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Classification of Dot Patterns with Competitive Chunking

Emile Servan-Schreiber
Department of Psychology, Camegie Mellon University

Abstract
Chunking, a familiar idea in cognitive science, has recently been formalized by Servan-
Schreiber and Anderson (in press) into a theory of perception and learning, and it
successfully simulated the human acquisition of an artificial grammar through the simple
memorization of exemplar sentences. In this article | briefly present the theory, called
Competitive Chunking, or CC, as it has been extended to deal with the task of encoding
random dot patterns. | explain how CC can be applied to the classic task of classifying such
patterns into multiple categories, and report a successful simulation of data collected by
Knapp and Anderson (1984). The tentative conclusion is that people seem to process dot
patterns and artificial grammars in the same way, and that chunking is an important part of

that process.

Introduction

Chunking, our natural tendency to process stimuli by parts, is one of the most familiar and
powerful ideas of cognitive science. Strangely, apart from Laird, Newell, and Rosenbloom's
recent Soar theory (Newell, in press), there have been no serious attempts to formalize chunking
since its discovery by Miller 34 years ago (Miller, 1956). Recently, Servan-Schreiber and
Anderson (in press) have demonstrated how a chunking program can simulate human subjects
learning an artificial grammar through mere memorization of exemplar sentences. That program
was based on a theory called competitive chunking, or CC. In this paper, | demonstrate how CC
can be applied to the classic problem of classifying random dot patterns.

Competitive Chunking of Dot Patterns

Representation; whatis a chunk?

A chunk is a long term memory hierarchical structure whose constituents are chunks also.
Every chunk has an associated strength which is a composite score reflecting how often and
recently it has been used in the past. A newly created chunk has a strength of one unit. Its
strength is increased by an additional unit every time it is used, or re-created. Strength also
decays with time. At any point in time, the strength of a chunk is the sum of its successive,
individually decaying, strengthenings:

Strength = Z Ti'd (1)
|

where T; is the time elapsed since the ith strengthening, and d, the decay parameter, determines
the severity of strength decay (0 <d < 1). Once a chunk is created, it exists for ever, and there is
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no limit on how much strength it can accumulate. This strength construct is identical to that of
ACT* for declarative memory traces (Anderson, 1983).

When the stimuli are dot patterns, two kinds of chunks are assumed: dot-chunks, and
complex-chunks. Dot-chunks encode a single stimulus dot, whereas complex-chunks encode a
pair of chunks. For example, the dot-chunk ((35 22)) encodes a dot located at cartesian
coordinates (35 22) on the stimulus matrix. Examples of complex chunks are: (((35 22)) ((100
75))) which encodes two dot-chunks, and ((((35 22)) ((100 75))) ((125 200))) which encodes a
complex-chunk and a dot-chunk.

c W for?

Chunks are used to perceive stimuli. In the case of dot patterns, a percept is a collection of
stimulus dots and chunks. Perception consists of multiple passes through a percept elaboration
cycle, where the elementary (pre-elaboration) percept is simply the set of stimulus dots present in
the pattern: chunks are retrieved as competing candidates to build upon the current percept, and
some are selected. The selected chunks are used to elaborate on the percept, yielding a new
percept as a basis for another cycle. The cycle repeats until no chunks are retrieved for further
elaboration.

To be retrieved as a candidate for elaboration, a chunk must match some part of the current
percept. Matching is defined slightly differently for dot-chunks and complex-chunks. A dot-
chunk has a certain probability of matching any dot that is present within its immediate
surroundings. This probability is 1 for the dot that is encoded by the dot-chunk, and decreases

exponentially with the distance between the encoded dot and the target dot:

Probability of match = e~ ™M - distance 2

where m , the match parameter, determines how steep the exponential is (m > 0). The larger m is,
the harder it is for a dot-chunk to match distant dots. Figure 1 plots this function for m = .05.

A complex-chunk matches some part of the percept if and only if both of its subchunks are
equivalent to chunks in the percept. Chunk equivalence is defined recursively: The equivalence
between two dot-chunks is probabilistic, depending on the distance between their encoded
dots, following Equation (2). Then, two complex-chunks are equivalent if and only if (a) they have
the same hierarchical structure, and (b) they have equivalent terminal dot-chunks at the bases of
their hierarchies.

Still, it isn't enough that a chunk matches some part of the percept for it to be retrieved as a
candidate for elaboration. The match must also have enough support. The support for a
complex-chunk match is defined as the summed strength of the matched chunks. But the
support for a dot-chunk match is infinite. The probability that a chunk match is retrieved is then a
negatively accelerated increasing function of its support:

{ — e —csupport
Probability of retrieval = (3)

1 + e —csupport
where ¢, the competition parameter, determines the steepness of the probability curve (¢ > 0).

The larger ¢ is, the easier it is to retrieve chunks, at all levels of support. Figure 2 plots this
function for ¢ = .5.
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Figure 1. Plot of the probability that a dot-chunk matches a stimulus (target) dot. It decreases
exponentially as the distance between the dot that is encoded by the dot-chunk and the target dot
increases, following Equation (2). The value of m that is shown is the one | used in the simulation | describe
later.
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Figure 2. Plot of the probability that a chunk match is retrieved as a candidate for elaboration. It
increases as its support increases, following Equation (3). The value of ¢ that is shown is the one | used in
the simulation | describe later.
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Once chunk matches have been retrieved, they are organized into sets of compatible
matches. Twe matches are compatible if they match different parts of the percept. The alternative
sets then compete against each other for the privilege of elaborating on the percept. For each
set, the sum of the strengths of its constituent chunks is computed, and the set of matches with
the highest score is selected as the winner. Elaboration then consist of replacing the parts of the
percept that were matched by the chunks in the selected set of matches.! Every elaborating
chunk is strengthened, while their losing competitors are left to decay. Note that this selection
process, based on compatibility and strength, favorises sets of many matches over sets of fewer
matches. It also encourages the participation of weaker chunks as long as they are compatible
with a number of stronger chunks. This, in turn, allows them to gain strength.

It is interesting to note the dual role that strength plays in the elaboration process: The
probability that a matching chunk is retrieved depends on the strength of the chunks that it
matches , its support, while the probability that it is selected among the retrieved chunks depends
on its own strength. Thus, a chunk's strength is a critical parameter for both itself and the chunks
that may match it. When a chunk is strengthened, both itself and the chunks that may match it are
being learned. Conversely, when a chunk's strength is left to decay, both itself and the chunks
that may match it are being forgotten. A chunk is being learned the fastest, then, when its
subchunks tend to be equivalent to chunks that co-occur frequently in the environment.

Given that chunks are, by definition, familiar units of knowledge, it follows that the more
chunks participate in the percept elaboration process, the more familiar the stimulus is perceived
to be. The notion of familiarity can easily be formalized in CC. Note that every time that a complex-
chunk elaborates on the current percept, two of the percept's chunks are replaced by a single
chunk in the next percept. Thus, elaborating on the percept with complex-chunks has the effect
of reducing the number of parts at the top level of the percept. The implication is that the more
chunks participated in the elaboration process, the less parts there are in the final percept.
Therefore, the relationship between familiarity and the number of parts in the final percept, call it
nchunks, can be characterized as follows: the larger nchunks is, the less familiar the stimulus is
perceived to be. Conversely, the smaller nchunks is (its minimum value is 1), the more familiar the
stimulus is perceived to be. To formalize further, Servan-Schreiber and Anderson (in press)
assumed that familiarity can take values from 1 (maximum) to an asymptotic 0 (minimum), and that it
is a rapidly decreasing function of nchunks:

Familiarity of stimulus = e1—nchunks (4)
This formula captures the notion that if a stimulus can be sufficiently elaborated upon so that the
final percept consists of a single chunk, then it is perceived as maximally familiar.

1 Making the elaboration process set-based is a departure from its earlier specification in Servan-
Schreiber and Anderson (in press). In that earlier verion of the theory, matches competed individually for
elaboration, and a single match, that with the strongest chunk, was selected at each cycle.

185



Chunk Creation,

Learning in CC is two-fold. As discussed above, existing chunks are learned when they are
strengthened. Strengthening and strength decay allow for the tuning of the existing knowledge
base. But CC also has a process for chunk creation.

The creation process is a direct extension of the perception process, and shares many of its
characteristics. The input to the creation process is the final percept, and its output is a collection
of new chunks. The goal of that process is to create chunks that will have a good chance of
participating in the perception process should the same or a similar stimulus be presented, thus
increasing its familiarity by reducing nchunks. To that end, the proposed new chunks are those
that would have enough support to be retrieved. Because stimulus dots provide infinite support
to dot-chunks that encode them, if the final percept contains some stimulus dots that were not
matched by any dot-chunk, then new dot-chunks are created to encode them. If the final percept
contains two or more chunks, then a new complex-chunk is proposed that encodes the pair of
chunks, in the percept, with the largest summed strength. Because that measure is akin to the
proposed new chunk's support, Equation (3) is used to compute the probability that it is created.
A newly created chunks is given a strength of one unit. If it already exists then it is simply
strengthened. CC does not keep multiple copies of a chunk.

Applying CC to the Classilfication Task

General Principles.

A classic design of dot-pattern classification experiments includes a training phase and a
testing phase. In the training phase, subjects are shown distortions of three prototype patterns
and are instructed to classity them into three categories. When they make an incorrect
classification, they are given feedback on the correct response. In the testing phase, the
feedback is suppressed and the patterns that must be classified are of at least three kinds:
distortions of the prototypes that were shown during the training (OLD), distortions of the
prototypes that were not shown during training (NEW), and the prototypes themselves (PRO).
The dependent variables of interest are then the percentages of correct classifications of each
kind of pattern.

When CC is presented with a dot pattern, it builds as compact a percept as it can. The output
of the perception process is then pchunks, a measure of how familiar the stimulus is perceived to
be. When its task is to classify, CC keeps multiple separate sets of chunks, one per category.
Then, when a pattern is presented, CC can compute multiple values of nchunks, one per chunk
set, and select the category that is associated with the set of chunks that yielded the smallest
value of nchunks, the most familiar percept. If feedback on the correct classification is given, as in
the training phase, then it can be used to guide the creation of new chunks. Chunks are created
only from the percept associated with the correct category, and the new chunks become part of
the set of chunks associated with that category. The next time that a pattern from that category is
presented, CC has thus increased its chance of building a compact percept with the chunks from
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the correct category.

To make the selection of a response, on each trial, more dependent on the context provided
by the previous trials, | decided to transform the values of nchunks into relative familiarity scores,
or f-scores. Given a particular set of chunks, an f-score is simply the ratio of the average value of
nchunks for all previous stimuli to the value of npchunks for the current stimulus. Therefore the
smaller the value of nchunks for the current stimulus is, compared to its average value for previous
stimuli, the larger its f-score is. An f-score that is less than 1 indicates that the current stimulus
appears less familiar than previous stimuli have (on average). An f-score that is larger than 1
indicates the converse. The response selection rule is then to select the category that is
associated with the set of chunks that yields the largest f-score.

Experimental Test of the Theory.

To test CC's ability to classify random dot patterns, | selected the experimental design of
Knapp and Anderson (1984). There are 3 categories. During training, a single distortion of
category A's prototype is presented 24 times, 6 distortions of category B's prototype are
presented 4 times each, and 24 distortions of category C's prototype are presented once each,
for a total of 72 training patterns, 24 per category. The 3 prototypes are generated by placing 9
dots at random locations in a 300 by 300 array, and the distortions are generated by moving each
dot in a prototype exactly 25 array units from its original location, in a randomly chosen direction.
(Three prototypes are randomly generated for each subject.) At test, OLD, NEW, and PRO
patterns are presented from each category, 8 patterns representing each of the 9 possible
combinations of pattern kind and category, yielding 72 testing trials. |

Knapp and Anderson found (a) that the correct classification of OLD patterns decreased as
the number of different exemplars seen during training increased, (b) that the correct classification
of NEW and PRO patterns, on the contrary, increased with the number of different exemplars
seen during training, and (c) that the PRO patterns were always more correctly classified than the
NEW patterns.

There are three parameters to be set in CC: the decay parameter d, the competition
parameter, ¢, and the match parameter, m. Due to the high computational cost of running
simulated subjects, | did not try many different combinations of values for these parameters, but,
rather, relied on past experience with CC to select reasonable values. The values of ¢ and d that
Servan-Schreiber and Anderson (in press) found appropriate in simulating the acquisition of an
artificial grammar were .5 and .5. | used those. For m, which is a new parameter for CC, | relied on
Knapp and Anderson's (1984) experience with their own theory that contained a dot matching
function very similar to Equation (2). Their experience points to a value of m of about .05. | used
that. To reduce the computational cost further, without sacrificing psychological plausibility, CC
was allowed to create new chunks only on those training trials when it made an incorrect
classification. On testing trials, the chunk creation process was completely turned off, although
the strengthening and strength decay processes continued to operate. Time was increased by
one unit with every trial.
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Figure 3 plots the average classification performance of 50 simulated subjects. Clearly, the
qualitative pattern of results reported by Knapp and Anderson (1984) is reproduced. As the
number of different exemplars of a category seen during training increases, the classification of
OLD patterns suffers, while that of NEW and PRO patterns is enhanced. At the same time, the
PRO pattems are always more easily classified than the NEW pattems.
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Figure 3. Percentages of correct classifications of OLD, NEW, and PRO patterns in each of the three

categories A (1 learned exemplar), B (6 learned exemplars), and C (24 learned exemplars). The values of
CC's parameters ¢, d, and m, in this experiment, were .5, .5, and .05 respsctively.

Conclusion

CC already offers a precise and comprehensive theory of how subjects acquire artificial
grammars, in the laboratory, through the simple memorization of exemplar sentences. The
research | report here is CC's first foray into the classic problem of abstracting visual categories
from exemplars. The results of a limited experiment are encouraging, and call for more
experimentation with the theory. There is also independent evidence that the classification of dot
patterns is likely a fertile ground for a theory of perception and learning based on chunking. Hock,
Tromley, and Polmann (1988) report that, in the process of encoding dot patterns, people are
very sensitive to configurational cues encoded into what they call "perceptual units” Evidently a
synonym for "chunk”. CC has the potential to provide a unified explanation of how people
abstract category information, through the chunking of exemplars, in both verbal and visual
domains.
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