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Abstract: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debil-
itating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction,
sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS
often report a prodrome consistent with infections. Using regression, Bayesian and enrichment
analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS
cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly de-
creased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001)
and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine
learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls
with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings
provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dys-
regulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other
cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use
of the plasma metabolome as a source of biomarkers for the disease.

Keywords: myalgic encephalomyelitis; chronic fatigue syndrome; metabolomics; biomarker; peroxi-
some; cytidine-5′-diphosphocholine pathway; tricarboxylic acid cycle
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1. Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of un-
known cause that is defined by impairment from fatigue lasting longer than six months,
unrefreshing sleep, post-exertional malaise, and either cognitive dysfunction or ortho-
static intolerance [1]. People with ME/CFS may also report gastrointestinal disturbances,
influenza-like symptoms, and chronic pain [2]. It is estimated that ME/CFS affects between
0.4% to 2.5% of the global population, and 1.5 to 2.5 million people in the United States
alone [1,3]. There are no approved laboratory tests for ME/CFS. A diagnosis is based on
medical history and the exclusion of other disorders that may result in chronic illness [4,5].

Prior metabolomic studies of patients with ME/CFS have provided insights into the
potential pathogenesis and course of the disease, demonstrating disturbances in energy,
lipid, amino acid, and redox metabolism [6–16]. Metabolic dimensions of ME/CFS may
be related to sex; women are disproportionately affected by ME/CFS [1,17]. In analyses
of plasma samples, Naviaux et al. (2016) [15] found differences in metabolic pathway
disturbances and altered metabolite levels when stratifying ME/CFS cases by sex. Others
have also reported sex-specific differences in plasma biomarkers [14,18,19].

Comorbid gastrointestinal (GI) symptoms constitute a potential subtype in
ME/CFS [10,12,14,15,18,20–23]. Among those with ME/CFS, the presence or absence
of self-reported irritable bowel syndrome (sr-IBS), in particular, has highlighted differences
in the plasma proteome relating to immune dysregulation and altered levels of metabolites
within the metabolome [14,18]. In a fecal metagenomics study, Nagy-Szakal et al. (2017)
identified eleven bacterial species delineating differences between ME/CFS patients with
and without sr-IBS and found relations between bacterial taxa and symptoms relating to
fatigue and pain [23].

In this study, we report targeted and untargeted analyses of 888 metabolic analytes
comprising of primary metabolites (PM), biogenic amines (BA), complex lipids (CL), and
oxylipins (OL) in plasma of ME/CFS cases and controls. We identified altered metabolomic
profiles between ME/CFS patients, controls, and subgroups within ME/CFS patients based
on sex and sr-IBS.

2. Results
2.1. Study Population Characteristics

The study included plasma samples from 106 ME/CFS cases and 91 healthy controls
(Figure 1) recruited from five sites across the United States. Demographic and clinical
characteristics of the study population are shown in Table 1. ME/CFS cases and controls
were similar for all the frequency matching variables except season of collection (Chi-
squared p = 0.004). We adjusted for all the matching variables (sex, age, race/ethnicity,
geographic/clinical site, and season of collection), body mass index (BMI) and sr-IBS in our
statistical analyses to account for confounding. All scales in the short form 36 health survey
(SF-36) and the multidimensional fatigue inventory (MFI) were significantly different
between the two cohorts (Wilcoxon rank-sum p < 0.001). The study population is similar
to the prescreened cohort that consisted of 177 ME/CFS cases and 177 controls in sex
(Chi-squared p = 0.60), race (Chi-squared p = 0.66) and age (Wilcoxon rank-sum p = 0.65).

2.2. Metabolomic Dataset

Targeted and untargeted mass spectrometry platforms yielded data for 888 metabolic
analytes comprising 100 primary metabolites (PM), 237 biogenic amines (BA), 480 complex
lipids (CL), and 71 oxylipins (OL). Supplementary Table S1 shows the sample mean and the
standard deviation (SD) of levels of each metabolite within all ME/CFS cases, all controls,
female ME/CFS cases, female controls, male ME/CFS cases, male controls, ME/CFS cases
without sr-IBS and controls without sr-IBS.
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Figure 1. Pipeline for sample selection. EC: Exclusion criteria; WP: Withdrew participation; LFU: 
Loss to follow up; SSETR: Study site enrollment target reached; FBS: Failed baseline screening; MC: 
Medical conditions; FMC: Frequency matching criteria. 
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to follow up; SSETR: Study site enrollment target reached; FBS: Failed baseline screening; MC: Medical
conditions; FMC: Frequency matching criteria.
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Table 1. Subject characteristics.

Subject Characteristics ME/CFS (n = 106) Controls (n = 91) p-Value *

Sex
Female 75 69 0.42
Male 31 22

Age Mean ± SD 47.8 ± 13.7 47.0 ± 14.1
0.78Median (Range) 51.0 (21.6–70.0) 50.6 (21.2–68.2)

Race and Ethnicity
White and not Hispanic 93 85 0.40

Hispanic 6 3
Not White and not Hispanic 7 3

Site of Collection

Incline Village, NV 23 17

0.30
Miami, FL 15 5

New York, NY 17 19
Salt Lake City, UT 32 32

Palo Alto, CA 19 19

Season of Collection
Winter 33 14

0.004Spring 72 70
Summer 1 7

sr-IBS Comorbidity † Yes 35 3
<0.001No 71 88

BMI
Mean ± SD 26.1 ± 5.2 25.2 ± 4.7

0.31Median (Range) 25.0 (18.1–41.2) 25.1 (16.9–38.7)

Duration of ME/CFS ‡

Mean ± SD 15.0 ± 9.8 n/a

n/a
Median (Range) 14.4 (1.2–44.2) n/a
≥3 years 92 n/a
<3 years 8 n/a

SF-36 Scales §

Median (IQR)

Emotional Limitations 83.3 (0.0–100.0) 100.0 (100.0–100.0) <0.001
Emotional Well-being 72.0 (56.0–84.0) 88.0 (80.0–92.0) <0.001

General Health 20.0 (15.0–30.0) 90.0 (75.0–95.0) <0.001
Pain 45.0 (22.5–66.25) 90.0 (90.0–100.0) <0.001

Physical Functioning 35.0 (20.0–55.0) 100.0 (95.0–100.0) <0.001
Physical Limitations 0.0 (0.0–0.0) 100.0 (100.0–100.0) <0.001
Social Functioning 22.5 (10.0–45.0) 100.0 (90.0–100.0) <0.001

Vitality 5.0 (0.0–20.0) 80.0 (70.0–85.0) <0.001

MFI Scales ||

Median (IQR)

General Fatigue 91.7 (71.9–100.0) 16.7 (4.2–33.3) <0.001
Mental Fatigue 62.5 (45.8–75.0) 12.5 (0.0–35.4) <0.001

Physical Fatigue 87.5 (66.7–100.0) 12.5 (4.2–20.8) <0.001
Reduced Activity 79.2 (58.3–95.8) 4.2 (2.1–29.2) <0.001

Reduced Motivation 45.8 (29.2–66.7) 12.5 (4.2–25.0) <0.001

SD: standard deviation; IQR: interquartile range; ME/CFS: myalgic/encephalomyelitis/chronic fatigue syndrome.
* For categorial variable, p-values were derived from Chi-squared tests; for continuous variables, p-values were
derived from Wilcoxon rank-sum tests. † Prior physician diagnosed irritable bowel syndrome, self-reported on
the questionnaire. ‡ Only 90 responses were received for this item. § 36-Item Short Form Health Survey; scored on
a 0–100 scale with 0 = poor health status and 100 = excellent health status. || Multidimensional Fatigue Inventory;
scored on 0–100 scale with 0 = no fatigue and 100 = maximal fatigue.

2.3. ME/CFS Associated with Altered Metabolomic Profile

In PM, BA, and CL panels, lognormal regression models with log-transformed metabo-
lite levels as dependent variables had the lowest Bayesian information criterion (BIC) values
and best fit the data. The estimated coefficients can be interpreted as the differences in the
mean values of the log-log transformation of metabolite levels between cases and controls.
In OL panel, a mixture of lognormal and log-link Gamma regression models with original
metabolite levels as dependent variables best fit the data. For lognormal regression models,
the estimated coefficients are interpreted as the mean differences of log transformation
of metabolite levels between two groups. For log-link Gamma regression models, the
estimated coefficients are interpreted as the log of fold change between two groups. We
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considered a metabolite to be associated with ME/CFS if it satisfied the following criteria:
(1) false discovery rate (FDR) adjusted p-value < 0.15; (2) Bayes factor [24] (BF) > 3, and
(3) 95% highest density credible interval (HDI) not covering 0. Jeffreys (1961) [25] suggested
that the strength of evidence for the alternative hypothesis compared to the null hypothesis
is regarded as noteworthy if BFs are above 3.

We did not identify any metabolite as significantly associated with ME/CFS in the PM
panel. In the BA panel, levels of acetaminophen were increased in ME/CFS cases compared
to controls. In the CL panel, we found decreased levels of plasmalogens, unsaturated
phospholipid ethers (PLE), unsaturated phosphatidylcholines (PC), an unsaturated sph-
ingomyelin (SM), and an unsaturated lysophosphatidylcholines (LPC) in ME/CFS cases
compared to controls. In the OL panel, decreased levels of Resolvin D1 were observed
in ME/CFS cases compared to controls. Table 2 shows the estimated coefficients in the
regression models of these metabolites, their associated 95% confidence intervals (CIs),
p-values, FDR adjusted p-values and BFs. Because we used weakly informative priors in
Bayesian analysis, the 95% HDIs were similar to the 95% CIs. We report estimations of
HDIs in Supplementary Table S2 where estimations for all metabolites are shown.

Set enrichment analysis of the results from the regression models (Figure 2A) revealed
that ME/CFS subjects had reduced levels of plasmalogens, sphingomyelins, unsaturated
phospholipid ethers, unsaturated ceramides, carnitines, saturated lysophospholipids, un-
saturated lysophosphoethanolamines, unsaturated lysophosphatidylcholines, saturated
triglycerides and prostaglandins. The majority of unsaturated phosphatidylcholines were
also down-regulated in ME/CFS cases. Increased levels of hydroxy-eicosapentaenoic
acid (HEPE), dicarboxylic acids, and the majority of unsaturated long chain triglycerides
(TG) were found in ME/CFS cases compared to controls. There were mixed directional
alterations in the food exposome and epoxy fatty acids (EpODE). Complete data from
ChemRICH enrichment analysis are provided in Supplementary Table S3. Data from
compound-level enrichment analysis for the significantly altered metabolic clusters are
illustrated in Supplementary Table S4. Levels of choline in food exposome were reduced
in ME/CFS (estimated coefficient β = −0.009, p = 0.004), and only one subject, a control,
reported taking choline supplementations in the baseline questionnaire. Levels of succinic
acid (β = 0.022, p = 0.007) and alpha-ketoglutarate (β = 0.016, p = 0.048) in dicarboxylic
acids were elevated in ME/CFS.

2.4. Altered Metabolomic Profiles in Female and Male ME/CFS Patients

Naviaux et al. (2016) [15] reported that women with ME/CFS, but not men, had
disturbed fatty acid and endocannabinoid metabolism. Accordingly, we repeated separately
the analyses in female and male cohorts in our study population.

In female subjects, regression and Bayesian analyses (Table 2) revealed that levels of
unsaturated PC, plasmalogens, unsaturated phospholipid ethers (PLE) and a single SM in
the CL panel were decreased in ME/CFS patients compared to controls. In the BA panel,
levels of two drug metabolites, alprazolam and acyclovir, were up-regulated in ME/CFS
patients. We did not find the elevated levels of acetaminophen in female subjects (estimated
coefficient β = 0.064, FDR adjusted p = 0.211, BF = 1.172, 95% HDI = 0.019~0.116) that were
observed in the entire ME/CFS (male and female) population. Enrichment analysis in
female subjects (Figure 2B) identified dysregulations in the same metabolic clusters as in
the overall population. Complete data from enrichment analysis in female subjects are
shown in Supplementary Table S5. In contrast, we did not find any metabolites significantly
associated with risk of ME/CFS in male subjects. Supplementary Table S6 shows the
regression and Bayesian estimations for all metabolites in male and female cohorts.
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Table 2. Metabolites significantly associated with ME/CFS or ME/CFS subgroups.

Metabolite Enrichment
Cluster

Regression
Model

ME/CFS vs. Control

Estimated
Coefficient 95% CI p-Value FDR Bayes

Factor

Biogenic Amines (BA)

Acetominophen drugs Lognormal 0.068 (0.028, 0.108) 0.001 0.103 3.035

Complex Lipids (CL)

PE (p-36:2)/PE
(o-36:3)—ESI(+) plasmalogens Lognormal −0.028 (−0.043, −0.013) 0.000 0.074 20.935

PE (p-34:2)/PE (o-34:3) plasmalogens Lognormal −0.037 (−0.060, −0.014) 0.002 0.126 5.662
LPC (18:2)—ESI(−) unsaturated LPC Lognormal −0.019 (−0.032, −0.007) 0.003 0.139 4.102

PC (36:2) unsaturated PC Lognormal −0.007 (−0.011, −0.003) 0.000 0.074 11.241
PC (36:4) A—ESI(+) unsaturated PC Lognormal −0.018 (−0.028, −0.008) 0.000 0.074 8.134
PC (36:4) A—ESI(−) unsaturated PC Lognormal −0.019 (−0.031, −0.008) 0.001 0.103 4.032

PC (32:2)—ESI(−) unsaturated PC Lognormal −0.027 (−0.043, −0.010) 0.002 0.135 7.389
PC 34:4e unsaturated PC Lognormal −0.022 (−0.036, −0.008) 0.003 0.139 4.327

PC (p-34:2)/PC
(o-34:3)—ESI(+) unsaturated PLE Lognormal −0.018 (−0.027, −0.009) 0.000 0.062 44.620

PC (p-34:1)/PC (o-34:2) unsaturated PLE Lognormal −0.021 (−0.032, −0.010) 0.000 0.062 178.678
PC (p-36:1)/PC (o-36:2) unsaturated PLE Lognormal −0.055 (−0.086, −0.024) 0.001 0.074 11.555

PC (p-34:2)/PC
(o-34:3)—ESI(−) unsaturated PLE Lognormal −0.020 (−0.032, −0.009) 0.001 0.074 12.281

PC (p-36:4)/PC
(o-36:5)—ESI(−) unsaturated PLE Lognormal −0.021 (−0.034, −0.009) 0.001 0.103 7.046

PC (p-34:1)/PC (o-34:2) A unsaturated PLE Lognormal −0.027 (−0.044, −0.011) 0.002 0.125 5.655

Oxylipins (OL)

Resolvin D1 OH-FA_22_6_1 Gamma −0.528 (−0.846, −0.210) 0.002 0.134 6.635

Metabolite Enrichment
Cluster

Regression
Model

Female ME/CFS vs. Female Control

Estimated
Coefficient 95% CI p-Value FDR Bayes

Factor

Biogenic Amines (BA)

Alprazolam drugs Lognormal 0.081 (0.030, 0.132) 0.002 0.121 3.486
Acyclovir drugs Lognormal 0.152 (0.057, 0.247) 0.002 0.121 3.179

Complex Lipids (CL)

PE (p-36:2)/PE
(o-36:3)—ESI(+) plasmalogens Lognormal −0.033 (−0.049, −0.017) 0.000 0.048 24.602

PE (p-34:2)/PE (o-34:3) plasmalogens Lognormal −0.042 (−0.066, −0.018) 0.001 0.064 6.155
SM (d40:3) sphingomyelins Lognormal −0.035 (−0.055, −0.014) 0.001 0.064 6.392
PC (36:2) unsaturated PC Lognormal −0.009 (−0.013, −0.004) 0.000 0.054 14.972

PC (36:4) A—ESI(+) unsaturated PC Lognormal −0.022 (−0.033, −0.010) 0.000 0.054 8.061
PC (36:4) A—ESI(−) unsaturated PC Lognormal −0.025 (−0.038, −0.011) 0.000 0.054 11.432

PC 34:4e unsaturated PC Lognormal −0.029 (−0.045, −0.014) 0.000 0.054 13.135
PC (34:2)—ESI(+) unsaturated PC Lognormal −0.006 (−0.010, −0.003) 0.000 0.054 6.913
PC (p-34:2)/PC
(o-34:3)—ESI(+) unsaturated PLE Lognormal −0.022 (−0.032, −0.011) 0.000 0.048 36.107

PC (p-34:1)/PC (o-34:2) unsaturated PLE Lognormal −0.025 (−0.038, −0.012) 0.000 0.054 26.013
PC (p-36:1)/PC (o-36:2) unsaturated PLE Lognormal −0.067 (−0.106, −0.029) 0.001 0.064 5.458

PC (p-34:2)/PC
(o-34:3)—ESI(−) unsaturated PLE Lognormal −0.025 (−0.038, −0.011) 0.001 0.054 7.542

PC (p-36:4)/PC
(o-36:5)—ESI(−) unsaturated PLE Lognormal −0.025 (−0.040, −0.011) 0.001 0.064 7.044

PC (p-34:1)/PC (o-34:2) A unsaturated PLE Lognormal −0.035 (−0.055, −0.015) 0.001 0.064 6.285
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Table 2. Cont.

Metabolite Enrichment
Cluster

Regression
Model

ME/CFS without sr-IBS vs. Control without sr-IBS

Estimated
Coefficient 95% CI p-Value FDR Bayes

Factor

Complex Lipids (CL)

PE (p-36:2)/PE
(o-36:3)—ESI(+) plasmalogens Lognormal −0.029 (−0.045, −0.013) 0.000 0.081 6.915

PC (36:2) unsaturated PC Lognormal −0.008 (−0.012, −0.004) 0.000 0.076 8.626
PC (p-34:2)/PC
(o-34:3)—ESI(+) unsaturated PLE Lognormal −0.019 (−0.028, −0.010) 0.000 0.076 16.961

PC (p-34:1)/PC (o-34:2) unsaturated PLE Lognormal −0.022 (−0.033, −0.010) 0.000 0.076 30.007

ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome; sr-IBS: self-reported irritable bowel syndrome;
LPC: lysophophatidycholines; PC: phosphatidycholines; PLE: phospholipid ethers; CI, confidence interval;
FDR, false discovery rate adjusted p-value. For ME/CFS vs. controls, regression models were adjusted for age,
sex, race/ethnicity, geographic/clinical site, season of sampling, body mass index, sr-IBS. In the sex-stratified
comparisons, regression models were not adjusted for sex. In comparisons within subjects without sr-IBS,
regression models were not adjusted for sr-IBS. For lognormal regression, estimated coefficients are interpreted
as the differences in the mean values of log-log transformation of metabolite levels between cases and controls.
For Gamma regression, estimated coefficients were interpreted as the log of fold change between two groups.
Estimations in bold are significant in the corresponding comparisons. We considered a metabolite to be associated
with ME/CFS if it satisfied: (1) FDR adjusted p-value from regression model < 0.15; (2) Bayes Factor > 3, and
(3) 95% highest density credible intervals not covering 0. The credible intervals were extremely similar to the
confidence intervals and are shown in Supplementary Tables S2, S4 and S6. No primary metabolites were found
to be significantly associated with ME/CFS.

2.5. Altered Metabolomics Profile in ME/CFS Patients without sr-IBS

Due to the limited sample size of subjects with sr-IBS (35 ME/CFS cases and three
controls), we only compared levels of metabolites between ME/CFS cases without sr-IBS
and controls without sr-IBS. Levels of unsaturated PC, plasmalogens and PLE were de-
creased in ME/CFS patients in this subgroup (Table 2). In the ChemRICH enrichment
analysis, the dysregulations in metabolite clusters found to be dysregulated in the sub-
group without sr-IBS (Figure 2C) were all identified in the overall population (Figure 2A).
Complete data pertaining to the regression, Bayesian and enrichment analyses are shown
in Supplementary Tables S7 and S8.

2.6. Machine Learning Analyses

We considered three sets of metabolites as predictors to distinguish ME/CFS cases
from controls, including all metabolites, metabolites with BF > 1 and metabolites with BF > 3.
Each set of predictors was fitted in five different machine learning classifiers: least absolute
shrinkage and selection operator (Lasso) [26], adaptive Lasso (AdaLasso) [27], Random
Forests (RF) [28], XGBoost [29], and Bayesian model averaging (Model Average). The
classifiers were first trained in the 80% randomly-selected training set and then validated
in the remaining 20% test set. Figure 3A–C show the receiver operating characteristic
(ROC) curves and the area under the receiver operating characteristic curve (AUC) values
differentiating all ME/CFS cases from all controls, female ME/CFS from female controls,
and ME/CFS without sr-IBS from controls without sr-IBS, respectively, in the test set.
Although classifiers did not differentiate all ME/CFS from all controls, Lasso with BF > 1
metabolites as predictors distinguished female ME/CFS patients from female controls
with an AUC value of 0.794 (95% CI: 0.612–0.976), and Lasso with BF > 3 metabolites
distinguished ME/CFS without sr-IBS from controls without sr-IBS with an AUC value
of 0.873 (95% CI: 0.747–0.999). The AUC values and their associated 95% CIs of all the
classifiers are shown in Supplementary Table S9, and the true/false positive/negative rates
of the best performing classifiers are shown in Supplementary Table S10.
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Figure 2. Chemical enrichment analyses using ChemRICH. HEPE: hydroxy eicosapentaenoic acid; 
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lower in ME/CFS patients. A bar restricted to the right of the centered vertical line indicates a met-
abolic cluster that is higher in ME/CFS patients. A bar that crosses the vertical line indicates a met-
abolic cluster that is dysregulated in mixed directions. (A) All ME/CFS vs. controls. (B) Female 
ME/CFS vs. female controls. (C) ME/CFS without sr-IBS vs. controls without sr-IBS. 
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levels of two drug metabolites, alprazolam and acyclovir, were up-regulated in ME/CFS 
patients. We did not find the elevated levels of acetaminophen in female subjects (esti-
mated coefficient β = 0.064, FDR adjusted p = 0.211, BF = 1.172, 95% HDI = 0.019~0.116) 
that were observed in the entire ME/CFS (male and female) population. Enrichment anal-
ysis in female subjects (Figure 2B) identified dysregulations in the same metabolic clusters 
as in the overall population. Complete data from enrichment analysis in female subjects 
are shown in Supplementary Table S5. In contrast, we did not find any metabolites signif-
icantly associated with risk of ME/CFS in male subjects. Supplementary Table S6 shows 
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2.5. Altered Metabolomics Profile in ME/CFS Patients without sr-IBS 
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Figure 2. Chemical enrichment analyses using ChemRICH. HEPE: hydroxy eicosapentaenoic acid;
ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome; sr-IBS: self-reported physician
diagnosed irritable bowel syndrome. The length of the bar represents altered ratio for each metabolic
cluster. A bar restricted to the left of the centered vertical line indicates a metabolic cluster that
is lower in ME/CFS patients. A bar restricted to the right of the centered vertical line indicates a
metabolic cluster that is higher in ME/CFS patients. A bar that crosses the vertical line indicates a
metabolic cluster that is dysregulated in mixed directions. (A) All ME/CFS vs. controls. (B) Female
ME/CFS vs. female controls. (C) ME/CFS without sr-IBS vs. controls without sr-IBS.

2.7. Correlations between Metabolites and ME/CFS Symptom Severity Scores

We investigated whether the plasma levels of metabolites in the metabolic clusters
that were significantly altered in ME/CFS (bold in Supplementary Table S4) correlated
with the MFI scales using Spearman’s correlation tests. Heatmaps showing the correlation
coefficients in all ME/CFS, all controls, female ME/CFS, female controls, male ME/CFS,
and male controls are presented in Figure 4A–C.

Notably, within male ME/CFS patients, levels of TG (56:6) in unsaturated long-chain
TG were positively correlated with the MFI general fatigue scales (ρ = 0.501, p = 0.005),
and levels of TG (54:7) B were positively correlated with the MFI physical fatigue scales
(ρ = 0.519, p = 0.003). Within male controls, levels of alpha-ketoglutarate (α-KG) in dicar-
boxylic acids were positively correlated with the MFI physical fatigue (ρ = 0.558, p = 0.007),
reduced activity (ρ = 0.633, p = 0.002) and reduced motivation (ρ = 0.696, p < 0.001) scales.
More severe MFI reduced activity symptoms were associated with higher levels of two plas-
malogens (PE (p-34:2)/PE (o-34:3): ρ = 0.549, p = 0.010; PE (p-36:4)/PE (o-36:5)—ESI (+):
ρ = 0.551, p = 0.010). Levels of SM (d40:3) in sphingomyelins were negatively correlated
with the MFI reduced activity scales (ρ = −0.557 p = 0.009).
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Figure 3. ME/CFS predictive modeling. ME/CFS: myalgic encephalomyelitis/chronic fatigue
syndrome; sr-IBS: self-reported physician diagnosed irritable bowel syndrome; BF: BayesFactor; AUC:
area under the receiver operating characteristic curve. To differentiate ME/CFS cases from healthy
controls, we employed five machine learning algorithms: least absolute shrinkage and selection
operator (Lasso), adaptive Lasso (AdaLasso), Random Forests (RF), XGBoost, and Bayesian Model
Averaging (Model average). For each algorithm, three sets of predictors were considered: (1) all
metabolites, (2) metabolites with BayesFactor > 1, and (3) metabolites with BayesFactor > 3. The
predictive models were first trained in the 80% randomly selected training set using 10-fold cross-
validation, and the remaining 20% of the study population was used as the independent test set to
validate model performance. (A) Overall population. (B) Women only. (C) No GI complaints.
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tabolites in the metabolic clusters that were significantly altered in ME/CFS (bold in Supplementary 
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Figure 4. Correlation heatmap. MFI, Multidimensional Fatigue Inventory scored on 0–100 scale
with 0 = no fatigue and 100 = maximal fatigue. ME/CFS: myalgic encephalomyelitis/chronic
fatigue syndrome. * p < 0.01. Heatmap showing the correlation coefficients between the plasma
levels of metabolites in the metabolic clusters that were significantly altered in ME/CFS (bold in
Supplementary Table S4) and MFI scales using Spearman’s correlation tests in all ME/CFS, all controls,
female ME/CFS, female controls, male ME/CFS, and male controls. (A) Correlation heatmap, part 1.
(B) Correlation heatmap, part 2. (C) Correlation heatmap, part 3.
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3. Discussion

Since the first reports of large-scale metabolomic studies in people with ME/CFS
were published in 2016 by Naviaux [15], several research teams, including Yamano [16],
Fluge [9], Hoel [30], and our own [14], have reported metabolomic analyses of plasma. The
common threads in the results from all these studies are decreased levels of phospholipids
and metabolic dysregulation, suggesting abnormalities in lipid remodeling activity that
impair oxidative metabolism. In the present study, we also observed decreased levels of
phospholipids, especially plasmalogens and phospholipid ethers. Furthermore, consis-
tent with previous literature [6,16,30], our results suggest dysregulation of peroxisomal
metabolism and the tricarboxylic acid (TCA) cycle.

3.1. Lipid Metabolism Abnormalities

Regression, Bayesian, and enrichment analyses revealed significant reduction in the
levels of plasmalogens in the ME/CFS group compared to the control group. Plasmalogens
are abundant phospholipid ethers that protect phospholipids and lipoprotein particles from
oxidative stress and associated damage [31,32]. They are also responsible for maintaining
the integrity of membrane structures [31]. Plasmalogen biosynthesis commences in the per-
oxisomes and is completed in the endoplasmic reticulum [33]. Maintenance of peroxisomal
structure with functional enzymes is imperative for both plasmalogen biosynthesis and
β-oxidation of very long-chain fatty acids [31]. Peroxisomal β-oxidation of very long-chain
fatty acids leads to their breakdown into short-chain products that serve as substrates
for mitochondrial β-oxidation [34]. We posit that this crosstalk between mitochondria
and peroxisomes plays an important role in maintaining energy homeostasis, and that
dysregulation contributes to the fatigue and cognitive dysfunction that are hallmarks of
ME/CFS [35,36].

ME/CFS subjects had a significant reduction in levels of carnitines (Figure 2A–C).
Carnitines regulate the cellular to mitochondrial ratio of free CoA to acyl-CoA, remove
the unwanted acyl groups, and play a key role in the transport of long-chain fatty acids
from cytoplasm to the mitochondrial matrix for oxidation [37]. Depletion of carnitines
can threaten the integrity of cell and mitochondrial membranes, increase oxidative stress,
and reduce the ability to counter inflammation [38]. We also observed increased levels of
long-chain triglycerides in ME/CFS. Depletion of carnitines leads to the accumulation of
long-chain triglycerides that become targets for lipid peroxidation by mitochondria [39].
The accumulation of toxic lipid peroxidation products can also lead to mitochondrial
membrane damage [19]. Where carnitine is depleted and there is mitochondrial overload
for fatty acid oxidation, peroxisomal β-oxidation has been reported to be a compensatory
process that can produce carnitine as an intermediate product [40].

Peroxisomes regulate fatty acid metabolism through metabolic cross-talk with mi-
tochondria [41]. Missailidis et al. (2021) [35] have reported potential dysregulation in
mitochondrial β-oxidation in conjunction with dysregulation in peroxisomal processes
in lymphoblasts of ME/CFS patients. Our findings of depleted levels of plasmalogens,
unsaturated phospholipid ethers and carnitines are consistent with peroxisomal dysfunc-
tion. Peroxisomes also regulate the scavenging of reactive oxygen species (ROS). Redox
imbalance is frequently seen in people with ME/CFS [42]. The peroxisomal dysfunction
we observed could contribute to and/or reflect this redox imbalance. Finally, peroxisomes
are critical in maintaining membrane integrity.

We found depleted levels of phosphatidylcholines (PCs) in ME/CFS subjects. PCs are
abundant phospholipids in the mitochondrial membranes [43,44]. Most PCs are synthe-
sized via the CDP-choline pathway [45] and may undergo substantial lipid remodeling
via lipases and acyltransferases. PCs are essential to the formation of intermediate struc-
tures in membrane fusion and fission events, for stabilizing mem brane proteins into
their optimal conformations, and for actin-filament disassembly in the end stage of cy-
tokinesis [46–48]. One critical functional implication of reduced levels of PCs is impaired
oxidative phosphorylation. PC depletion specifically affects the function and stability
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of the protein translocases of mitochondria, including the inner membrane translocase
TIM23 complex [49] and the outer membrane sorting and assembly machinery (SAM)
complex [49,50]. The destabilization of TIM23 and SAM complexes leads to reduction in
mitochondrial membrane potential and impair protein transport and respiratory chain
activities [49].

ME/CFS patients were also found to have decreased levels of ceramides, sphin-
gomyelins, lysophosphatidylcholines, phospholipid ethers, prostaglandin D2 (PGD2) and
prostaglandin F2α (PGF2α). Depleted levels of lysophosphatidylcholines and phospho-
lipid ethers, as well as depleted levels of PCs, can impede mitochondrial respiration [46].
Reduced synthesis of PGF2α and PGD2 in phospholipase A2γ-deficient mice induces
mitochondrial dysfunction as well as oxidative stress, which can contribute to further
mitochondrial damage [51]. PCs, ceramides, sphingomyelins, and phospholipid ethers
are important components of the lipid bilayer, and reduction in their levels dysregulate
signal transduction across membranes. This alteration in the levels or conformation of
membrane components can adversely affect the function of proteins, such as G protein cou-
pled receptors (GPCRs), embedded in the membranes [52]. Phospholipids can act as direct
allosteric modulators of GPCR activity through the lipid head group that affects ligand
binding (agonist and antagonist) and receptor activation [52]. In addition, PCs are precur-
sors to many biologically active molecules that can act as second messengers. Prominent
among them are diacylglycerol (DAG), fatty acids, phosphatidic acid, lysophosphatidic
acid, N-arachidonylethanolamine, N-palmitoylethanolamine, N-steroylethanolamine and
arachidonic acid [53–55]. Ceramides are not only structural components of membranes but
can also act as second messengers in modulating a range of cellular signaling pathways [56].

Depletions in levels of choline approached, but did not meet, the association criteria
(adjusted p = 0.139, BF = 2.75, 95% HDI=−0.015~−0.003). Choline is an important nutrient;
95% of it is utilized in the synthesis of PCs via the CDP-choline pathway [45]. The remaining
5% exists as either free choline or is used in the synthesis of phosphocholine, glycerophos-
phocholine, CDP-choline, acetylcholine, and other choline-containing phospholipids like
sphingomyelin, plasmalogens and lysophosphatidylcholine. Each of these compounds
contributes to maintenance of the structure and signaling functionality of the plasma mem-
brane [45,53]. IgG autoantibodies that specifically target GPCRs have been reported, even
in healthy individuals, but are more commonly found in ME/CFS [57,58], particularly to
autonomic nervous system targets including the M3 Acetylcholine receptor (M3AChR)
and β2 Adrenergic receptor (β2AdR). Agonists for each of these receptors have choline
precursors, acetylcholine (AC) and epinephrine (adrenaline), respectively. Choline also
plays a role in the production of epinephrine by donating the methyl group. Thus, choline
deficiency could potentially lead to the autonomic dysfunction that is found in many people
with ME/CFS, with reduced tissue blood flow and oxygen supply, leading to hypoxia, is-
chemia and fatigue [59]. Depletion in the levels of choline, PCs, ceramides, sphingomyelins
and lysophosphatidylcholines, suggest dysregulation of the CDP-choline pathway.

3.2. TCA Cycle and Other Abnormalities

Through enrichment analysis, we found significant elevations in the levels of dicar-
boxylic acids in ME/CFS subjects. The two TCA cycle intermediates, alpha-ketoglutarate
(α-KG) and succinate, representing the dicarboxylic acids cluster, were elevated in ME/CFS.
The TCA cycle is a conserved pathway in aerobic organisms through which the acetyl-CoA
from carbohydrates, fats and proteins is converted into ATP [60]. Increased levels of α-KG
have been reported previously in ME/CFS patients [12], although we are not aware of
previous reports of elevated levels of succinate. Abnormal levels of TCA cycle interme-
diates suggest inefficiencies in ATP production that may contribute to the fatigue and
post-exertional malaise reported in ME/CFS. Increases in α-KG levels have been reported
to induce severe metabolic impairment of pyruvate oxidation in the tricarboxylic acid cycle,
leading to cell death [60]. Succinate accumulation has been reported to induce HIF-1α
stabilization as well as the transcriptional activation of the pro-inflammatory cytokine
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IL-1β [60]. Elevated succinate levels contribute to increased oxidative stress and neuronal
degeneration in rat models [61]. Oxidative stress, in turn, augments nitrosative stress [62].
Nitrosative stress, which has been documented in people with ME/CFS [42,63], can lead
to the increased production of peroxynitrite and downregulate the function of both α-
KG dehydrogenase and succinate dehydrogenase [62–64]. Infection is a common cause
of nitrosative stress. Many ME/CFS patients report symptoms consistent with systemic
infection prior to the onset of the illness.

Our analyses also revealed reductions in levels of Resolvin D1 in ME/CFS. Resolvin D1
is a derivative of docosahexanoic acid (DHA) and contributes to resolution of inflammation
by targeting dead cells for clearance by macrophages [65]. Decreased levels of Resolvin D1
in ME/CFS may be consistent with the possibilities of inflammatory damage associated
with the disease [66,67].

3.3. Metabolomic Findings as Biomarkers of Disease and of Disease Severity

To identify biomarkers for ME/CFS, we explored three sets of predictors and five
different machine learning models. None of the classifiers differentiated all ME/CFS
subjects from controls; however, the predictive performance of our subgroup analyses
was better in female and no sr-IBS sub-cohorts than in the overall population. This is
consistent with earlier findings in our ME/CFS studies and likely reflects heterogeneity in
both phenotype and pathogenesis [14,18,23]. We further tested their predictive capacities
with an independent cohort whose metabolomics profiling we previously explored [14].
The metabolomics assay of the validation set was matched with our current assay, resulting
in 630 metabolites in common. The metabolites that overlapped with the three sets of
predictors (all, BF > 1, BF > 3) were fitted into the same machine learning models, and
the predictive performance was evaluated using 10-fold cross-validation in the validation
dataset. The AUC values for distinguishing all ME/CFS patients from all controls ranged
between 0.514 and 0.738. For differentiating female ME/CFS subjects from female controls,
the AUC values were between 0.616 and 0.784; for differentiating ME/CFS patients without
sr-IBS from controls without sr-IBS, the AUC values ranged between 0.614 and 0.828. The
predictive performance was similar in the validation set, as observed in the current study
(Supplementary Table S9), and in models with larger BFs, as predictors also performed
better than those fitted with all metabolites.

From Figure 4A, we observed generally higher correlation coefficients in all peroxisome-
related metabolites (plasmalogen, phospholipid ethers, carnitines, and long-chain triglyc-
erides) with the energy MFI scales (General Fatigue, Physical Fatigue, and Reduced Activ-
ity) than with the mental MFI scales (Mental Fatigue and Reduced Motivation). Plasmalo-
gens and phospholipid ethers, in particular, are directly linked to peroxisomal disorders,
and were generally negatively correlated with the energy MFI scales in ME/CFS and
ME/CFS subgroups. This is consistent with the findings in the statistical analyses that lev-
els of these compounds were depleted in ME/CFS compared to controls, and the stronger
correlations in the energy MFI scales provided further support to the notion that dys-
regulated interactions between mitochondria and peroxisomes contribute to fatigue in
ME/CFS [35]. The correlation coefficients in the male cohort were generally larger than
those in the female cohort; however, the correlation coefficient estimates are prone to bias
especially when the sample size is small (31 male cases and 22 male controls vs. 75 female
cases and 69 female controls).

3.4. Strengths and Limitations

The strength of this study lies in the quality of patient characterization, robust
metabolomic analysis involving a comprehensive set of compounds, and complete and
cautious statistical approaches. The three association criteria that combine inferences
from frequentist and Bayesian analyses enhance the robustness of our findings without
compromise on the sensitivity. Although our current study has a larger sample size than
many previously published metabolomics studies in ME/CFS, it is imperative that the
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validity of novel findings reported here be independently tested in other cohorts. Our
subgroup analyses focusing on female subjects and subjects without sr-IBS did not reveal
dysregulated metabolic clusters different from those in the overall study population. These
analyses were limited by small sample sizes in the subgroups of male subjects and subjects
with sr-IBS. The analyses correlating metabolite levels with ME/CFS symptom scores were
limited by the subjective report of MFI instrument.

4. Materials and Methods
4.1. Study Population

Our starting population comprised 177 ME/CFS cases and 177 controls in ME/CFS
clinics in Incline Village, NV; Miami FL; New York, NY; Salt Lake City, UT; and Palo
Alto, CA. All ME/CFS cases met the 1994 CDC Fukuda [68] and Canadian consensus
criteria for ME/CFS [69], and were rendered with ME/CFS diagnosis from a clinician. All
ME/CFS cases completed standardized screening and assessment instruments including
medical history and symptom rating scales as well as a physical examination. Controls
were matched to cases on age, sex, race/ethnicity, geographic/clinical site, and date of
sampling (±30 days). Based on screening criteria, we excluded five ME/CFS cases that met
any exclusion criteria from the 1994 CDC Fukuda and/or Canadian consensus criteria for
ME/CFS, such as having chronic infections, rheumatic and chronic inflammatory diseases,
neurological disorders, psychiatric conditions, or were taking any immunomodulatory
medication. Controls underwent the same screening process as ME/CFS subjects and were
excluded if they reported ME/CFS or other conditions deemed by the recruiting physician
to be inconsistent with a healthy control population. Controls were also excluded if they
had a history of substance abuse, psychiatric illness, antibiotics in the prior three months,
immunomodulatory medications in the prior year, and clinically significant findings on
physical exam or screening laboratory tests. One control was excluded after prescreening
based on these criteria. Additionally, 21 participants were excluded prior to baseline due
to withdrawal from the study (n = 18), loss to follow-up (n = 2), and enrollment capacity
(n = 1). The baseline questionnaire was completed by with 327 participants. During the
study, an additional 63 participants were excluded for study protocol deviations (n = 25),
loss to follow-up (n = 25), and withdrawal from the study (n = 13), resulting in a total of
264 participants.

For the analysis reported here, a sub-cohort was established based on complete survey
and biospecimen data (blood, saliva, and stool) at the first and last time points of the
study and key demographic characteristics were frequency-matched to ensure that the
nested cohort was similar to the full cohort. This sub-cohort consisted of 106 ME/CFS
cases and 91 controls; the derivation of the sub-cohort is summarized in Figure 1. All
participants provided informed written consent in accordance with protocols approved by
the Institutional Review Board at Columbia University Irving Medical Center.

4.2. Plasma Collection

All participants fasted from midnight prior to the sample collection. Blood samples
were collected into BD VacutainerTM Cell Preparation Tubes (CPT) with ethylenediaminete-
traacetic acid (EDTA) anticoagulant between January 2016 and June 2016, and centrifuged
to pellet red blood cells. The plasma was shipped to Columbia University at 4 ◦C. After
aliquoting, samples were stored at −80 ◦C until thawed for metabolomics analyses. All the
samples were analyzed within two years of collection.

4.3. Clinical Assessment

Clinical symptoms and baseline health status were assessed on the day of physical
examination and biological sample collection from both case and control subjects using the
following instruments: the Short Form 36 Health Survey (SF-36), the Multidimensional
Fatigue Inventory (MFI), DePaul Symptom Questionnaire (DSQ) [70], and Pittsburgh Sleep
Quality Index (PSQI) [71]. The SF-36 includes the following subject-reported evaluations
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about current health status: physical and social functioning, physical and emotional limita-
tions, vitality, pain, and general and mental health [72]. The MFI comprises of a 20-item
self-reported questionnaire focused on general, physical and mental fatigue, reduced
activity, and reduced motivation [73]. Cognitive function was tested based on the self-
reported DSQ questionnaire data, and was scored using a standard cognitive disturbance
definition as well as a modified definition based on a subset of questionnaire variables.
Sleeping disturbances linked to ME/CFS were tested and scored based on DSQ and PSQI
questionnaire items. Each instrument was transformed into a 0–100 scale to facilitate com-
bination and comparison. The questionnaire reflecting these instruments is included in the
Supplementary Materials.

A diagnosis of sr-IBS was based on answers in the medical history form. Subjects
were asked if they had received a previous IBS diagnosis by a physician and the date of
that diagnosis. Of the 106 subjects with ME/CFS, 35 (33.0%) had sr-IBS. Of the 91 control
subjects, 3 (3.3%) had sr-IBS.

4.4. Metabolomics Analysis

Samples were stored at −80 ◦C before analysis. Untargeted metabolomics data were
acquired using three chromatography/mass spectrometry-based assays (MS). (1) Primary
metabolites such as mono- and disaccharides, hydroxyl- and amino acids were measured
by gas chromatography/time-of-flight mass spectrometry (GC-TOF MS) [74] including
data alignment and compound annotation using the BinBase database algorithm [75].
(2) Biogenic amines including microbial compounds such as trimethylamine N-oxide
(TMAO), methylated and acetylated amino acids and short di- and tripeptides were mea-
sured by hydrophilic interaction liquid chromatography/quadrupole time-of-flight mass
spectrometry (HILIC-QTOF MS). (3) Complex lipids including phosphoglycerolipids, tria-
cylglycerides, sphingolipids, and free fatty acids were analyzed by liquid chromatography
(LC)/quadrupole time-of-flight mass spectrometry (CSH-QTOF MS) [76]. Targeted bioac-
tive oxylipin assay included thromboxanes, prostaglandins, and hydroxy-, keto- and epoxy-
lipins. All LC-MS/MS data included diverse sets of internal standards. LC-MS data were
processed by MS-DIAL vs. 4.0 software [77], and the compounds were annotated based on
accurate mass, retention time and MS/MS fragment matching using LipidBlast [78] and
Massbank of North America libraries [79]. MS-FLO was used to remove erroneous peaks
and reduce the false discovery rate in LC datasets [80]. A total of 821 known metabolites
were annotated. Some complex lipids were annotated in both positive (ESI+) and negative
(ESI−) ion modes, resulting in a total of 888 metabolic analytes that were included in our
analysis. Data were normalized by SERRF [81]. Residual technical errors were assessed by
coefficients of variation (CV) for known metabolites.

4.5. Statistical Analyses

For each metabolic analyte, zero values reflecting a measurement below the detec-
tion limit were replaced with 50% of its smallest available value. In each of the four
metabolomics panels, outliers were identified through principal component analysis (PCA).
In PM, six outliers (four cases and two controls) were identified and removed; in CL, there
were five outliers (three cases and two controls); in OL, there was one outlier (one case); in
BA, four outliers (three cases and one control) were eliminated.

To compare the levels of each metabolite between ME/CFS cases and controls, we
employed a variety of regression models with the metabolite level as the dependent
variable and the binary case/control status as the independent variable, adjusting for
all the matching variables (age, sex, race/ethnicity, geographic/clinical site, and season
of sampling), BMI and sr-IBS. We considered two options for the dependent variable:
(1) original metabolite levels, and (2) natural log-transformed metabolite levels. Before
log-transformation, if necessary, all data points in metabolic analytes were multiplied by
a minimal factor to keep the feature on a positive domain. Four regression models were
considered: Gaussian regression with identity link, Gaussian regression with log link,
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lognormal regression and Gamma regression with log link. The BIC was used to select
the best fitting transformation/regression combination. We then calculated the estimated
coefficient for the case/control status, together with its 95% confidence interval (95% CI)
and p-value. Multiple comparisons over all metabolites were corrected using the Benjamini-
Hochberg procedure [82] controlling the FDR at the 0.15 level. Additionally, chemical
enrichment analyses were performed using ChemRICH [83] to determine chemical classes
that were significantly altered between groups. ChemRICH does not rely upon background
databases for statistical calculations and provides enrichment analysis based upon chemical
structure, as opposed to defined pathways that can be inherently flawed [83].

For each metabolite, we also conducted Bayesian analysis with the best fitting transfor-
mation/regression combination using R packages “rstanarm” [84] and “bayestestR” [85].
Default (weakly informative) prior distributions from rstanarm were applied adjusting
the scales of the priors internally. The default priors do not strongly affect the posterior
distribution but help stabilize computation, while still allowing for extreme effect sizes if
warranted by the data [86,87]. We then calculated the Bayes factors (BFs) and 95% highest
density credible intervals (HDIs). The BF of a single parameter indicates the degree by
which the mass of the posterior distribution has shifted further away from or closer to the
null value (zero), relative to the prior distribution [24]. Hence, the BF measures the strength
of evidence in favor of the alternative hypothesis (β 6= 0) over the null hypothesis (β = 0).
The 95% credible interval in the Bayesian framework is the range within which the effect
has 95% probability of falling, given the observed data; it has a different interpretation from
the 95% confidence interval in the frequentist framework which instead signifies that with
a large number of repeated samples, 95% of such calculated confidence intervals would
include the true value of the parameter. We considered a metabolite to be associated with
ME/CFS if it satisfied the following criteria: (1) FDR adjusted p-value < 0.15, (2) BF > 3,
and (3) 95% HDIs not covering 0.

Naviaux et al. (2016) [15] showed that potential diagnostic metabolites for ME/CFS in
targeted metabolomics are different between male and female subjects. Accordingly, we
conducted sex-stratified analyses in addition to analyses with the whole cohort. In our
previous work with a different cohort, sr-IBS comorbidity was identified as the strongest
driving factor in the separation of topological networks based on fecal microbiome and
plasma metabolic pathways [14,23]. We subsequently found different patterns in the re-
lationships between plasma proteomic profiling and ME/CFS when comparing ME/CFS
with or without sr-IBS to healthy controls [18]. Given this precedent, we tested the hy-
pothesis that sr-IBS subgroups in ME/CFS patients have altered metabolic profiles in a
stratified analysis. As there were only three control subjects with sr-IBS, we focused on the
comparison of ME/CFS subjects without sr-IBS versus controls without sr-IBS.

To explore the utility of the metabolomics assay as a biomarker tool for ME/CFS, we
employed four machine learning algorithms: Lasso [26], AdaLasso [27], RF [28] and XG-
Boost [29]. AdaLasso is different from Lasso in that AdaLasso has the oracle property that
leads to consistent variable selection whereas Lasso is only consistent for variable selection
under certain conditions on the shrinkage parameters and correlations [88]. For each of the
algorithm, three sets of predictors were considered: (1) all metabolites, (2) metabolites with
BF > 1, and (3) metabolites with BF > 3. The predictive models were first trained in the 80%
randomly-selected training set using 10-fold cross-validation; the remaining 20% of the
study population was used as the independent test set to validate model performance. We
also applied the Bayesian model averaging (Model Average) method [89] that combines the
predictions of multiple models using weighted averages in which the weights are Bayesian
posterior probabilities that the given model is the true model, conditional on the training
data. We assigned equal prior probabilities (1/4) to each of the four models; therefore,
the posterior probabilities were proportional to the model likelihood in the 10-fold cross-
validation using the training data. The predictive performance of the five models (Lasso,
AdaLasso, RF, XGBoost and Model Average) using the three sets of predictors in the test
set was evaluated using AUC values and ROC curves.
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Data analyses were performed using MATLAB Statistics Toolbox R2013a (MathWorks,
Inc., Natick, MA, USA) and R version 3.6.3 (RStudio, Inc., Boston, MA, USA). All p-values
were 2-tailed.

5. Conclusions

Our findings indicate a series of interconnected metabolic alterations in people with
ME/CFS that may contribute to the pathogenesis of ME/CFS: (i) reduced levels of plas-
malogens, unsaturated phospholipid ethers, and carnitines suggest peroxisomal dysfunc-
tion; (ii) reductions in levels of PCs indicate dysregulation of CDP-choline pathway, and
(iii) elevations in the levels of dicarboxylic acids, particularly the TCA cycle intermediates
alpha-ketoglutarate and succinate, consistent with an impairment in the TCA cycle that
may contribute to physical and cognitive fatigue.
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