can be increased dramatically. Similar results can also be 

observed for KM workloads as well. The high accelerator utilization in full-featured FaaS 

for KM and LR applications confirms again that the Blaze runtime overhead is negligible.

6.6 Multi-Job Scheduling Analysis

To evaluate the effectiveness of GAM’s resource allocation policy (i.e., accelerator-centric 

scheduling), we choose seven sets of workloads on a 4-node CPU-FPGA cluster. Each set 

contains LR and KM applications of various input data sizes, and the ratio of these two 

applications varies among different sets of workloads.

We compare GAM with two baselines: static-partition and naive sharing. In static partition, 

we evenly partition the 4 nodes into two sets: 2 nodes only run LR applications and the other 

2 nodes only run KM applications. Therefore, reprogramming never occurs in the 

experiments. In naive sharing, all the FPGA nodes can run both LR and KM workloads, and 

we use the Apache YARN’s default resource allocation policy. Our GAM has settings 

similar to naive sharing, but uses our accelerator-centric scheduling policy. We also calculate 
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the offline theoretical optimal scheduling results, in which case we assume that all the sets of 

workloads submitted are known beforehand.

Figure 11 plots the normalized system throughput to theoretical optimal and accelerator 

utilization. Comparing the baseline static partition with naive sharing, we find that static 

partition performs better when the cluster is partitioned in a way that the ratio of KM nodes 

to LR nodes is close to the ratio of KM workloads to LR workloads (i.e., ratio is 0.5), while 

naive sharing performs better when the workloads only contain LR or KM applications (i.e., 
ratio is 1 or 0), since the applications can use all 4 FPGA nodes. However the advantages of 

naive sharing decline as the workloads become more heterogeneous due to FPGA 

reprogramming overhead.

GAM incorporates the best aspects of static partition and naive sharing: it potentially allows 

applications to use all cluster FPGAs (shown as the accelerator utilization rate in Figure 11 

(b)). Meanwhile, it reduces FPGA reprogramming overhead by placing similar workloads on 

the same set of nodes. On average, static partition and naive sharing are 27% and 22% away 

from the theoretical optimal results, while GAM is only 9% away from the optimal results.

7. Related Work

There are several projects on the inclusion of heterogeneous architectures in big-data 

analytic frameworks. In this section we first discuss the projects that manage large-scale 

clusters and their support for accelerators. Then we review existing runtime systems that 

were designed and implemented for CPU-GPU datacenters. As we mentioned in Section 1, 

the approaches for GPUs are almost not applicable to FPGAs. Finally, we consider existing 

systems especially designed for FPGAs.

Cloud-scale resource management

Resource managers have a long history, and are widely used in managing datacenter-scale 

clusters of machines. Examples include virtual machine provisioning software, systems that 

provision long-running services, and scientific cluster management for workloads such as 

MPI and HTCondor [5]. The most fundamental difference between these systems and 

resource managers such as Hadoop YARN, is that YARN specifically targets data processing 

jobs, which elastically request leases on transient resources, returning those resources when 

the job completes.6 Such jobs must be written with the assumption that resources can be 

preempted or fail, and save partial state as required to avoid recomputation. Resource 

managers that are similar to YARN include Mesos [24], Omega [37] and Corona [4]. 

However, none of these yet provide support for FPGA accelerator management.

Distributed runtime systems for GPUs

There are several works on managing GPUs at cluster scale. Yahoo [7] demonstrates running 

deep learning jobs onto a cluster of GPU nodes managed by YARN. Their system leverages 

YARN’s node label capabilities to allow jobs to state whether they should be launched on 

CPU or GPU nodes. Dandelion [35] uses Moxie, a cluster dataflow engine, to schedule jobs 

6This is the intended use case for YARN. However, not all big data systems follow this design principle.
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represented in a dataflow graph onto a cluster of powerful machines with GPUs. The high-

level architecture of Moxie is similar to Dryad [26] and YARN. Although these GPU 

management techniques can be used to manage FPGA systems, they cannot achieve the 

same efficiency as our Blaze because they lack consideration of FPGA reprogramming 

overhead.

There are also some projects that attempt to include GPUs into single-application runtime 

systems. Caffe [27] is a C-based distributed system for convolutional architecture 

acceleration on GPU. HeteroSpark [30] is a CPU-GPU Spark framework. Both of them 

adopt fixed functions, so users have to use provided accelerators to describe their 

applications. On the other hand, since the compilation time for GPU is negligible, more 

recent works attempt to provide a fully programmable framework which is able to generate 

and compile GPU kernel code on the fly. For example, MapCG [25], GPMR [40], and 

Glasswing [20] allow users to write their own map/reduce functions, but the programming 

models they provided still leverage low-level hardware architecture-aware APIs such as 

thread ID. In addition, HeteroDoop [36], HadoopCL [22], and SWAT [23] propose a user-

friendly programming model for Hadoop and Spark users to write map/reduce functions 

without considering the underlying architecture, but sacrifice some performance 

improvement opportunities.

Distributed runtime systems for FPGAs

There are some research projects that try to accelerate big-data analytic frameworks using 

FPGAs. FPMR [39] attempts to implement an entire MapReduce framework on FPGAs so 

that the data communication overhead can be eliminated. However FPMR still requires users 

to write customized map/reduce functions in RTL, and it only supports very limited MapRe-

duce features. Axel [41] and [44] are C-based MapReduce frameworks for not only FPGAs 

but also GPUs. Both frameworks have straightforward scheduling mechanisms to allocate 

tasks to either FPGAs or GPUs. Melia [43] presents a C++ based MapReduce framework on 

OpenCL-based Altera FPGAs. It generates Altera FPGA accelerators from user-written C/C

++ map/reduce functions and executes them on FPGAs along with CPUs. Although 

experimental results in [43] evaluate the quality of generated accelerators, the results for 

multi-node clusters only come from simulations instead of end-to-end evaluations. Since all 

of the above systems are implemented in C/C++ as standalone frameworks, they are not 

compatible with widely used JVM-based big data analytic systems such as Hadoop and 

Spark.

On the other hand, to bridge the gap between JVM-based frameworks and C-based FPGA 

accelerators, [45] deploys Hadoop on a server with NetFPGAs connected via an Eth-ernet 

switch. However, the programming model in [45] exposes low-level interactions with the 

FPGA device to users. In addition, no results are provided to show whether this system has 

reasonable scalability when extending to a cluster of multiple servers. Different from [45], 

the Zynq-based cluster [31] deploys Hadoop on a cluster of Xilinx Zynq SoC devices [34] 

where CPU cores and programmable logics are fabricated on the same chip. Although the 

system is energy efficient because of FPGAs, this methodology is tightly coupled with the 

underlying Zynq platform and is hard to port to clusters with commodity CPU servers. One 
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of the first studies that integrates PCIe-based high-performance FPGA accelerators into 

Spark running on commodity clusters is our case study for genome sequence alignment in 

[15]. Compared to [15], Blaze provides generic programming and runtime support to deploy 

any FPGA accelerators, and manages accelerator sharing by multiple applications.

FPGA virtualization has been discussed in [14], where multiple FPGA accelerators that are 

designed with certain coding templates can be placed on the same FPGA board and 

managed through OpenStack. Compared to our work, this mechanism imposes a limited 

programming model for accelerator designs due to the use of coding templates. Moreover 

dividing the FPGA resources into several regions results in less logics being available to 

accelerators, and it thus limits the performance of accelerators.

SparkCL [38] works in a direction that is orthogonal to our Blaze system described in this 

paper. While Blaze assumes predefined FPGA accelerators, SparkCL adapts Aparapi [3] to 

automatically generate an OpenCL kernel for Altera FPGAs and executes FPGA 

accelerators on Spark. However, the programming model of SparkCL discloses low-level 

OpenCL APIs such as thread ID to users and only supports primitive data types. In addition, 

it lacks experimental results to illustrate system efficiency and scalability. We have another 

ongoing effort at UCLA to improve automatic Java-to-FPGA code generation, which is 

orthogonal to Blaze and will be integrated into Blaze in future work.

In summary, to the best of our knowledge, Blaze is the first (open source) system that 

provides easy and efficient access of FPGA accelerators for big data applications that run on 

top of Apache Spark and Hadoop YARN.

8. Conclusion

In this paper we present the design and implementation of Blaze, which provides 

programming and runtime support that enables rapid and efficient deployment of FPGA 

accelerators at warehouse-scale. Blaze abstracts FPGA accelerators as a service (FaaS), 

decouples the FPGA accelerator development and big data application development, and 

provides a set of clean programming APIs for big data applications to easily access the 

performance and energy gains of FPGA accelerators. In the FaaS framework, we provide 

efficient accelerator sharing by multiple heterogeneous threads, hide the overwhelming Java-

to-FPGA data communication overhead, and support fault tolerance. We implement FaaS as 

a third-party package that works with Apache Spark. In addition, we propose to manage the 

logical accelerator functionality as a resource instead of the physical hardware platform 

itself. Using this new concept, we are able to extend Hadoop YARN with an accelerator-

centric scheduling policy that better manages global accelerator resources and mitigates the 

FPGA reprogramming overhead. Our experiments with four representative big data 

applications demonstrate that Blaze greatly reduces the programming efforts, and improves 

the system throughput from 1.7× to 3×, i.e., a 1.7× to 3× datacenter size reduction using 

FPGAs with the same throughput. We also demonstrate that our FaaS implementation 

achieves performance similar to a manual design under the dominant multi-thread scenarios 

in big data applications, while our accelerator-centric scheduling achieves close to optimal 

system throughput.
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Figure 1. 
Example YARN architecture showing a client submitting jobs to the global resource 

manager.
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Figure 2. 
Overview of Blaze runtime system.
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Figure 3. 
Node accelerator manager design to enable FPGA accelerators as a service (FaaS).
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Figure 4. 
Different resource allocation policies. In this example, each cluster node has one FPGA 

platform and two accelerator implementations, “gradient” and “distance sum”. Four 

applications are submitted to the cluster, requesting different accelerators.
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Figure 5. 
Single-node system performance and energy gains for each individual application.
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Figure 6. 
Performance of LR and KM on multiple nodes. The X-axis represents the experiment 

configurations. For example, ”4N×12T CPU” represents the configuration of 4 CPU-only 

nodes with 12 threads on each node.
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Figure 7. 
Execution time breakdown for LR and KM before . and after FPGA acceleration on multiple 

nodes.
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Figure 8. 
Faas overhead analysis in COMP application.
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Figure 9. 
Breakdown of the JVM-to-FPGA communication optimizations in FaaS.
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Figure 10. 
Accelerator utilization results of running a single LR application on an FPGA.
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Figure 11. 
Normalized system throughput and accelerator utilization of mixed workloads on a CPU-

FPGA cluster.
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Table 1

FPGA accelerator performance profile

Application Kernel Speedup

LR Gradients 3.4×

KM DistancesSum 4.3×

GSA SmithWaterman 10×

COMP Deflater 26.7×over Gzip
3× over Snappy
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Table 2

Comparison of accelerator deployment efforts in terms of lines-of-code (LOC) changes

App ACC Setup Partial FaaS*

Manual

LR 26 104 325

KM 37 107 364

GSA 0† 227 896

COMP 0† 70 360

App ACC Setup FaaS

Blaze

LR 9 99 0

KM 7 103 0

GSA 0† 142 0

COMP 0† 65 0

*
Partial FaaS does not support accelerator sharing among different applications, compared to full FaaS.

†
In both GSA and COMP, the accelerator kernels are wrapped as a function replacing the original software version, so no software code change is 

counted.
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