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Abstract
Background  Melanoma-associated antigen-A (MAGE-A) and programmed-death ligand 1 (PD-L1) are present in urothelial 
carcinoma (UC). We assessed survival outcomes in patients with MAGE-A and PD-L1 expression.
Methods  MAGE-A and PD-L1 expression on neoplastic cells was analyzed using tissue microarrays from patients with 
UC. We compared differential expression between disease stage and grade. MAGE-A and PD-L1 co-expression was sub-
categorized. Fisher’s exact test was done for categorical variables followed by univariable and multivariable analysis of 
recurrence-free survival (RFS) and progression-free survival (PFS).
Results  Co-expression of MAGE+/PD-L1+ was higher in advanced disease; however, only MAGE+/PD-L1− was associated 
with shorter RFS [hazard ratio (HR) 1.89; 95% confidence interval (CI) 1.19–2.99; p = .006]. MAGE+/PD-L1+ was associ-
ated with the worst PFS (HR 17.1; 95% CI 5.96–49.4; p ≤ .001). MAGE-A expression was more prevalent with high-grade 
(p = .015), and higher-stage ≥ pT2 (p = .001) disease. The 5-year RFS was 44% for MAGE+ versus 58% for MAGE− patients. 
On multivariable analysis, MAGE+ was also associated with shorter RFS (HR 1.55; 95% CI 1.05–2.30; p = .03). Similarly, 
MAGE+ was associated with shorter PFS (HR 3.12; 95% CI 1.12–8.68; p = .03).
Conclusion  MAGE-A and PD-L1 expression is increased in advanced disease and associated with shorter PFS. Furthermore, 
MAGE-A expression was significantly associated with higher-grade and -stage disease and associated with shorter RFS and 
PFS. The worse prognosis associated with MAGE-A+/PD-L1+ provides evidence that a combinatorial treatment strategy 
co-targeting MAGE/PD-L1 might be feasible. Further studies are needed to validate these findings.

Keywords  Urothelial carcinoma · Melanoma-associated antigen · Programmed death-ligand 1 · Tissue microarray · 
Survival

Abbreviations
CI	� Confidence interval
HR	� Hazard ratio
IQR	� Inter-quartile range

MAGE-A	� Melanoma-associated antigen-A
MP	� MAGE-positive
MN	� MAGE-negative
PD-L1	� Programmed death-ligand 1
RC	� Radical cystectomy
RFS	� Recurrence-free survival
TCR​	� Adoptive T-cell receptor-engineered T-cell 

therapy
TMA	� Tissue microarray
UC	� Urothelial carcinoma

Introduction

The melanoma-associated antigen-A (MAGE-A) gene fam-
ily consists of 12 MAGE-A genes located on chromosome 
Xq28. The function and biological role of MAGE-A proteins 
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in cancer have not been completely elucidated; however, 
members of MAGE-A have been implicated in modulat-
ing the activity of E3 ubiquitin ligases on targets related to 
apoptosis and in the suppression of p53-dependent apoptosis 
[1]. MAGE has been a highly attractive target for cancer 
immunotherapy because of its broad representation in can-
cer tissues, but restricted expression in normal adult tissues, 
namely, immune-privileged germ cells. Recent studies have 
shown significant expression of MAGE antigen in urothelial 
carcinoma (UC) [2–6]. This observation has clinical impli-
cations as other studies have shown a poor prognosis in 
MAGE-positive patients [6, 7]. Currently, there are numer-
ous approaches targeting this antigen in the clinical setting, 
including vaccines and adoptive T-cell receptor-engineered 
T-cell therapy (TCR). A recent phase I trial using a TCR 
targeting MAGE-A has shown a potential benefit [8]. The 
safety of this TCR across multiple tumor types is currently 
being evaluated in a phase I trial (NCT03139370).

The use of immune checkpoint inhibitors in UC has 
become an important salvage option with reasonable 
response rates for patients whose disease progresses on 
cytotoxic chemotherapy [9]. While MAGE-A expression 
has been described in UC, evidence is lacking regarding 
the correlation of MAGE and programmed death-ligand 1 
(PD-L1) expression in UC. These data are of interest, as they 
inform a potential combinatorial therapeutic strategy using 
adoptive cell transfer together with a checkpoint inhibi-
tor. It is widely recognized that the use of TCRs in solid 
tumors will likely require combination therapy to address 
an immunosuppressive tumor microenvironment, such as in 
combination with checkpoint inhibitors, for example [10]. 
Some early data suggest that a combination approach may 
potentiate an immune response and enhance the efficacy of 
using adoptive cell therapy [11–13]. In addition, there are 
studies that suggest that receiving checkpoint inhibitors prior 
to tumor-infiltrating lymphocyte (TIL) harvest may lead to 
more effective TIL harvest, with a shorter ex vivo expansion 
time, and increased efficacy [14, 15]. In this study, we aimed 
to assess survival outcomes in patients with UC and their 
correlation with MAGE and PD-L1 expression.

Materials and methods

Study population and outcomes

The study cohort consisted of 422 UC samples in 275 
patients from transurethral resection of bladder tumor or 
radical cystectomy (RC) done at a tertiary medical center 
between 1985 and 1998. Available clinical, pathological, 
and follow-up data on each patient were obtained. The 
main covariates were age, sex, race, smoking history, can-
cer history, procedure, pathologic stage, and grade. The 

study outcomes were recurrence-free survival (RFS) and 
progression-free survival (PFS) in patients who underwent 
both RC and transurethral resection of bladder tumor, and 
overall survival (OS) in patients who underwent RC only. 
The overall aim was to examine the association of MAGE 
expression with survival outcomes as well as MAGE and 
PD-L1 expression with survival outcomes.

Tissue microarray construction

Tissue from formalin-fixed, paraffin-embedded specimens 
was obtained. Three 0.6-mm core biopsies were taken from 
representative tumor regions and precisely arrayed using a 
custom-built instrument as previously described [16]. 4-µm 
sections of the tissue microarray block were transferred to 
glass slides using the paraffin sectioning aid system compris-
ing adhesive-coated PSA-CS4x slides, adhesive tape, and 
an ultraviolet lamp (InstruMedics, LLC, Hackensack, New 
Jersey) to support the cohesion of 0.6-mm array elements.

Immunohistochemical staining and evaluation

Immunohistochemical (IHC) analysis of MAGE-1 (mouse 
clone 6C1, Thermo Fisher Scientific, Waltham, MA), and 
PD-L1 (rabbit clone SP142, Spring Biosciences) was per-
formed at room temperature on the Dako Link Autostainer 
48 (Agilent, Santa Clara, CA) [17] (Supplementary figure 1). 
Tissue sections were pretreated using Rip Tide, a proprietary 
antigen retrieval buffer (Mosaic Laboratories, Lake Forest, 
CA) for 40 min at 95 °C. Once the Autostainer procedure 
was initiated, the slides were rinsed with buffer immediately 
and after each of the following steps: (1) incubation with 
Envision Peroxidase (Dako) for 5 min to quench endogenous 
peroxidase; (2) incubation with MAGE-1 antibody, PD-L1 
antibody, or isotype-negative control for 30 min; (3) detec-
tion with Envision FLEX Linker for 15 min; (4) detection 
with Envision FLEX horseradish peroxidase for 20 min; 
and (5) staining with diaminobenzidine (Dako) for 10 min 
each. Upon completion of the staining procedure, slides were 
counterstained offline with hematoxylin (Dako) for 2 min, 
rinsed, and coverslipped.

Evaluation of IHC stains was performed by a pathologist 
who recorded the staining intensity, subcellular localization, 
and percentage of positively stained tumor cells. Staining 
intensity was evaluated on a semi-quantitative scale with 
the percentage of cells stained at each of the following 
four levels recorded: 0 (unstained), 1+ (weak staining), 2+ 
(moderate staining) and 3+ (strong staining). An H-Score 
was calculated based on the summation of the product of 
percentage of cells stained at each intensity using the fol-
lowing equation: (3 × percentage of cells stained at 3+) + 
(2 × percentage of cells stained at 2+) + (1 × percentage 
of cells stained at 1+). The maximum staining intensity of 



745Cancer Immunology, Immunotherapy (2019) 68:743–751	

1 3

normal adjacent tissue, endothelia, smooth muscle, fibro-
blasts, stroma, inflammatory cells, and nerve were recorded 
if observed. If positive PD-L1 staining was observed in 
endothelial cells, the percentage of staining was estimated. 
MAGE-positive (MP) status was defined as ≥ 50% positive 
staining with 2 + or 3 + intensity, while MAGE-negative 
(MN) was defined as below this level, a threshold that has 
been used previously in evaluating MAGE staining [8]. A 
commonly used PD-L1 cutoff criterion of ≥ 1% positive 
staining of tumor cells was applied [18].

Statistical analysis

Descriptive statistics for study variables were computed for 
the overall cohort as well as for the MP and MN subgroups. 
Study variables were compared between these subgroups 
using the Wilcoxon rank-sum tests for continuous variables 
and Chi-square or Fisher’s exact tests for categorical vari-
ables. We further subdivided patients according to MAGE 
and PD-L1 staining status to assess the effect of co-expres-
sion on survival. Patients’ specimen-level data were used for 
the analysis for recurrence, as biopsies were done at each 
recurrence, thus reflecting this particular outcome, with 
follow-up time calculated from procedure until event or cen-
soring. However, patient-level data were used to assess PFS 
and OS. RFS curves were created with the Kaplan–Meier 
method and survival was compared between discrete MAGE 
and PD-L1 expression groups with the log-rank test. For 
recurrence, univariable and multivariable mixed-effects Cox 
proportional hazards model were used to evaluate predic-
tors of outcome, adjusting for repeated measurements per 
patient. Variables selected in the model were either sig-
nificant on the univariable analysis and/or were felt to be 
clinically relevant. However, due to small number of events 
for progression, only a univariable analysis was conducted. 
Tests for proportionately were not violated in all models. 
OS was analyzed only in patients who underwent RC using 
Cox models. Performance of the Cox models was assessed 
using Harrell’s C statistic [19]. A sensitivity analysis was 
also performed to assess effect of year of treatment on OS. 
Two-tailed p values < 0.05 were considered statistically 
significant. Statistical analyses were performed with Stata 
statistical software version 15 (StataCorp, LLC, College Sta-
tion, TX, USA).

Results

Patient characteristics

The patient cohort consisted of 275 patients and 422 sam-
ples (Tables 1, 2). Median age was 70 [inter-quartile range 
(IQR) 62–76] with the majority of the cohort consisting of 

male, Caucasian patients. A large proportion of patients 
were smokers or former smokers (54%). MAGE staining 
was associated with more advanced disease stage (≥ pT2 
52% versus 42%) and high-grade disease (73% versus 60%; 
p = .015). A similar trend was noted for PD-L1-positive sam-
ples, which were more likely to be higher disease stage and 
grade.

MAGE outcomes

The median follow-up time for the entire cohort was 
77 months (IQR 22–118 months). The median RFS for 
patients with MP samples was 32 months, while those 
with MN samples had a median RFS that was not reached. 
The 5-year RFS in the MP group was 44% compared with 
58% in the MN group (Fig. 1). In a univariable Cox model 
(Table 3), MP was significantly associated with recurrence 
[hazard ratio (HR) of 1.84; 95% confidence interval (CI) 
1.09–3.09; p = .02]. Similarly, on multivariable analysis, 
adjusting for baseline and clinical variables, MP was also 
associated with shorter recurrence (HR of 1.55; 95% CI 
1.05–2.30; p = .03). Model performance using Harrel’s C 
statistic was 0.64. Median follow-up for patients who under-
went RC was 38 months (IQR 13–101). The 5-year PFS in 
the MP group was 44% compared with 82% in the MN group 
(Fig. 1). On univariable analysis, MP was also significantly 
associated with shorter PFS (HR of 3.12; 95% CI 1.12–8.68; 
p = .03). The median OS in patients who underwent RC and 

Table 1   Baseline characteristics

Total (N = 275)

Age 70 (62–76)
Sex
 Male 223 (81)
 Female 52 (19)

Ethnicity
 Caucasian 235 (85)
 AA 6 (2)
 Other 34 (12)

Tobacco
 No 29 (11)
 Yes 149 (54)
 Unknown 97 (35)

Personal history of other cancers
 No 148 (54)
 Yes 52 (19)
 Missing 75 (27)

Procedure
 Transurethral resection of bladder tumor 120 (44)
 Radical cystectomy 136 (49)
 Other 19 (7)
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had samples with MP staining was 46 months compared 
with 77 months in patients with MN samples. In addition, 
5-year OS was 44% versus 51% in the MP versus MN group, 
respectively (Fig. 2). However, there was no association with 
OS in either the univariable (HR of 1.15; 96% CI 0.71–1.87; 
p = .56) or multivariable Cox model (HR of 1.01; 95% CI 
0.58–1.75; p = .97). Furthermore, in a sensitivity analysis, 
year of treatment did not influence OS.

MAGE/PD‑L1 outcomes

There were 27% PD-L1–positive samples. Co-expression of 
MAGE and PD-L1 was assessed by categorizing samples in 
subgroups by staining result (Table 2). A high proportion 
of non-muscle-invasive bladder cancer samples (65%) were 
negative for both MAGE and PD-L1; whereas, there was 
a significant association of higher-stage disease (p ≤ .001) 
with samples that were positive for either marker. In the MP/
PD-L1-negative group, 48% were ≥ pT2; whereas, in the 
MN/PD-L1-positive and double MP/PD-L1-positive groups, 
the percentages were 59% and 62%, respectively. A similar 
trend was observed for disease grade; 90% of samples that 
were positive for both MAGE and PD-L1 were high-grade 
(p ≤ .001). On univariable analysis, overall PD-L1 positivity 
was not associated with shorter RFS (HR of 0.79; 95% CI 
0.55–1.14; p = .21). However, PD-L1 positivity was asso-
ciated with shorter PFS (HR of 5.31; 95% CI 1.99–14.2; 
p = .001) (Table 4). MP/PD-L1–negative samples com-
prised a subset associated with a shorter median RFS of 19 
months (HR of 1.96; 95% CI 1.30–2.95; p ≤ .001) (Fig. 2). 
Furthermore, when adjusting for clinical variables, this sub-
set was still associated with shorter RFS (HR of 1.89; 95% 
CI 1.19–2.99; p = .006) (Table 5). Model performance using 

Harrell’s C statistic resulted in an area under the curve of 
0.65. Of the associations observed, the most significant was 
that of the double-positive subset with shorter PFS (HR of 
17.1; 95% CI 5.96–49.4; p ≤ .001). There was no difference 
in RFS among the other groups (Table 4). OS was also not 
significantly different between the groups (Fig. 2).

Discussion

The treatment of UC has undergone major changes in recent 
years, namely the addition of immuno-oncology agents that 
have been shown to provide significant benefit in advanced 
disease [20]. While excitement is warranted, curative thera-
pies for advanced disease are lacking. Cancer/testis antigens, 
specifically MAGE-A, have emerged as potential targets for 
immune-oncologic strategies in the setting of advanced can-
cers. The prognostic value of MAGE-A expression has been 
established in numerous malignancies without evidence of 
expression in normal tissue [21]. In UC, a number of stud-
ies using different expression analyses have shown that a 
significant proportion of patients with UC have expression 
of MAGE-A, and increased expression of MAGE-A is asso-
ciated with shorter clinical outcomes. Dyrskjøt et al. have 
shown, using quantitative reverse-transcriptase polymerase 
chain reaction, that 43% of tumors showed MAGE-A expres-
sion and were associated with shorter PFS (HR of 2.96; 95% 
CI 1.14–7.68; p = .026) [4]. Similarly, the expression pro-
file of MAGE-A using tissue microarray in a large cohort 
demonstrated an association of MAGE-A expression with 
shorter cancer-specific survival in UC (HR of 1.44, 95% CI 
1.05–1.99; p = .02) [6]. In our study, using a more restrictive 
definition of MP using IHC, we found increased expression 

Table 2   Tumor and clinical 
characteristics—MAGE

MAGE and PD-L1 subgroups

MAGE Neg MAGE Pos p value MN/PN MP/PN MN/PP MP/PP p value

Overall, n (%) 321 (76) 101 (23) 232 (55) 72 (17) 89 (21) 29 (7)
Target stage < 0.001 < 0.001
 pTa 113 (36) 21 (21) 96 (42) 17 (24) 17 (19) 4 (14)
 pTis 34 (11) 4 (4) 27 (12) 3 (4) 7 (8) 1 (3)
 pT1 38 (12) 23 (23) 25 (11) 17 (24) 13 (15) 6 (21)
 pT2 61 (19) 33 (33) 35 (15) 20 (28) 26 (30) 13 (45)
 pT3–4 50 (16) 13 (13) 30 (13) 10 (14) 20 (23) 3 (10)
 Metastasis 21 (7) 6 (6) 16 (7) 4 (6) 5 (6) 2 (7)

Grade 0.015 < 0.001
 Low 129 (40) 27 (27) 109 (47) 24 (33) 20 (22) 3 (10)
 High 192 (60) 74 (73) 123 (53) 48 (67) 69 (78) 26 (90)

Surgical margins 0.92 0.72
 Negative 130 (40) 42 (42) 90 (39) 29 (40) 40 (45) 13 (45)
 Positive 13 (4) 3 (3) 10 (4) 1 (1) 3 (3) 2 (7)
 Missing 178 (55) 56 (55) 132 (57) 42 (58) 46 (52) 14 (48)
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of MAGE-A in 23% of samples, which was significantly 
associated with shorter RFS with both the univariable and 
multivariable survival model. In addition, PFS was signifi-
cantly shorter in the MP group versus the MN group. In 
an exploratory analysis, we also found 43% of the samples 
with UC were positive for MAGE-A expression using a less 

restrictive definition, consistent with previous studies. Fur-
thermore, OS was not significantly different between the MP 
and MN groups. This may be partly due to comorbidities or 
various treatments received that affect OS.

The possibility of using a combination strategy to target 
tumors, unleashing the immune system by targeting MAGE-
positive tissue while simultaneously allowing the immune 
system to function unimpeded via PD-L1 blockade, is an 
attractive one [22]. Such strategies are being evaluated in 
other malignancies and potentiated responses have been 
shown using combination approaches in mouse models [11, 
12]. Clinical trials using a combination of adoptive cell and 
checkpoint inhibitor therapy are underway (NCT03296137, 
NCT03287674, NCT03296137). Thus, further exploration 
of MAGE and PD-L1 expression patterns in UC is warranted 
as a foundation for such combination approaches. In our 
secondary analysis, we explored the prognostic implications 
of both MAGE-A and PD-L1 expression, and whether it 
informs such a strategy in UC. To assess co-expression, we 
subcategorized expression groups. The MP/PD-L1-negative 
group was associated with shorter RFS compared with the 
other expression groups. The MP/PD-L1 double-positive 
group was significantly associated with shorter PFS, but was 
not associated with shorter RFS, despite the fact that 62% of 
samples in this group were from patients with ≥ pT2 stage 
disease and 90% were from patients with high-grade disease 
(Table 2), features that would be expected to be associated 
with recurrence. This may be partially explained by the fact 
that many recurrences may have occurred in patients with 
lower-stage disease, and that MAGE-A and PD-L1 expres-
sion seems to be more prevalent in more advanced disease.

These results must be interpreted within the strengths and 
limitation of the study. The strengths of this study are first, 
the ability to study a relatively large set of samples from UC, 
while looking at the recurrence and progression outcomes in 
association with MAGE-A and PD-L1 expression. Second, 
to our knowledge, there are no studies examining prognostic 
implications of the co-expression of MAGE-A and PD-L1 
in UC. While it is unclear whether expression of MAGE-A 
will influence PD-L1 expression or vice versa, this question 
is clinically relevant because there is a reasonable proportion 
of patients whose tumors simultaneously express MAGE and 
PD-L1, perhaps supporting a possible combination strategy. 
In addition, this study used uniform tissue microarray con-
struction, staining, and interpretation to reduce potential vari-
ability. The limitations of this study include its retrospective 
nature as well as many potential confounders and variables 
across patients, such as performance status and number of 
treatments received, which were not controlled for and may 
affect the results. In addition, despite our attempts to address 
the heterogeneity of the cohort by statistical methods, this 
may still represent an important limitation. Conversely, this 
was seen as an opportunity to interrogate the sub-population 

a

b

c

Fig. 1   Recurrence-free (a), progression-free (b), and overall survival 
(c) outcomes for MAGE-A staining (cutoff ≥ 50% positive staining 
with 2+/3+ intensity)
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of patients using different endpoints and analyses, especially 
the prognostic value of MAGEA staining in TURBT samples. 
Finally, given the exploratory, hypothesis-generating nature 
of this study, the results remain valid in providing preliminary 
data to build on in future studies.

Conclusion

In this study, we demonstrate the association of MAGE-
A IHC expression in UC with shorter RFS and PFS. 

Table 3   Recurrence-free 
survival model—MAGE

a Adjusted for age, sex, race, smoking history, pathologic stage, grade, and margins

Unadjusted Adjusteda

HR (95% CI) p value HR (95% CI) p value

MAGE
 Negative Ref. Ref.
 Positive 1.67 (1.18–2.38) 0.004 1.62 (1.09–2.40) 0.02

PD-L1
 Negative Ref. Ref.
 Positive 0.79 (0.55–1.14) 0.21 0.80 (0.53–1.21) 0.29

Age 1.02 (0.99–1.03) 0.06 1.01 (0.99–1.03) 0.09
Sex
 Male Ref. Ref.
 Female 0.85 (0.54–1.32) 0.47 0.82 (0.52–1.30) 0.40

Ethnicity
 Caucasian Ref. Ref.
 AA 1.23 (0.64–2.34) 0.53 1.38 (0.72–2.67) 0.33
 Other 1.85 (1.29–2.64) 0.001 1.68 (1.05–2.71) 0.03

Tobacco
 No Ref. Ref.
 Yes 0.54 (0.29–0.99) 0.047 0.60 (0.31–1.16) 0.12
 Unknown 0.85 (0.46–1.57) 0.61 0.56 (0.26–1.14) 0.12

History of other cancers
 No Ref.
 Yes 1.11 (0.67–1.84) 0.68
 Missing 1.88 (1.31–2.71) 0.001

Target stage
 pTa Ref. Ref.
 pTis 1.12 (0.66–1.87) 0.67 1.11 (0.52–2.35) 0.79
 pT1 1.47 (0.90–2.39) 0.12 1.28 (0.69–2.39) 0.43
 pT2 0.81 (0.51–1.29) 0.38 0.71 (0.34–1.49) 0.36
 pT3–4 0.74 (0.38–1.42) 0.37 0.81 (0.32–2.08) 0.67
 Metastasis 1.05 (0.54–2.04) 0.89 0.79 (0.33–1.90) 0.60

Grade
 Low Ref. Ref.
 High 1.01 (0.73–1.39) 0.97 1.34 (0.70–2.61) 0.37

Surgical margins
 Negative Ref. Ref.
 Positive 0.82 (0.36–1.86) 0.63 0.91 (0.37–2.24) 0.84
 Missing 0.85 (0.39–1.87) 0.70 1.47 (0.90–2.40) 0.12
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Furthermore, co-expression of MAGE-A and PD-L1 are 
present in more advanced disease states, which trans-
lated into shorter PFS. This supports the possibility of 

co-targeting of MAGE and PD-L1 in advanced UC. Fur-
ther study and validation of these findings are warranted.
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