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We develop numerical methods for stochastic reaction-diffusion systems based on ap-

proaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD

formulation is formally described by stochastic partial differential equations (SPDEs). In the

reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion

master equation (RDME) description when our SPDEs are spatially discretized and reac-

tions are modeled as a source term having Poisson fluctuations. However, unlike the RDME,

which becomes prohibitively expensive for increasing number of molecules, our FHD-based

description naturally extends from the regime where fluctuations are strong, i.e., each meso-

scopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations,

and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the se-

vere restriction on time step size that limits all methods based on explicit treatments of

diffusion, and construct numerical methods that are more efficient than RDME methods,

without compromising accuracy. Guided by an analysis of the accuracy of the distribution

of steady-state fluctuations for the linearized reaction-diffusion model, we construct sev-

eral two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic

Crank–Nicolson method, and reactions are handled by the stochastic simulation algorithm

of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint

tau leaping scheme attains second-order weak accuracy in the linearized setting, and gives

an accurate and stable structure factor for a time step size an order of magnitude larger

than the hopping time scale of diffusing molecules. We study the numerical accuracy of our
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methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equi-

librium. We demonstrate and quantify the importance of thermodynamic fluctuations to

the formation of a two-dimensional Turing-like pattern, and examine the effect of fluctua-

tions on three-dimensional chemical front propagation. By comparing stochastic simulations

to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern

formation in spatially homogeneous systems, and lead to a qualitatively-different disordered

pattern behind a traveling wave.
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I. INTRODUCTION

While deterministic reaction-diffusion models have been successfully applied to explain various

spatiotemporal phenomena such as pattern formation, and to gain insight into nonequilibrium

transitions, it is now widely appreciated that spatiotemporal fluctuations in the concentration

of chemical species play an essential role. Such internal or thermodynamic fluctuations, which

arise from both reaction and diffusion processes, have molecular origin; microscopically, those

processes occur through the movement and collision of individual molecules under thermal fluctu-

ations. Hence, the deterministic macroscopic description eventually fails at smaller scales where

the fluctuations are significant, and a stochastic mesoscopic description is needed. Examples in-

clude fluctuation-induced instabilities [1], reversal of direction of front propagation [2], violation

of the law of mass action [3], long-time tails in kinetics [4], emergence of new steady states [5]

and patterns [6], acceleration of pattern formation [7], enhanced induction time for ignition [8],

and the onset of homogeneous oscillations [9]. Due to a small number of proteins involved in

cellular functions [10], processes in cell biology are good examples [11–14] where the stochastic

reaction-diffusion description provides an indispensable modeling tool [15, 16].

A microscopic picture of reaction-diffusion, dating back to Smoluchowski [17], assumes that

molecules undergo independent Brownian motions and reactions can occur only when two molecules

are close to each other. Based on this picture, the particle-based approach to simulate a reaction-

diffusion system tracks the trajectories of diffusing molecules and uses the intermolecular distance

to determine whether a reaction occurs. Exact sampling of the Smoluchowski model can be per-

formed by first-passage kinetic Monte Carlo type algorithms [18–20]; approximate reactive Brow-

nian dynamics (BD) using a fixed time step size forms another class of algorithms [21, 22]. While

molecular schemes, such as molecular dynamics (MD) and direct simulation Monte Carlo (DSMC),

can be used for reaction-diffusion problems [23, 24], they are computationally even more expen-

sive. Hybrid methods combining particle and coarse-grained descriptions, either using operator

splitting [25] or domain decomposition [26, 27], have also been proposed.

For the mesoscopic description of a reactive system, the master equation approach is commonly

used. For a well-mixed (i.e., spatially homogeneous) system, the time evolution of the system (i.e.,

the number of molecules of each chemical species) is described by the chemical master equation

(CME). Exact sampling of the CME can be performed by the stochastic simulation algorithm (SSA)

of Gillespie [28], whereas the tau leaping method [29] can be employed as an approximate algorithm

with a given time step size. Several variants of these methods have been proposed [30, 31]. For
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a spatially inhomogeneous system, the time evolution of the system is commonly described by

the reaction-diffusion master equation (RDME), which is also known as the multivariate master

equation [32, 33]. In this approach, the system is divided into homogeneous subsystems or cells

and the number of molecules of each chemical species in each cell is tracked. Changes in the

molecule numbers occur either through hopping events of a molecule between adjacent cells or

though chemical reactions within a cell. Hopping events correspond to diffusive transport and are

treated as first-order reactions. Since the RDME is a spatial extension of the CME, exact sampling

of the RDME can be performed by SSA-type algorithms [34, 35], which are called inhomogeneous

SSA (ISSA).

While conceptually simple and still widely used [6, 7, 36], the traditional approach of solving

the RDME by ISSA has the computational issue that the method becomes prohibitively slow as the

number of molecules or cells increases. Since the cell volume should be chosen sufficiently small

to ensure homogeneity over each cell, large, finely-resolved grids are required for two- or three-

dimensional problems. As the spatial resolution increases, the time interval between successive

events becomes very short due to rapid diffusive transfer, and hopping events greatly outnumber

reaction events, which slows down ISSA [30]. Several approaches have been proposed to improve

the performance of stochastic sampling of the RDME, such as the next subvolume method [35]

and its parallel simulation version [37]. Various implementations of the tau leaping method in a

spatial context [38–40], and the time-dependent propensity for diffusion method [41], have also been

proposed. A more aggressive approach to reduce the computational cost by avoiding the sampling

of the individual diffusion events is to split diffusion and reaction in each time step and to treat

diffusion in a more efficient manner. Various sampling methods for diffusion have been proposed,

including the Gillespie multi-particle method [42], the multinomial simulation algorithm [43], the

adaptive hybrid method on unstructured meshes [44, 45], and the diffusive finite-state projection

algorithm [46, 47].

In this paper, we propose a numerical algorithm for stochastic reaction-diffusion systems based

on approaches used for fluctuating hydrodynamics (FHD). To incorporate the effects of thermal

fluctuations in a fluid, in FHD one assumes that the dynamics of the fluid can be described by the

usual hydrodynamic equations (e.g., the Navier–Stokes equations), augmenting each dissipative flux

with a stochastic flux [48]. Those stochastic fluxes are modeled by spatiotemporal Gaussian white

noise (GWN) and the resulting governing equations are written as stochastic partial differential

equations (SPDEs). FHD was originally developed for equilibrium fluctuations by Landau and

Lifshitz [49] and its validity has been justified for nonequilibrium systems [50] through the theory
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of coarse graining [51]. For further discussion of FHD compared to MD, see Ref. [52]. Various

extensions and generalizations of FHD theory have been developed and successfully applied to

fluctuation-induced phenomena; see Ref. [53] and references therein. Recent work by the authors

has focused on FHD models of hydrodynamic transport [54, 55] in binary fluid mixtures [56, 57],

multiphase flows [58], multispecies fluid mixtures [59, 60], multispecies reactive mixtures [61], and

electrolytes [62].

Compared to our previous work [61], where the coupling effects of fluid hydrodynamic and

chemical fluctuations have been investigated, here we focus on reaction and diffusion and neglect

all other hydrodynamic processes (advection, viscous dissipation, thermal conduction, and cross

term effects). Rather than using a Langevin description (i.e., based on Gaussian fluctuations) of

chemistry, which is only valid in the limit of vanishing fluctuations [61], here we employ a more

accurate description of reactions based on Poisson fluctuations. As pointed out in Ref. [51], even

though a formal SPDE description is employed, the actual interpretation of FHD always requires

the notion of a coarse-graining over a certain length scale. The FHD equations are discretized

using a finite volume approach [63, 64] that represents the solution in terms of the average over

cells, which provides an effective coarse-graining. Therefore, reactions can be treated in a similar

manner to the RDME approach when the SPDEs are spatially discretized, and integrated in time

using SSA or a weakly second-order tau leaping method [65, 66]. Recent relevant work by others

includes Ref. [67], in which the FHD approach has been applied to reaction-diffusion systems.

However, only fluctuations arising from diffusion have been considered (i.e., no fluctuations from

chemical reactions) and modeled as additive noise. The FHD approach has been also applied to

concentration fluctuations in a ternary liquid mixture in equilibrium [68] and the Model H equations

for binary mixtures [69].

The key difference between the FHD and RDME descriptions lies in the more efficient treatment

of fast diffusion. A number of approximate numerical methods for the RDME [42–47] are based

on operator splitting using first-order Lie or second-order Strang splitting [70]. In Appendix A we

review and discuss in more detail a split scheme that uses multinomial diffusion sampling [71] for

diffusion and SSA for reactions. These RDME-based schemes use a time step size ∆t comparable

to the hopping time scale τh = ∆x2/(2dD) with d being the spatial dimension, ∆x being the grid

spacing, and D being a typical diffusion coefficient. Even though τh is much larger than the mean

duration between successive events in ISSA, using ∆t comparable to τh is still very restrictive for

large D or small ∆x. In our FHD formulation, we treat diffusion implicitly using backward Euler or

Crank–Nicolson, so that the time step size can be significantly larger (e.g., an order of magnitude
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larger for a given accuracy tolerance) than the hopping time scale. Since the time steps used in

RDME simulations are already (usually an order of magnitude or more) larger than those in BD

simulations, our approach allows even larger time step size compared to particle-based methods.

While the development of numerical schemes for stochastic reaction-diffusion systems described

by spatiotemporal GWN dates back to the 1990s [72, 73], much of the prior work has not been

guided by numerical analysis or extensive experience from deterministic computational fluid dy-

namics (CFD). With the help of well-established techniques for numerical solution of PDEs and

SPDEs, we construct numerical schemes in a systematic manner to ensure accuracy is maintained

for a large time step size. To this end, we employ two-stage (i.e., predictor-corrector) Runge–Kutta

temporal integrators [64, 74]. Rather than using operator splitting, we treat reaction and diffusion

together in each stage in a manner that is second-order weakly accurate for general linearized

FHD equations. The construction of these schemes is guided by a stochastic accuracy analysis of

the (static) structure factor for linearized FHD [63, 64]. The structure factor is the steady-state

spectrum of the concentration fluctuations, i.e., the covariance matrix in Fourier space, see Eq. (8).

We apply the techniques in [63, 64] to predict the discrete structure factors for our scheme, and

compare them to analytical predictions of the continuum structure factors for our model in the

linearized setting.

The FHD approach inherently outperforms the RDME approach as the number of molecules

per cell increases in exactly the same way that multinomial diffusion outperforms diffusion by hop-

ping, or tau leaping outperforms SSA. In fact, the computational cost of FHD methods does not

significantly change as the magnitude of the fluctuations changes. This is an obvious advantage

of the FHD approach since the macroscopic limit cannot be efficiently simulated by the RDME

approach. However, the validity of the FHD approach cannot be taken for granted when there

are only a small number of molecules in each cell, since in FHD the number of molecules in each

cell is a continuous real-valued variable, rather than a discrete nonnegative integer variable as in

the RDME. We investigate this issue carefully and propose techniques to improve the accuracy

of the FHD description for the case of a small number of molecules per cell, making our numer-

ical schemes robust even for large fluctuations. In particular, we develop a spatial discretization

that significantly mitigates nonnegativity of the species number densities and closely reproduces

the Poisson thermodynamic equilibrium distribution for the number of molecules in a cell. For

numerical examples considered in this paper, we show that the mean number of molecules in a

cell can be as low as 10. However, if one is specifically interested in systems with only a small

number of molecules per cell, one should use an integer-based description like RDME. Moreover, in



7

very dilute cases, a particle-based description like BD is actually fastest since most cells will have

essentially no molecules in them. However, for practical stochastic simulation of reaction-diffusion

systems, where the populations of chemical species may have different orders of magnitude, this

kind of robustness is required; even if there are a large number of molecules in a cell, some species

may have a small number of molecules.

The rest of the paper is organized as follows. Section II presents the background for our

approach, including the FHD description of reaction-diffusion systems and linearized analysis in

a Gaussian approximation. Section III explains how the FHD reaction-diffusion equations can be

spatially discretized using a finite-volume approach. Section IV presents temporal integrators for

the spatially discretized equations that handle diffusion using existing FHD techniques, and treat

reactions using SSA or second-order tau leaping. Section V presents simulation results of several

reaction-diffusion systems. In Section V A, for testing and validation of our numerical schemes,

we use a one-species Schlögl model [75, 76]. In Section V B, to compare our methods to each

other and to RDME-based methods, we study two-dimensional Turing-like pattern formation in

the three-species Baras–Pearson–Mansour (BPM) model [77, 78]. In Section V C, to demonstrate

the ability of our approach to scale to larger systems, we present numerical simulation results

for three-dimensional front propagation in a two-species model [7]. In Section VI, we offer some

concluding remarks and suggest future research directions.

II. BACKGROUND

In Section II A, we present the continuous-time continuous-space FHD description of reaction-

diffusion systems. Here, we assume that fluctuations in chemistry are described by GWN (i.e.,

Langevin type). A more accurate description of chemistry based on Poisson fluctuations is in-

corporated in the continuous-time discrete-space description in Section III. In Sections II B and

II C, we introduce the structure factor and the Schlögl reaction-diffusion model, respectively. As

one of the criteria for the development and analysis of numerical schemes, later in the paper we

investigate how accurately a numerical scheme produces the structure factor for the Schlögl model.

In this section, we introduce several GWN vector and scalar random fields and denote them

by Z(x, t) = (Z1(x, t), . . . ,Zd(x, t)) and Z(x, t), respectively, with additional superscripts to dis-

tinguish the different fields. We assume that any two distinct processes are independent and

that the noise intensity of each process is normalized,
〈
Zj(x, t)Zj′(x

′, t′)
〉

= δjj′δ(x− x′)δ(t− t′)
and 〈Z(x, t)Z(x′, t′)〉 = δ(x − x′)δ(t − t′). Similarly, we denote GWN vector and scalar ran-
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dom processes by W(t) and W(t), respectively, and assume
〈
Wj(t)Wj′(t

′)
〉

= δjj′δ(t − t′) and

〈W(t)W(t′)〉 = δ(t− t′).

A. FHD Description

We consider a reaction-diffusion system having Ns species undergoing Nr reactions in d-

dimensional space. By denoting the number density of species s by ns(x, t), the equations of

FHD for n(x, t) = (n1(x, t), . . . , nNs(x, t)) are written formally as the SPDEs [61]

∂

∂t
ns = ∇·

(
Ds∇ns +

√
2DsnsZ(D)

s

)
+

Nr∑
r=1

νsr

(
ar(n) +

√
ar(n)Z(R)

r

)
, (1)

where Ds is the diffusion coefficient of species s, ar(n) is the propensity function indicating the rate

of reaction r, and νsr is the stoichiometric coefficient of species s in reaction r. In the macroscopic

limit of vanishing fluctuations, Eq. (1) approaches the deterministic reaction-diffusion PDE (law

of large numbers),

∂

∂t
ns = Ds∇2ns +

Nr∑
r=1

νsrar(n). (2)

We explain below how the diffusion and reaction parts are obtained by considering the diffusion-

only (i.e., no-reaction) and reaction-only (i.e., well-mixed) cases.

1. Diffusion

The diffusion-only SPDE

∂

∂t
ns = ∇·

(
Ds∇ns +

√
2DsnsZ(D)

s

)
(3)

can be justified by considering a microscopic system where each molecule i undergoes independent

Brownian motion,

ẋs,i =
√

2DsWs,i. (4)

In this formal derivation [79], one defines the instantaneous number density field ns(x, t) =∑
i δ(x − xs,i(t)) and uses Ito’s rule to obtain Eq. (3). This equation can also be obtained from

the diffusion portion of the general multispecies FHD equations [60, 61], given by nonequilibrium

statistical mechanics [80], by assuming a dilute solution and considering only solute species. In

addition, the linearized version of Eq. (3) can be obtained from the multivariate master equation

model (i.e., diffusion by hopping) near the macroscopic limit [32]. However, although relations to

those equations reaffirm Eq. (3) near the macroscopic limit, it is important to note that Eq. (3)
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is formally exact even in the case where fluctuations are large, since it is simply a rewriting of

Eq. (4), in a representation in which the particle numbering (identity) is lost [81].

We note that the FHD equations (1) and (3) are not mathematically well-defined because the

solution needs to be interpreted as a distribution (or a generalized function), and the square root

of a distribution is not well-defined in general. The linearized FHD equation does not suffer from

such an issue and is well-defined; the problems arise due to the multiplicative noise in Eq. (3).

However, even though Eq. (3) is ill-defined, it is formally consistent with the law of large numbers

(given by the deterministic reaction-diffusion equation (2)), the central limit theorem (given by the

linearized FHD equations (12)), and large deviation theory for a collection of Brownian walkers. In

this sense, Eq. (3) is a meaningful representation of the physical model that is useful in constructing

well-defined mesoscopic descriptions via spatial discretization of the formal SPDEs. Compared

to obtaining a mesoscopic model by directly coarse-graining the microscopic model, the spatial

discretization of the SPDE is easier in general, and can be done in a systematic manner [82].

2. Reaction

To see how the reaction part of Eq. (1) is obtained, consider a well-mixed system with volume

∆V . By assuming that the time evolution of n(t) follows the CME, we express the change over

the infinitesimal time interval dt as follows [30]:

dns = ns(t+ dt)− ns(t) =
1

∆V

Nr∑
r=1

νsrP(ar(n)∆V dt), (5)

where P(m) denotes a Poisson random variable having mean m. Note that Eq. (5) is equivalent

to the CME if interpreted in the Ito sense. The specific form of the chemical rate function ar(n)

that we use in this work is described in Section III C. Henceforth, we will formally write Eq. (5) in

the differential form,

d

dt
ns =

Nr∑
r=1

νsrP(ar(n)∆V dt)

∆V dt
. (6)

For a more mathematically precise representation, see Refs. [83, 84].

The chemical Langevin equation (CLE) [85] is obtained under the assumption that the mean

number of reaction occurrences is large [30]. That is, the assumption enables one to replace P(m)

by a Gaussian random variable having the same mean and variance, to give the CLE

d

dt
ns =

Nr∑
r=1

νsr

[
ar(n) +

√
ar(n)

∆V
Wr

]
. (7)
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Since reaction is assumed to be local, the reaction part of Eq. (1) is obtained from spatial extension

of Eq. (7).

One of the important conclusions of our previous work [61] was that the Langevin description

(7) is not consistent with equilibrium statistical mechanics. Alternative formulations based on a

Langevin diffusion description [86, 87] that are consistent at thermodynamic equilibrium fail to

correctly model relaxation toward equilibrium [61]. Instead, in order to correctly capture both

small fluctuations and large deviations in equilibrium and non-equilibrium contexts, one must

retain a description of chemical reactions as a Markov jump process. That is, one must describe

reactions using a stochastic differential equation driven by Poisson rather than Gaussian noise.

B. Structure Factor

The structure factor is the steady-state spectrum of the concentration fluctuations,

Ss(k) = V
〈
δn̂s,kδn̂

∗
s,k

〉
, (8)

i.e., the variance of the Fourier mode of the number density of species s,

n̂s,k(t) =
1

V

∫
ns(x, t)e

−ik·xdx. (9)

Here we have assumed a periodic domain of volume V , and defined δn̂s,k = n̂s,k−〈n̂s,k〉, where the

brackets 〈 〉 denote the equilibrium average. Here we derive an analytic expression of the structure

factor from the linearized FHD equation. We assume that there is only one species, Ns = 1, and

drop the subscript s for species, to write Eq. (1) as

∂

∂t
n = D∇2n+ ∇·

(√
2DnZ(D)

)
+ a(n) +

√
2Γ(n)Z(R), (10)

where

a(n) =

Nr∑
r=1

νrar(n), Γ(n) =
1

2

Nr∑
r=1

ν2
rar(n), (11)

and we have expressed fluctuations arising from all reactions by a single GWN field Z(R). At

a spatially uniform stable steady state, n(x, t) fluctuates around mean number density n̄ ≡ 〈n〉,
where a(n̄) = 0 and a′(n̄) < 0. The linearization of Eq. (10) around this equilibrium state is given

by the central limit theorem,

∂

∂t
n = D∇2n+

√
2Dn̄∇·Z(D) − r(n− n̄) +

√
2Γ̄Z(R), (12)

where r = −a′(n̄) > 0 is the effective reaction rate near equilibrium and Γ̄ = Γ(n̄).
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The Fourier transform of Eq. (12) gives

d

dt
δn̂k = −Dk2δn̂k +

√
2Dn̄ ik · Ẑ(D)

k − rδn̂k +
√

2Γ̄Ẑ(R)
k . (13)

Since Eq. (13) has the form of the Ornstein–Uhlenbeck equation [32], the structure factor is easily

obtained as

S(k) =
Dn̄k2 + Γ̄

Dk2 + r
=
n̄k2 + Γ̄/D

k2 + `−2
, (14)

where ` =
√
D/r denotes the penetration depth. From Eq. (14), we observe that there are two

limiting cases. In the small wave number limit k` � 1, S(k) becomes Γ̄/r and does not depend

on diffusion. In fact, the result S(0) = Γ̄/r is also obtained from the CME assuming the whole

system is well-mixed. On the other hand, in the large wave number limit k` � 1, S(k) becomes

n̄, which is the result for the diffusion-only system. Hence, fluctuations are reaction-dominated at

a length scale larger than ` and are diffusion-dominated at a length scale smaller than `.

We also observe that if the system is in detailed balance at its steady state, i.e., it is in thermo-

dynamic equilibrium, then Γ̄ = n̄r and S(k) = n̄, consistent with a product Poisson distribution

with mean number density n̄. Therefore, in true thermodynamic equilibrium the statistics of the

fluctuations are independent of any kinetic parameters, as they must be according to equilibrium

statistical mechanics [88]. In particular, the presence of the reactions does not change the Poisson

statistics of the state of thermodynamic equilibrium. In Section V A, we use this property to judge

the quality of numerical schemes.

C. Schlögl Model

The Schlögl model [75, 76] is given by the chemical reactions for species X,

2X
k1


k2

3X, ∅
k3


k4

X. (15)

Hence, we have Ns = 1, Nr = 4, ν1 = ν3 = 1, ν2 = ν4 = −1, a(n) = k1n
2 − k2n

3 + k3 − k4n, and

Γ(n) = 1
2

(
k1n

2 + k2n
3 + k3 + k4n

)
. Due to the cubic nonlinearity of a(n), the well-mixed system

exhibits several kinds of distributions depending on the values of the rate constants. If detailed

balance is satisfied, that is, k1n
2
eq = k2n

3
eq and k3 = k4neq, the system is in thermodynamic equi-

librium and the distribution follows Poisson statistics with mean number density neq. Otherwise,

depending on the number of real roots of a(n) = 0, the system exhibits a monostable distribution

(for a single positive root) or a bistable distribution (for three positive roots) [76].

The structure factor of the spatially extended Schlögl model can be calculated from Eq. (14). As

expected from the fact that the equilibrium distribution of the system follows Poisson statistics,
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S(k) = neq in the case of thermodynamic equilibrium. Note, however, that having a monos-

table distribution does not imply thermodynamic equilibrium. The structure factor of the out-of-

equilibrium monostable case is not flat but exhibits a transition near k` ∼ 1. For the bistable case

exhibiting metastability, the linearized theory is still applicable if one looks at fluctuations around

one of the two peaks. However, in this work we focus on the equilibrium and out-of-equilibrium

cases where a(n) has a single positive root.

III. SPATIAL DISCRETIZATION

In this section, we discuss spatial discretization of the FHD equation using a finite-volume ap-

proach [63, 64] that converts the SPDE into stochastic ordinary differential equations (SODEs) for

the cell number density ns,i(t). We develop numerical schemes to solve these SODEs in Section IV.

In Section III A, we first discretize the diffusion-only SPDE (3). In Section III B, we add reactions

and present the continuous-time discrete-space description of the reaction-diffusion system. In

Section III C, we discuss techniques to handle a small number of molecules per cell.

For simplicity, in this paper we only consider periodic systems. However, our methods can be

straightforwardly generalized to standard types of physical boundary conditions (Dirichlet, Neu-

mann or Robin). In particular, since chemistry is local and does not require boundary conditions,

one can rely on methods we have developed in prior work without chemistry; see, for example, the

discussion in Ref. [89].

A. Diffusion-Only Case

Due to the lack of regularity of Z(D)
s (x, t) in Eq. (3), pointwise values of ns(x, t) are not

physically meaningful. Hence, we consider instead the spatial average of ns(x, t) over a cell. We

partition the system domain L1 × L2 × · · ·Ld into cells of volume ∆V = ∆x1 · · ·∆xd and denote

the cell number density of species s in cell i = (i1, . . . , id) as

ns,i(t) =
1

∆V

∫
cell i

ns(x, t)dx. (16)

We denote the face of a cell using the index f . If two contiguous cells have indices i and i + ej

(with ej being the unit vector along the j-axis), the face f shared by the cells is denoted by i+ 1
2ej .

To obtain a spatial discretization of Eq. (3) that ensures discrete fluctuation-dissipation bal-

ance [63, 64], we use the standard second-order discrete Laplacian operator for the determinis-

tic diffusion part Ds∇2ns and introduce a staggered grid for the stochastic diffusive flux term
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FIG. 1. Finite-volume spatial discretization in two dimensions. The cell-averaged number density ns,i(t)

is associated with the circles, and the face-averaged stochastic diffusive flux is associated with the crosses.

The stochastic diffusive flux between the two cells having the red circles at center is depicted by the blue

arrow.

∇·
(√

2DsnsZ(D)
s

)
, see Fig. 1. For d = 1, a formally second-order spatial discretization of Eq. (3)

is written as

d

dt
ns,i = Ds

ns,i+1 − 2ns,i + ns,i−1

∆x2
+

√
2Ds

∆V

√
ñs,i+ 1

2
Ws,i+ 1

2
−
√
ñs,i− 1

2
Ws,i− 1

2

∆x
. (17)

The spatial average of ns(x, t) over the interval of length ∆x around face i± 1
2 is approximated by

ñs,i± 1
2
(t), whereas that of Zs(x, t) is modeled by 1√

∆V
Ws,i± 1

2
(t). To close the equation, ñs,i± 1

2
(t)

is approximated by an average of ns,i(t) and ns,i±1(t), that is, ñs,i± 1
2

= ñ (ns,i, ns,i±1). Natural

candidates for the averaging function ñ(n1, n2) would be the Pythagorean means: the arithmetic,

geometric, and harmonic means. We choose a modified arithmetic average for ñ(n1, n2) described

in Section III C, for reasons detailed in Appendix B.

Generalization of the spatial discretization (17) to higher dimensions is straightforward. For

each face, a GWN processWs,f is defined and ñs,f (t) is calculated from the cell number densities of

the two cells sharing the face by using the averaging function ñ(n1, n2), see Fig. 1. By introducing

notations ns(t) ≡ {ns,i(t)}, Ws(t) ≡ {Ws,f (t)}, and ñs(t) ≡ ñ (ns(t)), we express the resulting

SODEs for {ns,i(t)} as

d

dt
ns = Ds∇2

dns +

√
2Ds

∆V
∇d·

(√
ñsWs

)
, (18)

with the understanding that ∇2
d denotes the standard (2d+ 1)-point discrete Laplacian operator,

and ∇d· denotes a discrete divergence operator.
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B. Reaction-Diffusion System

By combining Eqs. (6) and (18) we obtain the spatial discretization of the reaction-diffusion

FHD equations as a system of Ito SODEs,

d

dt
ns = Ds∇2

dns +

√
2Ds

∆V
∇d·

(√
ñsWs

)
+

Nr∑
r=1

νsrP (ar(n)∆V dt)

∆V dt
. (19)

In Eq. (1) fluctuations in the reaction rate are modeled as GWN, while in Eq. (19) we assume

Poisson fluctuations. Since the latter fluctuations are consistent with discrete nature of reactions

based on the CME, the description in Eq. (19) is physically more accurate. In fact, it has been

shown that the CLE description can give physically incorrect results since it is not consistent with

a Gibbs–Boltzmann or Einstein equilibrium distribution, even for the case of a single well-mixed

cell [61]. As shown above, the inclusion of Poisson fluctuations for reaction, however, requires the

notion of a mesoscopic cell and thus can be realized only after the SPDE is spatially discretized.

The choice of appropriate cell size is a delicate issue for the RDME and FHD descriptions. An

upper bound on the cell size is given by the penetration depth due to the underlying assumption

that each cell is homogeneous and reactions occur within a cell. In fact, there is not only an

upper bound of the cell size for a valid description but also a lower bound. This can be seen by

considering the fact that bimolecular reactions would become increasingly infrequent as the cell size

decreases [90, 91]. Several criteria for choosing the cell size have been proposed based on physical

arguments [90, 92, 93] and mathematical analysis [94]. For a small value of the cell size, corrections

in the rate constants of bimolecular reactions have been proposed [90, 95, 96]. However, these

corrections do not fix the underlying problem which comes from the fact that reactions are treated

as a purely local process with no associated spatial length scale. In microscopic (particle) models of

reaction-diffusion such as the Smoluchowski [17] model or the Doi model [90], a microscopic reactive

distance appears and controls the reaction rate for diffusion-limited reactions. By introducing a

reactive distance into the model, and relaxing the restriction that a reaction should occur among the

molecules in the same cell, a modified convergent RDME having well-defined limiting behavior for

small cell size can be developed [97], and could be combined with our FHD description of diffusion.

The dependence of stochastic Turing patterns on the grid size has been also investigated [98].

C. Maintaining Nonnegative Densities

The spatially discretized FHD equations (18) or (19) are well defined but suffer from two

issues that we now address. First, the number of molecules in a cell (i.e., ns,i∆V ) is not an
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integer. Second, the cell number density can become negative. When there are a small number of

molecules per cell in the system, the behavior of the FHD description (19) depends sensitively on

the averaging function ñ and the propensity functions ar, that appear in the multiplicative noise

terms. Hence, we carefully modify the form of ñ and ar for negative or very small densities in

order to greatly reduce the chances of producing future negative densities.

In Section V A, we demonstrate that the arithmetic mean produces more accurate results for

the equilibrium distribution than the other Pythagorean means. Based on the analysis given in

Appendix B, we use the following modification to the arithmetic mean:

ñ(n1, n2) =
n1 + n2

2
H0(n1∆V )H0(n2∆V ), (20)

where

H0(x) =


0 (x ≤ 0)

x (0 < x < 1)

1 (x ≥ 1)

(21)

is a smoothed Heaviside function. The smoothed Heaviside function H0 is introduced to ensure

the continuity of ñ at n1 = 0 or n2 = 0. As explained in Appendix B, this averaging function

guarantees nonnegativity for the diffusion-only system (18) in the continuous-time description. In

our simulations, we find this modification greatly reduces the occurrence of negative density while

closely matching the true equilibrium distribution, noting that in our formulation the stochastic

diffusive flux is continuously turned off at n1 ≤ 0 or n2 ≤ 0. We also note that the smoothing is

based on the number of molecules in a cell and if both cells have at least one molecule (i.e., ni∆V ≥
1), ñ becomes exactly the arithmetic mean. As shown in Appendix B, the local modification

near n = 0 does not cause any noticeable unphysical behavior for ni∆V ≥ 1. In Section V, we

demonstrate that our numerical schemes based on Eq. (20) work very well even for a small number

of molecules per cell.

For the propensity functions ar(n), we use the following correction to the law of mass ac-

tion, which is usually included in the RDME description: if the deterministic rate expression

contains n2
s (or n3

s, · · · ), replace it by ns(ns − 1
∆V ) (or ns(ns − 1

∆V )(ns − 2
∆V ), · · · ). With this

correction, at thermodynamic equilibrium, the mean reaction rate becomes equal to the one cal-

culated from the deterministic rate expression with the mean number density. This can be seen

from the fact that if ns∆V follows Poisson statistics with mean n̄s∆V ,
〈
ns(ns − 1

∆V )
〉

= n̄2
s and〈

ns(ns − 1
∆V )(ns − 2

∆V )
〉

= n̄3
s.

When reactions are combined with an FHD treatment of diffusion, number densities are no
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longer restricted to nonnegative integers and special treatment is required to make reaction rates

nonnegative and physically sensible for small numbers of molecules. In this work, we evaluate the

rate ar(n) by using continuous-range number densities n (i.e., without trying to round n∆V to

integers) and ensure that each term in the rate of each reaction is nonnegative. For example, we

take the rate expression of the Schlögl model (see Section II C) to be

a(n) = k1n
+
(
n− 1

∆V

)+ − k2n
+
(
n− 1

∆V

)+ (
n− 2

∆V

)+
+ k3 − k4n

+, (22)

where n+ = max(n, 0). We note that more mathematically justified algorithms have been proposed

to handle reactions in regards to negative densities using operator splitting and exact solutions of

reaction subproblems [99, 100]; these methods cannot be used to address negative densities due to

stochastic diffusive fluxes.

IV. TEMPORAL INTEGRATORS

In this section, we develop temporal integrators for the spatially discretized FHD equation (19).

Our goal is twofold. First, we construct numerical methods that allow for a large time step size

even in the presence of fast diffusion. By treating diffusion implicitly, the severe restriction on

time step size can be bypassed. Second, we construct methods that maintain accuracy even if

the time step size is much larger than the diffusive hopping time. Since it is quite difficult to

achieve second-order weak accuracy for general multiplicative noise [101], our goal here is to ensure

second-order accuracy where possible. In the limit in which the number of molecules per cell is

very large and one can replace random numbers by their means, our schemes reduce to standard

second-order schemes for deterministic reaction-diffusion PDEs. For linearized FHD, our midpoint

tau leaping-based schemes are second-order weakly accurate, and all midpoint schemes reproduce

at least second-order accurate static correlations, i.e., structure factors.

We build on previous work by some of us [63, 64, 74] and propose two (semi-) implicit schemes

as an alternative numerical method to conventional RDME methods. We mainly consider the

case where diffusion is much faster than reaction and molecules on average diffuse more than

a cell length per time step (i.e., 2dD∆t � ∆x2). We focus here on unsplit schemes that do

not rely on operator splitting. This is because we found that unsplit schemes give notably more

accurate structure factors than corresponding split schemes in our case. In addition, including

other transport processes (e.g., advection) and handling boundary conditions [102] to second order

is not straightforward for split schemes.
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It is convenient to introduce dimensionless numbers, α and β, which measure how fast diffu-

sion and reaction are relative to the given time step size ∆t, respectively. For the single-species

equation (12), assuming ∆x1 = · · · = ∆xd = ∆x, we define

α = r∆t, β =
D∆t

∆x2
, (23)

where r is the chemical relaxation rate appearing in the linearized equations (12). Hence, we can

express the well-mixed condition (i.e., the penetration depth ` =
√
D/r � ∆x) as α � β. In

addition, the numerical stability condition of a scheme can also be given in terms of α and β. That

is, if reaction and/or diffusion are treated explicitly in a scheme, values of α and/or β larger than a

stability threshold cause numerical instability. For α� β, the stability limit is mainly determined

by fast diffusion:

β ≤ 1

2d
⇐⇒ ∆t ≤ ∆tmax ≡

∆x2

2dD
. (24)

Note that the stability limit becomes severe for large diffusion coefficients and small grid spacing

and worsens with increasing dimension.

In Section IV A, we present several numerical schemes for the FHD equation (19), including two

implicit schemes, and analyze the temporal orders of accuracy for the structure factors using the

linearized analysis described in Appendix C. In Section IV B, we analyze the stochastic accuracy

of the numerical schemes for large ∆t by investigating the structure factor of the one-dimensional

Schlögl model at different wavenumbers. Since analysis for the nonlinear equations is lacking at

present, we numerically justify the handling of multiplicative noise in Section V A.

A. Schemes

The simplest method for integrating Eq. (19) in time is the Euler–Maruyama tau leaping (EM-

Tau) scheme,

nk+1
s = nks +Ds∆t∇2

dn
k
s +

√
2Ds∆t

∆V
∇d·

(√
ñksW

k
s

)
+

Nr∑
r=1

νsrP(akr∆V∆t)

∆V
, (25)

where superscripts denote the point in time at which quantities are evaluated, e.g., nks = ns(k∆t)

and akr = ar(n(k∆t)), and we have used the compact notation for spatial discretization introduced

in Section III B. Here,
∫ (k+1)∆t
k∆t W(t′)dt′ has been replaced by

√
∆tW k, where W k denotes a collec-

tion of standard random Gaussian variables sampled independently for each species on each grid

face at each time step. That is, the stochastic diffusive flux of species s on face f at time step k

is proportional to W k
s,f .
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We also construct numerical schemes where reactions are treated by SSA, which is an exact

(exponential) integrator for reactions. We denote by Rs(n, τ) the (random) change in the number

density of species s for a cell with initial state n obtained from SSA over at time interval τ (in the

absence of diffusion). We can then write the Euler–Maruyama SSA (EM-SSA) scheme as

nk+1
s = nks +Ds∆t∇2

dn
k
s +

√
2Ds∆t

∆V
∇d·

(√
ñksW

k
s

)
+ Rs(n

k,∆t). (26)

The EMTau scheme is explicit in the sense that all terms on the right-hand side of Eq. (25) can

be evaluated without knowing nk+1
s . However, a simple analysis shows that the time step size is

constrained by a stability condition (for derivation, see Eq. (C7))

β +
α

4d
≤ 1

2d
, (27)

which reduces to condition (24) for α � β. Since the EM-SSA scheme treats reactions using an

exponential integrator, it is only subject to the stability limit (24) without a restriction on α.

The stability limit imposed by fast diffusion can be overcome by using standard implicit methods

such as the second-order implicit midpoint or Crank–Nicolson method, which gives a system of

linear equations for nk+1
s :

nk+1
s = nks +Ds∆t∇2

d

(
nks + nk+1

s

2

)
+

√
2Ds∆t

∆V
∇d·

(√
ñksW

k
s

)
+

Nr∑
r=1

νsrP(akr∆V∆t)

∆V
. (28)

The linear system (28) can be solved efficiently iteratively using multigrid relaxation [103]; for

β . 1, solving the linear system is not much more expensive than a step of a second-order explicit

time stepping scheme. Note, however, that scheme (28) is only first order accurate overall for

reaction-diffusion systems. Hence, in addition to improved stability, it is important to develop

higher-order schemes to improve accuracy. Note that this is not as simple as replacing tau leaping

in Eq. (28) with SSA as in Eq. (26); this would still be only first-order accurate even in the

deterministic limit.

Here we construct numerical schemes based on the second-order temporal integrators for the lin-

earized equations of FHD developed in Refs. [64, 74]. Those temporal integrators are second-order

accurate in the weak sense for additive noise, and are used here as the basis for handling diffusion.

In order to add reactions into diffusion-only schemes, we consider two types of sampling methods,

tau leaping and SSA. For tau leaping, we use the weakly second-order tau leaping method [65, 66];

a similar two-stage scheme has been originally proposed for the CLE [104] to achieve second-order

weak accuracy. Here we combine predictor-corrector midpoint schemes proposed in Ref. [64] (for

diffusion) and the second-order tau leaping method (for reaction). Owing to similar two-stage
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structures of those schemes, they fit together in a rather natural manner. In addition, since the

resulting schemes still fit the framework of the implicit-explicit algorithms analyzed in Ref. [64],

they are second-order weakly accurate for additive noise and an additional order of accuracy (i.e.,

third order) is gained for the structure factor.

We also develop midpoint schemes that use SSA instead of tau leaping for reactions. Unlike tau

leaping-based schemes, the SSA-based schemes do not suffer from instability even in the presence

of rapid reactions. The use of SSA may also help to prevent the development of negative densities,

which is one of the main numerical issues for large fluctuations. Hence, while SSA-based numerical

schemes are computationally more expensive, they work better than tau leaping-based schemes

when reactions are fast or when the number of molecules is small. The SSA-based schemes we

propose here belong to a class of exponential Runge–Kutta schemes, and we construct them to

ensure second-order deterministic accuracy, as well as second-order accuracy for the structure

factor; a detailed analysis of their weak accuracy is at present missing even for linearized FHD.

1. Explicit Midpoint Schemes

As a prelude to constructing two-stage implicit methods, we first consider improving the accu-

racy of the explicit EMTau scheme (25) by using an explicit two-stage Runge–Kutta (predictor-

corrector) approach. By combining the explicit midpoint predictor-corrector scheme from Refs. [64,

74] (for diffusion) and the midpoint tau leaping scheme from Refs. [65, 66] (for reaction), we obtain

the explicit midpoint tau leaping (ExMidTau) scheme:

n?s = nks +
Ds∆t

2
∇2

dn
k
s +

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
+

Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
, (29a)

nk+1
s = nks +Ds∆t∇2

dn
?
s +

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
(29b)

+

Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
+

Nr∑
r=1

νsrP(2)
(
(2a?r − akr )+∆V∆t/2

)
∆V

,

where the superscripts (1) and (2) indicate that the terms correspond to the first and second half

of the time step, respectively. That is, P(1) (and similarly for W (1) and other random increments)

denotes the same random number in both predictor and corrector stages, and is only sampled once

per time step. Following Refs. [65, 66], the mean reaction rate for the second half step is corrected

to (2a?r − akr )+, where a+ = max(a, 0).

For the magnitude of the stochastic diffusive fluxes over the second half of the time step, we
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consider the following three options for the face average value ñ•s:

ñ•s = ñ
(
nks

)
, (30a)

ñ•s = ñ (n?s) , (30b)

ñ•s = ñ
(

(2n?s − nks)+
)
. (30c)

While all options are consistent with the Ito interpretation, the effect of this choice on accu-

racy requires a nonlinear analysis that is not available at present. The option (30b) is used in

Ref. [74] and shown to lead to second-order weak accuracy for FHD equations linearized around

a time-dependent macroscopic state. The option (30c) is inspired by the midpoint tau leaping

scheme [65, 66]. However, it does not actually lead to second-order weak accuracy for multiplica-

tive noise because the fluctuating diffusion equation does not have the simple noise structure that

the CLE has [104]. For all our simulations, we use option (30c), as justified by numerical results

in Section V A.

The reactions can also be treated using SSA, to give the explicit midpoint SSA (ExMidSSA)

scheme

n�s = nks +
Ds∆t

2
∇2

dn
k
s +

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
, (31a)

n?s = n�s + R(1)
s

(
n�,

∆t

2

)
, (31b)

nk+1
s = nks +Ds∆t∇2

dn
?
s +

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
(31c)

+ R(1)
s

(
n�,

∆t

2

)
+ R(2)

s

(
n?,

∆t

2

)
.

Here the predictor stage (31a)+(31b) is a split reaction-diffusion step, but the corrector is not split.

Note that two R(1) appearing in Eqs. (31b) and (31c) are the same random increment computed

using SSA. In other words, the SSA algorithm is called once for each half of the time step; this

has the same computational cost as calling SSA once to compute Rs

(
nk,∆t

)
in the EM-SSA

scheme (26).

Since both ExMidTau and ExMidSSA schemes treat diffusion explicitly, they are subject to

stability limits. The ExMidTau scheme has the same stability limit (27) as the EMTau scheme,

whereas the ExMidSSA scheme is subject to the same limit (24) as the EM-SSA scheme. The

ExMidTau scheme with the option (30b) is an instance of the explicit midpoint scheme analyzed in

Ref. [74] for weak noise (i.e., linearized FHD), and therefore achieves second-order weak accuracy

for linearized FHD and gives third-order accurate equilibrium structure factors. On the other hand,

the ExMidSSA scheme gives only second-order accurate structure factors.
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2. Implicit Midpoint Schemes

Here we present two implicit midpoint schemes, where diffusion is treated implicitly based on

the implicit midpoint predictor-corrector scheme [64, 74]. By treating reactions using the second-

order midpoint tau leaping scheme [65, 66], we obtain the implicit midpoint tau leaping scheme

(ImMidTau) scheme:

n?s = nks +
Ds∆t

2
∇2

dn
?
s +

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
+

Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
, (32a)

nk+1
s = nks +Ds∆t∇2

d

(
nks + nk+1

s

2

)
+

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
+

Nr∑
r=1

νsrP(1)(akr∆V∆t/2)

∆V
+

Nr∑
r=1

νsrP(2)((2a?r − akr )+∆V∆t/2)

∆V
, (32b)

where the three options for ñ•s are given in Eq. (30). When SSA is used for the reactions, we obtain

the implicit midpoint SSA scheme (ImMidSSA) scheme,

n?s = nks +
Ds∆t

2
∇2

dn
?
s +

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
, (33a)

nk+1
s = nks +Ds∆t∇2

d

(
nks + nk+1

s

2

)
+

√
Ds∆t

∆V
∇d·

(√
ñksW

(1)
s

)
+

√
Ds∆t

∆V
∇d·

(√
ñ•sW

(2)
s

)
+ Rs (n?,∆t) . (33b)

In the corrector stage, both schemes treat diffusion using the Crank–Nicolson method since this

gives the most accurate structure factors for diffusion-only systems [64]. For the predictor step to

the midpoint, we have chosen to use backward Euler for diffusion because this was found to be

optimal using the structure factor analysis discussed in more detail in Section IV B.

We point out again that the difference in how reactions are included in the ImMidTau and

ImMidSSA schemes stems from the fact that SSA is an exponential integrator whereas the midpoint

tau leaping method is only a second-order integrator. This difference must be taken into account

when analyzing the accuracy of SSA-based schemes both in the deterministic limit and in structure

factor analysis. Like the explicit midpoint schemes in Section IV A 1, for linearized FHD, the

ImMidTau scheme is second-order weakly accurate and gives a third-order accurate structure factor,

whereas the ImMidSSA scheme gives only a second-order accurate structure factor. Since diffusion

is treated implicitly in both schemes, they are not subject to a stability limit depending on β.

However, due to the explicit treatment of reactions, the ImMidTau is subject to the stability

condition α ≤ 2. The ImMidSSA scheme is unconditionally linearly stable and has no stability

restrictions on α and β but can be considerably more expensive for systems with large numbers of

molecules.
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A key element of this work that distinguishes it from our previous work based on CLE [61]

is that here we replaced the GWN in the chemical noise with Poisson noise, and used a weakly

second-order tau leaping method [65, 66] to account for the non-Gaussian nature of the chemical

fluctuations. It is important to note that Poisson noise does not have a continuous range limit, i.e.,

the Poisson distribution remains integer-valued even as the number of molecules per cell becomes

very large. Although it is tempting to replace the Poisson distribution with a Gaussian distribution,

this changes the large deviation functional and therefore we recommend using tau leaping even in

the case of weak fluctuations; we note that sampling from a Poisson distribution can be done with

a cost essentially independent of the mean using well-designed rejection Monte Carlo methods.

Because of the use of Poisson variates, which cannot be split into a mean and a fluctuation like a

Gaussian variate can, there is no strict “deterministic limit” for our FHD discretizations. While the

handling of diffusion degenerates to a standard second-order deterministic scheme in the absence

of the noise, the chemical noise is always present and increments or decrements the number of

molecules by integer numbers.

B. Structure Factor Analysis

Analyzing the accuracy of temporal integrators for stochastic differential equations is notably

nontrivial, especially if driven by multiplicative noise. As mentioned above, because of the multi-

plicative noise, all of our midpoint schemes are formally only first-order weakly accurate. However,

traditional weak-order accuracy is not the most important goal in FHD simulations. As first argued

in Ref. [63] and then elaborated in Refs. [64, 74], for FHD it is more important to attain discrete

fluctuation-dissipation balance and higher-order accuracy for the spectrum of the equilibrium fluc-

tuations.

Here, we analyze the accuracy of our numerical schemes by investigating the structure factor

S(k) for the one-dimensional linearized FHD equation (12). The analytic expression for S(k)

produced by a given scheme can be obtained as a function of ∆x and ∆t following the procedure

described in Appendix C. Of specific interest to us is how accurately the implicit schemes reproduce

S(k) at large wavenumbers corresponding to length scales comparable to ∆x (i.e., k & (D∆t)−1/2)

when diffusion is the fastest process, β � 1 � α. This is because incorrect diffusive dynamics at

grid scales for ∆t� ∆x2/D can lead to gross errors in the magnitude of the fluctuations at large

wavenumbers.

Errors in the structure factor arise from two sources: spatial and temporal discretization. As
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FIG. 2. Discrete structure factors S(k̃) for the ExMidTau, ImMidTau, ExMidSSA, and ImMidSSA schemes

for the one-dimensional linearized FHD equation (12) with Γ̄/n̄r = 2 (e.g., an out-of-equilibrium monostable

Schlögl model). Note that different values of β are chosen for the explicit schemes (β = 0.25) and the implicit

schemes (β = 5) and α is chosen as α = 0.1β. The exact continuum result (14) is depicted by the dotted

line.

explained in Appendix C, the predominant contribution of spatial discretization is to replace −k2

with the symbol of the standard discrete Laplacian. In one dimension, this simply amounts to

replacing k in the continuum expressions with the modified wavenumber k̃ defined by

k̃ =
sin
(
k∆x

2

)
∆x
2

. (34)

Note that exactly the same expression applies to the RDME, where diffusion is simulated by lattice

hops. In order to focus our attention on temporal integration errors, we will plot discrete structure

factors as a function of k̃ instead of k, which effectively removes the spatial errors.

Figure 2 illustrates how S(k) deviates from the exact result (14) at different wavenumbers

for large ∆t. We compare S(k) obtained from the four schemes by using values α = 0.025,

β = 10α = 0.25 for the explicit schemes, and α = 0.5 and β = 10α = 5 for the implicit schemes.

Note that these values correspond to a case where the time step size is chosen as half of the stability

limit ∆tmax for the explicit schemes and, it is increased by factor of 20 (∆t = 10∆tmax) for the

implicit schemes. As described below, the accuracy at diffusion-dominated scales k` � 1 and

reaction-dominated scales k` � 1 largely depend on how diffusion (i.e., explicit or implicit) and

reaction (i.e., tau leaping or SSA) are treated, respectively.

As the time step size approaches the diffusive stability limit, β → 1/2 in one dimension, the

explicit schemes become inaccurate and eventually numerically unstable at the largest wavenum-
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bers, as seen in the figure for β = 1/4. Due to the small values of α, both schemes give accurate

results for reaction-dominated scales. Note, however, that the SSA-based schemes give exact S(0)

and they are in general more accurate at reaction-dominated scales than the corresponding tau

leaping-based schemes. Hence, we see that, for β � α, the accuracy of the explicit schemes is

largely affected by numerical instability arising from diffusion.

On the other hand, both implicit schemes give fairly good S(k) in the overall range of k even

though ∆t is twenty times larger and β = 5. As expected, the ImMidSSA scheme is more accurate

for reaction-dominated scales k`� 1, for which the ImMidTau scheme shows some errors because

of the relatively large value of α = 0.5. However, for intermediate scales k` ∼ 1, the ImMidTau

scheme is more accurate because it attains third-order accuracy for static covariances.

At diffusion-dominated scales k` � 1, both implicit schemes give accurate results. This is

not accidental, for we have selected these schemes from a family of schemes parameterized in

Ref. [64] exactly for this reason. Specifically, the treatment of diffusion in both schemes is based

on the implicit midpoint scheme (Crank–Nicolson), which gives the exact S(k) in the absence of

reactions [64]. In addition, reaction is incorporated in a way that maintains fluctuation-dissipation

balance for k`� 1 even for relatively large values of α. For small α, the time integration error of

the ImMidTau scheme for the structure factor at the maximum wavenumber kmax` = π
√
β/α is

estimated as
S(kmax)− S0(kmax)

S0(kmax)
≈ − β

2(1 + 2β)2
α2, (35)

where S0(k) = lim∆t→0 S(k) is the structure factor in the absence of temporal integration errors

(see Appendix C). Hence, for a given value of α, S(k) gives accurate results at k` � 1 for large

β. For the ImMidSSA scheme, β in the numerator is replaced by β + (1 + 2β)( Γ̄
n̄r − 1) and a

similar stable behavior for large β is observed. By expanding S(kmax) − S0(kmax) for small ∆t,

we also see that the error is O(α2β) = O(∆t3) for the ImMidTau scheme, whereas it is O(∆t2)

for the ImMidSSA except at thermodynamic equilibrium (i.e., except when Γ̄ = n̄r), where it is

third-order accurate.

V. NUMERICAL RESULTS

We perform numerical simulations for the following three stochastic reaction-diffusion systems.

In Section V A, we use the equilibrium Schlögl model in one, two, and three dimensions to val-

idate our numerical methods. The analysis in Section IV B assumed additive noise, reflecting a

large number of molecules per cell. Here we present numerical results demonstrating that the
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methodology continues to work when there are a small number of molecules per cell and the ef-

fects of multiplicative noise are significant. In particular, we show that our numerical methods,

including the modified arithmetic-mean averaging function discussed in Section III C, accurately

reproduce the Poisson statistics that characterize the thermodynamic equilibrium distribution. In

Sections V B and V C, we study the effects of fluctuations on chemical pattern formation. In Sec-

tion V B, we test our numerical methods on a time-dependent problem: two-dimensional Turing-like

pattern formation in the three-species BPM model [77, 78]. We investigate how accurately both

time-transient and steady state behavior are captured for the ImMidTau and ImMidSSA schemes

when a large time step size is used. We consider the case where the populations of chemical species

have different orders of magnitude, which is a frequently encountered situation where a conven-

tional RDME-based method may not work efficiently. We demonstrate that the ImMidTau scheme

scales very well with an increasing number of molecules per cell so that even the deterministic

limit of vanishing fluctuations can be explored. In Section V C, we demonstrate the scalability to

large systems and computational efficiency of our FHD approach by presenting a three-dimensional

numerical simulation of chemical front propagation in a two-species model [7].

As a reference method for comparison, we use an RDME-based method, as proposed in Ap-

pendix A, which is constructed via a standard operator splitting technique by combining multi-

nomial diffusion sampling [71] and SSA. Such a split scheme is notably more efficient than ISSA

when there are a large number of molecules per cell, and becomes an exact sampling method for

the RDME in the limit ∆t → 0. This RDME-based scheme works with nonnegative integer pop-

ulations and reproduces correct fluctuations at thermodynamic equilibrium. However, diffusion

imposes the same restriction (24) on ∆t, and the split scheme produces only a first-order accurate

structure factor in general.

In order to set a desired magnitude of fluctuations without changing any parameters for the

macroscopic limit (e.g., penetration depth), we introduce a factor A, which scales the cell volume

∆V = A∆x1 · · ·∆xd. It can be interpreted as the surface cross section in one dimension and

the thickness of a system in two dimensions, and as a rescaling of the number density in three

dimensions. Since the number of molecules in a cell is ns,i∆V , the larger A is, the more molecules

in a cell there are and the weaker the fluctuations become. However, the corresponding macroscopic

system is unaffected by the value of A.
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FIG. 3. Static fluctuations of the spatially discretized FHD equation (19) at thermodynamic equilibrium.

(Left) Structure factors S(k̃) calculated by using different averaging functions ñ. The solid lines depict the

results from the equilibrium Schlögl model (neq∆V = 10), whereas the dotted lines are from the corre-

sponding diffusion-only system. Note that the exact result for both systems is S(k̃) = neq independent of k̃,

which corresponds to Poisson equilibrium fluctuations. (Right) Empirical histograms P (N) of the number of

molecules per cell for the Schlögl model (red circles) and the diffusion-only system (blue crosses), computed

using the arithmetic mean averaging function. For comparison, we show the correct Poisson distribution

PPoisson(N) and its Gaussian approximation PGauss(N). The inset shows the errors P (N)−PPoisson(N) with

error bars corresponding to two standard deviations.

A. Schlögl Model at Thermodynamic Equilibrium

In this section, we test the numerical schemes constructed in Sections III and IV on the Schlögl

reaction-diffusion model, first introduced in Section II C. Simulation parameters are chosen to

correspond to a system in thermodynamic equilibrium, so that the equilibrium fluctuations are

Poisson and the structure factor S(k) = neq is constant, both with and without (i.e., diffusion

only) chemical reactions. Specifically, we set the rate constants as k1 = k2 = k3 = k4 = 0.1 (see

Eq. (15)), which gives neq = 1 and α = 0.2∆t. We set the diffusion coefficient D = 1 and the grid

spacing to unity for d = 1, 2, 3, and thus β = ∆t. We consider the case where the mean number of

molecules per cell is 10 by setting A = 10.

1. Continuous-Time FHD Equation

Prior to evaluating the different temporal integration strategies, we first focus our attention

on the continuous-time discrete-space FHD equation (19) to establish a baseline for comparison
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and to evaluate the effectiveness of the choice of averaging function (20). To eliminate temporal

integration errors we use the EMTau scheme (25) with a very small time step size ∆t = 10−3; results

from the other FHD schemes are similar for sufficiently small ∆t. The left panel of Fig. 3 shows

the structure factors S(k) computed for Nc = 512 grid cells in one dimension for the arithmetic,

geometric, and harmonic mean (AM, GM, HM) averaging functions ñ(n1, n2). The correct flat

spectrum is accurately reproduced by the modified AM averaging function (20). On the other

hand, the GM and HM averaging functions give smaller S(k) at diffusion-dominated scales k`� 1.

This can be also observed from the diffusion-only system for all wavenumbers, as theoretically

explained in Appendix B. Henceforth, we use the modified AM averaging function (20).

The right panel of Fig. 3 shows that using the AM averaging function, the correct Poisson

distribution for the number N of molecules in a cell is accurately reproduced for both reaction-

diffusion and diffusion-only systems at thermodynamic equilibrium. From the equilibrium number

density distribution ρ(n), we construct a discrete distribution for integer number of molecules N

per cell,

P (N) =

∫ (N+ 1
2

)/∆V

(N− 1
2

)/∆V
ρ(n)dn, (36)

and compare it with a Poisson distribution PPoisson(N) with mean neq∆V , as well as a Gaussian

distribution PGauss(N) having the same mean and variance as PPoisson(N). The agreement of P (N)

and PPoisson(N) is remarkable in the sense that FHD was originally proposed to account for only

second moments of (small) Gaussian fluctuations. Since PPoisson(N) is significantly different from

PGauss(N) for neq∆V = 10, we confirm that our spatially discretized FHD equation (19) describes

(large) Poisson fluctuations faithfully.

2. Time Integration Errors

In order to investigate time integration errors of our numerical schemes, we compare the nu-

merical equilibrium distribution for a given time step size ∆t with the target Poisson distribution

PPoisson(N) by using the following measures. First, we compute the Kullback–Leibler (KL) diver-

gence (distance),

DKL =
∞∑

N=0

PPoisson(N) log
PPoisson(N)

P (N)
. (37)

Second, we compute the probability of negative number densities,

Pneg =

∫ 0

−∞
ρ(n)dn. (38)
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FIG. 4. Deviations from the correct equilibrium distribution PPoisson(N) as ∆t increases for the four

midpoint schemes applied to the one-dimensional Schlögl model at thermodynamic equilibrium. The left

panel shows the KL divergence (37), the middle panel shows the probability of negative density (38), and

the right panel shows the correlation coefficient (39) between neighboring cells. The red and green solid

lines denote the ImMidTau and ExMidTau schemes, respectively, whereas the blue and purple dotted lines

denote the ImMidSSA and ExMidSSA schemes, respectively. The arrows denote the stability limit ∆tmax

of the explicit schemes, see Eq. (24). The error bars correspond to two standard deviations.

Third, we compute the correlation coefficient ζ between neighboring cells,

ζ =
Cov

[
ni, ni±ej

]
Var [n]

. (39)

Note that all three measures should be zero at thermodynamic equilibrium, as they would be for

RDME.

We considered the three options for the stochastic flux amplitude ñ•s in Eq. (30). For ζ, the three

options give similar values within standard errors of estimation. For DKL and Pneg, option (30a)

gives the largest values (i.e., least accurate) and option (30c) the smallest (not shown). Based on

this result, we will adopt (30c) and use it for all of the simulations. Figure 4 shows how these

measures deviate from zero as ∆t increases for Nc = 64 cells in one dimension for the different

schemes. As expected, for small values of ∆t, all schemes give similar values. DKL converges to a

small value, which is consistent with the good agreement between P (N) and PPoisson(N) seen in

the right panel of Fig. 3. Pneg is observed to converge to zero as ∆t→ 0, which demonstrates the

effectiveness of the approach described in Section III C and agrees with the analysis in Appendix B.

Also, no correlation between neighboring cells is observed for small ∆t within statistical errors,

which is consistent with the flat spectrum S(k) shown in the left panel of Fig. 3. As ∆t approaches
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the explicit stability limit ∆tmax, rapid worsening is observed in both explicit schemes in all three

measures. While Pneg and ζ behave similarly for both schemes, DKL remains small for larger values

of ∆t for the ExMidSSA scheme compared to the ExMidTau scheme.

For both implicit schemes, it can be clearly seen that not only is the diffusion instability bypassed

but also the accuracy is well maintained for large ∆t. For comparable accuracy, an order of

magnitude larger time step size than the explicit schemes can be chosen. The ImMidTau scheme

gives smaller DKL than the ImMidSSA scheme if ∆t is smaller than a certain value. This is

consistent with the observation that the former scheme has a higher temporal order of accuracy in

S(k). However, due to inaccurate handling of reactions by tau leaping for large ∆t, the ImMidTau

scheme eventually gives larger DKL. For Pneg and ζ, similar behavior is observed.

Similar behavior is observed for higher spatial dimensions d = 2 and d = 3 (not shown).

However, for a given target accuracy tolerance, we find that a smaller time step size should be

chosen, which is inversely proportional to the dimensionality d. This should not come as a surprise

since the explicit stability limit ∆tmax ∼ 1/d, see Eq. (24). Therefore, we conclude that ∆t can

be chosen an order of magnitude larger for the implicit schemes than for the explicit schemes

independent of the spatial dimension. As mentioned, the computational overhead for solving linear

systems can be reduced by an efficient iterative solver. Using multigrid relaxation [103], the overall

computational efficiency gain was roughly estimated to be a factor of 3. However, this factor largely

depends on the problem as well as the implementation, especially on the linear solver used.

B. Turing-like Pattern Formation

In this section, we investigate pattern formation in the three-species Baras–Pearson–Mansour

(BPM) model [77, 78],

U + W
k1→ V + W, 2V

k2


k3

W,

U
k4


k5

∅, V
k6


k7

∅.
(40)

We choose the rate constants so that the deterministic reaction-only system attains a limit cycle as

its stable attractor, and we choose the diffusion coefficients so that a Turing-like pattern forms in the

reaction-diffusion system [61]. Specifically, we set k1 = k2 = 2× 10−4, k3 = 1, k4 = 3.33× 10−3,

k5 = 16.7, k6 = 3.67× 10−2, k7 = 4.44 and DU = 0.1, DV = DW = 0.01. We note that on

the limit cycle, number densities of the three species oscillate in significantly different ranges:

nU ∈ (999, 2024), nV ∈ (302, 645), and nW ∈ (18.2, 83.2). For a physical domain with side lengths



30

FIG. 5. Two types of steady-state Turing-like patterns observed in the two-dimensional BPM model with

642 cells and A = 1. Snapshots of nU are obtained at t = 5× 104 from FHD (left two panels) and RDME

(right two panels) simulations with a small time step size. Panels (a) and (c) show a hexagonal structure

(with 12 dots), whereas panels (b) and (d) exhibit a monoclinic structure (with 11 dots).

Lx = Ly = 32, we use three spatial resolutions with grid sizes Nc = 642, 1282, and 2562 cells. For

the initial number densities, we choose a point on the limit cycle (n0
U, n

0
V, n

0
W) = (1686, 534, 56.4)

and generate the initial number of molecules of each species s in each cell from a Poisson distribution

with mean n0
s∆V = n0

sA∆x∆y. We use our implicit schemes in order to bypass the stiff stability

limit imposed by the fast diffusion of U molecules. To obtain reference FHD results having minimal

time integration errors, we use the ImMidTau scheme with ∆t = 0.1. To test the importance of

fluctuations, a deterministic version of the ImMidTau scheme is used with ∆t = 0.1, with random

initial conditions generated from a Poisson distribution corresponding to thickness A = 10.

Figure 5 shows snapshots of a final Turing pattern formed for A = 1 and 642 cells. While

the pattern is qualitatively correct, the quantitative behavior of our FHD formulation may be

questioned since the mean number of W molecules in a cell can be as low as 4.5 at small t in this

case. To confirm the FHD description applies even for relatively small numbers of molecules per cell,

we compare the FHD results to reference RDME results obtained using the SSA/2+MN+SSA/2

scheme (A3) with ∆t = 0.01. We find that the FHD reference simulations are qualitatively very

similar to the RDME reference simulations over a wide range of thicknesses A, as we illustrate

in Fig. 5. For our setup, after the initial formation of a disordered pattern of dots with low

concentration of U molecules (blue dots in Fig 5), the dots split and merge and diffuse to eventually

form a stable regular pattern; note that the final patterns are nearly periodic lattice structures

but their geometry is affected to some extent by the finite size of the domain. For A = 1, by

t = 5× 104, almost all samples had formed a steady pattern. Most samples formed a hexagonal



31

FIG. 6. Turing-like pattern formation in the two-dimensional BPM model with 642 cells. (Left) Spatially-

averaged density n̄U(t) of species U for domain thickness A = 1 and A = 10 (RDME results), as well as de-

terministic reaction-diffusion started from random initial conditions corresponding to A = 10. (Right) Snap-

shots of nU for A = 10 at four different times t at which n̄U(t) attains a local minimum, indicated by circles

in the left panel.

(12 dots, see panels (a) and (c) in Fig 5), and a few formed a monoclinic (11 dots, see panels (b) and

(d) in Fig. 5) lattice of dots, for both FHD and RDME. Note that while FHD simulations using the

ImMidTau scheme are equally efficient independent of A, RDME simulations become prohibitively

expensive for large A & 100 due to the very large number of U molecules (as many as 2× 106A)

in the system. For weaker fluctuations, A = 1000, FHD simulations reveal that the annealing of

the lattice defects takes much longer and we see several disordered or defective patterns even at

t = 5× 104 (not shown). Therefore, not only do fluctuations accelerate the formation of the initial

(disordered) pattern, but they also appear to accelerate the annealing of the defects.

Since the formation of the pattern is driven by an instability, it is itself a random process

and a proper quantitative comparison between the different methods requires a careful statistical

analysis of an ensemble of trajectories. In order to capture the time transient behavior of pattern

formation, illustrated in the right panel of Fig. 6, we calculate the spatially-averaged density

n̄U(t) = 1
Nc

∑
i nU,i(t). In the left panel, we compare sample trajectories of n̄U(t) for A = 1 and

A = 10 for RDME (similar results are obtained for FHD) and for deterministic reaction-diffusion.

While n̄U(t) initially oscillates as in the limit cycle, as the Turing-like pattern begins to form, the
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FIG. 7. (Left) Scatter plots of the decay onset time a1 and the steady spatial average density a7 for several

values of the cell thickness A and two grid resolutions. RDME and FHD results are compared for A = 1 and

A = 10, whereas only the FHD results (using the ImMidTau scheme) are shown for A = 100 and A = 1000

since RDME simulations are prohibitively expensive. (Right) Average values ā7 of a7 over 16 samples for

the ImMidTau and ImMidSSA schemes with 642 cells as a function of time step size ∆t, for cell thicknesses

A of 0.1, 1, and 10. For comparison, the RDME results for ∆t = 0.01 are shown on the left with error

bars corresponding to two standard deviations. Error bars are omitted for the implicit schemes; they are

comparable to the RDME results. Note that ai are normalized by the average values ādeti for deterministic

reaction-diffusion started with random initial conditions corresponding to A = 10.

oscillation amplitude decays and n̄U(t) eventually attains a steady value. By comparing A = 1

and 10, we see that larger fluctuations facilitate faster pattern formation, as observed in prior

work [61] by us and others. By comparing RDME results for thickness A = 10 with deterministic

reaction-diffusion started from the same initial condition, we see that the effect of fluctuations on

pattern formation is not just due to random initial conditions.

We generate 16 sample trajectories for each set of parameter values, fit each realization of n̄U(t)

using seven fitting parameters a1, · · · , a7 to

n̄U(t) =

(
1− tanh

t− a1

a2

)(
a3 sin(a4t+ a5) + a6

)
+ a7, (41)

and compare the distributions of the fitting parameters. Note that a1 and a7 correspond to the

decay onset time and the steady spatial average density, respectively. In the left panel of Fig. 7,

we compare the empirical distributions of (a1, a7) from the RDME and FHD results for different

values of the thickness A and spatial resolutions. For each value of A, we observe that distributions

obtained from different methods and/or resolutions coincide. For A = 1 and A = 10, we reconfirm

that the RDME approach produces statistically very similar results for three resolutions and the



33

FHD results are statistically indistinguishable from the RDME results. It is quite remarkable that

FHD works even for A = 1 and 2562 cells, which can have as low as 0.3 molecules per cell at small

t, and this demonstrates the robustness of our treatment for a small number of molecules per cell.

As the magnitude of the fluctuations increases (i.e., as A decreases), the pattern begins to form

earlier (i.e., a1 decreases), as already seen in Fig. 6, while the steady spatial average density a7

becomes smaller. In addition, while the variance of a1 does not change significantly as A varies,

the variance of a7 becomes larger for smaller A.

Finally, we investigate time integration errors of our implicit schemes for the Turing-like pattern

formation. For the ImMidTau scheme, we increase ∆t up to the stability limit arising from reactions

∆t
(R)
max ≈ 1.3. The right panel of Fig. 7 shows the mean values ā7 of the steady spatial average

density a7 over 16 samples versus ∆t for 642 cells. While both schemes give similar values to the

RDME results for small ∆t, they show different behavior for large ∆t, which also depends on A.

As expected, in the ImMidTau scheme, the value of ā7 rapidly deviates from the RDME result as

∆t approaches ∆t
(R)
max, especially if there are few molecules per cell, A = 0.1 or A = 1. On the

other hand, in the ImMidSSA scheme, ∆t can be increased beyond ∆t
(R)
max, and deviations from the

RDME results remain small even for the smallest value of A. Hence, handling reactions by SSA not

only removes the reaction stability constraint but also improves the accuracy for a small number

of molecules per cell. However, it should be noted that this improvement comes at a significant

computational cost, since the SSA scheme is much more expensive than tau leaping especially as

the number of molecules per cell increases. Therefore, the SSA-based schemes are impractical in

the regime of weak fluctuations due to poor scaling. We discuss some alternatives to SSA that may

significantly improve the computational cost for weaker fluctuations in the Conclusions.

C. Front Propagation

As a final example, we simulate three-dimensional front propagation in a two-species stochastic

reaction-diffusion system having the following reaction network:

A
k1→ ∅, 2A + B

k2→ 3A, B
k3


k4

∅. (42)

This model has been proposed to reproduce axial segmentation in Ref. [7], where ISSA simulations

have been performed for the one-dimensional case. Following Ref. [7], we set k1 = 0.4, k2 = 0.137,

k3 = 0.1, k4 = 1 and DA = 1, DB = 10. For a physical domain with side lengths Lx = Ly =

Lz = 512, we use 2563 cells. To initiate front propagation, we generate initial number densities as
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FIG. 8. Three-dimensional FHD simulation of front propagation in a two-species stochastic reaction-diffusion

model (42) using the ImMidTau scheme. The number density of species A is shown at four different times

t for the stochastic reaction-diffusion system (in the top row) and the corresponding deterministic case (in

the bottom row). The same initial conditions with Poisson fluctuations are used in both simulations.

follows. We first assign to each cell i and species s a mean number density

n0
s,i = n(1)

s +
1

2

(
1 + tanh

ri −R
ξ

)(
n(2)
s − n(1)

s

)
, (43)

where ri is the distance from the cell center to the center of the domain. This initializes a spherical

region of radius R in the first uniform equilibrium state of the model, (n
(1)
A , n

(1)
B ) = (2.16, 1.35),

while the rest of the domain is initialized in the second uniform equilibrium state, (n
(2)
A , n

(2)
B ) =

(0, 10), with a smooth transition region between the two states of width ≈ 2ξ. Then, as in

Section V B, we generate the initial number of molecules of each species in each cell from a Poisson

distribution with mean n0
s,i∆V = n0

s,iA∆x∆y∆z. We simulate the system for parameters A =

1000, R = 16, and ξ = 4 = 2∆x using the ImMidTau scheme with ∆t = 0.25. For comparison, we

also simulate the corresponding deterministic system using a deterministic version of the ImMidTau

scheme with the same time step size and (random) initial conditions. Simulations are performed

using a parallel implementation of the algorithm using the BoxLib software framework [105]. We

emphasize that a corresponding RDME system is too large to simulate with conventional RDME-
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based methods; while the total number of molecules in the system varies as the front propagates,

it is of the order of 1012 for A = 1000.

Figure 8 shows the growth of the spherical region as the more stable phase propagates into the

less stable phase via a spherical traveling wave. While the phase boundary having a peak population

of species A propagates, a Turing-like pattern develops behind the wave front; in one dimension

this pattern is periodic and more pronounced in the presence of fluctuations [7]. In two and three

dimensions, fluctuations not only enhance the pattern but they also make it disordered, as seen in

the figure by comparing the stochastic and deterministic cases. In addition, the phase boundary

becomes more irregular under fluctuations. Note that the numerical results for the deterministic

case are not perfectly radially symmetric not only due to the noisy initial conditions but also due to

grid artifacts introduced by the standard discrete Laplacian, which is not perfectly isotropic [106]

on length scales compared to the front width (i.e., the penetration depth); one would require an

even finer grid to correct for this spatial discretization artifact.

VI. CONCLUSIONS

In this work, we have formulated a fluctuating hydrodynamics (FHD) model for reaction-

diffusion systems and developed numerical schemes to solve the resulting stochastic ordinary dif-

ferential equations (SODEs) (19) for the number densities ns,i(t) of chemical species in each cell.

We obtained the diffusion part of the SODEs from an FHD description of a microscopic system

consisting of molecules undergoing independent Brownian motions, and added reactions in an

equivalent manner to the reaction-diffusion master equation (RDME). We presented two implicit

predictor-corrector schemes, the ImMidTau (32) and ImMidSSA (33) schemes, that treat reactions

using tau leaping and SSA, respectively. In these schemes, diffusion is treated implicitly so that

the stability limit imposed by fast diffusion can be bypassed and the time step size can be chosen

to be significantly larger than the hopping time scale of diffusing molecules. In addition, two-

stage Runge–Kutta temporal integrators are employed to improve the accuracy. To confirm the

validity of our FHD formulation and demonstrate the performance of our numerical schemes, we

numerically investigated not only a system at steady state (Schlögl reaction-diffusion model), but

also time-dependent two-dimensional Turing-like pattern formation and three-dimensional front

propagation.

Based on our analytical and numerical investigation, we conclude that the ImMidTau scheme is

an efficient and robust alternative numerical method for reaction-diffusion simulations. The reason
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is threefold. First, the cost of the scheme does not increase for increasing number of molecules

per cell (weaker fluctuations). For small numbers of molecules per cell (large fluctuations), the

integer-valued RDME description is more appropriate than the continuous-range FHD description.

However, by using the approach proposed in Section III C, we ensured that the FHD description

remains robust and gives accurate results even for a small number of molecules per cell, as shown

in Section V A. Hence, as shown in Section V B, our numerical methods can efficiently simulate

reaction-diffusion systems over a broad range of relative magnitude of the fluctuations. Second,

the scheme allows a significantly larger time step size without degrading accuracy compared to

existing RDME-based numerical methods [42–47], which use a fixed time step size for diffusion

that is comparable to the hopping time scale. In particular, we found that the time step size

could be chosen an order of magnitude larger for the implicit schemes than for explicit methods,

independent of the spatial dimension. Lastly, FHD can take advantage of development of efficient

parallel algorithms developed for computational fluid dynamics (CFD) that enable effective use of

high-performance parallel architectures while providing the framework for treating more complex

problems with additional physical phenomena. This enabled us to perform three-dimensional

simulations of chemical front propagation involving as many as 1012 molecules using the BoxLib

CFD software framework [105].

The explicit tau leaping methods used here are quite simple to implement but are subject to

a stability limit for fast reactions, and can lead to negative densities when fluctuations are large.

While some implicit tau leaping methods have been developed, as an alternative we developed

methods that use SSA for reactions. The ExMidSSA and ImMidSSA methods, however, do not

scale as the fluctuations become weaker. This deficiency can be corrected by replacing SSA by

a recently-developed hybrid algorithm termed asynchronous tau leaping [107] that combines SSA

and tau leaping in a dynamic manner by simulating multiple events with asynchronous time steps.

Future work should develop FHD-based numerical schemes that are accurate and robust even for

a small number of molecules per cell and also scale to the deterministic limit efficiently.

One of the advantages of the FHD approach for reaction-diffusion systems is its natural gen-

eralization to more complicated and realistic applications. Chemical reactions of interest usually

occur in liquid solution, and often in a dense crowded environment such as the cytoplasm [108–

110]. It is well-known that Brownian motion of liquid molecules or suspended macromolecules in

liquids is dominated by hydrodynamic effects related to viscous dissipation [81, 110, 111]. This

means that the diffusion model commonly used in reaction-diffusion models, including this work,

which assumes that reactants are independent non-interacting Brownian walkers diffusing with
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a constant diffusion coefficient, does not apply in the majority of practical problems of inter-

est. Notably, crowding or steric interactions affect the local hydrodynamic mobility of individual

reactants, and hydrodynamic interactions (HI) among the diffusing reactants introduce strong

correlations among the diffusive motions of the reacting particles (and also among reactants and

passive crowding agents) [110]. Excluded volume due to steric repulsion introduces cross-diffusion

effects, i.e., coupling between the diffusive fluxes for different species [112], as well as concentration-

dependent diffusion coefficients. Furthermore, it has been observed that cross-diffusion may lead

to qualitatively different Turing instabilities [113–115]. Long-ranged contributions of hydrody-

namic interactions can be captured by accounting for the advection of concentration fluctuations

by the thermal velocity fluctuations, which follow a fluctuating Stokes equation [81, 111]. Addi-

tional thermodynamic contributions to the diffusive fluxes such as cross-diffusion, barodiffusion

and thermodiffusion do not seem straightforward in the RDME but are easily included in our

FHD formulation [61]. In future work, we will investigate these hydrodynamic effects on stochastic

reaction-diffusion phenomena.
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Appendix A: RDME-Based Split Scheme

As a reference algorithm for stochastic reaction-diffusion simulation, we construct a numerical

scheme for the RDME through a standard operator splitting technique, as done in a number of prior

works [25, 44, 45, 47]. This technique allows one to obtain a numerical scheme for the reaction-

diffusion system by combining numerical methods for the diffusion-only and reaction-only systems.

Here we combine multinomial diffusion sampling [43, 71] for diffusion and SSA for reaction via

Strang splitting [70].

One distinguishing feature of the resulting scheme, compared to exact sampling methods such
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as ISSA, is the use of a fixed time step size ∆t for diffusion, which facilitates an efficient numerical

simulation if diffusion is fast. As shown below, while there are several advantages of this scheme

over ISSA, the choice of ∆t is constrained as it is for explicit FHD schemes.

In Section A 1, after reviewing the multinomial diffusion sampling method, we present an

RDME-based split scheme and discuss its advantages and disadvantages. In Section A 2, we present

a stochastic accuracy analysis for this scheme.

1. Split Scheme

In the multinomial diffusion (MN) sampling method, the numbers of molecules in each cell after

time ∆t are calculated by sampling how many molecules have moved from a cell to a neighboring

cell. Here we follow the simple algorithm described by Balter and Tartakovsky [71] and only allow

particles to move to nearest-neighbor cells. More complicated but also more accurate algorithms

that allow particles to jump to further than nearest-neighbor cells are described by Lampoudi et

al. [43]. We use the notation introduced in the body of the paper.

By denoting the number of molecules of species s diffusing from cell i to cell i′ over the time

interval ∆t as Ns,i→i′ , the change in the number density ns,i can be expressed in terms of the sum

of the inward and outward fluxes,

ns,i(t+ ∆t) = ns,i(t) +
1

∆V

d∑
j=1

(
Ns,i+ej→i +Ns,i−ej→i −Ns,i→i+ej −Ns,i→i−ej

)
(A1a)

= ns,i(t) + Di(ns(t),∆t), (A1b)

where ns(t) = {ns,i(t)}. For each cell i, the outward fluxes (Ns,i→i+e1 , Ns,i→i−e1 , · · · , Ns,i→i+ed ,

Ns,i→i−ed , Ns,i→i) are random variables sampled from the multinomial distribution with
∑

i′ Ns,i→i′ =

ns,i(t)∆V total trials and probabilities (ps, ps, · · · , ps, ps, 1 − 2dps) where ps = Ds∆t/∆x
2, where

we have assumed ∆x1 = · · · = ∆xd = ∆x.

For fast diffusion, this method becomes more efficient than treating hoping events one by one (as

in ISSA). However, it is an approximate method since the actual distribution of the outward fluxes

deviates from the multinomial distribution as ∆t increases. In fact, ∆t cannot be arbitrarily large

and is limited by condition (24) because of the requirement 1 − 2dps ≥ 0. We also note that the

number of molecules in a cell never becomes negative due to the constraint
∑

i′ Ns,i→i′ = ns,i(t)∆V .

Hence, the fluxes on disjoint faces are correlated, which is different from the FHD description (18).

In the deterministic limit this scheme converges to a standard forward Euler scheme for the diffusion

equation, and is therefore only first-order accurate in time. In the stochastic setting, this scheme
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adds correlations between the fluxes through different faces of a given cell in such a way as to ensure

discrete fluctuation-dissipation balance for any allowable time step size. In fact, for a system with

diffusion only, this method ensures that the equilibrium fluctuations are strictly Poisson, as desired

for independent Brownian walkers.

In order to handle chemical reactions, we use the SSA algorithm locally and independently in

each cell, without any diffusive events. Let Rs(n, τ) denote the (random) change in the number

density of species s when a cell with initial state n is simulated using SSA over a time interval τ .

In the absence of diffusion, the SSA-based reaction scheme can be written as

ns,i(t+ ∆t) = ns,i(t) + Rs(ni(t),∆t). (A2)

If we combine the diffusion-only (A1) and reaction-only (A2) schemes using a Strang splitting

approach [70], we obtain the SSA/2+MN+SSA/2 scheme

n?s,i = nks,i + Rs(n
k
i ,∆t/2), (A3a)

n??s,i = n?s,i + Di(n
?
s,∆t), (A3b)

nk+1
s,i = n??s,i + Rs(n

??
i ,∆t/2), (A3c)

where superscripts denote time step or intermediate stage. (We note that a number of different

splitting variants are possible; the version presented here gave the most accurate structure factor.)

This split scheme has a number of advantages. It becomes an exact sampler (solver) for the

RDME in the limit ∆t→ 0, just like ISSA. It is notably more efficient than ISSA if there are many

events per time interval ∆t, and it can be parallelized in a straightforward manner using domain

decomposition. Since the number of molecules is always a nonnegative integer both in multinomial

diffusion sampling and in SSA, this property is also preserved for this scheme. Moreover, since

both sampling methods preserve the thermodynamic equilibrium distribution (i.e., the Poisson

statistics), the split scheme also preserves it for any allowable time step size.

However, this scheme has some disadvantages. First, the time step size restriction (24) for

diffusion becomes severe for fast diffusion. Second, SSA exhibits poor scalability with respect to

the number of molecules in a cell. This can be resolved by replacing SSA with the tau leaping

method, but the nonnegativity is no longer guaranteed. Third, since the multinomial diffusion

method used here is only first-order accurate, the accuracy of the scheme is first order even though

Strang splitting is used. Constructing RDME-based diffusion methods that are more accurate is

possible [43, 46] but nontrivial and is not the focus of our work.
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FIG. 9. Structure factors S(k̃) obtained from the SSA/2+MN+SSA/2 scheme (A3) for the one-dimensional

linearized FHD equation (12) with Γ̄/n̄r = 2 (e.g., an out-of-equilibrium monostable Schlögl model). Differ-

ent values of β are compared, with α = 0.1β, see Eq. (23). The exact result (14) is depicted by the dotted

line. Note that the modified wavenumber k̃ is used, see Eq. (34).

2. Structure Factor Analysis

In this section, we investigate the stochastic accuracy of the SSA/2+MN+SSA/2 scheme (A3).

To this end, we consider the structure factor S(k) of an out-of-equilibrium monostable Schlögl

model in one dimension (see Sections II B and II C). In the limit of many molecules per cell, an

asymptotic expression of S(k) can be obtained for the scheme as a function of ∆x and ∆t. The

multinomial fluxes can be approximated by correlated Gaussian ones and the type of analysis

summarized in Appendix C can be applied; we do not give the details here for brevity. Note that

we present a similar structure factor analysis for our FHD-based schemes with some background

and details in Section IV B.

Figure 9 illustrates how S(k) deviates from the exact result (14) as ∆t is increased to ∆tmax

(equivalently, to β = 0.5), for α = 0.1β, see Eq. (23). While S(k) is accurately reproduced

at the reaction-dominated scales k` � 1 for all values of β, it becomes inaccurate for smaller

scales as ∆t approaches ∆tmax. We recall that for a system at thermodynamic equilibrium, the

split scheme exactly preserves the correct equilibrium distribution for any ∆t < ∆tmax. This

property ensures that, for α� β, good structure factors are obtained even for systems outside of

thermodynamic equilibrium, which exhibit a nonzero correlation length. For example, for β = 0.25,

the SSA/2+MN+SSA/2 scheme in Fig. 9 gives a notably more accurate S(k) than the FHD-based

explicit schemes in Fig. 2. Hence, even though this split scheme is found to give only first-order
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accurate S(k), the resulting structure factor is relatively insusceptible to increasing ∆t until the

stability limit is approached.

Appendix B: Averaging Function ñ

In this appendix we show that the arithmetic mean should be chosen as the averaging func-

tion ñ(n1, n2). Here we consider the diffusion-only case for a single species and investigate the

equilibrium distribution of the spatially discretized FHD equation (18). Since the true equilib-

rium distribution for a bulk (infinite) system is known to be a product Poisson distribution from

the corresponding microscopic system consisting of molecules undergoing independent Brownian

motions, we choose ñ so that the resulting equilibrium distribution is as close as possible to the

true distribution. In addition, since the prevention of negative cell number densities is one of the

essential issues for the development of a robust FHD numerical scheme, special care is taken to

modify the form of ñ(n1, n2) for small values of n1 and n2. Here we focus on the continuous-time

case and do not assume any specific temporal integrator.

The corresponding microscopic system has Ncn̄∆V molecules, where n̄ is the mean number den-

sity and Nc is the number of cells. The equilibrium distribution of the numbers of molecules in each

cell follows the multinomial distribution with equal probabilities 1/Nc. Hence, it is straightforward

to obtain the following second-order statistics of cell number density ni:

Var [ni] =
Nc − 1

Nc

n̄

∆V
, (B1)

Cov [ni1 , ni2 ] = − 1

Nc

n̄

∆V
for i1 6= i2. (B2)

Equivalently, from Eqs. (B1) and (B2), the structure factor is also obtained as

S(k) = n̄ for nonzero k. (B3)

If the FHD system (18) attains an equilibrium state, it can be shown that its second-order

statistics are completely characterized by 〈ñ〉, which is the equilibrium average of ñ over all faces:

Var [ni] =
Nc − 1

Nc

〈ñ〉
∆V

, (B4)

Cov [ni1 , ni2 ] = − 1

Nc

〈ñ〉
∆V

for i1 6= i2, (B5)

S(k) = 〈ñ〉 for nonzero k. (B6)

Comparing Eqs. (B4)–(B6) to the correct result Eqs. (B1)–(B3) suggests that one needs to

choose ñ so that 〈ñ〉 is as close as possible to n̄. It is easy to see that the arithmetic mean
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FIG. 10. The equilibrium cell number density distributions ρ(n) near n = 0 obtained from the arithmetic

mean averaging function (B8) (depicted by the red solid line), which uses the discontinuous Heaviside

function H, and Eq. (20) (depicted by the blue dotted line), which uses the smoothed Heaviside functions H0.

The results are obtained from the one-dimensional diffusion-only FHD system (18) having D = n̄ = ∆x = 1,

A = 5, and Nc = 512 by using the EMTau scheme (25) with ∆t = 10−3.

(AM) would give the right answer:
〈
ñAM

〉
=
〈

1
2(n1 + n2)

〉
= n̄. On the other hand, to calculate

〈ñ〉 for the geometric mean ñGM =
√
n1n2 or the harmonic mean ñHM = 2/(n−1

1 + n−1
2 ), one

needs to know the equilibrium distribution ρ(n1, n2) of two neighboring cells. However, under

the reasonable assumption that all three averaging functions give similar distributions ρ(n1, n2)

allowing only nonnegative number densities, it can be easily shown that
〈
ñHM

〉
≤
〈
ñGM

〉
≤
〈
ñAM

〉
from the well-known inequalities among the Pythagorean means. In fact, in Fig. 3, this ordering is

observed from the structure factor of the diffusion-only system, see Eq. (B6). Hence, we conclude

that the arithmetic mean is the right choice for ñ.

However, if the arithmetic mean is employed without modification, Eq. (18) does not attain an

equilibrium state. This is because almost surely at some point on some grid face we will have ñ < 0

so that the stochastic diffusive flux becomes undefined. The nonnegativity of cell number densities

is guaranteed if the stochastic diffusive flux through a face is turned off when the number density

of either cell sharing the face becomes zero. Specifically, under some technical assumptions, it can

be proven that if ñ(n1, n2) is a nonnegative function that satisfies

ñ(n1, n2) = 0 for n1 ≤ 0 or n2 ≤ 0, (B7)

then the number density of each cell never becomes negative. The nonnegative arithmetic mean
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averaging function

ñ(n1, n2) =


1
2(n1 + n2) if n1 > 0 and n2 > 0,

0 otherwise,

(B8)

does not allow negative density (i.e., ρ(n) = 0 for n < 0). However, due to the discontinuity of ñ

at n1 = 0 or n2 = 0, ρ(n) does not decrease to zero as n becomes zero (i.e., limn→0+ ρ(n) > 0) and

a delta function is formed at n = 0, see Fig. 10.

To understand this behavior, we consider numerically integrating Eq. (18) with a small time

step size ∆t > 0. Even if the density in a given cell n1(t) has a small positive value, ñ can be large

if the density in the neighboring cell n2(t) is large. In this case, n1(t+∆t) can become negative due

to the stochastic diffusive flux. But, once n1 has become negative, the stochastic diffusive flux is

turned off, and due to the deterministic diffusion, n1 increases and becomes positive again. Hence,

as shown in Fig. 10, ρ(n) attains a peak in the negative density region near n = 0. The width

and height of the peak are proportional to ∆t1/2 and ∆t−1/2, respectively, and the peak becomes

a delta function in the limit ∆t→ 0.

We note that the averaging in Eq. (B8) can be expressed as ñ = 1
2(n1 +n2)H(n1∆V )H(n2∆V )

where H is the Heaviside function. To avoid a discontinuity in ñ we can use a smoothed Heaviside

function to arrive at Eq. (20). Note that the smoothing is based on the number of molecules in a

cell (N = n∆V ) and the smoothing region 0 ≤ N ≤ 1 is chosen so that the stochastic diffusive flux

is modified only when there is less than one molecule in a cell. In Fig. 10, we show the distribution

ρ(n) near n = 0 obtained by the averaging function (20), for a rather small mean number of

molecules per cell, n̄∆V = 5. With the use of a smoothed Heaviside function, the spurious delta

function at n = 0 as ∆t→ 0 is removed, and the probability of negative density is greatly reduced

for small ∆t.

Appendix C: Linearized Equation Analysis

In this appendix we summarize how the discrete structure factor is obtained as a function of ∆x

and ∆t when a given spatiotemporal discretization is applied to the linearized FHD equation (12),

following the Fourier-space analysis developed in Ref. [63]. For simplicity, we consider here the

one-dimensional case.

Applying the spatial discretization given in Section III to Eq. (12) and taking a discrete Fourier
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transform, we obtain an Ornstein–Uhlenbeck equation for the Fourier coefficient δn̂k(t),

d

dt
δn̂k = −Dk̃2δn̂k +

√
2Dn̄k̃2

V
W(D)

k − rδn̂k +

√
2Γ̄

V
W(R)

k , (C1)

where the modified wavenumber k̃ is defined in Eq. (34), andW(D)
k (t) andW(R)

k (t) are independent

standard GWN processes. Compared to the continuous-space case (see Eq. (13)), k is replaced

by k̃ due to the discrete Laplacian and divergence operators. Note that in this linearized analysis

Poisson processes have been replaced by Gaussian ones with the mean evaluated at the ensemble

average (i.e., macroscopic) values of the density. For convenience, we have replaced complex-valued

GWN noise processes by real-valued ones having the same noise intensities.

When the EMTau scheme (25) is used to solve Eq. (C1), we have the recursion

δn̂k(t+ ∆t) =
[
1− (Dk̃2 + r)∆t

]
δn̂k(t) +

√
2Dn̄k̃2∆t

V
W1 +

√
2Γ̄∆t

V
W2, (C2)

where W1 and W2 are independent standard normal random variables. We write this as

δn̂k(t+ ∆t)
d
=Mkδn̂k(t) +NkW, (C3)

where
d
= denotes being equal in distribution. For any given temporal integrator we can straight-

forwardly obtain analytic expressions for Mk and NkN
∗
k . For example, for the EMTau scheme,

Mk = 1− (Dk̃2 + r)∆t, (C4a)

NkN
∗
k =

2

V
(Dn̄k̃2 + Γ̄)∆t. (C4b)

The covariance of the noise NkN
∗
k for multinomial diffusion (A1) can most easily be obtained from

Eq. (C8) from the observation that, in the absence of reactions, the exact structure factor S(k) = n̄

is obtained for any stable time step.

A similar procedure is applicable to numerical schemes having SSA for reactions. Since SSA is

an exact integrator, the linearized reaction part in Eq. (C1) is exactly solved. For example, for the

EM-SSA scheme (26), we have (cf. Eq. (C2))

δn̂k(t+ ∆t) =
[
−Dk̃2∆t+ e−r∆t

]
δn̂k(t) +

√
2Dn̄k̃2∆t

V
W1 +

√
Γ̄(1− e−2r∆t)

rV
W2. (C5)

While the expressions of Mk and NkN
∗
k become complicated for the predictor-corrector midpoint

schemes, a theoretical analysis is still tractable with the help of symbolic algebra tools.

By calculating Mk and NkN
∗
k for a given numerical scheme, the stability condition and the

structure factor can be obtained as follows. From the condition that the amplification factor Mk

should satisfy

|Mk| ≤ 1 for all k, (C6)
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the stability condition is obtained. For the EMTau scheme, we obtain

D∆t

∆x2
+
r∆t

4
≤ 1

2
. (C7)

The analytic expression for S(k) = V 〈δn̂kδn̂∗k〉 can be calculated from

S(k) =
V NkN

∗
k

1−M2
k

, (C8)

which is obtained from the time invariance relation 〈δn̂k(t)δn̂∗k(t)〉 = 〈δn̂k(t+ ∆t)δn̂∗k(t+ ∆t)〉 and

Eq. (C3) [63]. From the analytical expressions of S(k) and S0(k) = lim∆t→0 S(k), [S(kmax) −
S0(kmax)]/S0(kmax) is easily obtained, the series expansion of which for small α (and fixed β) gives

Eq. (35) for the ImMidTau scheme. Similarly, series expansions for small ∆t (i.e., fixed ratio α/β)

reveals the temporal order of accuracy of S(k).
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