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Aberrant activation of TCL1A promotes stem cell expansion in 
clonal hematopoiesis

A full list of authors and affiliations appears at the end of the article.

Abstract

Mutations in a diverse set of driver genes increase fitness of hematopoietic stem cells (HSCs), 

leading to outgrowths termed ‘clonal hematopoiesis’ (CH)1. These lesions are precursors for blood 

cancers2-6, but the reasons for their fitness advantage remain largely unknown, partially due to a 

paucity of cohorts where clonal expansion rate has been assessed by longitudinal sampling. To 

circumvent this limitation, we developed a method to infer expansion rate from single timepoint 

data called PACER (passenger-approximated clonal expansion rate) and applied it to 5,071 persons 

with CH. A genome-wide association study revealed that a common inherited polymorphism 

in the TCL1A promoter associated with slower expansion rate in CH overall, but the effect 
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varied by driver gene. Those carrying this protective allele had markedly reduced growth rate 

or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1, and SRSF2, but not 

DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction 

of mutations in TET2 or ASXL1 led to TCL1A protein expression and expansion of HSCs in 

vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did 

TCL1A shRNA knockdown. Forced expression of TCL1A promoted expansion of human HSCs in 

vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly 

mutated driver genes in clonal hematopoiesis may be mediated by TCL1A activation.

Aging is characterized by the accumulation of somatic mutations, nearly all of which are 

“passengers” that have little fitness consequence. However, infrequent fitness-increasing 

mutations, called “drivers”, may result in an expanded lineage of cells, termed a clone. 

Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the acquisition of 

specific, cancer-associated driver mutations in HSCs from persons without a blood cancer1. 

The genes commonly mutated in CHIP include regulators of DNA methylation (TET2, 

DNMT3A), chromatin remodeling (ASXL1), and RNA splicing (SF3B1, SRSF2, U2AF1). 

CHIP carriers have a risk of hematologic malignancy, coronary heart disease, and mortality 

in proportion to the variant allele fraction (VAF), a measure of clone size2-8. In contrast 

to low VAF clones, which are ubiquitous in older individuals9, large VAF clones are less 

common. The factors driving the expansion of these mutant clones are largely unknown, 

partially due to a lack of sizable cohorts with serially sampled blood over decades which 

would otherwise enable studies on genetic and environmental correlates of clonal expansion. 

Here, we used PACER to investigate the germline determinants of clonal expansion in 

5,071 CHIP carriers from the NHLBI Trans-Omics for Precision Medicine (TOPMed) 

program10,11, which revealed activation of TCL1A as an event driving clonal expansion 

downstream of multiple driver genes in CHIP.

Development of PACER

HSCs accrue passenger mutations at a rate that is constant over time and that is similar 

across individuals12-14. Thus, the number of passengers in the founding cell of a CHIP 

clone can be used to approximate the date of acquisition of the driver mutation (Figure 1a). 

Prior studies have enumerated passenger burden in HSCs by performing WGS on colonies 

derived from single cells15,16. We theorized that the passenger burden in the founding 

cell for a CHIP clone could instead be approximated from WGS of whole blood DNA 

without isolation of single cells. As a mutant clone expands, the VAF of both the driver 

and passenger mutations increases. The number of passengers in any given cell is simply 

the sum of the mutations present prior to the acquisition of the driver event (ancestral 

passengers) and mutations acquired after the driver event (sub-clonal passengers). Because 

the limit of detection for mutations from WGS at ~38X coverage depth is ~8-10% VAF, the 

detectable passengers in whole blood DNA are far more likely to be ancestral passengers 

than sub-clonal passengers. This is because the sub-clonal passengers are private to each 

subsequent division of the original mutant cell, and, in the absence of a second driver event, 

quickly fall below the limit of detection in WGS data from bulk tissue (Supplementary Text 

1). Furthermore, as the size of the clone also determines the number of detectable passengers 
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from WGS due to the limited sensitivity of detection at 38X depth, high fitness clones will 

harbor more detectable passengers than lower fitness clones that arose at the same time. 

Based on these observations, we used the detectable passengers as a composite measure 

of clone fitness (defined as relative yearly growth rate of mutant HSC clones compared to 

HSCs without drivers) and birth date. For two individuals of the same age and with clones 

of the same size, we expect the clone with more passengers to be more fit, as it must have 

expanded to the same size in less time.

We identified CHIP in 5,071 out of 127,946 participants in TOPMed by analyzing blood 

DNA whole genome sequencing (WGS) data with Mutect217 at pre-specified loci (Methods, 

Supplementary Table 1). CHIP was strongly associated with age at blood draw and >75% of 

these mutations were in DNMT3A, TET2, or ASXL1, similar to our previous report from 

TOPMed11. To estimate the number of passenger mutations, we performed genome-wide 

somatic variant calling for the 5,071 CHIP carriers and 23,320 controls without CHIP using 

Mutect2. As these variant calls contain a combination of true somatic variants, germline 

variants, and sequencing artifacts, we implemented a series of filters to enrich for the 

detection of true passengers (Methods). CHIP carriers had on average 271 passengers per 

genome after filtering (interquartile range: 142 – 317), representing an increase of 54% 

(95% CI: 51%-57%) (Extended Data Fig 1a) compared to the controls after adjusting 

for age and study cohort using a negative binomial regression. Greater than 98% of the 

passengers were non-coding. We presumed the detected passengers in those without CHIP 

were reflective of clonal hematopoiesis with unknown driver mutations18, though some of 

these could have been incompletely removed artifacts. The passengers were also positively 

associated with age, on average increasing by 13.7% (95% CI: 13.0%-14.3%) each decade. 

While 89% of CHIP carriers had a single driver mutation, each additional driver mutation 

was associated with an increment in passenger mutation counts (Extended Data Fig 1b). 

This is likely due to the presence of cooperating driver mutations within a clone, as 

each successive expansion caused by a new driver captures additional passengers that 

accumulated in the time between the last driver event and the newer one. For this reason, 

we limited further analyses only to the 4,536 CHIP carriers with a single driver event. In 

summary, the detected variants in our callset had several characteristics to suggest that they 

were highly enriched for bona fide passengers.

We first validated the passenger count as an estimator of fitness theoretically by constructing 

a simulation of HSC dynamics to characterize the relationship between fitness and 

detectable passenger counts (Supplementary Text 1). The simulation indicated that founding 

passengers were associated with driver fitness (spearman ρ =0.09, pvalue < 2 x 10−16). We 

estimated a passenger mutation rate per diploid genome per year of 2.3, or a per-base pair 

rate of 3.83 x 10−10. This number is substantially lower than previous estimates using WGS 

from single hematopoietic colonies, in part because we limited the base substitutions in our 

analysis to C>T or T>C (Methods), but also likely due to the lower sensitivity of detecting 

true passengers in whole blood WGS compared to single-cell derived colonies. Nonetheless, 

we were able to use these data to derive a hierarchical Bayesian estimator of clone fitness, 

which adjusts for age at blood draw and cohort effects and confirmed its correspondence to 

the observed passenger counts (Supplementary Text 1).
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PACER estimates mutation fitness

An important test for the accuracy of our fitness estimator is a comparison of its predictions 

with those from empirical datasets where clone growth is assessed longitudinally. A 

prediction of high importance is fitness estimates of different driver mutations. Building 

on recent computational estimates of variant fitness19, we estimated the distribution of 

passenger counts for the most common CHIP driver genes as a measure of fitness. 

We used non-R882 DNMT3A mutations as a reference point and estimated the relative 

abundances of passengers in other genes using negative binomial regression adjusting for 

age, VAF, sex, and study cohort. We termed the approach of using age- and VAF-adjusted 

passenger mutations to estimate fitness in regression models ‘passenger-approximated clonal 

expansion rate’, or PACER. Mutations in splicing factors (SF3B1, SRSF2, U2AF1) and 

JAK2 V617F mutations were the fastest growing according to PACER, while DNMT3A 
R882− was among the slowest (Figure 1b, Supplementary Table 2). Mutations in TET2, 

ASXL1, PPM1D, TP53, ZBTB33, and GNB1 were in the next tier and had approximately 

the same level of fitness estimated from PACER. Relative to the R882− carriers, we 

observed a modest increase in fitness in DNMT3A R882 mutant clones. These observations 

are concordant with prior empirical estimates of variant fitness derived from longitudinal 

sequencing of samples with clonal hematopoiesis6,16,20-22. When driver gene fitness 

estimates from PACER were directly compared to estimates from a large longitudinal dataset 

of clonal hematopoiesis16, the Rsq was 80% (Figure 1c, Methods).

To further validate the utility of passenger count, we asked whether PACER could also 

predict future clone growth within individuals. We performed targeted sequencing for driver 

variants from two blood samples taken approximately 13-19 years apart in 55 CHIP carriers 

with a single driver mutation from the Women’s Health Initiative (WHI). WGS from the 

first time point was used to determine passenger count and the change in VAF of driver 

variants divided by the change in time (dV AF
dT ) was used to approximate the empirical 

growth rate (Figure 1d). We constructed a simple estimator of dV AF
dT  using only the 

passengers, VAF, and age from the first blood draw (Methods). Our theoretical framework 

considered passengers to be an estimate of clone fitness after accounting for age and VAF, 

hence these latter two variables were also considered in the model. A model that included 

age and VAF in addition to passenger count was superior for predicting dV AF
dT  (Rsq = 32.5%, 

Adjusted Rsq = 28.6%) than models only including passengers (Rsq = 12.6 %, Adjusted Rsq 

= 11%), age (Rsq = 13.9%, Adjusted Rsq = 12.3%), or VAF (Rsq = 0.3 %, Adjusted Rsq = 

−1.6%). In all models, the passenger count variable was significantly associated with dV AF
dT

(Figure 1e, Extended Data Fig 1c).

To contextualize its performance, we compared PACER to fitness estimators derived from 

longitudinal datasets (102 individuals with clonal hematopoiesis from Fabre et al. 202216 as 

well as 24 individuals from WHI) (see Supplementary Text 2 and Supplementary Table 3-4). 

Each individual had 3-5 assessments of VAF over several years, and fitness estimates derived 

from the first 2-4 measurements were used to predict dV AF
dT  between the penultimate and 
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final timepoints. We observed that the point estimates of Rsq for the correlation of dV AF
dT ∼

fitness in these datasets ranged from 4.5% to 20%. These results indicate that PACER, which 

is derived from a single blood draw, predicted future clone growth comparably to, if not 

better than, fitness estimators derived from longitudinal data with 2-4 serial measurements.

To consider alternative statistical approaches, we compared the PACER derived fitness 

estimates to our hierarchical Bayesian estimator of clone fitness (PACER-HB, Methods), 

and observed strong correspondence between the two fitness estimates (Supplementary Text 

1), suggesting that the relative simplicity of PACER does not clearly reduce its performance 

compared to more sophisticated approaches.

GWAS of PACER

We performed a genome-wide association study (GWAS) of PACER in CHIP carriers to 

identify inherited genetic variation that associates with clonal expansion rate (Methods). 

In this analysis, we refer to the PACER score as the residuals from the linear regression 

of passenger counts with age at blood draw, study, VAF, and the first ten genetic ancestry 

principal components included as covariates.

The GWAS identified a single locus at genome-wide significance overlapping TCL1A 
(Figure 2a), and genetic fine-mapping further narrowed down the associated region to a 

credible set containing a single variant, rs2887399 (Extended Data Fig. 1d, Methods). We 

did not find any association between PACER and rare variants near rs2887399, suggesting 

that rs2887399 is not tagging other genetic variants and is the causal variant at this locus 

(Extended Data Fig. 1e-f). The alternative (alt) allele of rs2887399 is common, occurring 

in 26% of haplotypes sequenced in TOPMed, and each additional alt-allele associated 

with a 0.15 decrease in PACER z-score (pvalue = 4.5 x10−12). rs2887399 lies in the core 

promoter of TCL1A as defined by the Ensembl regulatory build 10823, 162 base-pairs 

from the canonical transcription start site (TSS) and was nominated as the causal gene by 

the Open Targets24 variant-to-gene prediction algorithm. TCL1A has been implicated in 

lymphoid malignancies25, but it has not been studied in the context of HSC biology. Of 

note, the region in the TCL1A promoter where rs2887399 resides is poorly conserved with 

non-primate species (Extended Data Fig. 1g).

We next performed a genome-wide search of rare variation associated with the passengers 

and identified 15 windows associated with passenger counts at Bonferroni significance 

(pvalue = 2.9 x 10−5, Supplementary Table 5-6), including a distal enhancer for TNFAIP3 
(pvalue = 5.4 x 10−7) (GeneHancer26).

Stratified associations with rs2887399

We asked whether the association between rs2887399 and PACER varied by CHIP driver 

gene. Using DNMT3A as the reference, we observed that rs2887399 was more protective 

against clonal expansion in TET2 than DNMT3A-CHIP (beta = −0.24 per alt-allele, pvalue 

= 9.6 x 10−4, Supplementary Table 7). Stratification of PACER score by rs2887399 genotype 
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revealed that the alt-allele slowed growth of TET2 clones but had little effect on DNMT3A 
clones (Figure 2b).

Clones with a decreased expansion rate may never grow large enough to be detected, so 

we also performed association tests between rs2887399 and presence of a CHIP-associated 

driver mutation stratified by gene. In our previous analysis11, we reported that the alt-

allele was associated with increased risk for DNMT3A mutations. Prior reports have 

also identified that the alt-allele of rs2887399 decreases risk for mosaic loss of the Y 

chromosome (LOY)27. Here, we observed that rs2887399 was associated with significantly 

reduced odds of mutations in TET2, ASXL1, SF3B1, and SRSF2 (Figure 2c, Supplementary 

Table 8-9). The effect size of rs2887399 was large, as 2 copies of the alt-allele conferred 

odds ratios for having a driver mutation from 0.22 to 0.63. The risk reduction was 

particularly strong for mutations in SF3B1 and SRSF2, as well as for having >1 non-

DNMT3A driver mutations. In sum, these results indicate that the alt-allele at rs2887399 

is protective against CHIP due to driver mutations in several genes that have higher risk of 

progression to frank hematologic malignancy6,28.

Our analysis predicts that the alt-allele of rs2887399 should reduce expansion rate of 

several -non-DNMT3A mutant clones. We performed targeted sequencing in 900 additional 

participants in WHI at two timepoints taken a mean of 16.2 years apart and identified those 

with mutations in DNMT3A, TET2, ASXL1, or SF3B1 (n=351, including 53 previously 

identified from the PACER validation). Using this dataset, we asked whether the alt-allele 

was associated with the expansion rate of CH clones. We defined clonal expansion as the 

percent growth per year of the CH clones as estimated by a Bayesian logistic growth model 

(Methods). We observed that each alt-allele of rs2887399 was associated with reduced 

expansion in TET2 and ASXL1 mutant clones by 4% but not in DNMT3A mutant clones, 

concordant with the prediction of PACER (Figure 2d, Supplementary Table 10). TET2 
and ASXL1 clones with the alt-homozygous rs2887399 genotype had very slow rates 

of clonal expansion (0.5% mean percent growth per year) compared to clones with the 

ref-homozygous genotypes (8.3% mean percent growth per year). These results provide 

further validation that PACER can accurately identify correlates of clonal expansion.

We sought to understand why the alt-allele of rs2887399 was associated with increased 

prevalence of DNMT3A-CHIP but had little effect on DNMT3A clonal expansion rate. 

Recent work has demonstrated that hematopoiesis becomes increasingly oligoclonal during 

aging as competition between clones with varying degrees of fitness intensifies13. We 

hypothesized that carrying the alt-allele of rs2887399 would lead to increased likelihood 

of DNMT3A-mutant clones growing to detectable levels due solely to reduced fitness 

of other competing clones. To test this hypothesis, we performed a simulation of clonal 

expansion with two competing clones carrying DNMT3A and TET2 mutations, respectively. 

The DNMT3A clone fitness was kept constant but the relative fitness of the TET2 clone was 

20% higher relative to DNMT3A in one setting, but 20% lower in the other setting, similar 

to the estimates from PACER for relative fitness of TET2 clones from those with G/G versus 

T/T genotype at rs2887399. Reducing the fitness of TET2 was sufficient to increase the 

likelihood of the DNMT3A clone expanding to detectable levels (Extended Data Fig 2a).
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TCL1A expression in hematopoietic cells

We sought to establish how rs2887399 alters clonal expansion. We first asked if rs2887399 

was associated with TCL1A expression in any cell type. As identified in the GTEx v829, 

the alt-allele reduces expression of TCL1A in whole blood (normalized effect size = −0.13, 

pvalue = 1.4 x 10−5). The GWAS of PACER colocalized30 with cis-expression quantitative 

trait loci (eQTLs) for TCL1A in whole blood (posterior probability of a single shared causal 

variant = 97.1%, Extended Data Fig 2b). This association is likely driven by B-cells, as 

TCL1A is highly expressed in B-cells but appears to have absent or low expression in all 

other cell types in blood except for rare plasmacytoid dendritic cells (Supplementary Table 

11, Extended Data Fig 2c, Human Cell Atlas31).

Little is known about TCL1A expression in HSCs. We examined whether CHIP-associated 

mutations altered the regulation of the TCL1A locus in human hematopoietic stem and 

progenitor cells (HSPCs) using publicly available single-cell RNA sequencing (scRNA-
seq) and ATAC-sequencing (ATAC-seq) datasets of normal and malignant hematopoiesis. 

TCL1A was expressed in fewer than 1 in 1000 cells identified as HSC/MPPs in scRNA-seq 

data from 6 normal human marrow samples (range 0-0.17%)32,33. In contrast, TCL1A 
was expressed in a much higher fraction of HSC/MPPs in 3 out of 5 patients with 

TET2 or ASXL1-mutated myeloid malignancies (range 2.7-7%) (Extended Data Fig 3a, 

Supplementary Table 12). Next, using a dataset of ATAC-seq in normal and pre-leukemic 

HSCs (pHSCs)34, which are residual non-leukemic HSCs present in patients with AML that 

often harbor only the initiating driver mutations, we evaluated chromatin accessibility at 

the TCL1A promotor. Consistent with the lack of TCL1A transcripts in normal HSCs, we 

observed that the promoter was not accessible in normal human donor HSCs, in HSCs from 

patients with AML that carried no driver mutations, or in pHSCs with DNMT3A mutations. 

In contrast, the patients with TET2 mutated pHSCs had clearly accessible chromatin at 

the TCL1A promoter (Extended Data Fig 3b), and this locus had the greatest log2 fold-

change of any differentially accessible TSS peak in TET2-mutant versus control samples 

(Supplementary Table 13).

We next asked if the neighboring genes TCL6 or TCL1B either became expressed or had 

accessible chromatin in HSCs carrying CHIP mutations in these same datasets. In contrast to 

the result for TCL1A, no RNA expression or accessible promoter chromatin could be found 

at these genes in HSCs (Supplementary Table 12, Extended Data Fig 3c), further supporting 

TCL1A as the causal gene for clonal expansion.

Functional effect of rs2887399 on HSCs

Based on these observations, we proposed the following mechanistic model: Normally, the 

TCL1A promoter is inaccessible and gene expression is repressed in HSCs. In the presence 

of driver mutations in TET2, ASXL1, SF3B1, SRSF2, or LOY, TCL1A is aberrantly 

expressed and drives clonal expansion of the mutated HSCs. The presence of the alt-allele 

of rs2887399 restricts accessibility of chromatin at the TCL1A promoter, leading to reduced 

expression of TCL1A RNA and protein and abrogation of the clonal advantage due to the 

mutations (Extended Data Fig 4).
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To test our model experimentally, we obtained human CD34+ mobilized peripheral blood 

cells from donors who were G/G (homozygous reference), G/T (heterozygous), or T/T 

(homozygous alternate) at rs2887399. The three donors were healthy and between 29-32 

years old at the time of donation. We used CRISPR to introduce insertion-deletion mutations 

with high efficiency in DNMT3A, TET2, or ASXL1 to mimic CHIP variants, or at the 

adeno-associated virus integration site 1 (AAVS1) as a control (Figure 3a, Extended Data 

Fig 5).

First, we examined whether chromatin accessibility at the TCL1A promoter was altered by 

rs2887399 genotype. We edited CD34+ cells from each genotype for TET2, sorted cells with 

a marker profile of HSCs and multipotent progenitors (MPPs) (Lineage− CD34+ CD38− 

CD45RA−), cultured them in cytokine-supported media, and then performed ATAC-seq. 

Consistent with the pHSC data, we detected increased accessibility at the TCL1A promoter 

in TET2-edited, but not DNMT3A-edited, cells from the rs2887399 G/G donor relative to 

AAVS1-edited cells (Figure 3b, Extended Data Fig 6, Supplementary Table 14). However, 

accessibility was decreased in samples from carriers of the alt-allele in a dose-dependent 

manner, indicating that the protective effect of the alt-allele of rs2887399 is mediated by 

blocking TCL1A promoter accessibility.

Next, we asked if the alt-allele of rs2887399 altered TCL1A protein expression in HSC/

MPPs. We edited CD34+ cells with the three rs2887399 genotypes at AAVS1, DNMT3A, 

TET2, and ASXL1 and performed a flow cytometry-based assay for TCL1A protein 

expression after culturing the cells for 11 days. ~1% of HSCs/MPPs from AAVS1 or 

DNMT3A edited samples were positive for TCL1A, which did not vary by rs2887399 

genotype. In contrast, 4.6-9.3% of HSC/MPPs from the G/G donor that had been edited 

for ASXL1 or TET2 expressed TCL1A, and the proportion of TCL1A positive HSC/MPPs 

decreased in donor samples with each additional alt-allele (Figure 3c-d, Extended Data Fig 

7a). There was minimal expression of TCL1A in any non-HSC/MPP CD34+ population in 

any of the samples. Notably, less than 10% of HSC/MPPs expressed TCL1A in any sample 

even though the proportion of mutant cells was >90% (Extended Data Fig 5), suggesting 

only a fraction of HSC/MPPs express TCL1A at any given time even in the presence of 

TET2 or ASXL1 mutations. This is consistent with single-cell RNA sequencing data from 

hematological malignancy samples (Extended Data Fig 3a).

To test if rs2887399 genotype had an effect on expansion of HSPCs in vitro, we edited 

the CD34+ cells from GG and TT donors, sorted HSCs (Lin− CD34+ CD38− CD45RA− 

CD90+), and analyzed for HSPC counts after 14 days. There was a notable expansion of 

cells bearing markers of HSC/MPPs in the ASXL1 and TET2 edited samples from the 

rs2887399 G/G donor compared to the AAVS1 edited sample, but this effect was abrogated 

in edited samples from the rs2887399 T/T donor (Figure 3e). A population of cells that 

was Lin−/lo CD34+ CD38− CD45RA dim (CD45RAdim HSPCs), presumably progenitors 

descended from the HSC/MPP population, was also markedly expanded in the ASXL1 
and TET2 edited samples from the G/G donor, but the degree of expansion was partially 

reversed in the edited samples from the T/T donor (Extended Data Fig 7b). The ratio of 

CD34+ CD45RA−/lo progenitors to CD34− cells was also increased in the ASXL1 and 

TET2-edited samples from the G/G donor compared to the T/T donor, indicating either 
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less retention of stem/progenitor cell activity or faster differentiation in the absence of 

TCL1A expression (Extended Data Fig 7c). There was no effect on HSPC expansion in the 

AAVS1 or DNMT3A edited samples based on rs2887399 genotype. Furthermore, we were 

unable to detect any significant differences in expansion of DNMT3A-edited HSCs based 

on rs2887399 genotype even when older donors were used (Supplementary Table 15). Thus, 

carrying the alt-allele of rs2887399 abrogates the clonal expansion of HSPCs with ASXL1 
and TET2 mutations in an experimental system, but has minimal direct effect on fitness of 

mutant DNMT3A clones, consistent with the PACER analysis.

To orthogonally validate the necessity of TCL1A for clonal expansion, we edited CD34+ 

cells from a rs2887399 G/G donor with AAVS1 or TET2 guides, followed by lentiviral 

delivery of shRNA targeting TCL1A or scramble control. The TCL1A shRNA construct we 

used was validated to knockdown TCL1A protein by ~90% (Extended Data Fig 8a). We then 

sorted GFP+ HSCs and performed the same in vitro expansion assay. The increase in TET2 
mutated HSC/MPP counts seen after 14 days was nearly completely attenuated by TCL1A 
knockdown (Figure 3f), indicating that TCL1A expression is necessary for expansion of 

TET2-mutant HSCs in this assay.

TCL1A expression promotes HSC expansion

If aberrant TCL1A expression is the major reason for positive selection of TET2, ASXL1, 

SF3B1, and SRSF2 mutant HSCs, then forced expression of TCL1A in unmutated HSCs 

should be sufficient to recapitulate clonal expansion phenotypes. To test this hypothesis, we 

transduced human CD34+ cells with lentivirus containing the TCL1A open reading frame 

(TCL1A-eGFP) or empty vector control (control-eGFP) (Figure 4a) and performed in vitro 

clonal expansion assays on purified HSCs. The per-cell level of TCL1A protein expression 

in TCL1A-eGFP transduced HSCs was similar to TET2-mutant HSCs (Extended Data Fig 

8b). After 14 days, cultures from HSCs that received TCL1A-eGFP virus had ~4-fold 

higher counts of phenotypic HSC/MPPs and colony forming cells compared to cultures from 

HSCs that received control-eGFP virus (Figure 4b), indicating that TCL1A expression was 

sufficient for HSC clonal expansion.

To assess whether TCL1A expression was sufficient to promote HSPC fitness in vivo, we 

infected c-Kit+ bone marrow cells from CD45.2 mice with TCL1A-eGFP or control-eGFP 

lentivirus and admixed these cells with competitor GFP− CD45.2 whole bone marrow, 

with the proportion of GFP+ cells in the lineage negative (Lin−) fraction of the resulting 

cell mixture totaling ~4% in each group (Methods, Extended Data Fig 9a). Following 

transplantation of these cells into lethally irradiated CD45.1 recipient mice, we tracked 

the proportion of GFP+ donor cells in blood over time (n=8 per group). At 4 weeks 

post-transplant the proportion of donor GFP+ granulocytes and total leukocytes was similar 

in both groups, but over the subsequent 16 weeks the proportion of GFP+ blood cells 

increased in the mice that received TCL1A-eGFP transduced cells but not in the mice 

that received control-eGFP transduced cells (Figure 4c, Extended Data Fig 9b). After 22 

weeks post-transplant, we assessed chimerism in the marrow. For our primary analysis, we 

examined the Lin− c-Kit+ Sca-1+ compartment that contains all relevant mouse HSC and 

MPP subsets and found a marked increase in percent GFP+ donor cells in the mice given 
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TCL1A-eGFP transduced cells compared to mice given control cells (mean 23.8% versus 

3.9%, p=0.0054) (Figure 4d). For secondary analyses, we also looked at the different subsets 

of HSC/MPPs (LT-HSC, ST-HSC, MPP2, MPP3, MPP4, as defined in Pietras et al.35) and 

found significant increases in the percentage of GFP+ cells in all these compartments in the 

mice receiving TCL1A-eGFP cells compared to mice receiving control cells (Extended Data 

Fig 9c). These results provide in vivo confirmation of stem and progenitor cell expansion 

due to TCL1A expression.

To further characterize the effect of TCL1A, we assessed cell cycle status of cultured 

human HSC/MPPs and observed that TCL1A expressing cells were ~2-fold more likely 

to be cycling compared to control cells (Figure 4e). To uncover the mechanism by which 

TCL1A promotes proliferation of HSCs, we transduced TCL1A-eGFP or control-eGFP into 

CD34+ cells from two normal donors that were G/G or T/T at rs2887399, cultured GFP+ 

HSC/MPPs, and then performed CITE-seq after 7 days. After integration, dimensionality 

reduction, and clustering (Methods), we annotated four clusters of HSC/MPPs as well 

as two populations of myeloid progenitors using the cell surface markers CD34, CD38, 

CD45RA, CD49f, and CD11a (Figure 4f, Extended Data Fig 10a, Supplementary Table 

16). Pseudotime36 analysis supported a trajectory of progression from HSC/MPP 1 (initial 

state) to 4 (most ‘differentiated’ state) (Extended Data Fig 10b). HSC/MPP 1 expressed stem 

cell identity genes such as MECOM, FAM30A, and HEMGN, as well as high levels of 

proliferative markers such as MKI67, TOP2A, PCNA, and CENPA (Figure 4g). In contrast, 

HSC/MPP 2-4 expressed lower levels of stem cell identity genes and proliferative markers. 

Cell cycle analysis confirmed these clusters contained cells that were predominantly in G0 

or G1 phase (Extended Data Fig 10c). HSC/MPP 3-4 also displayed a progressive increase 

in genes associated with the integrated stress response such as PPP1R15A (GADD34), 

DDIT3 (CHOP), and ATF4, as well as FOXO target genes such as CDKN1A (p21), 

CDKN1B (p27), SOD2, CCNG2, and TXNIP (Figure 4g, Extended Data Fig 10d and 11a). 

TCL1A has been reported to bind to and increase kinase activity of all AKT isoforms 

via an unknown mechanism37, and one well-studied downstream consequence of active 

AKT is inhibition of FOXO-mediated transcription38. FOXO transcription factors can drive 

downstream target gene expression in an adaptive response to stressors to preserve cell 

viability, but prolonged activation of this response can lead to a terminal state of cell 

cycle arrest or apoptosis39. Indeed, cells in HSC/MPP 4 also expressed the highest levels 

of apoptosis effector genes BAD, BCL2L11 (BIM), and BBC3 (PUMA). Strikingly, we 

found that TCL1A expression led to a significant increase in the proportion of cells in the 

HSC/MPP 1 cluster, and a significant decrease in the proportion of cells in the HSC/MPP 

3 and 4 clusters, an effect that was consistent in both donors (Figure 4h, Extended Data 

Fig 11b-c). When considered in aggregate, the HSC/MPP clusters from TCL1A expressing 

samples had reduced expression of FOXO target genes/gene sets and increased expression 

of cell cycle associated genes/gene sets compared to control samples (Supplementary Tables 

17-18). This indicates that TCL1A may function to preserve HSCs in a proliferative state by 

avoiding prolonged, deleterious stress responses.
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DISCUSSION

We developed a novel approach for inferring clonal expansion rate from a single time 

point and used it to perform a GWAS for this trait (see also Supplementary Note 3). 

Remarkably, a common variant of large effect in the promoter of TCL1A was associated 

with slower expansion rate and markedly reduced prevalence of several common driver 

mutations in CHIP. This variant likely blocks the aberrant de-repression of TCL1A which 

normally occurs in HSCs downstream of mutations in TET2, ASXL1, SF3B1, SRSF2, 

LOY, and possibly other driver genes, thus implicating TCL1A expression as a dominant 

reason for positive selection of these clones. Necessity and sufficiency experiments further 

supported TCL1A expression as a causal factor for clonal expansion of HSCs. Importantly, 

our results suggest that pharmacologically targeting TCL1A may suppress growth of CHIP 

and hematological cancers associated with mutations in these genes. PACER is a powerful 

approach for identifying the genetic and environmental factors mediating clonal expansion 

in humans at population scale and may be applied to any tissue where pre-malignant clones 

exist40-42.

METHODS

Study Samples

Whole genome sequencing (WGS) was performed on 127,946 samples as part of 51 studies 

contributing to Freeze 8 NHLBI TOPMed program as previously described10,11. None of 

the TOPMed studies included selected individuals for sequencing because of hematologic 

malignancy. Each of the included studies provided informed consent. Information on the 

included cohorts, sequencing centers, and ethical approvals is included in Supplementary 

Tables 19-21. Age was obtained for 82,807 of the samples, and the median age was 55, the 

mean age 52.5, and the maximum age 98. The samples have diverse reported ethnicity (40% 

European, 32% African, 16% Hispanic/Latino, 10% Asian).

WGS Processing, Variant Calling and CHIP annotation

BAM files were remapped and harmonized through the functionally equivalent pipeline43. 

SNPs and indels were discovered across TOPMed and were jointly genotyped across 

samples using the GotCloud pipeline44. An SVM filter was trained to discriminate 

between high- and low-quality variants. Variants were annotated with snpEff 4.345. Sample 

quality was assessed through mendelian discordance, contamination estimates, sequencing 

converge, and among other quality control metrics.

Putative somatic single nucleotide variants and indels were called with GATK Mutect217, 

which searches for sites where there is evidence for alt-reads that support evidence for 

variation, and then performs local haplotype assembly. We used a panel of normals to filter 

sequencing artifacts and used an external reference of germline variants to exclude germline 

calls. We deployed this pipeline on Google Cloud using Cromwell46.

As described in our previous report11, samples were annotated as having CHIP if the 

Mutect2 output contained at least one variant in a curated list of leukemogenic driver 

mutations with at least three alt-reads supporting the call. We expanded the list of driver 
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mutations to include those in recently identified CHIP genes47, increasing the number of 

CHIP cases from our previous report. A special approach was required to identify somatic 

variants in U2AF1 since an erroneous segmental duplication in the region of the gene in the 

hg38 reference genome resulted in a mapping score of zero during alignment of the FASTQ 

file48. We developed a Rust-HTSLIB binary (https://github.com/weinstockj/pileup_region) 

to specifically identify reads associated with the U2AF1 variants S34F, S34Y, R156H, 

Q157P, and Q157R. A minimum of 5 alternate reads was required to include a variant in 

the somatic set of CHIP calls. The variant set was judged to have a high likelihood of being 

somatic based on the strong age association for persons carrying mutations as well as a 

high rate of co-mutation with other known drivers. The VAF was estimated by dividing the 

alternate read count by the total read count for U2AF1.

True passengers should very rarely be recurrent in a dataset, unlike many germline variants 

or technical artifacts. Therefore, we pruned our callset by identifying Mutect2 variants 

that appeared in only a single individual among the CHIP carriers and 23,320 additional 

controls for a total of 28,391 individuals. We excluded any variant that appeared in the 

TOPMed Freeze 5 germline call set (463 million variants). We excluded variants with 

a depth below 25 or above 100 and excluded any variants in low complexity regions 

or segmental duplications, as these are challenging for variant calling. We only included 

somatic singletons that were aligned to the primary chromosomal contigs. We excluded any 

variant with a VAF exceeding 35% as these may be enriched for germline variants that 

were not included in our other filters. We used cyvcf249 to parse the Mutect2 VCFs and 

encoded each variant in an int64 value using the variant key encoding50. Since different base 

substitutions varied in their association with age at blood draw, we selected only C>T and 

T>C mutations, as these were the most strongly age-associated in our data, consistent with 

prior work identifying such mutations as essential elements of the “clock-like” signature51. 

We developed a bespoke Python application to perform the singleton identification and 

filtering.

Estimation of passenger mutation rate, clone fitness, and clone birth date with PACER-HB

We developed a hierarchical Bayesian latent variable model using the Stan52,53 probabilistic 

programming language. We used the negative binomial likelihood with a mean and 

overdispersion parameterization to facilitate interpretation. We used the identity function 

to link the passenger counts to the predictors as we modeled the effects on an additive scale. 

We modeled the expectation and overdispersion of the passenger counts observed at time (ti) 

as

E(countsi(ti)) = μT i + si(ti − T i) + αk
countsi(ti) ∼ NB(E(countsi(ti)), I(i ∈ CHIP )θ0 + (1 − I(i ∈ CHIP ))θ1)

Where T i is the time of the driver acquisition for sample i with a blood draw at time ti, μ
is the mutation rate per diploid genome per year for the HSC population, si is the fitness of 

the clone, and αk represents a study specific random intercept for sample i included in study 

k. We can interpret ti − T i as the lifetime of the clone in years. We used a negative binomial 

likelihood as there was overdispersion relative to a Poisson distribution.
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We included several constraints and priors on the parameters to make them identifiable. We 

constrained T i to be positive but exceeded by ti such that the parameter would be in yearly 

units. We included case-control specific overdispersion terms θ0 and θ1 as the CHIP carriers 

had greater dispersion. To adjust for batch effects, we included a random intercept, as the 

amount of singletons in controls varied by study.

To include the constraint on T i, we defined T i = ψi ∗ agei, with ψi constrained between 0 

and 1, and agei is the age at blood draw. We placed an uninformative Beta(1, 1.3) prior on 

ψi, which is equivalent to the supposition that the driver mutation is twice as likely to be 

acquired in the second half of life (at the time of blood draw) then the first. We assumed the 

study specific deviations were exchangeable with respect to a N(0, 20) prior, providing some 

shrinkage on the study specific intercepts. We placed a N(0, 1) prior on the si parameter to 

aid identification. Further details are described in the supplement.

To estimate the posterior, we used the Stan Hamiltonian Monte-Carlo (HMC) sampler with 

four separate chains, and used 400 samples of burn-in. We assessed convergence using the 

Rhat and effective sample size statistics. We tried multiple parameterizations to reduce the 

number of divergent transitions. We performed posterior predictive checks to assess the 

model fit.

Simulation of HSC dynamics

We simulated the number of cells within an HSC clone as a birth-death continuous time 

Markov chain, which models the size of an HSC clone as the composite of simultaneous 

Poisson birth and Poisson death point processes (Supplementary Note 1). Following Watson 

et al.19, HSCs could transition to one of three states: asymmetric renewal, symmetric 

self-renewal, and symmetric differentiation. The rate of transition was determined by the 

symmetric differentiation rate of the cell per year, which was set to five. The symmetric 

self-renewal and symmetric differentiation increase and decrease the size of the HSC 

clone respectively. As asymmetric division does not affect the size of the clone, we did 

not explicitly simulate transition to this state. The proclivity towards self-renewal was 

determined by the fitness of the clone. We set the entire HSC population to acquire a single 

driver mutation during the ‘lifetime’ of the simulation.

Passengers were accumulated over time using a birth Poisson point process. We then 

calculated the number of ‘detectable’ passengers that preceded the acquisition of the driver 

based on whether the underlying clone had expanded to a great enough proportion of 

HSC cells. We examined the association between the number of detectable passengers 

and the fitness of the underlying HSC clone. We implemented this simulation in the Julia 

programming language 1.454.

Fitness estimates for driver genes

We determined the association between the driver genes and the passenger counts using 

DNMT3A non-R882 mutations as the reference in a negative binomial regression using the 

glm.nb function from the MASS R package55. We included age, study cohort, VAF, and sex 

as covariates. We included the genes that had at least 30 carriers in the dataset, excluding 
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those with multiple driver genes mutated. To benchmark PACER, we compared the fitness 

estimate from our model (the coefficient for each gene using DNMT3A non-R882 mutations 

as the referent group) with the fitness estimates from Fabre et al.16, Supplementary Table 

6 (GeneEffect_mean + SiteEffect_mean variable). To transform the Fabre et al. gene level 

estimates to a scale comparable to the PACER estimates, we performed a linear regression 

of the log transformed fitness estimate against an independent variable indicating the driver 

gene, with DNMT3A non-R882 mutations as the reference level. To estimate the association 

between these fitness estimates and the PACER estimates, we performed weighted least 

squares regression of the Fabre et al. fitness estimates against the PACER gene fitness 

estimates, with the weights defined as 1 ∕ FabreSE, where FabreSE is defined as the standard 

error of the Fabre et al. driver gene fitness estimate. For this comparison, we included genes 

that were reported in our PACER gene fitness estimates.

Amplicon sequencing of longitudinal samples in WHI

We performed targeted sequencing of the CHIP driver genes using single-molecule 

molecular inversion probe sequencing (smMIPS11,56) on two blood DNA samples taken 

approximately 14-19 years apart from 900 individuals not previously assessed for CHIP as 

well as 55 individuals known to have a single CHIP mutation from TOPMed WGS from the 

Women’s Health Initiative (WHI). Women aged 50–79 years were enrolled from forty WHI 

clinical centers in the United States between 1993 and 1998. All WHI participants had a 

blood sample collected at the time of enrollment, and a subset had subsequent blood sample 

collected 14-19 years later. Reads were aligned with bwa-mem and processed with the 

mimips pileline57. We called somatic variants using an ensemble of VarScan58, Mutect217, 

and manual inspection with IGV59 as previously described60. Including the 55 individuals 

previously known to have CHIP, a total of 455 individuals were identified to have CH at a 

VAF threshold for inclusion of variants of >0.005.

Prediction of future growth in WHI

We used longitudinal sequencing data from the 55 CHIP carriers from WHI with WGS done 

at baseline to assess whether passengers could predict future clone growth rate. To determine 

the change in clone size over time (dVAF/dT), we divided the change in VAF at the two 

timepoints (from smMIPS) by the change in age in years. Of the 55 CHIP carriers, 15 had 

clones which had negative dVAF/dT. It was unlikely that these driver mutations had negative 

fitness since they had expanded to detectable levels in the blood starting from a single 

mutant cell. For these 15 carriers, we set the dVAF/dT to 0, since we presumed the negative 

change in clone size observed was due to short-term factors not related to intrinsic fitness 

of the clone, such as a change in blood cell differential across time leading to an apparently 

lower VAF at the second time point or stochastic drift. We then performed a series of linear 

models with inverse normal transformed dVAF/dT as the dependent variable and age at first 

blood draw, VAF, and passenger count as the independent variables. Model performance was 

assessed with adjusted R-squared and Akaike information criterion (AIC) for each model. 

We performed hypothesis testing of the passenger count coefficient using a Wald test.
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Bayesian logistic growth model of clonal expansion

We used longitudinal sequencing data from 351 CH carriers (VAF>0.005) with mutations 

in DNMT3A, TET2, ASXL1, or SF3B1, as identified using smMIPS described above, to 

test whether the alt-allele at rs2887399 altered clonal expansion rate. To estimate the rate of 

clonal expansion in the CHIP carriers in units of percent growth per year, we developed a 

Bayesian logistic growth model. The model includes four terms that encode the growth rate 

of DNMT3A, TET2, ASXL1, and SF3B1 carriers with the rs2887399 G/G genotype, and 

four interaction terms that estimate how the rate of clonal expansion is modified for each 

additional T allele at rs2887399. We modeled the observed number of mutated alleles using 

a beta-binomial likelihood, and included a random intercept and slope for each individual 

donor:

xi = (Geneij + Ri ∗ Geneij + Ui1) ∗ age + Ui2

qi = 0.5
1 + e−xi

P (Y i = y) = P (BetaBinomial(qi, β, Di) = y)

We defined Geneij as an indicator matrix that describes the mutation type of the donor. We 

defined Ri as the number of rs2887399 alt-alleles in the itℎ individual. β is included as an 

over-dispersion term for the likelihood, and Di indicates the sequencing depth of the CHIP 

mutation. We included the following priors:

Geneij ∼ Normal(0, 0.20)
Ri ∼ Normal(0, 0.05)
Ui1 ∼ Normal(0, 0.05)

We performed inference using the MCMC sampler implementation available in the RStan 

probabilistic programming language52,53.

Single Variant Association

Single variant association for each variant in the TOPMed Freeze 8 germline genetic variant 

call set10 with a MAC > 20 was performed with SAIGE61 using the TOPMed Encore 

analysis server. To identify associations between rs2887399 and the presence of specific 

CHIP mutations, we used the same methods as our previous report on an analysis set of 

74,974 individuals, including 4,697 cases and 70,277 controls. Age, genotype inferred sex, 

the first ten genetic ancestry principal components, and study were included as covariates.

We performed SAIGE single variant association analyses on the passengers including age 

at blood draw, sex, VAF, study, and the first ten genetic ancestry principal components 

as covariates. We applied an inverse normal transformation to the passenger counts. We 

declared variants from this analysis as significant if their p-value was less than 5 x 10−8.

Estimation of association between rs2887399 genotypes and CHIP mutation acquisition

We coded the rs2887399 genotypes as a categorical variable rather than a linear quantitative 

coding to estimate effects separately for the heterozygotes and the alt-homozygotes using 

the ref-homozygotes as the reference level. We estimated the associations using firth logistic 
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regression to reduce bias in estimation resulting from low cell counts62, and included age, 

genotype inferred sex, and the first ten genetic ancestry components as covariates.

Fine-mapping of the TCL1A region

We applied the SuSIE63 algorithm to the genotypes included in a 200kb region surrounding 

TCL1A. We used the same covariates as the single variant association analysis. We used the 

posterior inclusion probabilities (PIP) and credible sets identified by SuSIE to identify the 

putative causal variant. We used LD directly calculated on the genotypes as opposed to an 

external reference.

Rare Variant Analyses

We performed gene-based tests on 1,698 cancer associated genes and their flanking regions 

using the SCANG64 procedure. We identified these genes by downloading the targets 

associated with cancer in Open Targets24, and then filtered to include only genes with an 

association score of 1.0. The most prevalent CHIP driver genes were included among this 

list. We used the inverse normal transformed passenger counts as the phenotype with the 

same covariates as before. We specified the minimum size of the grouped regions as 30 

variants and the maximum as 200. We included all PASS variants with a minor allele count 

greater than four and less than 300 (MAF of 3.7% in the analyzed samples). We parsed the 

genotypes using cyvcf249 and stored them as dgCMatrix using the Matrix65 package from 

the R 4.1.2 programming language66.

We set the p-value filter to calculate SKAT test-statistics at 5 x 10−4. We did not group the 

variants by annotation and we declared regions as significant if their pvalue was less than 2.9 

x10−5 (.05 / 1,698). We controlled for relatedness by incorporating a sparse kinship matrix 

as estimated by the PC-AiR method from the GENESIS R package67. We specified separate 

residual variance terms for each study to control for heterogeneous residual variance. We 

grouped together all studies where the number of analyzed samples was less than 200.

Re-analysis of single-cell RNA sequencing data

The cell-by-gene count matrix data for each sample from Psaila et al.33, generated using the 

10X Genomics platform, was downloaded from Gene Expression Omnibus (GSE144568). 

Each matrix was loaded in Seurat68 with the read10X command, and only cells with a 

minimum of 200 features were retained using the CreateSeuratObject command. Data was 

log normalized using a scale factor of 10000 by the NormalizeData command. We then used 

the FindVariableFeatures command with ‘vst’ selection method and 2000 features. The data 

was scaled using ScaleData using all genes as features. We then used the RunPCA command 

with VariableFeatures identified earlier. For clustering, we used FindNeighbors set to the 

first 10 PCA dimensions and FindClusters using a resolution of 0.5. We excluded samples 

that did not have a distinct cluster of HSC/MPPs, defined as clusters enriched for cells that 

were CD34+ CD38−/lo THY1+. This left 5 healthy marrow samples (id01, id06, id09, id13, 

id17) and 4 MPN samples (id2, id7, id11, id14). For each of these samples, we assessed the 

number of cells with TCL1A, TCL1B, or TCL6 transcripts within the cluster or clusters that 

contained HSC/MPPs, as defined above.
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Additional preprocessed single-cell RNAseq data from Velten et al.32, generated using 

MutaSeq, was downloaded from69 as an RDS file. We utilized data from one patient with 

AML (P1) and the healthy control (H1). We then determined the number of cells containing 

TCL1A, TCL1B, or TCL6, transcript in the preleukemic ‘HSC/MPP’ and preleukemic 

‘CD34+ blasts and HSPCs’ clusters for the P1 sample and the ‘HSC/MPP’ cluster for the H1 

sample, in both cases as defined by the original study authors.

Re-analysis of ATAC-seq data

We obtained ATAC-seq data for AML samples as well as healthy controls from Corces et 

al.34 available at Gene Expression Omnibus (GSE74912). For our analysis, we used data 

from HSCs, defined as Lin− CD34+ CD38− CD90+ CD10− by the authors, from 4 healthy 

donors (4983, 6792, 2596, 7256), or preleukemic HSCs (pHSC), defined as Lin− CD34+ 

CD38− TIM3− CD99− by the authors. For the pHSC samples, we selected 3 where there 

were no detectable driver mutations in the pHSC compartment (SU336, SU306, SU623), 2 

where there were founding DNMT3A mutations only (SU444, SU575), and 3 where there 

were founding TET2 mutations only (SU070, SU501, SU048).

Fastq files for these samples were downloaded, and ATAC-seq data analysis was performed 

as previously described70. Briefly, reads were trimmed and filtered using fastp and mapped 

to the hg38 reference genome using hisat2 with the --no-spliced-alignment option. Bam files 

were deduplicated using Picard. Only reads mapping to chromosomes 1-22 and chrX were 

retained -- chrY reads, mitochondrial reads, and other reads were discarded. Genome track 

files were created by loading the fragments for each sample into R, and exporting bigwig 

files normalized by reads in transcription start sites using `rtracklayer::export`. Coverage 

files were visualized using the Integrative Genomics Viewer. A counts matrix was created as 

described previously34. Peaks were called individually for each sample using MACS2 and 

then iteratively merged into a union peak set of high confidence disjoint fixed width peaks 

of 500 bp encompassing all peaks in all samples. Then, bias-corrected Tn5 insertions in 

each sample overlapping each peak location were counted, and the resulting counts matrix 

was imported into DESeq2 for statistical analysis. For differential accessibility analysis, 

we compared all peaks in the 3 TET2 mutant samples to the 7 control samples using the 

DESeq function in the DESeq271 R package (https://bioconductor.org/packages/release/bioc/

html/DESeq2.html). Adjusted p-values were calculated on the full set of peaks, and those 

with a FDR q-value of <0.10 were retained for further analysis. The peaks that overlap with 

TSS of protein coding genes are supplied in Supplementary Table 13.

CRISPR–Cas9 editing of CD34+ human HSPCs

CD34+ HSPCs from adult donors were purchased from the Cooperative Center of 

Excellence in Hematology (CCEH) at the Fred Hutch Cancer Research Center, Seattle, 

USA. TCL1A rs2887399 genotyping was performed using ThermoFisher SNP assay (Assay 

ID: C__15842295_20). CD34+ cells were thawed and cultured in HSPC Expansion media 

(StemSpanII + 10% CD34+ Expansion Supplement + 0.1% Penicillin/Streptomycin) for 

48 hours before CRISPR editing. Editing of AAVS, TET2, DNMT3A, and ASXL1 
was performed by electroporation of Cas9 ribonucleoprotein complex (RNP). For each 

combination of rs2887399 genotype and gRNA (Supplementary Table 22), 100,000 cells 
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were incubated with 3.2 ug of Synthego synthetic sgRNA guide and 8.18 ug of IDT Alt-R 

S.p. Cas9 Nuclease V3 for 15 minutes at room temperature before electroporation. CD34+ 

cells were resuspended in 18 uL of Lonza P3 solution and mixed with the ribonucleoprotein 

complex, and then transferred to Nucleocuvette strips for electroporation with program 

DZ-100 (Lonza 4D Nucleofector). Immediately following electroporation, each condition of 

100,000 cells was transferred to 2 mL of HSPC Expansion media and allowed to recover 

for 24 hours. CRISPR editing efficiency was measured using Sanger Sequencing and ICE 

Analysis.

ATAC-seq

24 hours post electroporation, Lineage− CD34+ CD38− CD45RA− cells were sorted from 

the electroporated CD34+ cells using a BD FACS Aria III. Cells were allowed to culture for 

5-7 days in HSPC media before 40,000 cells were harvested, and bulk Omni-ATAC70 was 

performed on them. Briefly, cells were lysed with ATAC-Resuspension Buffer containing 

0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin for 3 minutes, and then the transposition 

was performed for 30 minutes at 37 C using 100 nM of Illumina Tagment DNA TDE1 

Enzyme and Buffer Kit per 50,000 cells. The fragmented DNA was then cleaned up using 

a Zymo DNA Clean and Concentrator-5 Kit (cat# D4014). The transposed fragments were 

amplified and indexed using NEBNext 2x Master Mix. The final PCR product was purified 

using the Zymo DNA Clean and Concentrator-5 Kit. Prior to sequencing, the quality of 

the libraries was evaluated via DNA High Sensitivity Bioanalyzer assays. The sequencing 

was performed using 2x75 bp reads on an Illumina NextSeq550 instrument using the High 

Output Kit.

ATAC-seq data analysis was performed as described above. Briefly, reads were trimmed 

and filtered using fastp and mapped to the hg38 reference genome using hisat272 with 

the --no-spliced-alignment option. BAM files were deduplicated using Picard. Only reads 

mapping to chromosomes 1-22 and chrX were retained -- chrY reads, mitochondrial reads, 

and other reads were discarded. Genome track files were created by loading the fragments 

for each sample into R, and exporting bigwig files normalized by reads in transcription 

start sites using `rtracklayer::export`. Coverage files were visualized using the Integrative 

Genomics Viewer. ATAC-seq tracks were normalized based on counts in TSS and were 

visualized using the same scale for all tracks in IGV. For the tracks shown in Extended Data 

Fig 6b, the same experimental strategy was used as above, except cells were sorted based on 

the markers CD34+ CD38− CD45RA− Lin− after 7 days in culture, from which point the 

Omni-ATAC protocol was followed. We used the top 1000 most accessible TSSes genome-

wide to perform normalization. We devised this strategy based on our observation that some 

inaccessible TSSes were prone to noise, which confounded the normalization. Differential 

accessibility analysis was done as described above except the TCL1A TSS peak was 

manually defined as the 300-base pair region around rs2887399 (chr14:95714209-95714508, 

and DESeq2 was used in a model that included edit (AAVS1, TET2, or DNMT3A) and 

number of rs2887399 alt-alleles (0, 1, or 2). Results for nominally significant TSS peaks in 

the TET2-edited versus AAVS1-edited samples can be found in Supplementary Table 14.

Weinstock et al. Page 18

Nature. Author manuscript; available in PMC 2023 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liquid Culture Expansion Assay

Lineage− CD34+ CD38− CD90+ CD45RA− cells were sorted on a BD FACS Aria III from 

the electroporated CD34+ cells. All cells were harvested and stained with the extracellular 

HSPC marker panel in 100 uL of PBS + 2% FBS + 1 mm EDTA (Supplementary Table 

23). Four to eight replicates of 500-1,000 Lineage− CD34+ CD38− CD90+ CD45RA− cells 

were sorted into 100 uL of HSC Expansion media and cells were plated into a 96 well 

plate. The wells on the edges of the 96 well plate were filled with water to keep the cultures 

hydrated. Four days post sort, another 100 uL of HSC Expansion media was added to each 

well. 10 days post sort, the samples were transferred from the 96 well plate to a 48 well plate 

and an additional 400 uL of HSPC Expansion media was added. Fourteen days post sort, 

the cells were harvested, and live cells were counted using trypan blue and hemocytometer. 

Additionally, the cells were stained with the extracellular HSPC marker panel, and flow 

cytometry analysis was performed using FlowJo v10.8.1. Absolute number of HSC/MPPs 

(defined as Lin− CD34+ CD38− CD45RA−) and CD45RAloprogenitors (defined as Lin−/lo 

CD34+ CD38− CD45RAlo) were determined by multiplying the total cell count at 14 days 

by the percentage of cells in each compartment as determined by flow cytometry. Example 

gating for the HSC stain is shown in Supplementary Figure 4a.

Flow cytometry for TCL1A staining

Anti-human TCL1A antibody clone eBio1-21 was obtained from ThermoFisher. The 

specificity of the antibody was assessed by staining NALM6 cells that had been CRISPR 

edited for complete loss of TCL1A with the antibody, which confirmed only a very low level 

of non-specific binding.

To assess for TCL1A expression in edited human CD34+ HSPCs, cells in HSPC Expansion 

media were harvested and intracellularly stained 11 days following electroporation. Cells 

were first stained with the Live/Dead and extracellular surface markers simultaneously for 

30 minutes in the dark on ice. After a PBS wash, cells were stained with 100 uL of IC 

Fixation Buffer for 30 minutes in the dark at room temperature. Cells were then washed 

twice with 1X Permeabilization Buffer. Next, cells were resuspended in 100 uL of 1X 

Permeabilization Buffer, and blocked with 2 uL of goat serum and 2.5 uL of TruStain FcX 

for 15 minutes in the dark at room temperature. Next, 1 ug of e450 antibodies (anti-TCL1A 

or isotype control) was added to each sample tube and stained for 30 minutes in the dark 

at room temperature (Supplementary Table 24). Cells were then washed twice with 1X 

Permeabilization Buffer and then resuspended in PBS before flow cytometry was performed. 

Analysis was performed using FlowJo v10.8.1.

Lentivirus Plasmids for TCL1A Knockdown and Expression

For knockdown of TCL1A, we obtained plasmids for 4 separate shRNAs targeting TCL1A, 

as well as scramble control shRNA, from Origene (CAT#: TL301172V). The shRNA 

constructs were validated to knockdown TCL1A protein by flow cytometry in NALM6 

cells (from Ronald Levy, Stanford University). NALM6 cells were tested for mycoplasma 

prior to use and not further authenticated.
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An insert containing the TCL1A coding region followed in frame with GFP (TCLA1 -T2A 

Linker-GFP) under the control of mammalian EF1a promoter, as well as a control sequence 

composed of GFP under the EF1a promoter, was synthetized by Gene Universal. The insert 

was cloned into a second-generation lentivirus backbone, adapted from the addgene vector 

pMH0001, using enzymatic cloning. Briefly both the insert and backbone were digested 

with MluI and SbfI enzymes (NEB) and ligated using the T4 ligase (NEB). NEB DH5a 

competent bacteria were transformed with the ligation product. The transformed bacteria 

were screened by Ampilicin resistance and grown in liquid culture in LB media to amplify 

the plasmid. Maxiprep plasmid purification (Macherey-Nagel NucleoBond Xtra Maxi) was 

performed to obtain the final purified plasmid used for lentivirus production.

Lentivirus Production

Plasmids were transfected into 293T HEK cells (ATCC CRL-3216) at roughly 80% 

confluency in 10 cm tissue culture plates coated with poly-d-lysine using Lipofectamine 

3000. 293T HEK cells were not further authenticated or tested for mycoplasma. The 

lipofectamine media was exchanged 16 hours later, and the viral supernatant was collected 

at 72h post-transfection. The collected viral supernatant was filtered via a 0.45 μm filtration 

unit, and concentrated using the LentiX concentrator (Takara) for 2 hours at 4 C and 

then spun down at 1500 x g for 45 minutes at 4 C. The concentrated supernatant was 

subsequently aliquoted, flash frozen, and stored in −80°C until use.

Combined CRISPR and shRNA Assay

CD34+ cells were thawed and cultured in HSPC Expansion media (StemSpanII + 10% 

CD34+ Expansion Supplement + 0.1% Penicillin/Streptomycin) for 48 hours before 

CRISPR editing. Editing of AAVS, TET2, DNMT3A, and ASXL1 was performed by 

electroporation of Cas9 ribonucleoprotein complex (RNP). For each combination of 

rs2887399 genotype and gRNA, 100,000 cells were incubated with 3.26 ug of Synthego 

synthetic sgRNA guide and 8.332 ug of IDT Alt-R S.p. Cas9 Nuclease V3 for 15 minutes 

at room temperature before electroporation. CD34+ cells were resuspended in 18 uL of 

Lonza P3 solution and mixed with the ribonucleoprotein complex, and then transferred to 

Nucleocuvette strips for electroporation with program DZ-100 (Lonza 4D Nucleofector). 

Immediately following electroporation, each condition of 500,000 cells was transferred to 

2 mLs of HSPC Expansion media and allowed to recover for 8 hours. Later that same 

day, 250,000 CRISPR edited cells were collected, spun down, and resuspended in a final 

volume of HSPC Lentivirus Media (StemSpanII + 10% CD34+ Expansion Supplement + 

0.1% Penicillin/Streptomycin + 10 uM prostaglandin E2 + 100 ng/uL poloxamer 407) with 

virus added at an MOI of 20. Cells were plated in a 96 well u-bottom plate for 16 hours. 

shRNA-A and the scramble-shRNA from Origene CAT#: TL301172V were used for this 

experiment. Following a 16-hour incubation, cells were washed in PBS, and then plated 

in 2 mL of HSPC Expansion media. After 72 hours, previously described liquid culture 

expansion assay was done on sorted Lineage− CD34+ CD38− CD90+ CD45RA− GFP+ 

cells.
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Lentiviral TCL1A Expression in Human HSPCs

CD34+ cells were thawed and cultured in HSPC Expansion media (StemSpanII + 10% 

CD34+ Expansion Supplement + 0.1% Penicillin/Streptomycin) for 48 hours before 

lentivirus transduction. 750,000 cells were collected, spun down, and resuspended in a 

final volume of HSPC Lentivirus Media (StemSpanII + 10% CD34+ Expansion Supplement 

+ 0.1% Penicillin/Streptomycin + 10 uM prostaglandin E2 + 100 ng/uL poloxamer 407) 

with virus added at an MOI of 100. Cells were plated in a 96 well u-bottom plate for 

16 hours. eGFP control was purchased from Origene (CAT#: PS100093V) or produced 

in house as described above, and the TCL1A-eGFP was purchased from Origene (CAT#: 

RC204243L4V) or produced in house as described above. Following 16-hour incubation, 

cells were washed in PBS, and then plated in 2 mL of HSPC Expansion media. After 72 

hours, previously described liquid culture expansion assay was done on sorted Lineage− 

CD34+ CD38− CD90+ CD45RA− GFP+ cells. After 14 days, cells were harvested and 

assessed for HSC/MPP frequency using flow cytometry as previously described. The total 

HSC/MPP count was determined by multiplying the percentage of live cells that were in the 

HSC/MPP gate by the total live cell count for each replicate.

After 14 days of in vitro liquid culture expansion, 800 live cells were sorted, resuspended 

in 1.1 mL of Methocult + 0.1% P/S, and plated in 35 mm dishes. Eight 35 mm dishes were 

placed in one 245 x 245 mm square dish along with four open 35 mm dishes of water 

and one 120 mm dish of water. After 14 days in Methocult, the number of colony forming 

units was counted. The total CFU count in the day 14 liquid culture was determined by 

multiplying the number of CFU in each replicate by the total live cell count after 14 days of 

liquid culture and dividing by 800.

For cell cycle analysis, sorted HSCs were cultured for 10 days in liquid culture expansion 

media. Cells were first stained with the Alexa-700 Live/Dead and extracellular surface 

markers simultaneously for 30 minutes in the dark on ice (Supplementary Table 25). After 

a PBS wash, cells were stained with 100 uL of IC Fixation Buffer for 30 minutes in the 

dark at room temperature. Cells were then washed twice with 1X Permeabilization Buffer. 

Next, cells were resuspended in 100 uL of 1X Permeabilization Buffer, and blocked with 2 

uL of goat serum for 15 minutes in the dark at room temperature. Cells were then washed 

twice with 1X Permeabilization Buffer and then resuspended in 75 uL of 1 ug/mL DAPI 

diluted in 1X Permeabilization buffer. After 10 minutes, 75 uL of PBS was added, and then 

flow cytometry was performed. HSC/MPPs were defined as CD34+ CD38− Lin−. Example 

gating for the DAPI HSPC analysis is shown in Supplementary Figure 4b.

Mouse Bone Marrow Competitive Transplant

Mice were obtained from The Jackson Laboratory and housed at the Research Animal 

Facility (RAF) of the Stanford School of Medicine. All experiments used female mice. The 

mice were housed under a 12-h light/12-h dark cycle with dark hours from 18:30–06:30 

and housed at 68–73 °F under 40–60% humidity. All animal procedures were performed 

in accordance with protocols approved by Stanford University’s Administrative Panel on 

Laboratory Animal Care (APLAC).
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Bone marrow from 10-week-old female CD45.2+ C57BL/6 mice was harvested, and 

c-Kit cells were enriched for using the EasySep Mouse cKIT Positive Selection Kit 

(Catalog #18757) according to manufacture protocol. 2.8 million c-KIT enriched cells were 

transduced with 45 uL of the previously described Control-eGFP or TCL1A-eGFP and 

cultured overnight in U-bottom plates in mouse HSC transduction media (StemSpan II, 10 

ng/mL SCF, 100 ng/mL TPO, 10 uM PGE2, 100 ng/uL P407, 0.1% P/S) with an expected 

transduction efficiency of ~10%. Following overnight transduction, transduced c-KIT cells 

were washed with PBS and admixed with fresh CD45.2+ GFP− competitor whole bone 

marrow to achieve chimeric donor bone marrow graft. Sorting of GFP+ cells pre-transplant 

was not conducted because anecdotal evidence from several labs suggests that culture of 

transduced HSCs for >24 hours diminishes their potency for in vivo reconstitution. Post-hoc 

analysis of stored aliquots from the input cells confirmed ~4% of Lineage− cells were GFP+ 

for both conditions, mimicking a CHIP clone of ~2% VAF (Extended Data Fig 9a).

For the bone marrow transplant, recipient 9-week-old female CD45.1+ mice were lethally 

irradiated with one 950 cGy dose of γ-irradiation. Post-irradiation, recipients were 

transplanted with 1×106 of the previously described chimeric bone marrow in suspension 

via retro-orbital injection, n=8 per group. Following transplantation, recipient mice were fed 

with Envigo Uniprim diet for four weeks.

The proportion of GFP+ donor cells was tracked by collecting 100 uL of peripheral blood 

retro-orbitally at 4 weeks, 7 weeks, 12 weeks, and 20 weeks post-transplant. Following 

RBC lysis, peripheral blood was stained with 100 uL of the mouse peripheral blood 

antibody cocktail (Supplementary Table 26). Twenty-two weeks post-transplant, mice were 

euthanized and bone marrow was harvested from femurs. Following RBC lysis, bone 

marrow was stained with 50 uL of the mouse bone marrow antibody cocktail to determine 

the proportion of GFP+ HSC or MPP donor cells (Supplementary Table 27).

Flow cytometry gating schema are shown in Supplementary Figure 5a-b. Flow cytometry 

analysis was performed using FlowJo v10.8.1.

CITE-Seq Cell Preparation and 10X Workflow

Human CD34+ cells were thawed and cultured in HSPC Expansion media (StemSpanII 

+ 10% CD34+ Expansion Supplement + 0.1% Penicillin/Streptomycin) for 48 hours 

before lentiviral transduction. 72 hours after lentivirus addition, Lineage− CD34+ CD38− 

CD45RA− GFP+ were sorted and plated. Seven days after sort, 10X 3'v3.1 with Feature 

Barcoding was performed. 60,000-120,000 cells were harvested and resuspended in 50 uL 

of PBS + 1% BSA. Cells were then blocked with 5 uL of TruStain FX for 10 minutes. 

Next, cells were stained with 0.5 uL of each TotalSeq-B antibody (CD34, CD38, CD45RA, 

CD90, CD49f, CD35, CD11a, CD59, CD117) for 30 minutes. Following 4 washes with PBS 

+ 1% BSA, 10,000 cells were loaded onto a Chromium Next GEM Chip G. GEM generation 

& barcoding, post GEM–RT cleanup & cDNA amplification, 3’ gene expression library 

construction, and cell surface protein library construction were performed as described 

in CG000317_ChromiumNextGEMSingleCell3'v3.1_CellSurfaceProtein_RevC (https://

support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-

single-cell-3-reagent-kits-user-guide-v31-chemistry-dual-index-with-feature-barcoding-
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technology-for-cell-surface-protein). Gene expression and cell surface protein 

libraries were pooled together at a ratio of 4:1 and sequenced on 

an Illumina NovaSeq S4 flowcell (Supplementary Table 28).

Computational Analysis of scRNA-seq sequencing data

The BCL files were demultiplexed using 8 base pair 10X sample indexes and cellranger 

mkfastq to generate paired-end FASTQ. We ran cellranger count to align the reads to the 

hg38 reference genome from GenBank using STAR73 aligner as well as perform filtering, 

barcode counting, and UMI counting. The alignment results were used to quantify the 

expression level of human genes and generation of gene-barcode matrix.

Each sample's cellranger matrix was then loaded in a SeuratObject_4.1.0 using Seurat68 

(version 4.1.1, https://github.com/satijalab/seurat). Low quality cells, doublets and potential 

dead cells were removed according to the percentage of mitochondrial genes and number of 

genes and UMIs expressed in each cell (nFeature_RNA > 200 & nFeature_RNA < 10000 & 

nCount_RNA > 2500 & percent.mt < 10). Clean count matrices from each sample were then 

combined using Seurat’s merge function. The merged gene expression data was normalized 

using sctransform based normalization while removing confounding variables, percentage 

of mitochondrial genes and sample origin. Then, cell cycle scores were assigned using 

Seurat's CellCycleScoring function. The difference between the G2M and S phase scores 

was then calculated and regressed out using sctransform based normalization to minimize 

differences due to differences in cell cycle phase among proliferating cells. The cell surface 

feature output was normalized using centered log-ratio (CLR) normalization, computed 

independently for each feature.

The 4 datasets were integrated using Harmony (https://github.com/immunogenomics/

harmony) on sctransform normalized gene counts to group cells by cell type while 

correcting for sample origin. Dimensionality reduction via PCA and UMAP embedding 

was performed on the integrated dataset. Identities of the cell clusters were determined using 

canonical RNA cell type markers and cell surface feature expression patterns. HSC/MPP 

clusters were identified by staining positively for CD34 and CD49f, and negatively for 

CD38, CD45RA, and CD11a. The common myeloid progenitor cluster was identified by 

staining positively for CD34 and CD38, and negatively for CD45RA and CD49f. The 

granulocyte macrophage progenitor cluster was identified by staining positively for CD34, 

CD38, and CD45RA, and negatively for CD49f. The difference between the proportion of 

cells in HSC/MPP 1-4 clusters between control-eGFP and TCL1A-eGFP transduced cells 

was calculated by a proportion test using the Single Cell Proportion Test R package (https://

github.com/rpolicastro/scProportionTest). To reconstruct the pseudotime trajectory of the 

HSC/MPP and CMP clusters, Monocle 3 pseudotime analysis was performed using the 

central node of the HSC/MPP1 Cluster as the root node (https://satijalab.org/signac/articles/

monocle.html). Differential gene expression analysis of TCL1A-eGFP versus control-eGFP 

HSC/MPPs was performed using the FindMarkers function in Seurat with the “LR” test and 

rs2887399 genotype as the latent variable, and with min.pct=0.05 and logfc.threshold=0.1. 

Differential gene expression analysis of HSC/MPP 4 versus HSC/MPP 1 was performed 

using the FindMarkers function in Seurat with no thresholds for min.pct or logfc.threshold. 
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Gene-set enrichment analysis was performed using the fgsea package (https://github.com/

ctlab/fgsea) and the REACTOME gene sets using the following parameters for the fgsea 

function: nperm = 1000, scoreType = "std", minSize=5. Results of differential expression 

analysis and GSEA can be found in Supplementary Tables 17-18.

Extended Data

Extended Data Fig 1∣. PACER Estimates Clonal Expansion Rate
A. The passenger counts are enriched by 54% (95% CI: 51%-57%) after adjusting for age 

and study using a negative binomial regression. The different colors in the density plots 

correspond to quartiles of the marginal probability distributions. As the density estimates are 
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smoothed, the underlying data points are indicated with hash marks. B. The distributions of 

passenger counts are stratified by the number of CHIP driver variants acquired. The different 

colors in the density plots correspond to quartiles of the marginal probability distributions. 

C. The observed clonal expansion rates (dVAFdT), as expressed in the change in variant 

allele frequency (VAF) over time (years), were associated with increased PACER fitness 

estimates in 55 CHIP carriers from the Women’s Health Initiative. The PACER fitness 

estimates have been inverse normal transformed. D. The posterior inclusion probabilities 

(PIP) as estimated by SuSIE63 are plotted on the y-axis, and the genomic position of a 

0.8 Mb region including TCL1A is plotted on the x-axis. The linkage disequilibrium (LD) 

estimates are plotted on a color scale and are estimated on the genotypes used for association 

analyses. E. Rare variant analyses were performed using the SCANG45 rare variant scan 

procedure including all variants with a minor allele count less than 300. Identified rare 

variant windows are plotted as gray rectangles where the width corresponds to the size of the 

genomic region and the height corresponds to the pvalue of the SCANG64 test statistic for 

the window. F. Rare variant analyses were performed including the rs2887399 genotypes as 

covariate. Hypothesis testing was performed using the SCANG rare variant scan procedure. 

G. Multiz alignments across multiple species are shown for the TCL1A locus.
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Extended Data Fig 2∣. GWAS Implicates rs2887399 as a Modifier of Clonal Expansion Rate
A. The distributions of the four conditions – DNMT3A and TET2 mutant clones stratified 

by homozygous genotype of rs2887399. The y-axis indicates the density of the distributions 

and the x-axis indicates the log10 founding censored passengers, which are the simulated 

equivalent to the singleton mutations observed in the real data analysis. Simulated DNMT3A 
mutations out-compete TET2 when rs2887399 is set to the protective T/T allele even though 

its fitness is unchanged by rs2887399. B. The top panel includes the -log10 pvalues from 

both the PACER GWAS and TCL1A cis-eQTLs in whole blood from GTEx v829. The 

GWAS p-values are estimated with SAIGE. In the bottom panel, posterior probability of 

colocalization from COLOC30 identifies rs2887399 as the likely shared causal variant. C. 
UMAP plot of scRNA-seq data from immune cells in the Human Cell Atlas31. TCL1A 
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expression is highlighted on the bottom plot. UMAP plot was generated in the EMBL-EBI 

Single Cell Expression Atlas.

Extended Data Fig 3∣. Chromatin Accessibility and Transcript Expression of TCL1A
A. Quantification of fraction of HSC/MPPs expressing TCL1A transcripts in patients with 

TET2 or ASXL1 driven acute myeloid leukemia (AML) or myeloproliferative neoplasm 

(MPN) compared to healthy donors. Data is from single-cell RNA sequencing generated 

in Psaila33 et al. and Velten32 et al. B. ATAC-sequencing tracks of the TCL1A locus near 

rs2887399 in HSCs from healthy donors (row 1-4), pre-leukemic hematopoietic stem cells 

(pHSCs) from patients with AML but no detected driver mutations (rows 5-7), in pHSCs 
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with TET2 mutations (rows 8-10), and pHSCs with DNMT3A mutations (rows 11-12). Data 

is from Corces et al36. Vertical dashed line indicates location of the rs2887399 SNP. C. 
ATAC-sequencing tracks of the TCL6-TCL1A locus in HSCs from healthy donors (row 1), 

pre-leukemic hematopoietic stem cells (pHSCs) from patients with AML but no detected 

driver mutations (rows 2-3), pHSCs with DNMT3A mutations (rows 4-5), and in pHSCs 

with TET2 mutations (rows 6-7). Amino acid change and variant allele fraction (VAF) for 

the driver mutations are shown. Data is from Corces et al34.

Extended Data Fig 4∣. Schematic of rs2887399 Effect on TET2 Clonal Expansion
Proposed model for clonal advantage due to mutations in TET2. In cells with the rs2887399 

REF/REF genotype, loss of TET2 function leads to an accessible TCL1A locus, aberrant 

TCL1A RNA and protein expression in hematopoietic stem cells (HSC's) and multi-

potent progenitors (MPP's), and subsequent clonal expansion. The presence of rs2887399 

ALT alleles diminishes the TET2 clonal expansion phenotype by limiting TCL1A locus 

accessibility and downstream protein expression. Figure created with BioRender under a 

paid license.
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Extended Data Fig 5∣. CRISPR Editing Efficiency
A. ICE analysis of Sanger traces to determine targeted CRISPR editing efficiency. Bar plots 

display percent of CD34+ CD38− CD45RA− cells with indel formation in gene of interest. 

These cells were used for the OMNI-ATAC and intracellular TCL1A flow assays. B. ICE 

analysis of Sanger traces to determine targeted CRISPR editing efficiency. Bar plots display 

percent of CD34+ CD38− CD45RA− cells with indel formation in gene of interest. These 

cells were used for the 14-day expansion assay.
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Extended Data Fig 6∣. ATAC Sequencing Tracks of TCL1A
A. ATAC-sequencing tracks illustrating chromatin accessibility at rs2887399 in TET2 or 

DNMT3A-edited HSC/MPPs cultured for 5 days from donors of the GG, GT, and TT 

genotypes. Red line indicates location of rs2887399. TET2 edited samples are the same as 

in Figure 4, shown here for comparison. B. ATAC-sequencing tracks illustrating chromatin 

accessibility at rs2887399 in AAVS, TET2 or DNMT3A-edited HSC/MPPs cultured for 

7 days from donors of the GG and TT genotypes, and then sorted for CD34hi CD38− 

CD45RA− Lin− cells prior to nuclei preparation. Red line indicates location of rs2887399.
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Extended Data Fig 7∣. Interaction of CHIP Mutations and rs2887399 in human HSPC 
phenotypes
A. Representative intracellular flow plots of TCL1A protein expression in edited HSC/

MPPs from each rs2887399 donor after 11 days in culture. B. Quantification of Lin−/lo 

CD34+ CD38− CD45RAlo HSPCs (CD45RAlo HSPCs) after 14 days of in vitro expansion 

stratified by edited gene and rs2887399 genotype. Results of a linear regression model for 

the effect of edited gene (referent to AAVS1), rs2887399 genotype (referent to GG), and the 

interaction term of edited gene with rs2887399 genotype are presented below. Unadjusted p-

values from two-sided tests are reported. n=4 for each group. C. Ratio of CD34+CD45RA− 

cells to CD34− cells after 14 days of in vitro expansion stratified by edited gene and 

rs2887399 genotype. Results of a linear regression model for the effect of edited gene 
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(referent to AAVS1), rs2887399 genotype (referent to GG), and the interaction term of 

edited gene with rs2887399 genotype are presented below. The horizontal line in each box 

indicates the median, the tops and bottoms of the boxes indicate the interquartile range, 

and the top and bottom error bars indicate maxima and minima, respectively. Unadjusted 

p-values from two-sided tests are reported. n=4 for each group.

Extended Data Fig 8∣. Validation of TCL1A shRNA and Expression Lentivirus
A. Histogram of TCL1A-DAPI in wild-type, TCL1A CRISPR knockout, and TCL1A 
shRNA knockdown in NALM-6 cell line. B. Histogram of TCL1A-DAPI in human 

HSC/MPPs transduced with TCL1A-eGFP lentivirus or TET2-edited HSC/MPPs. MFI = 

geometric mean fluorescence intensity.
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Extended Data Fig 9∣. TCL1A Expression Promotes HSC Fitness in Mice
A. Post-hoc analysis of percent GFP+ cells in the lineage negative fraction of the input 

cell mixture used for transplant. B. GFP+ chimerism over 20 weeks post-transplant as a 

fraction of total donor white blood cells. Shown are mean percent GFP+ cells and error 

bars represent standard errors for each time point. Hypothesis testing was performed with a 

two-sided Wilcoxon rank sum test and unadjusted p-values are shown above each timepoint. 

n=8 for each group. C. Percent GFP+ cells in donor HSC/MPP subsets at 22 weeks post-

transplant. The horizontal line in each box indicates the median, the tops and bottoms of the 

boxes indicate the interquartile range, and the top and bottom error bars indicate maxima 
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and minima, respectively. Unadjusted p-values obtained from two-sided Wilcoxon rank sum 

tests are reported. n=8 for each group.

Extended Data Fig 10∣. CITE-seq of TCL1A Expressing Human HSPCs
A. UMAP feature plots of Antibody Derived Tags (ADTs) for cell surface markers for 

HSPC identification. B. UMAP clustering of HSC/MPP populations colored by cell subtype 

clusters next to UMAP clustering of HSC/MPP populations colored by Monocle Pseudotime 

values. C. Stacked bar plot of percent of cells in each cell cycle phase as determined by 

Seurat cell cycle scoring module for each cell cluster. D. UMAP feature plot of select stress 

response and FOXO target genes.
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Extended Data Fig 11∣. Effect of TCL1A Expression on Human HSC/MPP Phenotypes
A. Normalized enrichment scores (NES) of REACTOME pathways upregulated in 

HSC/MPP cluster 4 compared to HSC/MPP cluster 1 and filtered for those with FDR<0.1 

and NES>1. Pathways printed in blue contain interferon response genes and pathways 

printed in red contain FOXO response genes. B. Stacked bar plot of all clusters in each 

analyzed sample dataset as a percentage of total cells in that sample. G/G or T/T refers to 

the genotype at rs2887399 in the donor. C. Stacked bar plot of absolute counts for each 

HSC/MPP cluster from each sample. Counts are shown as number of output cells at Day 7 

per 1000 HSC/MPPs plated at Day 0.
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Fig 1∣. PACER Enables Estimation of Clonal Expansion Rate from a Single Blood Draw
A, A schematic depiction of using passenger counts to estimate the rate of expansion 

of a hematopoietic stem cell (HSC) clone after the acquisition of a driver mutation. The 

passengers (blue) that precede the driver (red) can be used to date the acquisition of the 

driver. B, The relative abundances of passenger counts were estimated for CHIP driver 

genes with at least 30 cases using a negative binomial regression, adjusting for age at 

blood draw, driver VAF, and study. The total number of CHIP carriers included is 4,536. 

The coefficients are relative to DNMT3A R882- CHIP. Unadjusted, two-sided p-values are 

reported. Error bars indicate 95 percent confidence intervals. C, The relative abundances 

of passenger counts are plotted against the empirical estimates of gene fitness derived 

from the longitudinal deep sequencing in Fabre et al.16. Error bars indicate 95 percent 

confidence intervals. The estimate of the association from weighted least squares (slope 

= 2.7, p-value = 9.6 x 10−5, R2 = 80%) is plotted as a dashed line. D, The observed 

clonal expansion rates (dVAFdT), as expressed in the change in variant allele frequency 

(VAF) over time (years), were associated with increased passenger counts in 55 CHIP 

carriers from the Women’s Health Initiative. Colors indicate the mutated driver gene. E, 
A multivariable model including passenger counts, age at blood draw, and VAF indicates 

the relative contributions of age and VAF over baseline models. AIC is Akaike information 

criteria, where smaller values indicate better model fit. Unadjusted, two-sided p-values are 

reported for the passengers variable in the respective models.
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Fig 2∣. GWAS of PACER Identifies Germline Determinants of Clonal Expansion in Blood
A, A genome-wide association study (GWAS) of passenger counts identifies TCL1A as 

a genome-wide significant locus. Test statistics were estimated with SAIGE61. B, The 

association between the genotypes of rs2887399 and PACER varied between TET2 and 

DNMT3A. Alt-alleles were associated with decreased PACER score in TET2 mutation 

carriers, but no association was observed in DNMT3A carriers. C, The association between 

alt-alleles at rs2887399 and presence of specific CHIP mutations varies by CHIP mutations 

(n = 5,071 CHIP carriers). Forest plot shows the odds ratios for having specific mutations in 

those carrying a single T-allele and two T-alleles, respectively. Odds ratios were estimated 

using Firth logistic regression, with error bars representing 95 percent confidence intervals. 

On the right of the forest plot, effect estimates and p-values are included from SAIGE, 

which uses an additive coding of the alt-alleles for hypothesis testing and uses a generalized 

linear mixed model to estimate test statistics. Unadjusted, two-sided p-values are reported. 

In the additive tests, SF3B1 and SRSF2 were grouped together to aid convergence. D, 
The association between the genotypes of rs2887399 and percent growth per year of CHIP 

clones from 351 carriers in the Women’s Health Initiative. Percent growth per year is 

estimated using a Bayesian logistic growth model of clonal expansion.
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For box and whisker plots in 2b and 2d, the horizontal line indicates the median, the tops 

and bottoms of the boxes indicate the interquartile range, and top and bottom error bars 

indicate maxima and minima, respectively.
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Figure 3∣. Effect of rs2887399 on TCL1A Expression and Clonal Expansion
A, Schematic of experimental workflow. B, ATAC-sequencing tracks illustrating chromatin 

accessibility at rs2887399 in TET2-edited HSPCs from donors of the GG, GT, and TT 

genotypes after 5 days liquid culture. Red line indicates location of rs2887399. See also 

Extended Data Figure 8 and Table S14. C, Percent Lin− CD34+ CD38− CD45RA− cells 

expressing TCL1A by flow cytometry after 11 days liquid culture of edited HSPCs, stratified 

by edited gene and rs2887399 genotype. Results of a linear regression model for the effect 

of edited gene (referent to AAVS1), number of T-alleles at rs2887399, and the interaction 

term of edited gene with T-alleles are presented below. Est. = estimate, S.E. = standard error, 

p. val. = p-value. Unadjusted p-values from a two-sided test are reported. n=4 biologically 

independent replicates for each group. D, Lin− CD34+ CD38− CD45RA− cell counts after 
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14 days liquid culture of edited HSCs. Results of a linear regression model for the effect of 

edited gene (referent to AAVS1), rs2887399 genotype (referent to GG), and the interaction 

term of edited gene with rs2887399 genotype are presented below. Unadjusted p-values 

from a two-sided test are reported. n=4 biologically independent replicates for each group. 

E, Lin− CD34+ CD38− CD45RA− cell counts after 14 days liquid culture of edited and 

shRNA transduced HSCs. Results of a linear regression model for the effect of edited gene 

(referent to AAVS1), shRNA (referent to scramble control), and the interaction term of 

edited gene with shRNA are presented below. Unadjusted p-values from a two-sided test are 

reported. The horizontal line in each box indicates the median, the tops and bottoms of the 

boxes indicate the interquartile range, and the top and bottom error bars indicate maxima 

and minima, respectively. n=4 for AAVS1 gRNA/scramble, n=5 for AAVS1 gRNA/TCL1A 
shRNA, n=4 for TET2 gRNA/scramble, and n=7 for TET2 gRNA/TCL1A shRNA, which 

represent biologically independent replicates.
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Figure 4∣. TCL1A Expression is Sufficient for HSC Expansion
A, Schematic of TCL1A-eGFP lentivirus construct (top) and effect of viral transduction 

on TCL1A expression in human CD34+ HSPCs (bottom). B, Lin−CD34+CD38−CD45RA− 

cell counts after 14 days liquid culture of transduced HSCs (left), and quantification of 

colony forming units in methylcellulose after 14 days of liquid culture of transduced HSCs 

(right); p-values were estimated using a two-sided t-test. n=10 biologically independent 

replicates for each group. C, Donor granulocyte chimerism of mice transplanted with 

TCL1A-eGFP or control-eGFP transduced c-Kit+ marrow cells plus GFP− competitor 

marrow. Shown are mean percent GFP+ donor granulocytes and standard errors for each 

time point. Hypothesis testing was performed using two-sided Wilcoxon rank sum tests 
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and p-values are indicated above each timepoint. n=8 mice for each group. D, Percent 

GFP+ donor cells in Lin− c-Kit+ Sca-1+ (KLS) marrow at 22 weeks post-transplant. 

P-value obtained from a two-sided Wilcoxon rank sum test. n=8 mice for each group. E, 
Percent Lin−CD34+CD38− cells in cycle by DAPI staining after 10 days liquid culture of 

transduced HSC/MPPs; p-values were calculated using a two-sided Wilcoxon rank sum test. 

n=4 biologically independent replicates for each group. F, UMAP of clusters identified after 

7 days liquid culture of transduced HSC/MPPs; all samples combined (left) and split by the 

4 individual samples (right). G/G or T/T refers to the donor rs2887399 genotype. G, Dot plot 

illustrating expression of representative marker genes across different cell clusters arranged 

by functional group. H, Forest plot of log2 fold-difference (Log2FD) in proportion of cells 

within each HSC/MPP cluster in TCL1A-eGFP versus control-eGFP transduced cells using 

a permutation test. Each donor represents an independent experiment and the false discovery 

rate (FDR) for each comparison is shown to the right.

For box and whisker plots in 4b, 4d, and 4e, horizontal lines indicate the median, the tops 

and bottoms of the boxes indicate the interquartile range, and top and bottom error bars 

indicate maxima and minima, respectively.
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