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Abstract

Implicit Modeling for 3D Applications

by

Shizhan Zhu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Implicit model has emerged as a promising representation for numerous applications, in-
cluding signal processing, image representation as well as 3D modeling. In this thesis, we
will showcase its applications in three domains. First, we show that implicit representation
could aid single view surface reconstruction of scenes by learning from a large collections
of indoor scene data, and generalize well to unseen indoor scenes. Second, we show that
implicit modeling can facilitate grounding of the language query in the 3D space. Lastly,
we show that neural relighting, a type of algorithm that incorporates the neural field for
modeling the light field, could achieve promising results. On one hand, by incorporating the
pre-computed radiance transfer into the neural radiance modeling, we can enable handling
of the type of materials with subsurface scattering effects. A hypernet-based representation
could further facilitate fast image-based relighting. On the other hand, by carefully modeling
the local micro-geometry with the surface normal modeling, as well as incorporating various
hints for lighting reflection and self reflection, we could faithfully recover reflection highlights
with varying material roughnesses.
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Chapter 1

Introduction

1.1 Implicit Models

Implicit models have emerged as one of the promising representations that become widely
used in various fields, including signal processing, image representations, 3D modeling, etc.
In recent years, implicit models have particularly drawn attention from the 3D research
community and a considerable fraction of research is conducted based on the 3D implicit
models. A 3D implicit model is a function representation that maps space coordinates or
other parameterizations (e.g. view directions or lighting directions) to the prediction space,
and use this function instead of any explicit representation for representing a 3D model.
For instance, a 3D occupancy field could serve as an example, where the implicit function
f maps 3D coordinates x ∈ R3 to a probability scaler o ∈ R(0 ≤ o ≤ 1). A relatively large
probability scaler o would indicate the space location x is more likely to be occupied, while a
relatively small s would indicate free space. The occupancy of the space would then be easily
modeled by this implicit function f . Compared to other representations such as voxel grids
or meshes, the implicit representation prevails in several manners. First, its representation
is relatively compact as this function could be generally modeled by just a handful of fully
connected layers, compared to a total enumeration of the occupancy as in the voxel grids
or all the triangles as in the mesh. Second, due to the continuity nature of the function
space, an implicit representation could in theory represent an extremely high resolution of
the represented space. Lastly, the implicit model is flexible regarding input dimensions and
their physical meaning, which possesses the potential of representing space that is higher
than 3 dimensions (e.g. a Neural Radiance Field).

There are several important recent implicit models that have been widely used by the
3D research community:

• Signed Distance Field (SDF). A signed distance function takes in the 3-dimensional
3D coordinates as the input, and maps to the signed distance value s ∈ R, where its sign
represents occupancies (generally positive for unoccupied and negative for occupied) and
its value represents the shortest distance to a point on the surface (i.e. the projection
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distance). As such, the zero-level set would just be the surface. One can extract the mesh
via the marching cube algorithm over either a pre-evaluated signed distance volume grid or a
coarse-to-fine online querying of the signed distance function (e.g. the toolbox MISE). Both
the occupancy field and the signed distance field would serve as important 3D geometry
representations. Our 3D surface prediction tasks in Chapter 2 would deal with this type of
representation.

• Neural Radiance Field (NeRF). The seminal work on the Neural Radiance Field
addresses not only the geometry but also the appearance of a scene when observed from
a particular view angle. More precisely, NeRF advocates a volume rendering scheme for
getting the pixel RGB values of each camera ray accumulated with a plenoptic function. For
a single point x ∈ R3 in the space that observes from the direction of d ∈ R3 (∥d∥2 = 1),
the function would return a density σ ∈ R(σ > 0) that is only conditioned on x, as well as
an RGB value that is conditioned on both x and d. Both the density and the RGB value
would contribute to the volume rendering accumulation along the pixel ray for computing
the final pixel RGB. When provided with calibrated camera poses, NeRF could provide a
faithful reconstruction of the observed objects or scenes from the multi-view image captures.
Our neural relighting algorithms in Chapter 4 are built upon this type of representation.

1.2 Recent 3D tasks

Great attention has been put to the 3D vision tasks by the vision community in recent years.
A rough categorization of several hotspot research problems in the most recent years could
be i) Reconstruction - from 2D observations (e.g. RGB) to 3D prediction; ii) 3D generation
or editing: from an old 3D structure or generation specification to a new 3D structure;
iii) Differentiable rendering - from 3D structure to 2D observations; iv) Semantic labeling
- from 3D structure to semantic label prediction; and v) 3D structure as the underlying
representation - e.g. view consistent image generation. Part of the research problem or
algorithm could be a mixture of components from multiple categories from above - e.g.
Neural Radiance Field is both for “reconstruction with known camera poses” (similar to
Multi-view Stereo) and “differentiable rendering” (volume rendering). Our work on single
image surface reconstruction (Chapter 2) falls into the “reconstruction” category, our work
on language grounding (Chapter 3) falls into the “semantic labeling” category, while our
neural relighting (Chapter 4) is connected with both “reconstruction” and “differentiable
rendering” following the categorization of NeRF.

1.2.1 Generalizability: Fitting without Hallucination v.s.
Learning with Hallucination

One of the crucial distinctions between various tasks is the generalizability of the particular
task. On one hand, a task can be just a total reconstruction of the 3D object or the scene from
all the collected observations. Such reconstruction is committed to reflecting all the observed
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cues without adding prior knowledge by the model from learning from a large collection of
training sets. Typically this type of approach is supposed to address the given particular 3D
object or the scene very accurately, while it cannot generalize to unseen 3D samples at all.
We name this type as “fitting without hallucination”. Representative algorithms including
Neural Radiance Field reconstruction, neural surface reconstruction, and neural relighting
given image captures under multiple lighting conditions. On the other hand, a task can be
more machine-learning flavored, that the model is supposed to learn from a large collection
of training samples among multiple 3D objects or scenes. The learned prior can serve as the
hint to incorporate to the inference procedure over unseen test cases. Generally the test case
is also under partial observation only (e.g. single view prediction or material decomposition
under a single lighting condition) and needs extra learned priors for a complete plausible
prediction. We name this type as “learning with hallucination”.

It is worth pointing out that the borderline between the two different types above could
be blurred - one can also incorporate a learned prior as the regularizer in the process of
single sample fitting. For instance, in [12], the diffusion prior is learned for free space
floater removal. It is also generally not clear how many lighting conditions or views are
considered “sufficient observations” that do not need any learned prior knowledge from
abundant external training data.

In this thesis, our efforts on the single view implicit surface reconstruction (Chapter 2)
fall into the “learning with hallucination” category while our work on neural relighting from
the light stage data (Chapter 4) falls into the “fitting without hallucination” category.

1.3 Thesis Organization

In Chapter 2, we introduce our work on single-view surface reconstruction. Existing ap-
proaches for single object reconstruction impose supervision signals based on the loss of the
signed distance value from all locations in a scene, posing difficulties when extending to
real-world scenarios. The spatial gradient of the signed distance field, rather than the SDF
value itself, has not been typically employed as a source of supervision for single-view recon-
struction, in part due to the difficulties of differentiable sampling a spatial gradient from the
feature map. In this study, we derive a novel closed-form gradient sampling solution for Dif-
ferentiable Gradient Sampling (DGS) that enables backpropagation of the loss of the spatial
gradient back to the feature map pixels, thus allowing the imposition of the loss efficiently
on the spatial gradient. As a result, we achieve high-quality single-view indoor scene recon-
struction results by learning directly from a real-world scanned dataset (e.g. ScannetV2).
Our model also performs well when generalizing to unseen images downloaded directly from
the internet.

In Chapter 3, we present the Voxel-informed Language Grounder (VLG), a language
grounding model that leverages 3D geometric information in the form of voxel maps derived
from the visual input using a volumetric reconstruction model. We show that VLG signifi-
cantly improves grounding accuracy on SNARE, an object reference game task. At the time
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of writing, VLG holds the top place on the SNARE leaderboard, achieving SOTA results
with a 2.0% absolute improvement.

In Chapter 4, we conduct reconstructing and relighting objects and scenes under vary-
ing lighting conditions. Existing neural rendering methods often cannot handle the com-
plex interactions between materials and light. Incorporating pre-computed radiance transfer
techniques enables global illumination, but still struggles with materials with subsurface
scattering effects. We propose a novel framework for learning the radiance transfer field
via volume rendering and utilizing various appearance cues to refine geometry end-to-end.
This framework extends relighting and reconstruction capabilities to handle a wider range of
materials in a data-driven fashion. The resulting models produce plausible rendering results
in existing and novel conditions.
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Chapter 2

Single View Implicit Scene
Reconstruction with Differentiable
Gradient Sampling

2.1 Background and Related Works
Recent studies have shown promising learning capabilities of implicit models for 3D geometry
representations [13, 14, 15, 16, 17, 18, 19]. Rather than explicitly representing 3D geometry
with a textured mesh [20] or point cloud [21], implicit representations express a function of
points in the space. Among many recent promising implicit models, the occupancy field [14,
2, 22] and the Signed Distance Field (SDF) [13, 23, 24] are particularly suitable for high
resolution topology free surface reconstruction. Given a query point (x, y, z) ∈ R3 in the
space, the occupancy function returns the occupancy status of the point o(x, y, z) ∈ {+,−},
while the SDF value returns the closest distance from a point to the surface of the given 3D
geometry, as well as its sign for its occupancy. The surface is defined by the classification
boundary of the occupancy field or the zero level-set of the SDF [25].

Despite the strong representational power of these models and their success on predict-
ing 3D objects from single image, learning to predict complex 3D geometry, such as scenes,
from a real world image remains a challenge for this class of methods. Obtaining the oc-
cupancy label, or the sign, from noisy non-watertight meshes is non-trivial [26] (Fig. 2.2).
Furthermore, producing the label on the fly from a large number of triangle meshes, as
encountered in typical real-world scenes with complex geometry, can be computationally
prohibitive [27, 28, 29, 30]. Storing dense query points sufficiently with pre-computed occu-
pancies or SDF for complex geometries, or meta data of meshes like octrees or hashing, is a
possibility, but incurs severe engineering and computational burdens on storage and runtime
loading [31]. The challenge is exacerbated for predicting scenes in particular, since unlike
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objects scenes in the view frustrum typically cannot be enclosed by a pre-defined range of
space and do not have a categorical canonical coordinate system [2].

View 0 View 1 View 2 View 3 View 4 View 5

Figure 2.1: Given a single RGB image as the input (the first column), our model can predict its 3D implicit
surface reconstruction (shown in six novel views in the last six columns). The test images for the first 3 rows
are downloaded from the Internet and the last 2 rows are from the pix3d dataset.

Recent studies on fitting a single scene geometry to partial 3D observations [17, 32]
have pointed out the value of the 3D spatial gradient of the implicit field. For instance, the
gradients of the SDF on surface points are actually the surface normals and the 2-norm of
the spatial gradients for any point in the space is 1, known as the Eikonal equation [33].
Similarly, in this work, we propose to regularize the gradient of the occupancy field to be
zero away from the surface (Fig. 2.3(c)). Thus, one can train the full occupancy field or
SDF with only the surface point clouds, thanks to these constraints on the gradients of the
implicit shape models, even when the value of the occupancy or the SDF itself is not available
everywhere. However, existing approaches [17, 32] have only demonstrated this benefit in
the cases of geometry inputs only, where a network is fit to a particular scene per model
without any conditioning on input images. When locally sampled image features are used
in the feed-forward prediction, it is necessary to derive a differentiable gradient sampling
solution over the feature pixel map.

In this paper, we tackle this challenge by deriving a closed-form differentiable gradi-
ent sampling (DGS) solution for learning a single-view 3D implicit reconstruction model
(Fig. 4.11). Our novel propagation of the loss gradient of the spatial gradient back to the fea-
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View 0
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Ground Truth Mesh TSDF Voxelization
Ground Truth 

Mesh
TSDF 

Voxelization

(a) (b) (c)

Input Image

Figure 2.2: (a, b) Truncated SDF (TSDF) [1] Voxelization results of the non-watertight ground truth
meshes (each shown in two views). (a) is a simple sphere and (b) is a real scene from the ScannetV2 training
data. After depth-fusion and internal-filling [2], the inside space of both geometries (a, b) remains empty
(red arrows), causing severe noise for training the occupancy field or the SDF prediction model. This type of
noise particularly affects the single-view prediction problem, as no additional predicted depth surface from
other views are available. (c) As a result of learning the implicit prediction directly from the inaccurate and
low-resolution TSDF voxels (due to engineering constraints on runtime loading and memory bottleneck for
the sufficiently dense pre-computed query point occupancy labels), the prediction result (DISN + TSDFVox)
is clearly inferior compared to our results (DGS). The surface color denotes the evaluation of the “precision”,
with the larger blue region, the higher “precision”.

ture maps (Eq. 2.6) serves in addition to the existing spatial gradient sampling (Eq. 2.5) and
loss gradient back-propagation (Eq. 2.4) used in existing deep learning frameworks [34, 35].
The resulting end-to-end learning scheme with supervision over the spatial gradients opens
the potential to train a model generalizable to unseen test cases of complex scenes with only
surface point cloud supervision — a typical setting for real-world data — without requiring
ground truth per-query-point labels.

Our contributions include a framework to propagate spatial gradients through a spatial
feature sampling procedure, and a novel closed-form DGS solution. Experiments on real-
scanned data (ScannetV2 [29]) shows that DGS enables training a single-image 3D implicit
reconstruction model that can generalize to unseen scenes, with only imperfect surface an-
notations as the supervision (e.g. non-watertight meshes). Experiments on synthetic data
(ShapeNet [36]) indicate that our learning framework without using dense per-query-point
training labels demonstrates competitive performance compared to the oracle scenario where
dense occupancy labels are available. To the best of our knowledge, DGS-enabled shape in-
ference provides the first single-view implicit shape reconstruction on real scene datasets
which can generalize accurately to unseen scenes from different datasets or domains (see
Figure 2.1).
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∇

∇

Figure 2.3: Illustration of the loss imposition for
the occupancy prediction scenario. (a) When learn-
ing from the ideal mesh for ShapeNet objects, we can
directly supervise the training with the accurate occu-
pancy labels. (b) On scans of real scenes with imper-
fections (Fig. 2.2(b)), the TSDF voxelization produces
severe noise for training. Specifically, a considerable
fraction of the objects are “empty” inside. (c) Our
learning scheme with DGS alleviates these issues via
enabling imposition of losses on the gradients all the
way back to image features.

3D Implicit Representations Among
all the 3D representations, implicit models
are advantageous for arbitrarily high resolu-
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tion modeling (unlike voxels with fixed res-
olution and no detailed surface modeling)
and easy learning (unlike meshes which as-
sume a fixed topology). Implicit models typ-
ically learn to establish a mapping between a
query point and the prediction of the point.
[37] proposed to learn a mapping from the
uv texture map to the 3D surface point.
More recent works [13, 14, 23, 2, 38] focus
on mapping the query point coordinates to
the signed distance field or the occupancy
field. In addition to these pure geometry
modeling, recent works like [18] also model
the surface texture via learning a mapping
from the surface point to the RGB value,
or use the RGB loss as the supervision sig-
nal [39, 40]. In contrast to defining textures
explicitly on the surface, [15] proposed the volumetric rendering representation which maps
the point coordinate and the viewing angle to volumetric textures. [41, 7, 42] use volume
renderings for fitting high quality geometry of single scenes, but these are not generalizable
to unseen scenes. In multi-view stereo setting, [43, 44, 45] proposed to accumulate the multi-
view predictions in a TSDF voxel volume. We believe our proposed DGS module is necessary
when extending most of the existing implicit surface representations into feed-forward models
that are conditioned on input image(s), and training these models with a loss on the gradient
of the predicted field. In this work, we focus on 3D geometry reconstruction reconstructions
from single view, as an example of the application of the proposed DGS module.

Differentiable Operations End-to-end deep learning requires all modules in a com-
putation path to be differentiable. Many differentiable modules are proposed to serve a
particular functionality. The spatial transformer layer [46] is one of the early approaches for
differentiable sampling of the feature map. [20] proposed to render the mesh into image in
a differentiable manner to optimize the mesh or the camera parameters to fit to a particular
image. A similar idea has also been applied for rendering point clouds [47, 48]. [49] and [15]
proposed to compute the ray rendering in an accumulating manner. One common feature of
these differentiable operations is a strategy to soften the existing explicit modeling [50], and
replace the gradient of the loss with approximate signals, making sure those signals provide
guidance in the right direction. Our differentiable gradient sampler also seeks to soften the
spatial gradient between the adjacent pixels.

2.2 Learning Framework

Problem definition and notations. We aim to train a feed-forward deep model for
predicting the 3D implicit surface reconstruction conditioned on a single image. We denote
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the input RGB image as I ∈ Rm×n×3. Like most feed-forward models, our model employs an
image encoder. We denote the extracted 2D features as ϕ. Our model f̂Θ(·), parameterized
by Θ, takes in the image feature ϕ and predicts for each 3D location (x, y, z) the implicit
value f̂Θ(ϕ;x, y, z). We denote the ground truth value as f(ϕ;x, y, z). For the occupancy
field, the implicit field value f represents the occupancy probability. We denote the predicted
occupancy probability as ôΘ(ϕ;x, y, z) ∈ [0, 1] and the ground truth binary occupancy label
as o(ϕ;x, y, z) ∈ {“ − ”, “ + ”}, where “−” represents unoccupied space and “+” vice versa.
For SDF, the implicit field value f represents the signed distance between the query point
and its projection on the surface. We denote the predicted and the ground truth signed
distance as ŝΘ(ϕ;x, y, z) ∈ R and s(ϕ;x, y, z) ∈ R respectively.

Background. Typical fully supervised training [23, 2] imposes the loss to each in-
dividual sampled query points by comparing the predicted field value f̂Θ(ϕ;x, y, z) with
the ground truth value f(ϕ;x, y, z). For occupancy predictions, we compute the loss as∑

{I,PI}∈D
∑

(x,y,z)∈PI
BCE(ôΘ(ϕ;x, y, z), oΘ(ϕ;x, y, z)) (Fig. 2.3(a)), where “BCE” represents

the binary cross entropy loss, D represents the whole single-view image training set, and PI

represents the set of all the possible query point sampling locations (x, y, z) within the view
frustum. For SDF, we compute the loss as

∑
{I,PI}∈D

∑
(x,y,z)∈PI

|ŝΘ(ϕ;x, y, z)− s(ϕ;x, y, z)|.

2.2.1 Proposed Framework
As obtaining the full labels f(ϕ;x, y, z) for query points (x, y, z) from every location in
PI is non-trivial for complex geometry from real-world (Fig. 2.2) and due to additional
engineering constraints on runtime loading and memory bottleneck for the sufficiently dense
pre-computed query point occupancy labels, we propose to incorporate the loss w.r.t. the
spatial gradients. For occupancy of the implicit field,

L =
∑

{I,PI}∈D

(
∑

(x,y,z)∈PI−P0
I

λor∥∇x,y,zôΘ(ϕ;x, y, z)∥

+
∑

(x,y,z)∈P0+
I

BCE(ôΘ(ϕ;x, y, z), “ + ”) +
∑

(x,y,z)∈P0−
I

BCE(ôΘ(ϕ;x, y, z), “ − ”))
(2.1)

where ∇x,y,zôΘ(ϕ;x, y, z) = [∇xôΘ(ϕ;x, y, z),∇yôΘ(ϕ;x, y, z),∇zôΘ(ϕ;x, y, z)]⊤ denotes the
spatial gradient of the occupancy prediction, P0+

I and P0−
I denote inward and outward

near-surface query points, and λor represents the loss weight of the occupancy geometric
regularization. The facing direction of the mesh surface (determining inward or outward)
can be determined by normals (if available), or via rendering the surface in all views as in
the RGBD captures [29] (with the surface facing toward camera as the “outward” side). The
three terms in Eq. 2.1 correspond to the three types of losses in Fig. 2.3(c) (“∇”, “+”, “−”)
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Figure 2.4: Overview of our learning framework (a) and differentiable gradient sampling (b, c, d, e).

respectively. For SDF, we set the loss similar to [17]:

L =
∑

{I,PI}∈D

(
∑

(x,y,z)∈PI

λsr|∥∇x,y,z ŝΘ(ϕ;x, y, z)∥2 − 1| +
∑

(x,y,z)∈P0
I

|ŝΘ(ϕ;x, y, z)|

+
∑

(x,y,z)∈P0
I

λsn∥∇x,y,z ŝΘ(ϕ;x, y, z) −∇x,y,zs(ϕ;x, y, z)∥)
(2.2)

where P0
I denotes the query points on the ground truth surface only, and λsr and λsn repre-

sents the loss weight for the signed distance geometric regularization term and normal term
respectively. The three terms are the Eikonal regularization [33], surface zero-SDF loss, and
the surface normal loss respectively, where the last term is optional [17]. Note now the loss
functions in Eq. 2.1, 2.2 no longer require the implicit ground truth label for query points far
away from the ground truth surface, enabling training with the real-world imperfect scanned
data. In both cases, the availability of surface normals is optional.

Practically, we found only the proposed loss for the occupancy model (Fig. 2.3(c), Eq. 2.1)
to be effective in the real-world single-view feed-forward scenario, and use Eq. 2.1 rather than
Eq. 2.2 in all of our experiments. There are a few reasons. First, learning with the Eikonal
term (Eq. 2.2) suffers severely from its sensitivity of model initialization. We found either
the SDF or the Truncated SDF (TSDF) representation model cannot easily converge during
training. Specifically, we found it poses numerical difficulties when the model is learned to
predict a large distance value or a constant truncation value for the majority of the query
points in the air that is far from any surfaces. This becomes a major problem when we
depart from the single objects scenario [14, 2] or single scene fitting [17] to large schale
scenes, which is our focus. Second, our loss function (Eq. 2.1) can significantly save memory
footprint during training and enable large batch size training, which is crucial in our learning
framework. Unlike in Eq. 2.2 where all the query points require spatial gradient computation,
which leads to 3× higher of memory footprint, in our loss function (Eq. 2.1), only the non-
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surface query points do. We set the query point batch size of the non-surface points (512 in
practice) to be much smaller than the critical near-surface points (4096 in practice), enabling
learning with the image batch size of 32 in our real-scene training.

2.2.2 Sampling with Differentiable Gradients

A distinct difference compared to existing works is that our spatial gradient ∇x,y,zf̂Θ(ϕ;x, y, z)
is also conditioned on the pixels in ϕ. [17] devised the model fΘ to fit to a single scene, and the
spatial gradient ∇x,y,zf̂Θ(x, y, z) can be conveniently computed because it does not involve
the image sampling procedure. [51, 52] used a non-spatial global feature for inference and
hence bypassed 2D sampling. In our learning framework, the spatial gradient computation
must undergo the sampling procedure.

We name our gradient computation involving the sampling operation as the Pixel Condi-
tioned Gradients and derive a closed-form solution, Differentiable Gradient Sampling (DGS),
for handling forward and backward propagation. Figure 4.11(a) provides an illustration of
our training pipeline. Each layer in our network tracks both the response of the layer as
well as its spatial gradient w.r.t. (x, y, z). While it is well established to track the layer-wise
spatial gradient for fully-connected (FC) layers or convolutions in existing works [17], track-
ing the spatial gradients and back-propagating the loss to the feature map pixels ϕ through
the sampling module has not been studied. To this end, we derive the closed-form sam-
pling scheme for tracking and propagating the spatial gradients ∇x,y,zϕ = [∇xϕ,∇yϕ,∇zϕ]⊤

through the sampling layer.
Background - 2D Differentiable Sampling. Differentiably sampling pixel values

from a grid of 2D feature map with the given pixel locations (i, j) is a common operation.
Throughout our paper, we define the pixel coordinates in the normalized coordinate system
that ranges from -1 to 1. As illustrated in Fig. 4.11(d), given the feature map ϕ and the
sampling locations (i, j), the resulting sampled value ϕ(i, j) is

ϕ(i, j) = (1 − α)((1 − β)ϕA + βϕB) + α((1 − β)ϕC + βϕD) (2.3)

Please refer to Fig. 4.11(c) for the definitions of α, β and ϕA, ϕB, ϕC , ϕD. Without loss of
generality we use bilinear interpolation. During training, the gradient from the loss can be
back-propagated via

∂L

∂ϕA

= (1 − α)(1 − β)
∂L

∂ϕ(i, j)
. (2.4)

Equation 2.4 is for Pixel A and similarly to the other 3 pixels (please refer Eq. 2.9).
2D Differentiable Gradient Sampling. Our learning framework (Sec. 2.2.1, Fig. 4.11(a))

requires the extension of the sampling capability from just the feature value response ϕi,j

to its spatial gradient ∇i,jϕ(i, j) = [∇iϕ(i, j),∇jϕ(i, j)]⊤. During the forward and the back-
ward propagation, both the sampled feature response ϕi,j and its spatial gradient ∇i,jϕ(i, j)
are recorded for further propagation (Fig. 4.11(e)):

∇iϕ(i, j) =
(1 − β)(ϕC − ϕA) + β(ϕD − ϕB)

h
. (2.5)
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Please refer to Eq. 2.10 for ∇jϕ(i, j). Hence, during the forward pass, we compute the
spatial gradient via Eq. 2.5 in addition to the existing value sampling (Eq. 2.3). During the
backward pass, we compute the loss gradient over the spatial gradient via

∂L

∂ϕA

=
∂L

∂ϕ(i, j)

∂ϕ(i, j)

∂ϕA

+
∂L

∂∇iϕ(i, j)

∂∇iϕ(i, j)

∂ϕA

+
∂L

∂∇jϕ(i, j)

∂∇jϕ(i, j)

∂ϕA

= (1 − α)(1 − β)
∂L

∂ϕ(i, j)
+ (−1 − β

h
)

∂L

∂∇iϕ(i, j)
+ (−1 − α

w
)

∂L

∂∇jϕ(i, j)
,

(2.6)

where w and h are the width and height of a pixel in normalized coordinate system, s.t.
w = 2/W and h = 2/H for the feature map with the size W ×H. Please refer to Eq. 2.11
for ∂L

∂ϕB
, ∂L
∂ϕC

and ∂L
∂ϕD

.
3D Differentiable Gradient Sampling. We now extend the sampling to 3D. We

model the camera as the pin-hole camera. For any point (x, y, z) in the camera space, we
seek for its projected 2D locations (i, j) based on the focal length f0 via i = yf0

z
, j = xf0

z
.

The feed forward pass is

∇xϕ(x, y, z) =∇iϕ(i, j) · ∂i
∂x

+ ∇jϕ(i, j) · ∂j
∂x

= ∇jϕ(i, j) · f0
z
,

∇yϕ(x, y, z) =∇iϕ(i, j) · ∂i
∂y

+ ∇jϕ(i, j) · ∂j
∂y

= ∇iϕ(i, j) · f0
z
,

∇zϕ(x, y, z) =∇iϕ(i, j) · ∂i
∂z

+ ∇jϕ(i, j) · ∂j
∂z

= ∇iϕ(i, j) · (−yf0
z2

) + ∇jϕ(i, j) · (−xf0
z2

).

(2.7)

Note that here, our notation of the sampled 2D image feature ϕ(x, y, z) refers to the same
as ϕ(i, j), as (i, j) is the projected pixel coordinates of (x, y, z) that represent the exact
projected 2D locations when extracting the 2D features.

During the backward propagation procedure, the DGS accumulates the gradient via

∂L

∂ϕA

=
∂L

∂ϕ(x, y, z)

∂ϕ(x, y, z)

∂ϕA

+
∂L

∂∇xϕ(x, y, z)

∂∇xϕ(x, y, z)

∂ϕA

+
∂L

∂∇yϕ(x, y, z)

∂∇yϕ(x, y, z)

∂ϕA

+
∂L

∂∇zϕ(x, y, z)

∂∇zϕ(x, y, z)

∂ϕA

=
∂L

∂ϕ(x, y, z)
· (1 − α)(1 − β) +

∂L

∂∇xϕ(x, y, z)
· (−1 − α

w
) · f0

z

+
∂L

∂∇yϕ(x, y, z)
· (−1 − β

h
) · f0

z
+

∂L

∂∇zϕ(x, y, z)
· (

1 − β

h
· yf0
z2

+
1 − α

w
· xf0
z2

).

(2.8)

Please refer to Eq. 2.12 for ∂L
∂ϕB

, ∂L
∂ϕC

, and ∂L
∂ϕD

.
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Table 2.1: Intersection over Union % (IoU ↑) benchmarking result on the high-realism ShapeNet. Our
approach (the last 4 rows) demonstrates competitive performance compared to state-of-the-art approaches
(the top 4 rows) even trained without the dense occupancy labels as used in the oracle settings of these
existing works. Our comparisons with the state-of-the-art approaches are direct ablations as we maintain
exactly the same experimental setups except for the loss function. In addition, our approach also comfortably
outperforms the ablation baselines (the middle 5 approaches).

Category Craft Rifle Disp. Lamp Spk. Box Chair Bench Car Plane Sofa Table Phone Mean
OccNet 49.6 39.7 49.7 33.3 49.3 42.1 42.8 30.9 57.2 41.7 60.7 42.4 64.8 46.5
DISN 54.5 52.5 50.2 39.2 53.3 46.0 50.6 37.1 58.6 48.5 64.9 48.4 67.6 51.6

CoReNet 60.5 67.5 61.0 46.9 56.8 51.3 59.7 47.1 61.1 58.4 68.7 56.9 77.3 59.5
DISN(Res50)+DVR 61.1 64.5 61.9 46.9 58.2 54.4 59.6 48.0 59.4 58.4 69.5 57.2 78.7 59.8

Abl.-NoGrad 11.9 4.9 23.6 15.4 31.4 30.6 25.1 10.1 20.8 7.7 28.3 20.1 21.2 19.3
Abl.-NoGrad (10 %) 23.7 19.9 33.1 26.5 40.0 35.2 35.6 18.6 33.0 15.7 38.8 30.7 41.0 30.1
Abl.-NoGrad (30 %) 26.4 15.5 36.8 23.6 40.6 36.0 36.8 19.5 38.5 19.1 47.8 30.9 39.4 31.6
Abl.-NoGrad (50 %) 39.7 30.0 39.7 28.4 45.0 37.5 39.0 23.6 50.6 29.0 53.5 36.2 49.7 38.6

Abl.-FixedE 49.6 52.5 44.4 33.0 46.3 39.9 43.4 27.5 57.5 46.9 58.8 39.1 68.0 46.7
OccNet w/ Eq. 2.1 50.7 42.6 50.4 33.0 50.1 43.7 44.4 32.9 56.8 41.6 60.9 44.0 68.4 47.7
DISN w/ Eq. 2.1 53.3 51.2 51.9 38.7 52.1 43.8 50.8 36.2 58.8 47.4 64.6 47.4 66.6 51.0

CoReNet w/ Eq. 2.1 (DGS) 61.1 67.5 62.7 44.2 54.8 49.6 59.5 45.4 59.4 59.9 69.8 55.1 78.0 59.0
DISN(Res50)+DVR

w/ Eq. 2.1 (DGS Best)
60.8 62.6 62.3 47.1 57.7 53.5 59.8 47.4 59.2 58.6 70.7 57.4 77.0 59.6

2.3 Experiments

2.3.1 Learning from Synthetic Data (ShapeNet)

Dataset. Following [2], we conduct experiments on ShapeNet with the low-realism and the
high-realsim renderings. For low-realism, we use the renderings of various models from [53].
Following [14], we split the dataset into the training set of 30661 models, the validation set of
4371 models, and the test set of 8751 models. During testing, we follow [14] to only test the
first rendering of each model. Similar to all the prior works, we use the same 13 classes to
report any performance via grouping all the test cases into the same class. For high-realism,
we follow the split and evaluation protocol of the single-object scenes [2] - we only use the
13 categories used by [53], filter out repeated samples, and finally construct the data with
666,565 models from the training set, 96,084 from the validation set, and 189,748 from the
test set. Following [2], we only evaluate the first 1% test cases of the test set (1898 samples).

Metrics. We use the Intersection-of-Union (IoU) for evaluating the model performances.
For low-realism renderings, we follow the protocol of IoU benchmarking from [14] that evalu-
ating occupancy of the specified 100K query points in the space. For high-realism renderings,
we follow the protocol from [2] to evaluate occupancy prediction of the 128× 128× 128 grid.
Following [2], the grid cube is a unit cube that spans from −0.5 to 0.5 for x and y, and from
f/2 to 1 + f/2 for z in the camera coordinate system.

Comparison with state-of-the-art approaches. On high-realism ShapeNet, we build
our model on top of the representative state-of-the-art models - OccNet [14], DISN [23],
CoReNet [2] for their 3D volumetric implicit modeling capability. We also incorporate a
strong baseline named “DISN (ResNet50) + DVR [39]”, where we replace the originally used
VGG [54] with ResNet-50 as the image encoder as used in CoReNet [2], and devised the 5-
layer fully connected ResNet as the decoder as used in DVR [39]. In each DGS experiment,
we maintain exactly the same encoder and decoder architecture, optimization parameters
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Table 2.2: Benchmarking results of single view 3D surface reconstruction on ScannetV2 test set.

Acc (↓) Compl (↓) Chamfer (↓) Prec (↑) Recall (↑) F1-score (↑)
OccNet + GeoReg 18.3 18.5 18.4 30.4 28.5 26.8
DISN + TSDFVox 13.0 53.3 33.1 25.3 10.2 12.4

CoReNet 19.5 15.6 17.6 30.9 36.3 29.9
MiDaS 13.9 18.5 16.2 41.9 30.1 34.4

AdelaiDepth 9.7 18.8 14.2 46.4 33.2 37.9
Ablation-NoGrad 17.0 11.7 14.3 34.1 47.0 36.5
Ablation-FixedE 15.0 20.3 17.7 31.6 29.8 27.3

DGS 14.3 11.5 12.9 39.7 49.4 41.6

(e.g. the learning rate and the epsilon of Adam [55]) and the prediction format (per-query
occupancy probability). We set λor to be 0.01 in our loss function (Eq. 2.1). Note that
the DGS experiments can only access nearsurface training signals, in contrast to the oracle
learning setting as in the state-of-the-art approaches where models were trained with dense
occupancy labels. We name the DGS version of the CoReNet model as the DGS model, and
the DISN+DVR counterpart as the DGS-Best model. Quantitative results are reported in
Tab. 2.4 for the low-realism evaluation setting, and in Tab. 2.1 for the high-realism setting1.
Our competitive experimental results indicate that our learning framework along with the
differentiable gradient sampling layer implementation plays the critical role when learning
with only the near-surface training labels, and can achieve similar performance without the
dense occupancy training labels.

Please refer to Sec. 2.5 for ablation baselines details and low-realism ShapeNet experi-
mental settings.

2.3.2 Learning from Real Scanned Datasets (ScannetV2)
Dataset. We use ScannetV2 [29] for training and evaluating the performance of the models
on the real images. We follow the standard training / testing split as used in [44] and [43],
where 1513 scenes are for trainval (with 1201 for training and 312 for validation), and 100 for
testing. Each scene is provided with multiple image capture as well as the associated camera
pose. We train the models with all the views given in the training / validation set (2423872
frames in total, after filtering out frames with invalid extrinsic poses), while for testing, we
select 10 frames with different extrinsic poses for each test scene. Practically, since all the
frames of the scenes are in the form of video clips, with adjacent frames associated with
similar extrinsic cameras poses, we select the 10 frames for each frame via extracting every
100 frames from each scene video (e.g. Frame 1, 101, 201, ..., 901), resulting in 1000 frames
in total in our test set (10 frames per scene, with 100 test scenes).

Metrics. We use the same evaluation metrics following [44] and [43]. Since we are the
first, to our knowledge, to evaluate single view 3D implicit reconstruction on the ScannetV2
benchmark, and here we only evaluate the geometries within the camera view frustum rather

1We noticed that in our original submission version of the paper, our experiments were conducted with
evaluating the 64 × 64 × 64 volume grids due to an error. We thus revised our results in Tab. 2.1 with the
evaluation results returned from the 128×128×128 volume grid, and attach our previous results in Tab. 2.3.
Please refer to Sec. 2.5 for detailed explanation.
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Input OccNet + 
GeoReg

DISN + 
TSDFVox CoReNet DGS GTMiDaS AdelaiDepth

View 0

View 1

View 2
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Figure 2.5: Qualitative comparisons on one challenging test case on ScannetV2. For each predicted surface
with red and sky-blue colors, sky-blue indicates “positive precision” for that surface region, while red indicates
“negative precision”. The ground truth surface is shown on the top-right corner of each prediction with gold
and navy-blue colors, navy-blue indicates “positive recall”, while gold indicates “negative recall”. The larger
the blue region is, the higher the F1 score would be.

than the whole scene geometries as in [44, 43]. In addition, we also only evaluate the
geometries in front of the amodal depth for each pixel ray, where only the space in front of the
wall, bounded within the ceiling and the floor, is evaluated. We define the amodal depth for
a pixel ray to be delineated by the minimum between the closest structure-category surface
(e.g. walls and doors, etc) and the farthest surface. In practice, in order to accommodate the
evaluation of the surfaces right on the amodal depth, we slack the evaluation scope with a
factor λ (1.05 in our case) multiplied with the amodal depth. This evaluation protocol would
be equivalent to the “single-layered” protocol used in [44], within our single-view scenario.

Due to the inherent ambiguity of the scaling and shifting of the predicted 3D single view
geometry [56, 57], we follow them by computing the best scale and shift comparing the
predicted depth with the ground truth depth. For approaches that predict 3D surfaces, the
rendered depth map from the predicted mesh would be used for calculating the scale and
shift.

Please refer to Sec. 2.6 for details on baselines.
Results. We provide quantitative comparison in Tab. 2.2 and qualitative comparison in

Fig. 2.5 respectively. Our model outperforms all state-of-the-art approaches as well as the
ablation models. Compared to the synthetic data scenario in Tab. 2.1 and 2.4, our model
demonstrates large advantages when compared to existing state-of-the-art approaches, as
our motivation stems from addressing learning from imperfect 3D labels directly from the
real scan data. Compared to single-view depth prediction approaches trained on massive
data [58, 57], our approach does not prevail on “Acc” and “Prec”. This is due to the fact
that these two metrics only project the predicted surface to the ground truth surface, giving
advantages to approaches that only predict the visible surface. Our approach still prevails
for other metrics (Chamfer Distance and F1), which are considered as the most important
metrics [45, 44, 43].
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Figure 2.6: Qualitative comparisons on an unseen test image downloaded from the internet.

View 0 View 2View 1 View 3 View 4 View 5

Figure 2.7: Two representative failure cases of our approach.

Generalization to Unseen Scenes (Pix3d and Open-Domain Images). We fur-
ther test our model without further finetuning directly on unseen scenes for evaluating the
generalizability of the learned model. We run our model on Pix3d [59] as well as test im-
ages downloaded directly from the internet. We provide a detailed qualitative comparison
in Fig. 2.6 and more results in Fig. 2.1. The results further indicate our learning framework
exhibits promise for unseen scene generalization.

Failure Cases. We provide two representative failure cases of our approach in Fig. 2.7.
The first case (the first row) demonstrates difficulties in predicting the floor occupancy as a
result of the noisy and non-watertight mesh during training. The second case (the second
row) shows that our model cannot identify small objects (e.g. chairs) and not predict the
invisible partition of these objects.
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2.4 Conclusions
We have presented our learning framework for real-world 3D implicit surface reconstruction
from a single view image. Owing to our unique learning framework that directly trains
the model from the raw scan data and our novel occupancy loss function over the gradi-
ents, we are able to go beyond the existing works for single-objects reconstruction or single
view fitting. Thanks to our differentiable gradient sampling module we enable efficient and
memory-efficient end-to-end training from images and demonstrated single view 3D surface
reconstruction results on scenes for the first time, to our knowledge.

2.5 Additional Details and Results on ShapeNet

Additional Quantitative Results. We provide our original results on high-realism ShapeNet
in Tab. 2.3. These results are evaluated with the 64 × 64 × 64 volume grids due to an error
in our prior code base. Based on the results in both Tab. 2.1 and Tab. 2.3, we found our
proposed learning framework performs competitively with the oracle training setting, even
though our approach does not utilize dense occupancy labels as used in the oracle state-
of-the-art approaches (OccNet, DISN, CoReNet and DISN (ResNet50) + DVR). On the
other hand, we observe that our model demonstrates slight improvements when evaluated
with the resolution of 64 × 64 × 64, while evaluating the same models with the resolution
of 128 × 128 × 128 would reverse the course. In particular, we found categories like “car”
exhibited major performance decrease on all the approaches with the higher resolution evalu-
ating setting. This might be due to the fact that these categories demonstrate empty ground
truth inside the objects, and and at a higher resolution, the metrics are biased to penalize
models that predict “occupie” inside the object. However, the competitive performance in
both resolution settings indicates that our learning with only the surface labels does not
deteriorate the performance, and can be faithfully applied toward the real-scene settings
where the dense occupancy labels are truly unavailable.

Ablation Study Details. We conduct ablation studies to further validate the impor-
tance of derived DGS module, via attempting work-around training methods without DGS.

i) NoGrad - To test the performance of the baseline when only the surface data are
provided, we train this ablation model in exactly the same way compared to its original
model, with the only exceptions that only the near-surface points are equipped with training
labels, and we do not use any training labels from the non-surface query points (where it
is not necessary to backpropagate the loss gradient of the spatial gradient using DGS). To
further evaluate how the rate of known voxels affects the learning performance, we enlarge
the near-surface region and evaluate when the rate is 10%, 30% and 50%. An increase in the
performances among these baselines would indicate the importance of knowing more voxel
labels if our proposed gradient loss (Eq. 2.1) is not imposed.

ii) FixedE - We train with both the near-surface as well as the spatial gradient super-
vision, without DGS - meaning the loss gradient of the spatial gradient would not back-
propagate to any module before the sampling module - in our case, the feature encoder
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Table 2.3: Intersection over Union % (IoU ↑) benchmarking result on the high-realism ShapeNet with the
resolution of 64× 64× 64. Please refer to Tab. 2.1 (the resolution of 128× 128× 128) for details.

Category Craft Rifle Disp. Lamp Spk. Box Chair Bench Car Plane Sofa Table Phone Mean
OccNet 54.7 48.7 55.5 38.6 57.1 52.0 48.9 39.7 70.6 48.9 63.6 49.2 71.7 53.8
DISN 60.9 63.5 56.9 46.4 61.5 55.2 57.4 46.7 72.5 57.2 68.2 55.7 74.5 59.7

CoReNet 62.5 65.5 63.2 48.2 63.0 56.7 60.6 48.3 73.7 58.1 69.8 55.0 75.1 61.5
DISN(Res50)+DVR 66.9 74.4 67.3 54.5 66.1 63.2 66.2 58.6 71.2 67.2 72.5 63.1 82.6 67.2

Abl.-NoGrad 14.1 6.1 27.3 18.1 37.3 40.4 28.7 13.0 26.2 9.6 30.5 23.4 25.1 23.1
Abl.-NoGrad (10 %) 28.2 25.8 39.3 32.4 48.2 46.5 42.0 24.6 42.4 20.0 42.7 37.1 49.4 36.8
Abl.-NoGrad (30 %) 34.1 25.1 46.6 30.8 49.8 47.9 45.1 28.1 51.4 26.5 54.9 38.0 52.7 40.8
Abl.-NoGrad (50 %) 47.8 41.5 47.6 35.1 54.1 49.2 46.8 32.1 66.0 37.9 59.6 44.4 60.2 47.9

Abl.-FixedE 52.6 57.0 47.8 37.4 52.6 49.7 47.4 33.0 69.2 51.0 60.2 42.9 69.2 51.5
OccNet w/ Eq. 2.1 56.8 52.6 56.8 39.3 58.1 53.6 51.1 42.4 71.7 49.7 65.5 50.9 76.0 55.7
DISN w/ Eq. 2.1 60.4 63.9 59.6 46.2 61.1 55.8 58.3 46.6 73.2 57.3 68.7 55.5 76.7 60.2

CoReNet w/ Eq. 2.1 (DGS) 63.3 70.4 65.7 49.0 61.2 57.0 62.1 50.9 70.1 62.8 70.3 56.9 78.3 62.9
DISN(Res50)+DVR

w/ Eq. 2.1 (DGS Best)
66.8 75.1 68.7 55.1 65.7 63.7 66.5 58.2 71.5 67.4 72.9 63.5 84.2 67.6

network. Note all the other losses without gradient sampling can still back-propagated to
the feature maps.

We report the ablation results in Tab. 2.1. Both experiments are conducted with the
high-realism ShapeNet data. We comfortably outperform all the in-house ablation baselines,
validating the essential roles of DGS in our learning framework.

Experiments on low-realism ShapeNet. For our low-realism evaluation setting,
all the baseline approaches reported their results in the papers. For OccNet and DISN, the
reported results are based on knowing the category canonical view prior, which demonstrates
considerable privilege with respect to accuracy [2]. Hence, we mark the results from the
literature as OccNet-Privilege and DISN-Privilege (OccNet-Priv. and DISN-Priv. for short).
Compared to their privileged setting, our results demonstrate superior results even without
the category canonical view prior privilege. To further provide the the baseline results
where these two approaches are without the category canonical view prior, we retrain their
models with the released codes, and report the results in the “OccNet” and “DISN” row
respectively. The results further provide evidence that the category canonical view prior
demonstrates privilege on accuracy, as observed in [2].

Qualitative Results. We provide qualitative results in Fig. 2.9-2.10 as the additional
illustration of the performance of all the approaches on ShapeNet.

2.6 Additional Results on ScannetV2

Baselines. Since we demonstrate the first attempt to predict 3D implicit surface of scenes
from a single image, very few exiting works provide a direct baseline performance to our task.
For OccNet [14], since its image feature extraction is not local, and its gradient propagation
does not require sampling, we use its direct application with [17] “OccNet + GeoReg” as one
baseline. We train DISN [23] with the TSDF voxelization labels [43, 44, 45]. For CoReNet [2],
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Table 2.4: Intersection over Union % (IoU ↑) benchmarking result on the low-realism ShapeNet. Our
proposed DGS learning advances state-of-the-art approaches (OccNet, DISN, CoReNet and D2IM-Net) com-
pared to the reported performance from the literatures.

Category Craft Rifle Disp. Lamp Spk. Box Chair Bench Car Plane Sofa Table Phone Mean
OccNet-Priv. 53.0 47.4 47.1 37.1 64.7 73.3 50.1 48.5 73.7 57.1 68.0 50.6 72.0 57.1
DISN-Priv. 60.2 68.0 57.7 39.7 55.9 53.1 54.9 54.2 77.0 61.7 67.1 48.9 73.6 59.4

OccNet 49.9 48.0 55.4 39.5 57.0 43.8 58.5 45.1 54.0 45.8 68.0 50.7 68.3 52.6
DISN 49.0 44.4 55.5 39.0 67.3 71.7 49.0 41.2 64.7 45.0 66.4 50.7 70.5 55.0

CoReNet 54.0 64.6 57.2 42.1 60.8 50.9 63.0 50.8 57.3 53.0 70.6 55.5 73.1 57.9
D2IM-Net 63.4 68.1 52.7 42.1 51.8 48.6 56.1 55.0 79.8 55.8 65.4 53.7 76.2 59.1
DGS 57.0 65.7 58.6 45.5 58.6 55.2 59.8 48.2 71.6 56.8 68.1 55.6 78.4 60.0

we stick to its own voxelization and internal filling toolbox for obtaining the training labels.
Since CoReNet can only predict geometries within the fixed range of space, we tried our best
to pick the best cube location based on the dataset statistics. We also incorporate depth
approaches [56, 57] for comparison by finetuning their weights on ScannetV2. Lastly, we
compare with the two ablation models NoGrad and FixedE as introduced in Sec. 2.3.1.

Implementation details for DGS. Since the DISN variant architectures [23, 39, 19]
demonstrate higher degress of flexibility of representing any point in the space, in contrast
to 3D convolutions that are fixed for a particular range of space [2], we build our model
based on the former architectures. Similar to [39, 19], we use 5 residual blocks in the fully
connected part with the first 3 blocks receiving the 2D features and its spatial gradients. Our
image encoder uses the same RexNext101 architecture [60] as in [57] and starts the training
with the pre-trained weights. We use a batch size of 32 images with 2048 near-surface points
and 512 non-surface points per image. Similar to the ShapeNet experiments, we set λor to be
0.01. We found in the real-world setting, this parameter setting is crucial for the convergence
of the learning procedure.

Quantitative Results for 2.5D evaluation metrics. We provide the quantitative
2.5D evaluation results in Tab. 2.5. Our approach constantly outperforms all other implicit
based baselines. While our approach falls short slightly when compared to the existing
depth-based approaches, we claim that our approach is not directly trained with the massive
depth training data. Our results indicate that our depth performance is still on par with the
state-of-the-art depth prediciton approaches.

Additional qualitative results. We provide additional qualitative results on Scan-
netV2 Fig. 2.11-2.13.

2.7 Analysis with Numerical Gradient Approximation

As part of our proposed learning framework with the loss imposed on the spatial gradient, the
differentiable gradient sampling module (Sec. 2.2.2) has a numerical alternative where we can
perturb the query points to get its simulated numerical gradients. We further compare the
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Table 2.5: Benchmarking results of the depth metrics on ScannetV2.

AbsRel (↓) AbsDiff (↓) SqRel (↓) RMSE (↓) LogRMSE (↓) δ1 (↑) δ2 (↑) δ3 (↑)
OccNet + GeoReg 13.5 23.7 7.2 33.2 17.3 82.2 95.5 99.0
DISN + TSDFVox 15.8 26.9 9.2 34.9 18.8 77.3 94.1 98.5

CoReNet 12.6 21.4 6.6 30.4 16.3 84.5 96.0 98.9
MiDaS 9.3 15.8 3.1 21.2 11.7 91.4 98.7 99.8

AdelaiDepth 6.1 10.5 1.9 15.7 8.6 95.3 99.1 99.8
Ablation-Fair 10.5 17.6 5.3 26.6 14.9 88.2 96.4 98.9

Ablation-FixedE 14.4 24.5 7.6 32.9 17.9 81.4 95.4 98.9
DGS 8.9 14.7 4.1 22.7 12.7 91.1 97.5 99.3

closed-form performance with the numerical counterpart in Tab. 2.6. Please find qualitative
comparison in Fig. 2.9-2.10.

We provide a closer look at our comparison to the simulated gradient baseline. We
found in our experiments that the simulated gradient baseline demonstrates relatively severe
convergence difficulties. As shown in Fig. 2.8, the simulated gradient model (red) does not
observe loss drop in the first 10k training iterations. Despite its subsequent loss drop, which
indicates the simulated gradient model can still learn to predict the geometry in moderate
accuracy, its converged training loss is still higher than our DGS (blue). This aligns with
our benchmarking evaluations in Tab. 2.6 that the closed-form variant (DGS) achieve better
performance.

Table 2.6: Intersection over Union % (IoU ↑) benchmarking comparison between the closed-form solution
and the numerical gradients on the high-realism ShapeNet. We report the performance comparison with
both the resolution settings of 64× 64× 64 and 128× 128× 128 (Please refer to Sec. 2.5 for details).

Category Craft Rifle Disp. Lamp Spk. Box Chair Bench Car Plane Sofa Table Phone Mean
Numerical (64) 62.4 68.3 63.7 46.2 60.6 54.9 61.0 49.0 70.7 61.1 69.2 55.6 77.2 61.5

Closed-form (64) 63.3 70.4 65.7 49.0 61.2 57.0 62.1 50.9 70.1 62.8 70.3 56.9 78.3 62.9
Numerical (128) 59.7 66.9 61.3 41.8 54.1 48.5 58.2 43.8 59.8 59.0 68.5 54.3 77.0 57.9

Closed-form (128) 61.1 67.5 62.7 44.2 54.8 49.6 59.5 45.4 59.4 59.9 69.8 55.1 78.0 59.0
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Figure 2.8: Convergence Analysis for the comparison between the closed-form (blue) and the numerical
counterpart (red). Notably, the numerical counterpart does not observe loss drop in the first 10k iterations.
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Table 2.7: Benchmarking results of single view 3D surface reconstruction on Matterport3D test set (trained
by the ScannetV2 dataset).

Acc (↓) Compl (↓) Chamfer (↓) Prec (↑) Recall (↑) F1-score (↑)
OccNet + GeoReg 24.8 33.3 29.0 21.9 27.7 23.4
DISN + TSDFVox 32.7 25.6 29.1 19.1 33.3 22.9

CoReNet 35.2 23.3 29.3 20.8 35.5 24.9
AdelaiDepth 14.1 32.9 23.5 33.7 28.7 29.9

Ablation-NoGrad 39.5 20.7 30.1 22.9 43.6 28.7
Ablation-FixedE 22.7 34.7 28.7 19.5 24.0 20.2

DGS 24.4 22.1 23.2 25.7 41.8 30.5

2.8 Additional Generalizability Qualitative Results

We provide more qualitative results on our model generalizing to unseen images downloaded
from the Internet in Fig. 2.14. Each result is visualized in 6 views. Once again, these
additional visual results further indicate that our model demonstrates good generalizability
capability for handling unseen indoor scene images.

2.9 Evaluation of the Generalizability to

Matterport3D dataset

To quantatively evaluate our generaizability to new datasets, we provide our results on the
Matterport3D dataset [28] using our model trained from ScannetV2 as used in Sec. 2.3.2.

The Matterport3d dataset [28] collects indoor scenes of 90 full houses. Textured meshes
are provided along with the scanned real images. Since the Matterport3D dataset does
not provide an official train/test split, and our model is not trained on Matterport3d, we
evaluate our model over all the 90 scenes in the dataset. In particular, we use the 129600
images (without the elevated pitch views where the camera is looking up at the ceiling) from
the dataset, use the 10 first images from each scene (resulting in 900 test images in total),
and test their reconstruction performance in the same way as we tested on ScannetV2. We
provide the quantative evaluation result in Tab. 2.7. We can see from the table that the
results align with our evaluation in Tab. 2.2 that our model demonstrates clear advantages.
We also noticed that the AdelaiDepth [57] baseline (finetuned on ScannetV2) performance
is closer to our results (F1) score compared to our ScannetV2 evaluation. This is probably
due to the fact that AdelaiDepth was directly pre-trained from a massive number of training
images and potentially gives it some privilege when generalize to a new dataset.
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2.10 Details of the formulation and derivation of DGS

In this section, we provide the full formulation as well as the derivation procedure of our
DGS in this section as the supplementary to Sec. 2.2.2.

In Eq. 2.4, we provided the backward gradient for differentiable sampling for Pixel A.
The backward gradient for Pixel B, C and D are

∂L

∂ϕB

= (1 − α)β · ∂L

∂ϕ(i, j)

∂L

∂ϕC

= α(1 − β) · ∂L

∂ϕ(i, j)

∂L

∂ϕD

= αβ · ∂L

∂ϕ(i, j)

(2.9)

In Eq. 2.5, we provided the forward gradient in the vertical pixel direction. The forward
gradient of the horizontal pixel direction is

∂ϕ(i, j)

∂j
=

(1 − α)(ϕB − ϕA) + α(ϕD − ϕC)

w
(2.10)

In Eq. 2.6, we provided the backward gradient for only Pixel A. The backward gradient
for Pixel B, C and D are
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w
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(2.11)

In Eq. 2.8, we provided the backward gradient for only Pixel A in the 3D setting. The
backward gradient for Pixel B, C and D are
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As an illustration of the derivation for Eq. 2.8, we can obtain the backward gradient via

∂L

∂ϕA

=
∂L

∂ϕ
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(2.13)

The four partial derivatives with respect to ϕA in Eq. 2.13 can be determined based on
the sampling rules. For example, based on Eq. 2.3, we can quickly obtain the first derivative
with respect to ϕA via

∂ϕ

∂ϕA

= (1 − α)(1 − β) (2.14)

For the other three derivatives with respect to ϕA in Eq. 2.13, we can substitute Eq. 2.5,
2.10 into Eq. 2.7, and obtain them via
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w

(2.15)

We can then obtain Eq. 2.8 via substituting Eq. 2.14, 2.15 into Eq. 2.13.
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Figure 2.9: Quantitative comparison on the high-realism ShapeNet (without handpick: test case number 0
and 100). The reconstruction result of each approach is visualized in six different views, with the first view
the same as the camera view, the first three views the same elevation as the camera view, and the last three
view horizontal view.
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Figure 2.10: Quantitative comparison on the high-realism ShapeNet (without handpick: test case number
800 and 900). The reconstruction result of each approach is visualized in six different views, with the first
view the same as the camera view, the first three views the same elevation as the camera view, and the last
three view horizontal view.
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Figure 2.11: Quantitative comparison on the ScannetV2 (without handpick: the first frame of the 1st and
2nd test scene in ScannetV2). The reconstruction result of each approach is visualized in six different views,
with the first view the same as the camera view, the first three views the same elevation as thecamera view,
and the last three view elevated view.
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Figure 2.12: Quantitative comparison on the ScannetV2 (without handpick: the first frame of the 7th and
8th test scene in ScannetV2). The reconstruction result of each approach is visualized in six different views,
with the first view the same as the camera view, the first three views the same elevation as thecamera view,
and the last three view elevated view.
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Figure 2.13: Quantitative comparison on the ScannetV2 (without handpick: the first frame of the 9th and
10th test scene in ScannetV2). The reconstruction result of each approach is visualized in six different views,
with the first view the same as the camera view, the first three views the same elevation as thecamera view,
and the last three view elevated view.
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Figure 2.14: Additional Qualitative results of our model generalizing to unseen test images downloaded
from the Internet.
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Chapter 3

Voxel-informed Language Grounding

3.1 Introduction

Embodied robotic agents hold great potential for providing assistive technologies in home
environments [61], and natural language provides an intuitive interface for users to interact
with such systems [62]. For these systems to be effective, they must be able to reliably
ground language in perception [63, 64].

Despite typically being paired with 2D images, natural language that is grounded in vision
describes a fundamentally 3D world. For example, consider the grounding task in Figure
3.1, where the agent must select a target chair against a distractor given the description “the
swivel chair with 6 wheels.” Although the agent is provided with multiple images revealing
all of the wheels on each chair, it must be able to properly aggregate information across
images to successfully differentiate them, something that requires reasoning about their 3D
geometry at some level.

In this work, we show how language grounding performance may be improved by lever-
aging 3D prior knowledge. Our model, Voxel-informed Language Grounder (VLG), extracts
3D voxel maps using a pre-trained volumetric reconstruction model, which it fuses with mul-
timodal features from a large-scale vision and language model in order to reason jointly over
the visual and 3D geometric properties of objects.

We focus our investigation within the context of SNARE [11], an object reference game
where an agent must ground natural language describing common household objects by their
geometric and visual properties, showing that grounding accuracy significantly improves by
incorporating information from predicted 3D volumes of objects. At the time of writing,
VLG achieves SOTA performance on SNARE, attaining an absolute improvement of 2.0%
over the next closest baseline. Code to replicate our results is publicly available.1

1https://github.com/rcorona/voxel_informed_language_grounding
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Figure 3.1: Voxel-informed Language Grounder. Our VLG model leverages explicit 3D infor-
mation by inferring volumetric voxel maps from input images, allowing the agent to reason jointly over
the geometric and visual properties of objects when grounding.

3.2 Related Work

Prior work has studied deriving structured representations from images to scaffold language
grounding. However, a majority of systems use representations such as 2D regions of in-
terest [65, 66] or symbolic graph-based representations [67, 68], which do not encode 3D
properties of objects.

Most prior work tying language to 3D representations has largely focused on generating
3D structures conditioned on language, rather than using them as intermediate represen-
tations for language grounding as we do here. Specifically, prior work has performed lan-
guage conditioned generation at the scene [69, 36], pose [70, 71], or object [72] level. More
recently, a line of work has explored referring expression grounding in 3D by mapping refer-
ring expressions of objects to 3D bounding boxes localizing them in point clouds of indoor
scenes [73, 74, 75, 76]. Standard approaches follow a two-tiered process where an object pro-
posal system will first provide bounding boxes for candidate objects, and a scoring module
will then compute a compatibility score between each box and the referring expression in
order to ground it. At a more granular level, [77] learn alignments from language to object
parts by training agents on a reference game over point cloud representations of objects.

In contrast, in this work we focus on augmenting language grounding over 2D RGB images
using structured 3D representations derived from them. For the task of visual language
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Figure 3.2: VLG Architecture. (Left) Our VLG model consists of a visiolinguistic module which
produces a joint embedding for text and images using CLIP [3] and a voxel-language module for jointly
embedding language and volumetric maps. (Right) The voxel-language module uses a cross modal trans-
former to fuse word embeddings from CLIP with voxel map factors extracted from LegoFormer [4]. During
training, gradients only flow through solid lines.

navigation, prior work has shown how a persistent 3D semantic map may be used as an
intermediate representation to aid in selecting navigational waypoints [78, 79]. The semantic
maps, however, represent entire scenes with individual voxels representing object categories,
rather than their geometry. In this work, we show how a more granular occupancy map
representing objects’ geometry can improve language grounding performance.

Closest to our work is that of [80], which presents a method for mapping language to
3D features within scenes from the CLEVR [81] dataset. Their system generates 3D feature
maps inferred from images and then grounds language directly to 3D bounding boxes or
coordinates. Their method assumes, however, that dependency parse trees are provided
for the natural language inputs, and it is trained with supervised alignments between noun
phrases and the 3D representations, which VLG does not require.

3.3 Voxel-informed Language Grounder

We consider a task where an agent must correctly predict a target object vt against a
distractor vc given a natural language description wt = {w1, ..., wm} of the target. For each
object, the agent is provided with n 2D views v = {x1, ..., xn}, xi ∈ R3×W×H .

An agent for this task is represented by a scoring function s(v, w) ∈ [0, 1], computing the
compatibility between the target description and the 2D views of each object, and is used
to select the maximally scoring candidate. We first use unimodal encoders to encode the
language description into ew = h(w) and the object view images into a single aggregate visual
embedding ev = g(v) before fusing them with a visiolinguistic module evw = fvw ([ev; ew]).
Prior approaches to this problem [11] directly input this fused representation to a scoring
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module to produce a score s(evw). They do not explicitly reason about the 3D properties of
the observed objects, requiring the models to learn them implicitly.

In contrast, our Voxel-informed Language Grounder augments the scoring function s
with explicit 3D volumetric information eo = o(v) extracted from a pre-trained multiview
reconstruction model. The volumetric information (in the form of a factorization of a voxel
occupancy map in RW×H×D) is first fused into a joint representation with the language using
a multimodal voxel-language module eow = fow([eo; ew]). The scoring function then produces
a score based on all three modalities s([evw; eow]).

3.3.1 Model Architecture

VLG (Figure 3.2) consists of two branches: a visiolinguistic module for fusing language and
2D RGB features, and a voxel-language module for fusing language with 3D volumetric fea-
tures. A scoring function is then used to reason jointly over the output of the two branches,
producing a compatibility score.

Visiolinguistic Module. The architecture of our visiolinguistic module fvw (left panel,
Figure 3.2) largely mirrors the architecture of MATCH from [11]. A pre-trained CLIP-
ViT [3] model is used to encode the language description and view images into vectors in
R512. The image embeddings are max-pooled and concatenated to the description embed-
ding before being passed into an MLP which generates a fused representation.

Voxel-Language Module. We use representations extracted from a ShapeNet [82, 83]
pre-trained LegoFormerM [4], a multi-view 3D volumetric reconstruction model, as input to
our voxel-language module fow. LegoFormer is a transformer [84] based model whose decoder
generates volumetric maps factorized into 12 parts. Each object factor is represented by a
set of three vectors x, y, z ∈ R32, which we concatenate to use as input tokens for our voxel-
language module. A triple cross-product over x, y, z may be used to recover a 3D volume
V ∈ R32×32×32 for each factor. The full volume for the object is generated by aggregating
the factor volumes through a sum operation. For more details on LegoFormer, we refer the
reader to [4]. We use a cross-modal transformer [84] encoder to fuse the language and object
factors (Figure 3.2, right). The cross-modal transformer takes as input language tokens, in
the form of CLIP word embeddings, and the 12 object factors output by the LegoFormer
decoder, which contain the inferred geometric occupancy information of the object. We use
a CLS token as an aggregate representation of the language and object factors.

Scoring Function. The scoring function is represented by an MLP which takes as input
the concatenation of the visiolinguistic module output and the cross-modal transformer’s
CLS token.
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3.4 Language Grounding Evaluation

VALIDATION TEST

Model Visual Blind All Visual Blind All

ViLBERT 89.5 76.6 83.1 80.2 73.0 76.6
MATCH 89.2 (0.9) 75.2 (0.7) 82.2 (0.4) 83.9 (0.5) 68.7 (0.9) 76.5 (0.5)
MATCH∗ 90.6 (0.4) 75.7 (1.2) 83.2 (0.8) - - -
LAGOR 89.8 (0.4) 75.3 (0.7) 82.6 (0.4) 84.3 (0.4) 69.4 (0.5) 77.0 (0.5)
LAGOR∗ 89.8 (0.5) 75.0 (0.4) 82.5 (0.1) - - -
VLG (Ours) 91.2 (0.4) 78.4†(0.7) 84.9†(0.3) 86.0 71.7 79.0

Table 3.1: SNARE Benchmark Performance. Object reference game accuracy on the SNARE task
across validation and test sets. Performance on models with an asterisk are our replications of the baselines
in [11]. Standard deviations over 3 seeds are shown in parentheses. MATCH corresponds to the max-pool
variant from [11] since no test set results are provided for the mean-pool variant. Our VLG model achieves
the best overall performance. Due to leaderboard submission restrictions, we were not able to get test set
results for the MATCH∗ and LAGOR∗ replications. † denotes statistical significance over replicated models
with p < 0.1.

Evaluation. We test our method on the SNARE benchmark [11]. SNARE is a lan-
guage grounding dataset which augments ACRONYM [85], a grasping dataset built off of
ShapeNetSem [86, 36], with natural language annotations of objects.

SNARE presents an object reference game where an agent must correctly guess a tar-
get object against a distractor. In each instance of the game, the agent is provided with
a language description of the target as well as multiple 2D views of each object. SNARE
differentiates between visual and blindfolded object descriptions. Visual descriptions pri-
marily include attributes such as name, shape, and color (e.g. “classic armchair with white
seat”). In contrast, blindfolded descriptions include attributes such as shape and parts (e.g.
“oval back and vertical legs”). The train/validation/test sets were generated by splitting
over (207 / 7 / 48) ShapeNetSem object categories, respectively containing (6,153 / 371
/ 1,357) unique object instances and (39,104 / 2,304 / 8,751) object pairings with refer-
ring expressions. Renderings are provided for each object instance over 8 canonical viewing
angles.

Because ShapeNet and ShapeNetSem represent different splits of the broader ShapeNet
database, we pre-train the LegoFormerM model on a modified dataset to avoid dataset
leakage. Specifically, any objects which appear in both datasets are re-assigned within the
pre-training dataset used to train LegoFormerM to match its split assignment from SNARE.

ShapeNetSem images are resized to 224 × 224 when inputting them to LegoFormerM in
order to match its ShapeNet pre-training conditions.

Baselines. We compare VLG against the set of models provided with SNARE.2 All SNARE

2https://github.com/snaredataset/snare
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baselines except ViLBERT use a CLIP ViT-B/32 [3] backbone for encoding both images
and language descriptions:

MATCH first uses CLIP-ViT to embed the language description as well as each of the
8 view images. Next, the view embeddings are mean-pooled and concatenated to the
description embedding. Finally, a learned MLP is used over the concatenated feature
vector in order to produce a final compatibility score.

ViLBERT fine-tunes a 12-in-1 [87] pre-trained ViLBERT[88] as the backbone for
MATCH instead of using CLIP-ViT. Each object is presented to ViLBERT in the
form of a single tiled image containing all 14 views from ShapeNetSem, instead of
just the canonical 8 presented in the standard task. ViLBERT tokenizes images by
extracting features from image regions, with the ground truth bounding boxes for each
region (i.e. view) being provided. Because this baseline is not open-source, we report
the original numbers from [11].

LAGOR (Language Grounding through Object Rotation) fine-tunes a pre-trained
MATCH module and is additionally regularized through the auxiliary task of predicting
the canonical viewing angle of individual view images, which it predicts using an added
output MLP head. Following [11], the LAGOR baseline is only provided with 2 random
views of each object both during training and inference.

For more details on the baseline models, we refer the reader to [11].

Training Details. Apart from the dataset split re-assignments mentioned in Section 3.4,
we use the code3 and hyperparameters presented by [4] to train LegoFormerM.

For training on SNARE, we follow [11] and train all models with a smoothed binary
cross-entropy loss [89].

We train each model for 75 epochs, reporting performance of the best performing check-
point on the validation set. For our replication of the SNARE MATCH and LAGOR base-
lines, we use the code and hyperparameters provided by [11]. For all variants of our VLG
model we use the AdamW [90] optimizer with a learning rate of 1e-3 and a linear learning
rate warmup of 10K steps.

3.5 Results

We present test set performance for VLG and the SNARE baselines reported by [11]. We
also present average performance for trained models over 3 seeds with standard deviations
on the validation set.

3https://github.com/faridyagubbayli/LegoFormer
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Model Visual Blind All
VGG16 91.4 (0.5) 76.5 (0.9) 84.0 (0.2)
MLP 91.1 (0.8) 77.9 (0.9) 84.6 (0.1)

no-CLIP 71.0 (0.6) 65.8 (0.7) 68.4 (0.1)
VLG 91.2 (0.4) 78.4 (0.7) 84.9 (0.3)

Table 3.2: Ablation Study. SNARE reference game accuracy across ablations of our model on the
validation set. We show performance when replacing LegoformerM object factors with VGG16 features,
replacing the cross-modal transformer with an MLP, and when foregoing the use of CLIP features (no-
CLIP).

3.5.1 Comparison to SOTA

In Table 3.1 we can observe reference game performance for all models. VLG achieves SOTA
performance with an absolute improvement on the test set of 2.0% over LAGOR, the next
best leaderboard model. Although there is a general improvement of 1.7% in visual reference
grounding, there is an improvement of 2.3% in blindfolded (denoted as Blind in tables to
conserve space) reference grounding. This suggests that the injected 3D information provides
a greater boost for disambiguating between examples referring to geometric properties of
target objects. VLG generally improves over all baselines and conditions for blindfolded
examples, with the exception of ViLBERT, which may be due to the additional information
ViLBERT receives in the form of 14 viewing angles of each object instead of 8. Improvements
on the Blind and All conditions of the validation set are statistically significant over replicated
models with p < 0.1 under a Welch’s two-tailed t-test.

3.5.2 Ablation Study

We present a variety of ablations on the validation set to investigate the contributions of
each piece of our model. All results can be observed in Table 3.2.

VGG16 Embeddings. LegoFormer uses an ImageNet [91] pre-trained VGG16 [54] as a
backbone for extracting visual representations, which is a different dataset and pre-training
task than what the CLIP-ViT image encoder is trained on. This presents a confounding
factor which we ablate by performing an experiment feeding our model’s scoring function
VGG16 features directly instead of LegoFormer object factors (VGG16 in Table 3.2). De-
spite getting comparable results to VGG16 on visual reference grounding, VLG provides a
clear improvement in blindfolded (and therefore overall) reference performance, suggesting
that the extracted 3D information is useful for grounding more geometrically based language
descriptions, with the VGG16 features being largely redundant in terms of visual signal.

Architecture. We ablate the contribution of our cross-modal transformer branch by com-
paring it against an MLP mirroring the structure of the SNARE MATCH baseline. This
model (MLP in Table 3.2) max-pools the LegoFormer object factors and concatenates the
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result to the CLIP visual and language features before passing them to an MLP scoring
function. The MLP model overall outperforms the SNARE baselines from Table 3.1, high-
lighting the usefulness of the 3D information for grounding, but does not result in as large an
improvement as the cross-modal transformer. This suggests that the transformer is better
able at integrating information from the multi-view input.

CLIP Visual Embeddings. Finally, we evaluate the contribution of the visiolinguistic
branch of the model by removing it and only using the cross-modal transformer over lan-
guage and object factors. As may be observed, there is a large drop in performance (16.5%
overall), particularly for visual references (20.2%). These results suggest that maintaining
visual information such as color and texture is critical for performing well on this task, since
the LegoFormer outputs contain only volumetric occupancy information.

3.6 Discussion

We have presented the Voxel-informed Language Grounder (VLG), a model which leverages
explicit 3D information from predicted volumetric voxel maps to improve language ground-
ing performance. VLG achieves SOTA results on SNARE, and ablations demonstrate the
effectiveness of using this 3D information for grounding. We hope this paper may inspire
future work on integrating structured 3D representations into language grounding tasks.
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Chapter 4

Neural Relighting with Subsurface
Scattering Effects

4.1 Introduction

The ability to relight objects and scenes under varying lighting conditions is crucial in many
areas, such as virtual reality, gaming, visual effects, and architecture. It enables artists, de-
signers, and engineers to experiment with many lighting setups without having to physically
recreate a scene. It also allows for the creation of more realistic and immersive experiences
by accurately simulating the lighting conditions in a virtual environment.

However, relighting remains a challenging task due to the complex interaction between
the light and the materials in a scene. Traditional approaches have sought to decompose ren-
dering into geometry, material, and lighting to simplify the problem. For example, opaque
materials are represented in Physically Based Rendering (PBR) by the Bidirectional Re-
flectance Distribution Function (BRDF), which describes how light interacts with a mate-
rial’s surface [92, 93, 94, 95, 96]. Similarly, many relighting methods such as [97, 98] rely on
decomposing light into its components, such as direct lighting and indirect lighting, to allow
for more fine-grained control.

While these approaches have been successful in many cases, they are limited in their
ability to handle objects with translucency or subsurface scattering (SSS). This is because
these materials are not well approximated by a simple BRDF function and require more
complex models, such as the Bidirectional Surface Scattering Reflectance Distribution Func-
tion (BSSRDF). However, modeling BSSRDF are computationally expensive and slow to
evaluate, neglecting textures beneath the surface (Fig. 4.3), limiting their practicality for
inverse rendering with complex geometry.

Recent works on neural radiance transfer fields [6] have incorporated the idea of pre-
computed radiance transfer (PRT) into the neural radiance fields (NeRF) literature, pro-
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(a) Light Stage Image Captures (b) OLAT Volume Rendering Reconstructions (c) Relighting in new environments 

(d) Results              NeRF-Ship           C-Red         J-Dragon       J-Fish             C-Cake       S-Lavender    C-Blue      C-Head            C-S

Environment

Figure 4.1: Our approach reconstructs objects with significant subsurface scattering effects with high
fidelity and inserts models into arbitrary environments for relighting. It is fully data-driven and does not
assume a particular material representation (such as BRDF or BSSRDF), and can faithfully render high
quality appearance under varying lighting conditions and view points. Please see our supplementary video
for comprehensive visualizations and comparisons.

viding promising results for relighting with global illumination effects. However, these ap-
proaches rely on a pre-estimated surface, which is nontrivial to reconstruct for objects with
SSS or with translucency. Additionally, the separated geometry and appearance optimization
is suboptimal, leading to artifacts and unrealistic results.

In this work, we propose a novel framework for relighting that incorporates the opti-
mization of shape and radiance transfer using a volume rendering approach (Fig. 1). Our
framework extends the relighting capability to a wider range of materials, including translu-
cent objects with strong SSS effects and textures beneath the surface. Specifically, we use
a volume rendering approach to estimate the transfer field and utilize appearance cues to
refine the geometry in an end-to-end fashion.

To evaluate our approach, we have recorded real-world objects featuring subsurface scat-
tering effects in a light stage and show that our method produces high quality visual results
in recorded and novel lighting conditions. Quantitatively, our approach compares favor-
ably with the current state of the art with a 5 points higher PSNR on average across three
datasets.

In summary, we propose a novel framework for neural radiance transfer fields using vol-
ume rendering, optimizing appearance and geometry in an end-to-end fashion, which to the
best of our knowledge has not been achieved before for optically-thick translucent materi-
als. Additionally, we collected and will release a dataset of objects that exhibit prominent
subsurface scattering effects for training and evaluation purposes. These objects have been
recorded with high fidelity featuring rich, high frequency spatially-varying details, resulting
in 15TiB of data, which is 3000 times larger and notably more detailed than the current
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highest quality data for research in this area [9].

4.2 Related Work

Relighting and Surface Representations. The problem of relighting an object or a
scene under novel lighting conditions has been extensively studied. Usually, the prob-
lem is tackled via decomposing the appearance into the lighting and the surface material
properties. Early works estimate material given known illumination such as a single light
source [99, 100] or spherical gradient illumination [101, 102] with known geometry. [94] di-
rectly model light transports with known illuminations and know geometry. More recently,
neural scene representations [103] and differentiable rendering [104] allow us to jointly op-
timize BRDF and geometry. Some methods apply inverse rendering using implicit surface
to obtain materials [105, 8, 93]. Other approaches utilize volumetric representations with
opacity fields [106, 107, 92, 94, 96]. The required illumination setup can be reduced to a
co-located light [106, 107], and unknown illuminations [105, 8, 92, 94, 96]. To reduce the am-
biguity in BRDF, the aforementioned methods use parametric BRDFs such as a microfacet
model [108, 109]. However, these parametric models do not support subsurface scattering as
they only consider reflectance. In contrast, our approach deals with global light transport
effects including subsurface scattering.

Subsurface Scattering. Subsurface scattering refers to light transport inside of a solid
substance. It happens with some particular types of materials (such as wax, jade, tiny furs
or various fruits), and is quite common in the real world. Since the light might leave the
object surface at a different point from where it enters, surface representations (e.g. vari-
ous BRDFs) cannot represent this type of light transmission. While subsurface scattering
can be accurately modeled by volumetric path tracing algorithms [110], their run time is
typically prohibitive in certain applications, despite efforts to accelerate brute-force compu-
tation, e.g. through a shape adaptive learned SSS model [111] that relies on a conditional
variational auto encoder that learns to sample from a distribution of exit points on the ob-
ject surface. Some other works have focused on estimating the scattering parameters from
images of translucent objects. Inverse Transport Networks [112] infer the optical properties
that control subsurface scattering inside translucent objects of any shape under any illumi-
nation. They rely on an encoder decoder where the latter is replaced by a physically-based
differentiable path tracer, trained with synthetic images. Prior to that, another approach
based on stochastic gradient descent, combined with Monte Carlo rendering and a material
dictionary was capable of estimating the scattering materials, inverting the radiative transfer
parameters [113]. Nevertheless, since volumetric path tracing can be costly, applying a BSS-
RDF can be a faster alternative [9]. Compared to BRDF-based representations, a higher
dimension of inputs (usually 6D for homogeneous materials) is fed to query the outgoing
radiance. A relighting algorithm can thus seek to optimize the BSSRDF function with the
inverse rendering process so that the resulting material can be relit in conventional rendering
engines. Our work follows a different path - we learn our relighting model in a fully data
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(a)  Jade-Fish

(b)  Candle-Blue

(c)  Soap-Lvd.

Ours

Ours

Ours

NVMC

NVMC

NRTF (Neus)

NRTF (Neus)

NVMC NRTF (Neus)

(d) NeRF-Ship Ours NVMC NRTF (Neus)

Figure 4.2: Despite presented with significant subsurface scattering and translucency in the scene, our
approach provides the highest geometric reconstruction quality compared to other approaches (NVMC [5];
NRTF [6] via Neus [7]). For our approach, we show the extracted mesh using marching cubes from the
density in the 5123 resolution. The high quality geometry is one of the key advantages of our method.
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Ours

BSSRDF (Inv T)Ours

BSSRDF (InvT)

BRDF (IRON)

BRDF (IRON)

Figure 4.3: For relighting objects with subsurface scattering effects (e.g., the translucent soap shown in
this figure), the BRDF-based approach [8] renders the object with full opacity when the light comes from the
opposite directions, while the BSSRDF-based approach [9] cannot capture the texture details and structures
beneath the surface (highlighted in the orange squares). In contrast, our approach can faithfully render the
right opacity of the object and retain appearance even given the subsurface structure of the drill inside the
candle (highlighted in the blue squares).

driven fashion, and learn the cached outgoing radiance for each point using a deep neural
network, where we bypass the expensive BSSRDF computation in our optimization iteration.

Neural Radiance Fields and Precomputed Radiance Transfer. Neural Radiance
Fields (NeRF) [15, 114, 115] optimize a parameterized volume rendering model from multiple
views of the scene so that at test time, novel views can be synthesized from the learned model.
Despite its superior rendering quality, NeRF bakes all the lighting and reflective surface
information into the RGBs without modeling the interaction of the light and the material.
Recent studies [6] have shown promising results for relightable models via incorporating the
idea of “precomputed radiance transfer” (PRT) [116] from the real time rendering community.
Instead of precomputing and caching the intermediate representation per location, they seek
to optimize a cached intermediate representation in the reconstruction process. Notably,
[6] relies on a fairly accurate pre-computed surface [7], and keeps the lighting appearance
optimization separate from the geometry acquisition process. Focused on synthetic images
with varying but known illumination, a NeRF extension [117] was presented to reconstruct
participating media with full global illumination effects, achieving good results on synthetic
data. In contrast, our novel volume rendering framework not only enables optimizing the
geometry details with appearance cues, but also works on scenes with partially opaque
mass (e.g. thin rope or furs) and demonstrates high quality results on synthetic and real
data. It is worth mentioning that a recent concurrent work [118] also addressed relighting
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NRTF

Ours

Ours

NRTF

Figure 4.4: Volume rendering leads to cleaner surface reconstructions and higher rendering quality com-
pared to NRTF [6].

with translucent objects using scattering functions. In addition to distant point lights, our
approach efficiently relights the captured scenes with environment maps with the help of the
Median-cut algorithm. Further, we will release high-resolution and large scale light stage
dataset with rich lighting effects, such as translucency coupled with specular highlights and
translucent shadowing, facilitating future research.
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4.3 Methodology

4.3.1 Notation

Our goal is to optimize a relightable neural model from a collection of photos of the object,
captured from different camera view points and under varying lighting conditions, that is
able to accurately represent strong subsurface scattering effects. Our input includes the set
of the input images I = {Ic,l}, where Ic,l ∈ (R+)M×N×3 are high dynamic range (HDR)
images, and c and l represent the camera viewpoint and lighting condition, respectively. We
assume the camera poses are known (e.g., computed using photogrammetry software such
as Agisoft Metashape), and denote them as C = {Kc,Rc, tc} (camera intrinsic parameters,
rotations and translations, respectively). We capture one-light-at-a-time (OLAT) images
for training, and denote an OLAT lighting condition as L = {ωl}, where ωl ∈ R3 is the ℓ2
normalized vector representing the incident point light direction relative to the scene center.
Since our data capture system uses white light, we parameterize the light using a single
channel throughout this paper. During testing, we apply an environment map (envmap)
El ∈ RME×NE , where each pixel of the envmap can be considered as one light source.

We want our relightable model to render the scene under varying unseen viewpoints
({Kquery,Rquery, tquery}) and lighting conditions (ωquery or Equery). Our framework optimizes
the geometry as well as the lighting- and viewpoint-varying appearance of the scene in an end-
to-end fashion. More precisely, we use the function fΘ(·) to denote our model (parameterized
by Θ), and denote our model prediction as Î(u, v;ω or E) = fΘ(r;ω or E) ∈ (R+)3, where
r represents a pixel ray in the space, and (u, v) represents its related pixel coordinates on
the image plane under the given camera pose {K,R, t}. We provide an overview of our
approach in Sec. 4.3.2, and provide details of our volume rendering scheme as well as model
details in Sec. 4.3.3 and Sec. 4.3.4.

4.3.2 Method Overview

We devise a volume rendering based neural relightable model that is optimized directly from
the image collections of varying camera views and lighting conditions (Fig. 4.5). The core
of our learning framework consists of a volume renderer enabling an end-to-end optimiza-
tion (Sec. 4.3.3) and the density-based neural transfer field networks (Sec. 4.3.4). There
are several key differences compared to the existing (neural) relighting approaches. On one
hand, unlike [6], our model can be trained from scratch, with no dependency on known esti-
mated surface or other explicit geometry cues whose geometric details are difficult to obtain
especially for materials with strong subsurface scattering effects (Fig. 4.2). Furthermore,
training images captured under varying lighting conditions contain rich geometric cues via
local micro shadowing or micro reflections, where a direct geometric optimization via an
appearance loss is deemed necessary. On the other hand, thanks to our fully data-driven
learning scheme, our model does not make any explicit assumptions about material (such
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Figure 4.5: Illustration of the proposed relighting framework. We devise two MLPs to predict the gradient
of the transfer vector for accumulating the HDR value of each ray. See Sec. 4.3 for details.

as specifying a varying BRDF or BSSRDF) [8, 9], making it applicable to a wide range of
materials, enabling global illuminations and subsurface scattering effects.

4.3.3 Volume Integration of the Transfer Gradient

The color of each pixel ray is computed using volume rendering. We denote the points
sampled along the ray r as {x1,x2, ...,xN}, where N is the total number of points. The model
predicts σ̂(xi) ∈ R+ and ĥ(xi; r;ω) ∈ (R+)3 for every sample point, representing the density
and the gradient of the pre-computed transfer vector, respectively. It is worth pointing out
that instead of predicting the transfer vector directly as in [6], we predict the transfer vector
gradient prediction, which represents the HDR contribution of a particular segment along a
particular light transmission direction. It is clear that no HDR delta would incur at a density-
free location, and among the non-zero density locations, the HDR contribution at a segment
can only be non-negative if a location is visible, i.e. when its volume accumulation weight
(ŵ(x) in Eq. 4.1) is positive. This intuition aligns well with our volume accumulation and
rendering scheme. We follow the volume integration from [15] and obtain the accumulated
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transfer vector prediction as:

Î(u, v;ω) =
N∑
i=1

ŵ(xi)ĥ(xi; r;ω)

where ŵ(xi) = T̂i(1 − exp(−σ̂(xi)δi))

T̂i = exp(−
i−1∑
j=1

σ̂(xj)δj)

δi = ti+1 − ti.

(4.1)

Our volume rendering scheme demonstrates several key benefits over a surface represen-
tation [6] (Fig. 4.4). First and foremost, obtaining a fairly accurate pre-estimated surface for
materials featuring subsurface scattering with detailed geometry is non-trivial. Our model
bypasses the difficulties of pre-estimating the surface geometry by applying volume rendering
and optimizing the surface density together with appearance. In this case, all local shadow-
ing and reflection effects captured under different lighting conditions are taken into account
for geometry estimation, providing stronger cues compared to surface estimation under a
single lighting condition. Second, volume rendering enables accurate appearance modeling
of semi-opaque materials (e.g. fur) with their subsurface scattering effects, which cannot be
trivially achieved using a surface-based rendering framework. Third, similar to other volume
rendering-based models, our model is able to optimize the geometry as well as the relightable
appearance end-to-end under varying lighting conditions. We do not require model design
changes to back propagate the loss gradient back to the geometry prediction [93]. Our results
show that this rendering strongly result in higher fidelity compared to previous surface-based
rendering [6].

4.3.4 End-to-end Learning of Neural Relighting

Architectures. We follow [15] and use an MLP to predict the density as well as the transfer
vector gradient for each sample interval. The MLP consists of 8 fully-connected layers (with
a width of 256, and a skip connection in the fourth layer) each for the density as well as
the transfer vector gradient prediction respectively. We devise two MLPs tackling the coarse
level and fine level of accumulation respectively. To ensure the predicted transfer vector
gradient to be non-negative, we use the exponential function as the activation function,
following [119]. It is worth pointing out that MLPs are just one option for modeling the
predictions of each point, we expect that more efficient models [31, 120, 121, 122] can be
used as well.

Loss functions. We utilize the weighted L2 tonemapped loss [119] to supervise the
predicted HDR values of each pixel. We also impose an auxiliary mask loss, where we pose
L2 regularizers on the density of all points that are sampled on a background ray. Our
main focus is the modeling of the foreground objects, and due to the inconsistency of the
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(a) Frontal View of “Group 000” (b) Elevated view of the rotation from group 000 to group 240.

1.5 m

1.1 m

𝜃!"

𝜃!" = 0

𝜃!" = arccos(−
1.1
1.5
)

𝜙!" 𝜙!"

View of Fig. 
(a)

𝜃!" = 0 𝜃!" = 0

Figure 4.6: Illustration of our light stage capture system. A full capture consists of 9 capture groups, with
each group labelled as “000”, “040”, “080”, ..., “320”, with their number denoting the 40 degree-stepped
yaw rotation (see “ϕls” in (b)). Lights are visualized as dots and cameras with camera icons. All lights
are of the same white color—the visualized dot colors merely refer to the light bulb instance, highlighting
that the lights are locked with the cameras when rotating between groups. (a) Frontal view of the system
(group “000”). The radius of the light stage is 1.5 meters, with its center at 1.1m height—the layout is
a bottom-truncated sphere. The light stage illustration in Fig. 3.1(a) is the elevated view of group “040”.
(b) Rotating from group “000” (b-left) to group “240” (b-right) according to the “ϕls” rotation. (b-left) and
(b-right) are visualized at an elevated angle. (a) is viewed from the dashed line direction in (b-left).

background appearance (rotation nature of the camera groups, see Sec. 4.4), we set all the
ground truth HDR values in the background to be 0. We sample the rays (from both the
foreground as well as the background) with importance sampling, where in each training
batch, 1/2 of all rays are from the foreground, 3/8 of all rays are from the near-silhouette
area, and 1/8 of total rays are from arbitrary locations in the background. In our real light
stage data, since the aspect ratio of the captured images is pretty large, we extend the
background area that is outside of the pixel map. We pad them with 0 as their ground truth
HDR values. We found this to be useful for clean free-space density predictions.

Using environment map conditioning. We follow [6] to obtain the envmap relighting
prediction via accumulating the OLAT HDR prediction. More precisely, we treat each pixel
on the envmap as an OLAT point light. Practically, we apply the median cut algorithm [123]
to accelerate inference. During accumulation, we reweight the predicted HDR value from
each OLAT location by the cosine value of the latitude angle on the envmap to account for
the area of lights on the envmap sphere. The aggregated predicted rendering serves as our
final prediction of the relighting given the query envmap.

4.4 Light Stage Data Acquisition

To facilitate studies on the light-dependent appearance modeling of objects and scenes under
significant subsurface scattering effects, it is critical to acquire real-world objects featuring
such effects. While existing datasets (e.g., [9]) includes captures of two translucent objects,
they are often limited by resolution and fidelity of the acquired images, causing local micro
geometry details to not be fully captured. To reconstruct a relightable model in a data-
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driven fashion, we aim to have real-world captures with densely sampled camera viewpoints,
complete incident light direction coverage and high-resolution images retaining as much detail
as possible. Consequently, we propose a new dataset, consisting of 8 scenes with significant
subsurface scattering effects. Our captured data demonstrates high fidelity, preserving rich
appearance details, and represents a total of 15TB (3000 times larger than the currently
highest quality dataset with similar goals to our knowledge, [9]).

As shown in Fig. 4.6, we place the cameras and the light sources on the spherical light
stage cage, while the objects to be captured are placed on a holding table in the center
with a height of roughly 1.1 meter. In particular, when capturing the data, our cameras
and the light bulbs are fixed on the sphere, while a turntable in the middle can be freely
rotated. Ignoring background pixels, this is equivalent to keeping the object scene static to
satisfy the consistency of the scene among views, while rotating the cameras and the light
bulbs altogether. Throughout the text, we assume that the light stage is configured in the
latter case for notational convenience. Our camera/light-bulb sphere radius is roughly 1.5
meter from the surface of the holding table in the middle).1 The rotations of the sphere put
the whole captured frames into 9 groups, with each group corresponding to one particular
rotated setting of the camera-light sphere. On the sphere, we have a total of 20 cameras as
well as 331 lighting bulbs (serving as 331 OLAT point lights).2 Consequently, in each group
we captured a 20 × 331 = 6620 frames, and for the total 9 groups, we captured a total of
59580 frames for one scene. Our camera captures high dynamic range value for the RGBs,
with the cutoff threshold at 4.4019. The original captured frames come with a resolution of
8192× 5464. We found a 4 times down-scaling retains most of the texture details and hence
we conduct all our experiments on the down-scaled version (2048 × 1366). Notably, all the
captures at the resolution of 2048×1366 still span 15TB of storage. During the capture, the
cameras always face toward the objects on the holding table, and we tune the focal length
of the camera to best suit the size of the particular objects. We obtain the extrinsic camera
poses via an off-the-shelf software with manual corrections. Since the light bulbs shining
in the opposite direction of the camera incur significant noise to the reconstruction process
(especially considering that the rotation between the group would make the background
inconsistent), we introduced several heuristics, including RGB variations and saturation to
segment out the background. All the camera poses, light locations as well as the masking
information are used by all the approaches in our evaluation sections (Sec. 4.5), and we shall
make all the details about the data publicly available to facilitate future research.

1Our light bulbs only span roughly between [0, 3
2π) for θls, hence no light bulb has a negative altitude

even if the sphere radius is larger than the height of the center—the holding table.
2Notably, since the point light locations are locked with the camera during rotation, the OLAT location

in different groups are different from each other. In other words, in our whole dataset, there are only up to
20 images that have been recorded with the same lighting.
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4.5 Experiments

We use both the synthetic data (8 scenes) and the real data we captured (8 scenes) for
evaluation and comparisons. All the details on data, training and benchmarking protocols
will be released.

Synthetic Data. We use the 8 scenes from the NeRF Blender dataset [15] and eval-
uate them with both their original materials (Synthetic-Original) as well as their modified
materials with the subsurface scattering shader in Blender [124] (Synthetic-SSS ). During
training, we use the same 100 camera views given in the training set for each scene as pro-
vided by the originally released data [15]. To simulate OLAT lighting, we evenly sample
112 incident lighting directions on the upper hemisphere. More precisely, we sample evenly
with 7 latitudes in the upper hemisphere, evenly sampled 32 longitudes for each latitude,
and left out every other light (to be used during evaluation). The 7 × 32 OLAT directions
exactly correspond to Row 2 through Row 8 of the 16 × 32 envmap as used in NRTF [6].
We exclude the lower hemisphere for OLAT sampling, mainly due to the fact that most of
the scenes in the NeRF blender dataset are rendered as top views, and the OLAT lighting
from the bottom produces overall dark renderings. This training setting gives us a total
of 11200 training images per scene. To mimic the light stage setting used for real-world
data capture, we use only white lights, and use the point light instead of the envmap for
rendering the ground truth. More precisely, the point lights are placed roughly 100 units
away from the scene center (with about 4 units being the approximate size of each scene).
During testing, we use unseen lighting directions as well as unseen camera poses for each
test sample. For quantitative evaluation, we stick to the OLAT protocol where there is only
one light at a time. For saving evaluation time, we only test 10 out of the unseen 112 lights.
We also provide qualitative samples by rendering results with several envmaps downloaded
from PolyHaven (e.g., Fig. 4.10). Since our point lights are single-colored (white), we do the
inference with the independent-RGB-channel assumption when relighting under a colored
envmap. Following [6] we cast them into a 32 × 16 envmap to serve as the input. For test
time camera poses, we apply the camera views from the test views given in the NeRF blender
dataset. For saving evaluation time, we only test 10 out of the unseen 200 test views. This
test setup gives us 100 test cases in total for each scene.

Light Stage Data. As introduced in Sec. 4.4, the proposed light stage data contains
9 groups and 20 cameras per scene (a total of 180 views), with each view consisting of 331
OLAT renderings, thus leading to a total of 59580 HDR images per scene. During training,
we use the first 18 cameras in each group, and use 75 out of the 331 OLATs for training,
leading to a total of 12150 training images per scene. Testing on real data also only includes
samples with both, unseen lighting directions and unseen views. For quantitative evaluation,
we use the remaining 2 cameras from each group (a total of 18 views) and 10 unseen OLATs
to form our test set (180 images per scene). For qualitative evaluation, we use the same
input lighting envmaps as used in the synthetic data benchmark. Since most of our real
captures exhibit subsurface scattering, we denote this data with Real-SSS.

Evaluation Metrics. We evaluate the predicted pixel map following the standard
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Real-SSS C-Red J-Dragon J-Fish C-Cake S-Lvd. C-Blue C-Head C-S Average

PSNR(↑)

IRON [8] 21.6 17.5 20.7 22.2 22.4 19.1 21.4 23.3 21.0
InverseTranslucent [9] 23.3 21.6 23.6 22.9 25.1 21.8 25.0 26.8 23.8
NRTF [6] 27.5 28.5 28.4 29.7 30.7 29.0 30.7 32.0 29.6
Ours 30.9 29.0 30.3 32.3 33.2 31.2 34.1 36.3 32.2

SSIM(↑)

IRON [8] 85.5 85.7 82.8 88.6 89.2 82.7 90.0 90.8 86.9
InverseTranslucent [9] 86.2 89.6 84.6 89.7 90.7 86.3 92.3 93.3 89.1
NRTF [6] 92.3 94.0 92.5 94.1 94.7 92.8 95.8 96.5 94.1
Ours 93.4 94.7 93.3 94.8 95.7 93.8 96.9 97.6 95.0

LPIPS(↓)

IRON [8] 0.131 0.143 0.173 0.108 0.109 0.179 0.109 0.106 0.132
InverseTranslucent [9] 0.139 0.132 0.165 0.119 0.110 0.186 0.104 0.104 0.132
NRTF [6] 0.110 0.095 0.125 0.088 0.088 0.139 0.082 0.080 0.101
Ours 0.099 0.089 0.123 0.078 0.077 0.132 0.071 0.067 0.092

Table 4.1: Comparison with several state-of-the-art methods on the “Real-SSS” data (8 scenes). Despite
optimized on the same data, our results consistently outperform the existing approaches on all scenes and
all evaluation metrics. Material abbreviations: “C-” stands for “Candle”, “J-” stands for “Jade”, and “S-”
stands for “Soap”.

Nerf-Blender (Original) Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

PSNR(↑)

IRON [8] 26.4 26.2 27.2 22.9 22.7 22.3 25.9 21.7 24.4
InverseTranslucent [9] 24.1 24.8 27.8 24.4 21.8 23.2 25.2 19.0 23.8
NRTF [6] 28.7 33.1 32.3 29.6 23.9 31.2 29.3 23.7 29.0
Ours 32.6 35.4 35.0 35.3 31.3 35.8 35.7 25.4 33.3

SSIM(↑)

IRON [8] 93.0 90.3 89.0 91.2 86.1 83.5 94.0 78.0 88.1
InverseTranslucent [9] 87.4 83.5 88.3 86.3 81.0 82.7 90.1 68.6 83.5
NRTF [6] 93.4 95.7 93.6 94.1 87.4 93.9 96.1 85.8 92.5
Ours 96.2 94.1 95.3 96.6 94.3 96.2 98.3 84.8 94.5

LPIPS(↓)

IRON [8] 0.081 0.144 0.126 0.103 0.156 0.182 0.077 0.204 0.134
InverseTranslucent [9] 0.128 0.194 0.125 0.172 0.204 0.175 0.104 0.278 0.173
NRTF [6] 0.077 0.091 0.079 0.077 0.143 0.097 0.058 0.150 0.097
Ours 0.065 0.135 0.061 0.062 0.084 0.072 0.036 0.196 0.089

Table 4.2: Detailed comparison with the state-of-the-art baselines on the “Synthetic-Original” data (8
scenes). It is worth pointing out that InverseTranslucent [9] was not proposed to handle the type of data
used in this benchmark.

metric protocol [6, 15], including PSNR, SSIM and LPIPS [125]. While our main focus is to
evaluate the objects of the scene, we follow existing protocols [15] to include all the pixels for
evaluation. Following most of the recent evaluation conventions (e.g. [15]), we evaluate every
pixel on the predicted pixel maps (including the background regions). This also includes the
areas where the stand holds the captured objects.

Baseline approaches. We compare with several most representative state-of-the-art
approaches to highlight the strengths of our neural relightable model. All models are trained
with exactly the same data.
• IRON [8] is a recent representative BRDF-based relighting approach and achieves state-
of-the-art performance with the collocated GGX shader. We underwent major efforts to
generalize it to the general setting where the incident light direction, viewing direction and
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Nerf-Blender (SSS) Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

PSNR(↑)

IRON [8] 24.0 22.0 25.8 22.2 24.0 19.3 28.0 19.5 23.1
InverseTranslucent [9] 28.6 23.1 27.5 30.3 24.9 30.0 30.5 20.2 26.9
NRTF [6] 32.2 30.5 32.0 32.8 25.6 33.2 33.4 29.2 31.1
Ours 40.3 36.2 37.1 45.3 34.4 44.0 42.5 34.3 39.3

SSIM(↑)

IRON [8] 90.5 81.5 87.8 90.2 84.1 74.7 91.8 77.7 84.8
InverseTranslucent [9] 90.9 83.7 86.6 93.1 81.3 91.8 94.1 75.8 87.2
NRTF [6] 93.8 93.9 93.8 95.4 87.4 93.9 96.0 88.6 92.9
Ours 98.5 97.4 97.5 99.1 96.4 98.6 99.1 92.9 97.4

LPIPS(↓)

IRON [8] 0.102 0.191 0.129 0.125 0.155 0.239 0.091 0.305 0.167
InverseTranslucent [9] 0.120 0.197 0.149 0.149 0.204 0.097 0.078 0.276 0.159
NRTF [6] 0.078 0.095 0.075 0.087 0.150 0.108 0.061 0.189 0.105
Ours 0.027 0.051 0.031 0.024 0.048 0.077 0.015 0.165 0.055

Table 4.3: Detailed comparison with the state-of-the-art baselines on the “Synthetic-SSS” data (8 scenes).
It is worth pointing out that IRON [8] was not proposed to handle the type of data used in this benchmark.

bi-sector direction are no longer identical. Notably, while the GGX shader cannot handle sub-
surface scattering, optimization in scenarios where lighting is coming from the opposite side
of the camera is essential, especially when translucency is present. We used Mitsuba 3 [126]
to render the trained textured models and fit the best HDR scaling with the ground truth
before computing PSNR.
• InverseTranslucent [9] is a recent representative state-of-the-art BSSRDF relighting
approach. We train the models using spatially varying albedo, sigma (controlling light
transmission underneath the surface) and roughness all in the resolution of 256 × 256. We
found [9] is sensitive to the geometry initialization, and thus we provide the baseline with
the optimized Neus reconstruction using their original implementation [7].
• NRTF [6] is a recent state-of-the-art fully data-driven approach that is designed to handle
global illumination and potentially subsurface scattering.

For [8, 6], we use the provided Neus implementation rather than the original version to
obtain object surfaces.

It is worth pointing out that [8] was originally proposed to handle only the PBR based
materials with the assumptions that all the objects are fully opaque, and hence it was
not proposed to handle our evaluation data of Synthetic-SSS and Real-SSS (our proposed
light stage data). Meanwhile, [9] was originally proposed to handle specifically objects
with translucency, but not necessarily opaque objects as present in our evaluation data
Synthetic-Original. We still include all results in the experiments for reference purposes
since our approach is able to handle all the types of the materials, further showcasing the
wide applicability of the method.

Results. As shown in Tab. 4.1-4.3 and Fig. 4.8-4.10, our results demonstrate clear ad-
vantages compared to all aforementioned methods. Notably, we achieve 5 points overall
average PSNR gain (averaging over all the synthetic and real data) over the best-performing
existing method thanks to our end-to-end learning framework. We conclude that our re-
lighting approach can not only handle a wider range of material types (in particular objects



CHAPTER 4. NEURAL RELIGHTING FOR SUBSURFACE SCATTERING 52

Ours Ours G. T.G. T.

Figure 4.7: Failure cases on specular highlights (left) and translucent shadowing (right). The proposed
method does not explicitly model specularities and shadowing.

with subsurface scattering effects) with significantly improved fidelity, but also stays flexible
representing vivid and rich geometric structures, such as the thin ropes that are generally
not easy to represent using meshes. In contrast to other approaches [8, 9] that were designed
to handle a relatively narrow range of material types, our approach is able to handle the full
variety of materials present in the datasets. This underscores the general applicability of our
approach regarding material representations. Please refer to our supplementary materials
for additional results.

Limitations. Our approach exhibits two main types of failure modes. First, the pro-
posed method may return blurry results for specular highlights (c.f., Fig. 4.7—left) since the
model does not take specularities into account in a dedicated way. Similarly, our approach
does not contain a dedicated model for shadows. In particular, when shadows “penatrate” a
thin layer of translucent material (e.g., Fig. 4.7-right) our model creates blurry boundaries
on otherwise hard shadow borders.

Another avenue for future improvement is rendering speed: the proposed model does not
yet meet the demand of real-time applications. Further, our relighting algorithm is relying
on a light stage capture system and is not yet suited for in-the-wild use.

4.6 Translucency-Reflection Modeling

Image-based lighting encodes the illumination at a point in space from all directions in
an image, the environment map, and uses this information to realistically light an object.
It is a widely used technique in industry due to its flexibility: natural illumination from
the physical world can swiftly be recorded using a 360 degree camera to create a light
probe3 and then used to place virtual objects in real scenes seamlessly. Depending on its
resolution, such a light probe is sufficient to describe the entire far field environmental
light, and can be used to render all kinds of materials. Rough and glossy surfaces can
be reproduced correctly and may contain a high resolution reflection of the environment,
for example; for translucent objects, the entire light transport can be computed from all
directions. However, that comes at a cost: if the light probe is used directly, even for a low

3https://www.pauldebevec.com/Probes/
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Figure 4.8: Detailed comparison for Soap-Lavender (left) and Candle-Head (right) between our results
(Row 4) with other state-of-the-art approaches (IRON [8] in Row 1, InverseTranslucent [9] in Row 2, and
NRTF [6] in Row 3). Recordings can be found in the last row; all images are held out positions for lights
and cameras. Our results show a clear advantage in terms of visual fidelity and geometric accuracy.

Figure 4.9: Envmap relighting results on our real-SSS dataset (light stage captures). The results in each
row are from the same scene, while the results in each column are relit using the same environment map.
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Figure 4.10: Relighting results for various environment maps for the original as well as the translucent
version of the synthetic scenes from the Nerf-Blender synthetic datasets (Synthetic-Original and Synthetic-
SSS ).
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Figure 4.11: Overview of the proposed method. The inputs for our volumetric model are sampling position
x, y, z, view direction θ, ϕ and an environment map (top left). A density model predicts material density
σ. The appearance is predicted in two components: high- and low-frequency. For the high frequency
component, we compute a reflection hint pyramid (see Sec. 4.6.4). This enables the model to make detailed
prediction about specularity while taking ambient occlusion into account. For the low frequency prediction,
we use a downsampled version of the environment map in combination with a HyperNet. Overall, only a
single rendering pass is necessary for full, image-based illumination. Careful optimization of the normals is
necessary during reconstruction: we use three normal estimates in the process and two tie losses; for details,
see Sec. 4.6.4.

resolution of 16×32, 512 passes would have to be performed if no simplifying assumptions are
being made. Even for highly optimized rendering frameworks this makes rendering a single
frame too slow for real-time applications, unless simplifying assumptions about the materials
and lighting are made (e.g. pre-convolving the environment for high-roughness materials,
often used in real time rendering). Yet, combining IBL with radiance field reconstruction
techniques and pre-computed radiance transfer (PRT) is highly attractive. The combination
of these techniques covers the radiance transfer through an object in its entirety without any
simplifying assumptions and allows rendering of even the most complex materials faithfully.

In this part, we propose a method to achieve this at 5 frames per second for 800×800
resolution images. It accounts for hard shadows and specular highlights on glossy surfaces—
a particularly hard case for high resolution environment maps. Our model avoids repeatedly
querying the environment for accumulation and instead uses a neural model to ‘summarize’
them instead. This works well for low frequency illumination and has been explored in the
past with HyperNets. However, this approach does not fare well for high frequency details:
for this scenario, we propose a separate model stream that uses a reflection hint pyramid that
can be precomputed and is queried only once given the computed normal direction. This
means, our model achieves IBL for low- and high-frequency lighting including reflections
in a single pass. We name the full model model TRHM (Translucent-Reflection Hybrid
Modeling).
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Figure 4.12: Separation into low-frequency and high-frequency enables the proposed framework to render
complex materials with high fidelity. In this example, the jade structure is present in the low frequency
rendering, but does not exhibit specular highlights. These are captured well in the high frequency component,
leading to a faithful rendering. Without the separation, reconstruction of this material is not possible.

4.6.1 Overview

Our approach relights a scene based on the given query lighting input - an environment
map that is denoted as E ∈ RME×NE×3, where ME and NE denotes the height and width of
E. During training, our model is optimized from a collection of high dynamic range images
{I|I ∈ RH×W×3} (H for the height and W for the width), with each image associated with
the camera poses as well as the lighting information (e.g., E). We denote each pixel ray as
r ∈ R3, with its radiance from the image capture as L(r) = I(x, y), where (x, y) are the
pixel coordinates of the ray r on the image plane. We thus denote our prediction problem
as L̂(r;E). Part of our training data also involves point lights as the lighting inputs. We
denote the incident direction of the point light as ωl ∈ R3, and the prediction can thus
be conditioned on the point light as L̂(r;ωl). Throughout the methodology section, all the
predicted variables are denoted with “ ˆ ”.

Assumptions. We assume the given image-based lighting is not a near-field lighting as a
result of using environment maps as inputs. We assume all the subsurface scattering effects
are isotropic. The hard shadow effect is not explicitly modeled in our approach and is beyond
the scope of this work.

Modeling. We propose our fast neural relighting algorithm for image based lighting that
faithfully captures lighting effects, such as translucency, subsurface scattering as well as
hard shadows, specular highlights and glossy reflections. We term our model as translucent-
reflection hybrid modeling (TRHM), that stands for two representative lighting effects. With
an environment map as the input, we do not do expensive enumeration of every pixel as a
point light to aggregate the rendering results [6]. Instead, we propose a set of techniques for
enabling image-based lighting without querying the same lighting network numerous times,
including i) a hypernet-based [127, 128, 129] distillation of the neural radiance transfer field
for low-frequency effects such as diffuse component and subsurface scattering (Sec. 4.6.2);
ii) learning of the reflection effects among various surface roughnesses with an incident
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pyramid hint (Sec. 4.6.3); and iii) learning of the local micro-geometry with the help of the
specular highlight cues (Sec. 4.6.4). We also showcase the flexibility of our model for moving
from point-light based data training (e.g., a light stage) into image-based lighting at render
time 4.6.5. Figure 4.11 illustrates the proposed TRHM framework.

4.6.2 Hypernet-based Radiance Transfer Fields

Background - the Point Light Scenario. By incorporating the radiance transfer mod-
eling into the neural relighting framework [6], one can enable global illumination and sub-
surface scattering with orthogonal basis lighting representations. For point lights, adding
the additional dimensions that encode the incident lighting direction ωl [6, 118, 130] would
achieve global illumination effects, i.e., for each query point x ∈ R3 and the associated view-
ing direction d ∈ R3, the color prediction becomes c(x;d;ωl), with the additional input ωl

of the point light information.

HyperNet for Image-Based Lighting. To address the more challenging problem for
relighting with image-based lighting, instead of directly concatenating the envmap E with
(x,d), we propose to use a hyper network [127] to generate the parameters of the color
branch of the NeRF network for better representational power, motivated by recent related
approaches [128, 129]. Our hypernet-based prediction thus becomes

Θcolor = H(E),

L̂low-freq = fΘ(x;d).
(4.2)

Given that a vanilla radiance transfer model in the neural relighting framework generally
lacks in high-frequency situations [10], we use a downsampled low resolution version (16 ×
32) of E as input to the hyper network to improve rendering performance. We empirically
found that a 3-layer MLP is sufficient for including the lighting information to the NeRF
network.

The hyper network is expected to handle only the low-frequency part of the lighting
effects (the diffuse component and subsurface scattering). We next proceed to introducing
our algorithm for handling high frequency lighting effects such as specular reflections and
highlights.

4.6.3 Reflection Hints for Image-Based Lighting

We noticed that reflections on glossy surfaces are one of the most prominent high-frequency
effects that hypernets (Sec. 4.6.2) or the transfer field [6, 130, 118] fail to address. As
illustrated in Fig. 4.12, the high response of the specular highlights on the glossy surface
as well as their high correlation with the surface normal poses major difficulties for existing
works [6, 130, 118]. Incorporating the neural hints [10] for predicting lighting appearance
has demonstrated promising results for reflections. Under the point light condition, Zeng et
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(a) Level 0 (b) Level 3 (c) Level 5
Figure 4.13: Reflection hint pyramid visualization. The reflection hints model reflected irradiance and take
self occlusion into account. As the pyramid level increases, roughness increases and the reflection becomes
more blurry.

al. [10] proposed to incorporate the reflection hints, a GGX micro-facet representation with
four pre-defined roughnesses, for predicting specular highlights. When using an environment
map, the lighting becomes a large collection of light sources, and it is hard to efficiently
fit to the above-mentioned representation without the enumerate-and-accumulate inference
process. We observe that the reflection of a point on the surface is highly dependent on the
envmap intensities int the reflection direction as well as its adjacent directions, supposing
no occluder is present on the reflection ray. With a lower roughness value, the reflection is
impacted by a narrower range of envmap directions, while a higher roughness value means a
wider range of envmap directions impacts reflection value. We propose to utilize a pyramid
of envmaps, denoted as {Ej}j=0,1,2,..., with each level l processed by a Gaussian filter of a
particular kernel size and standard deviation, to approximate the reflection hints for various
surface roughnesses. We simply query the envmap HDR values Ej(ω̂r) in the predicted
reflection direction ω̂r [131] at each level j, and concatenate them to obtain our ‘reflection
hints’ under the image-based lighting condition:

Href(envmap) = {Ej(ω̂r)}j=0,1,2,.... (4.3)

Fig. 4.13 illustrates the reflection hints based on the given environment map lighting,
where we simply cast the object material as the mirror for visualization purpose. The hints
Href(envmap) retrieved from different levels of the environment map demonstrate different levels
of blurriness of the environment map, serving for hints for different levels of roughness of the
materials of the surface reflection. The hint serves a similar functionality as the point-light
reflection hint [10], with the difference that the point-light reflection hint [10] directs the
model to interpolate between the GGX reflection response under varying surface roughness,
while our proposed image-based reflection hint instead lets the model to interpolate between
the varying levels of the envmap HDR response. On one hand, our hint relaxes the constraint
of using only a single point-light, and can be seamlessly integrated into the image-based
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lighting prediction framework. On the other hand, the choice of this hint further enables the
flexibility of transferring the learning from the point-light training data (e.g. a light stage)
to the image-based lighting prediction scenario (Sec. 4.6.5), where different levels of material
roughness shall be able to receive point light signal if the reflection direction ω̂r is close to,
but no identical to, the point light direction ωl.

Handling of self-occlusions. To accommodate self-occlusions along the reflection direc-
tion as well as approximating the prediction of the reflected light for more than one surface
bounce, we further incorporate the self-occlusion cue as part of our reflection hint. More
precisely, we further incorporate the opacity prediction as well as the incident radiance as
part of our reflection hint. We predict these hints via putting a virtual eye on the predicted
surface point, looking toward the predicted reflection direction of the ray (ωr(r)). We de-
note the obtained opacities as well as the radiance color along the reflection direction as
Href(opacities) ∈ R and Href(incident) ∈ R3 respectively. Note that when predicting Href(incident),
it further requires to trace to the next reflection bounce, resulting in a recursive problem.
We found that setting Href(incident) to zero when computing the hints bypasses this issue while
maintaining promising visual results. The full version of our proposed reflection hint could
be written as

Href = {Href(envmap), Href(opacities), Href(incident)}. (4.4)

Based on this hint, we devised a 3-layer MLP to predict the high-frequency prediction
L̂high-freq(r), and compute the full prediction via

L̂(r) = L̂low-freq(r) + L̂high-freq(r). (4.5)

4.6.4 Modeling Local Micro Geometries

We noticed that the quality of modeling of the specular highlights as well as glossy reflections
is highly sensitive to the accurate modeling of the complicated local micro geometry over the
object surface, particularly for materials with very small roughness. A tiny fluctuation on
the surface would significantly alter the specular highlight intensities of the related pixels.
Learning without taking the local geometry into account leads to an over-smoothed pixel
intensity prediction as the ground truth HDR values tend to naively average with each other
with the highlight on or off (Fig. 4.12(a)). We found that by accurately predicting the
normals over the object surface can significantly enhance the accuracy of the highlight and
reflection prediction. Motivated by [131], where a separately estimated surface normal is
used for computing the reflection direction encoding for avoiding linking with the highly
noisy density gradient, we propose to learn an additional normal prediction that is solely for
the reflection purpose.

We found that the availability of the abundant relighting data showcasing the appearance
of the scene under different lighting condition presents a great opportunity to acquire signifi-
cantly more accurate surface reconstruction compared to the NeRF-based approach [131], as
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(a) Ref-NeRF Predicted Normal (b) Our Predicted Normal

Figure 4.14: Surface normal comparison between RefNeRF predicted normals (left) and the proposed
detailed normals for the rendering of micro geometry (right). The gray-scale denotes the dot product
between the normal and h(r). These detailed normals are tied to the RefNeRF normals to quickly find a
good starting point—yet they benefit greatly from the high frequency model information and are notably
more detailed.

the changing highlight cues presented under the varying lighting conditions provide strong
indications of the accurate normal that otherwise is harder to capture in a fixed lighting en-
vironment. Our readily available point-light data that provides the best separation of effects
between lighting sources serve the best use here. More precisely, given the set of captured
images under the point light training data that could precisely separate the reflection effects
from only a single light source, we seek to optimize the separately predicted normal, denoted
as n̂′′(r), on top of the two existing normals in the Ref-NeRF framework [131], namely the
“density gradient normal” (n̂(r)) and the “Ref-NeRF predicted normal” (n̂′(r)). We name
this new normal n̂′′(r) as “predicted normal for reflection purpose only”. The normal n̂′′ is
associated with the ray r and is obtained via volume rendering accumulation of the normal
predictions along r. As we found, under the Ref-NeRF density modeling framework, the
density is highly concentrated near the surface [131], and the obtained normal n̂′′(r) is close
enough for representing the predicted normal on the surface. We use a simple Blinn-Phong
shading model to predict the specular highlight via

L̂high-freq(r) = Â(r) Dot(n̂′′(r),h(r))α̂(r), (4.6)

where both Â(r) and α̂(r) are predicted per-point and accumulated along the ray r similar
to n̂′′(r). h(r) is the half direction between the lighting direction and the viewing direction
as used in the Blinn-Phong model. To train this new normal n̂′′(r), we impose three loss
terms to acquire the high quality prediction. First, we compute the final prediction L̂r in
the same way as in Eq. 4.5, and then impose the pixel loss

Losspixel(r) = ∥L̂(r) − L(r)∥22 (4.7)
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Second, by collecting a small set of pixels that demonstrate extremely high radiance inten-
sities, we directly impose the dot-product loss on these rays:

Lossdot-product = ReLU(∥I(r)∥1 − I0) · (1 − Dot(n̂′′(r),h(r))), (4.8)

where ReLU(∥I(r)∥1 − I0) is a weighting factor and I0 is a constant threshold for clipping
out non-highlight pixels. Lastly, we regularize our predicted normal n̂′′(r) by let it tie to the
Ref-NeRF predicted normal n̂′(r),

Losstie-ref = ∥n̂′′(r) − n̂′(r)∥22, (4.9)

to ensure n̂′′(r) is not deviating too far.
Our predicted normals for reflection purpose n̂′′(r) demonstrated superior quality com-

pared to other candidates (e.g. n̂(r) and n̂(r)). It is free from heavy constrain with the
density as in n̂(r) or overly smooth prediction as in n̂′(r) [131] (Fig. 4.14). With this level of
fidelity regarding geometry and normal prediction, our model is enabled to predict specular
reflections over glossy surface with higher quality.

4.6.5 Network Optimization

Our learning process undergoes two stages. In the first stage, we primarily aims to learn the
geometry as well as the normal n̂′′(r). We train this stage on the point-light data, with the
loss function in Eq. 4.7, 4.8, 4.9. Note in this stage, for low-frequency branch prediction,
we stick to the point-light modeling in Sec. 4.6.2, and utilize the high-frequency prediction
introduced in Sec. 4.6.4 instead of that in Sec. 4.6.3. On the second stage, we fixed the
geometry as well as the predicted normals learned in the previous stage, devise the hyper-
net (Sec. 4.6.2) as well as the reflection hints prediction (Sec. 4.6.3), and train our model
with just the pixel loss (Eq. 4.7) over the image-based lighting training data. Please refer to
our supplementary materials for further details.

Transferring from Point-Light to Envmap. Our model demonstrated the degree of
flexibility for transferring the learning of the point light data (e.g. from a light stage capture)
to the image-based lighting scenario, if the envmap relighting data is not readily available.
The key is the compatibility of our proposed reflection hints (Sec. 4.6.3) for both the point-
light and the environment map prediction mode. More precisely, when learning the second
stage, where we only have the point-light training data, we treat the point-light lighting
source as a one-hot high-resolution environment map for learning the high-frequency branch.
We fix all the geometry and normal prediction in this stage. Note that now we keep the low-
frequency model to be in the point-light mode (Sec. 4.6.2), while we let the high-frequency
branch be in the “reflection hint” mode (Sec. 4.6.3). After the optimization of the second
stage is finished, we additionally learn a third stage by replacing the point-light-based low-
frequency branch with the hyper-net (Sec. 4.6.2) via model distillation. More precisely,
we use the learned point-light-based low-frequency branch to predict and aggregate the
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NRHints

Ours

Ground Truth

Figure 4.15: We compare our results to the latest state-of-the-art approach on neural relighting [10]. Our
results demonstrate clear advantages regarding the handling of the specular highlights. Our approach does
not particularly handle hard shadow as in [10] but can easily incorporate their hint machenism into our
framework.

NRHints

Ours

Ground Truth

Figure 4.16: We compare our results to the latest state-of-the-art approach on neural relighting [10]. Our
results demonstrate clear advantages regarding the handling of the specular highlights. Our approach does
not particularly handle hard shadow as in [10] but can easily incorporate their hint machenism into our
framework.

prediction result for each environment map. We thus fix all the geometry, normal as well as
high-frequency prediction and just tune the hyper-net for low-frequency prediction in this
stage.
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Low-Freq. Pred.

High-Freq. Pred.

Full Prediction

Figure 4.17: Our results as well as the predicted low-frequency and high-frequency results under the
image-based lighting (environment map) setting. It is worth pointing out that our training data for these
real captured scenes only contain point-light based image.

4.6.6 Qualitative Results

We provide qualitative evaluation of our approach both on the point light setting and the
environment map setting. For point light please refer to Fig. 4.15-4.16. For environment
map please refer to Fig. 4.17-4.18. Our results show clear evidence that our model for hybrid
modeling of both the translucency and glossy reflection could achieve promising results for
specular highlights, while maintaining good recovering of the other lighting effects, such as
subsurface scattering.
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Low-Freq. Pred.

High-Freq. Pred.

Full Prediction

Figure 4.18: Our results as well as the predicted low-frequency and high-frequency results under the
image-based lighting (environment map) setting. It is worth pointing out that our training data for these
real captured scenes only contain point-light based image.
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Chapter 5

Conclusion

5.1 Discussions

Discussions on Differentiable Gradient Sampling (Chapter 2) - While a closed-form
solution for the forward and backward propagation for the grid sampling operation would
facilitate our training with the losses we proposed in Chapter 2, we further found that a quick
double backward implementation could facilitate the training more directly. The double
backward process could be summarized below. Suppose the forward pass of a function is
denoted as f(x), and we use f to denote the obtained results from the forward pass f(x).
The backward pass of f , as defined as g, is denoted as

g(x,
∂Lf

∂x
) =

∂Lf

∂f

∂f

∂x
, (5.1)

where Lf denotes the loss signal that is used to compute the gradient g. In our training
pipeline, the obtained results g would be a new independent forwarding variable, and also
receive its loss Lg. We thus need to implement the backward pass for g, which is referred to
as double backward. We could get the backward gradient for the two input arguments of g
as

∂Lg
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=
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(5.2)

By implementing the standard forward (f) and backward (Eq. 5.1) as well as the double
backward (Eq. 5.2) pass, it could achieve the same goal as in our closed-form solution while
consumes less GPU memory footprint. On the other hand, our proposed training supervision
signal (Fig. 2.3, Eq. 2.1) could still further benefit from the double backward implementations
and play the critical role for getting the reconstruction result shown in Chapter 2.

Discussions on our neural relighting approach - While our extension (Sec. 4.6) im-
proves our modeling of the glossy reflection on top of the low-frequency subsurface scattering
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representations, our representation of the newly predicted normal (for reflection purposes)
is predicted in a deterministic way, in contrast to the modeling of distribution as in [131].
This leads to two major limitations. One one hand, our representation could not rectify the
reflection normal prediction under the image-based lighting condition (suppose we have that
type of training data, e.g. synthetic data). Our current training of the reflection normal is all
under the point-light setting. On the other hand, while our reflection normal could capture
local details of the geometry, it fluctuates among adjacent rays, and the texture reflected in
the mirror based on our predicted normal is generally incorrectly twisted.

5.2 Future Directions

Learning generalizable surface reconstructions. With the emergence of Neural Ra-
diance Field [15], more research attention have been paid to approaches for optimizing the
geometry with the RGB learning labels. Given that capturing highly accurate 3D surface
data in real scenes is extremely difficult, it is indeed of high research interest to explore multi-
view data for scene reconstructions. One of the promising data sources that does not require
significant manual efforts would be captured video sequences with calibrated camera poses.
For instance, the RealEstate-10K dataset [132] collected video sequences from YouTube all
capturing static indoor scenes that provided a great chance for learning the generalizable sur-
face reconstruction. Incorporation of the depth data [133] or synthetic scenes could further
boost the reconstruction accuracy and generalizability. It is then up to the neural architec-
ture capacities as well as the abudentness of the data to push the reconstruction accuracy up.
Another interesting direction would be online acquiring the observations from an embodied
robot agent for gradually adapting to the right geometric reconstruction, which is beyond
the scope of this thesis.

Neural relighting. The incorporation of the neural components (e.g. NeRF [15]) into
the solving of the relighting task has brought promising performance. The transfer vector
modeling for relighting further alleviates assumptions of the algorithm concerning global
illumination, and subsurface scattering and is significantly more data-driven than other con-
strained material representations, such as BRDF or BSSRDF. One existing issue concerning
the neural field with transfer vector modeling is that neither the point light nor the hyper-net
can well model high-frequency details. Ad-hoc solutions such as modeling hard shadows [10]
or reflection normal optimizations (Chapter 4) can only address the particular subset of all
the high-frequency signals, with translucent shadowing or light refraction highlights are left
unrepresented - if not considering the reflection highlights are not yet solved satisfyingly. To
our knowledge, finding a unified and principled representation for handling high-frequency
signals in the neural transfer vector modeling framework without introducing all the ad-hoc
hints is still an open problem.

Simplifying the lighting data-capturing process and even making it generalizable to un-
seen objects would also be of great research value and interest. The current data-capturing
process is typically coupled with a high-cost light stage, followed by labour intense capturing
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process and camera pose calibration stage. It is important to seek a solution where only a
single lighting condition is given for the multi-view image captures, typically known as the
material decomposition problem, where major ambiguity is exhibited as the captured pixel
values typically baked all the material properties and the lighting information into a single
RGB vector. Taking subsurface scattering effects into account would add to the ambiguities
that a translucent object can be precisely fitted by a BRDF-based material model under
only one lighting condition. It is important to add proper regularizer, or learn proper priors
within the variational learning framework for a high-quality modeling of this challenging
relighting problem.
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Differentiable surface splatting for point-based geometry processing. ACM Transac-
tions on Graphics (TOG), 38(6):1–14, 2019.

[49] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Jitendra Malik. Multi-view
supervision for single-view reconstruction via differentiable ray consistency. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
2626–2634, 2017.

[50] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable ren-
derer for image-based 3d reasoning. The IEEE International Conference on Computer
Vision (ICCV), Oct 2019.

[51] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Differentiable
rendering of signed distance fields for 3d shape optimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1251–
1261, 2020.



BIBLIOGRAPHY 73

[52] Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. Sdf-srn: Learning signed distance
3d object reconstruction from static images. arXiv preprint arXiv:2010.10505, 2020.

[53] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In
European conference on computer vision, pages 628–644. Springer, 2016.

[54] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[55] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.
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