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Turbulence model reduction by deep learning

R. A. Heinonen and P. H. Diamond
University of California San Diego, La Jolla, California 92093

(Dated: May 13, 2020)

A central problem of turbulence theory is to produce a predictive model for turbulent fluxes. These have
profound implications for virtually all aspects of the turbulence dynamics. In magnetic confinement devices,
drift-wave turbulence produces anomalous fluxes via cross-correlations between fluctuations. In this work, we
introduce a new, data-driven method for parameterizing these fluxes. The method uses deep supervised learning
to infer a reduced mean-field model from a set of numerical simulations. We apply the method to a simple drift-
wave turbulence system and find a significant new effect which couples the particle flux to the local gradient
of vorticity. Notably, here, this effect is much stronger than the oft-invoked shear suppression effect. We also
recover the result via a simple calculation. The vorticity gradient effect tends to modulate the density profile. In
addition, our method recovers a model for spontaneous zonal flow generation by negative viscosity, stabilized
by nonlinear and hyperviscous terms. We highlight the important role of symmetry to implementation of the
new method.

Interest in turbulence — the principal “unsolved” prob-
lem in classical physics — is driven both by the challenge
of understanding the strongly nonlinear dynamics, and by the
need for tractable models of turbulent transport. The study of
such model reduction began with Prandtl’s mixing-length the-
ory approach to pipe flow transport and profile formation [1],
which has been extended to thermal transport and boundary
layers [2], heat transfer [3], stellar structure [4], ocean surface
layer mixing [5], and accretion disk dynamics [6].

One problem that appears frequently is that of accurately
modeling transport in different channels, such as heat and mo-
mentum, particles and heat, etc. It is intuitively appealing to
consider such turbulent transport by a matrix flux-gradient re-
lation

Γα =−Dαβ ∇ξβ (1)

where Γα is the vector of turbulent fluxes, ∇ξα is the vector
of driving gradients or thermodynamic forces, Dαβ is the ma-
trix of transport coefficients, and the indices refer to transport
channels. In many cases, some elements of D can be negative,
as relaxation in some channels can drive up-gradient fluxes in
others. One such system is drift-wave turbulence in magnet-
ically confined plasmas [7], where up-gradient transport pro-
cesses (i.e. zonal flow formation) and inward density pinch
[8] (akin to chemotaxis) are familiar. In some systems, the
challenge of calculating D is principally one of simultaneous
determination of the cross-phases between the various chan-
nels ξα . To date, theory has not been especially successful in
confronting the problem of predicting cross-phases in multi-
ple channels. For example, most models claiming to calculate
D are based on quasilinear theory [9, 10], the use of which is
frequently beyond justification.

In this work, we introduce a new, data-driven method based
on deep supervised learning [11] which infers a mean-field
model for the cross-phases from direct numerical simulation
(DNS). The mean-field model self-consistently describes the
coupled radial dynamics of the principal mean fields (i.e. pro-
files) of physical interest. This method, a form of nonlinear,
nonparametric regression, does not rely on any approxima-
tions besides the applicability of local mean field theory, and
it can be used to either validate existing models or probe for

new physics.
As a test of concept, we use direct numerical simulation of

the 2-D Hasegawa-Wakatani (HW) system [12–14] — a vari-
ant of the quasigeostrophic or Charney-Hasegawa-Mima sys-
tem [15, 16] — to train a deep neural network (DNN) which
outputs the local turbulent particle flux and poloidal momen-
tum flux (Reynolds stress) as a function of local mean gra-
dients, flow properties, and turbulence intensity. Exact sym-
metries are exploited to select independent variables and con-
strain the model.

The key results of this paper are as follows. The DNN
infers a model for the turbulent particle flux of the form
〈ṽxñ〉 ' ε(−Dn∂xN+Du∂xU) where ε is the turbulence inten-
sity, N and U are respectively the mean density and vorticity,
and Dn and Du are constants. [Throughout this paper, 〈·〉 will
represent an average over (poloidal and toroidal) directions of
symmetry and a tilde will represent the local deviation from
this average.] This form is valid when higher-order effects are
negligible. The first term is the familiar turbulent diffusion
which tends to relax the driving gradient. The second, propor-
tional to the gradient of vorticity, is non-diffusive and previ-
ously unreported. The vorticity gradient effect tends to mod-
ulate the profile in the presence of a quasiperiodic zonal flow.
In contrast, there is relatively weak direct dependence of the
flux on the vorticity (shear) itself, contradicting the conven-
tional wisdom that turbulent transport is directly suppressed
by the shear.

Meanwhile, the DNN uncovers a Reynolds stress closure
for the generation of zonal flow. Explicitly, we find at leading
order 〈ṽxṽy〉 ' ε(−χ1U +χ3U3−χ4∂ 2

x U), which agrees with
previous theoretical work [17] identifying negative viscosity
[18] as the mechanism for spontaneous zonal flow generation.
The resulting mean vorticity evolution equation resembles the
Cahn-Hilliard equation [19], a model of phase separation. We
also find higher-order corrections, including dependence on
the gradients of N and U . These results form the basis of a
novel, reduced 1-D model for the turbulent dynamics.

A generalization of Eq. (1) expresses the local (radial) flux
as an arbitrary function of local mean variables such as tem-
perature or density gradients, the E×B flow shear, and some
measure of the turbulence intensity. Formally, to construct
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such a local mean-field model, one choses a collection of n
spatiotemporally-varying fields ψi(x, t) and seeks a map

Mξ : (〈ψ1〉, . . . ,〈ψn〉)|r0,t0 7→ 〈ṽr(r0, t0)ξ̃ (r0, t0)〉 (2)

outputting the turbulent flux of ξ at a radius and time (r0, t0).
Our method selects the local mean-field model that best

explains the dynamics, according to a loss function which
quantifies the prediction error. It leverages deep learning’s
resilience to the large amounts of noise inherent to turbulence
[20], as well as its ability to model arbitrary nonlinear, multi-
variate functions [21–23].

We apply the method to a particularly simple description of
resistive drift-wave turbulence, the (modified) 2-D Hasegawa-
Wakatani (HW) model in a periodic slab [12–14]:

∂tn+{φ ,n}= α(φ̃ − ñ)−D∇
4n (3)

∂t∇
2
φ +{φ ,∇2

φ}= α(φ̃ − ñ)−µ∇
2
φ −D∇

6
φ . (4)

These equations use the usual normalizations ln(n/n0) →
n,φ → eφ/Te,x → ρsx, t → t/ωci. Here, {a,b} ≡ ∂ya∂xb−
∂xa∂yb is the Poisson bracket, α is the “adiabaticity param-
eter” which measures the parallel electron response, µ =
10−2 damps the flow at large scales, and the hyperdiffu-
sion/hyperviscosity D = 10−4 removes energy at small scales.
The small collisional terms are included primarily for numer-
ical regularity — turbulent transport dominates. We fix α = 2
throughout this work.

2-D HW is a representative paradigm for understanding the
nonlinear dynamics of drift-wave turbulence. It is an appro-
priate testing ground for our method because (a) it captures the
feedback between profile, flow, and turbulence field, allowing
us to obtain a closed mean-field model, (b) training data can be
generated easily, as simulations can be performed quickly on a
high-performance machine, and (c) it is well-studied and rela-
tively easy to treat analytically, allowing a means of checking
our results.

We first perform direct numerical simulation of the 2-D HW
system using the BOUT++ software [24] with a 512× 512
grid and Karniadakis’ third-order splitting method [25]. The
box size corresponds to an effective ρ∗ of 1/51.5. In the x-
direction, we employ homogeneous Dirichlet boundary con-
dition for φ and ∇2φ and homogeneous Neumann boundary
conditions for n. The system is periodic in the y-direction.

To span a broad range of parameter space, we run 32 sim-
ulations, each with different initial conditions. Ten simula-
tions are initialized with a uniform background gradient rang-
ing from 0.75 ≤ N′ ≤ 3 (this sets the system above the non-
turbulent Dimits shift regime but below the strong turbulence
regime). Seven simulations are initialized with a nonuniform
background gradient N′= βx/Lx with 1≤ β ≤ 5. The remain-
ing 15 simulations have both an initial uniform gradient 1 ≤
N′ ≤ 3 and an initial background flow Vy = v0 cos(2πnx/Lx)
with n = 1,2,3. In all simulations, a small broad-spectrum
fluctuation is initialized in the vorticity to start up the instabil-
ity.

From the numerical solutions, we extract mean-field vari-
ables of interest and the corresponding particle flux Γ =
〈ñ∂yφ̃〉 and Reynolds stress Π = 〈∂xφ̃∂yφ̃〉 at points in space

and time. Data are outputted from simulation every ∆t = 1,
from t = 10 up to t = 2000. The x-direction is coarse-grained
into blocks of four points, over which any necessary finite
differences are computed; thus, each simulation produces
128×1990 = 254,720 training data points.

Finally, these data, and their images under reflection sym-
metry transformations, are used to train a DNN which outputs
the flux as a function of chosen variables, using the Keras API
[26] on top of TensorFlow [27]. The DNN has the structure of
a multilayer perceptron (MLP) with three hidden layers. Each
hidden layer has eight units. As a reminder to the reader, an
MLP is a simple network whose hidden layers successively
transform the input like x j 7→ σ(w j

i · x j + b j
i ), where σ is a

prescribed activation function, w j
i is a trainable weight vec-

tor, b j
i is a trainable bias, i refers to the index of the neuron,

and j refers to the index of the layer. This yields a total of
201 trainable parameters in our case. [See Ref. [28] for an
introduction, aimed at physicists, to DNNs and other machine
learning methods.] The “exponential linear unit” [29]

f (x) =

{
x, x≥ 0
ex−1, x < 0,

(5)

is used as the activation function for the hidden layers. No
activation function is used for the output layer, since this is a
regression (rather than classification) problem and there is no
need to restrict the codomain.

Using standard methods, we train against the the loss func-
tion

L = ∑
i

ln(cosh(y∗i − fW (xi)))+λ ||W ||2, (6)

where W is the matrix of network weights, xi is the set of in-
puts (U,N′, etc.) for the i-th data point, y∗i is the corresponding
flux, fW is the map encoded by the DNN which predicts the
flux, || · || is the Frobenius norm, and λ = 10−5. We found
this “logcosh” loss useful to suppress the effect of noise, as
it is asymptotically linear in the error for large arguments,
but quadratic (and smooth) for small arguments. The term
λ ||W ||2 is the usual L2 regularization, which reduces overfit-
ting. Batch normalization [30] is applied after each hidden
layer to accelerate training.

The training procedure was repeated on ten random parti-
tions of the data into training (80% of the data) and validation
sets (20%). The results we quote are in fact the average of
the outputs of the resulting ensemble of ten trained models.
In separate training runs, we have checked that the model per-
forms well on a test set that has been excluded from the train-
ing and validation sets. This test set corresponded to a specific
range of initial N′ and comprised about 15% of the data.

The 2-D HW model has a number of exact symmetries,
which were found to be useful for training as a model con-
straint. The system is invariant under uniform shifts in both
n and φ , as well as Galilean boosts in the poloidal direction.
These continuous symmetries preclude explicit dependence of
the fluxes on 〈n〉, 〈φ〉, or the mean flow speed Vy =−∂x〈φ〉 in
a local mean-field description. Moreover, we have a group of
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reflection symmetries with nontrivial elements

x→−x,y→−y; (7)
x→−x,φ →−φ ,n→−n; (8)
y→−y,φ →−φ ,n→−n. (9)

We approximately enforce these symmetries by duplicating
and transforming the training data accordingly; for example,
the first symmetry sends ∂x〈n〉 → −∂x〈n〉,Γ→ −Γ,Π→ Π,
etc. It may be possible to encode the symmetries in the struc-
ture of the DNN, but this is beyond the scope of the present
work.

With the aid of the symmetry constraints, we train on the
following set of independent variables: the mean density gra-
dient N′ = ∂x〈n〉, the mean vorticity U =−∂ 2

x 〈φ〉, U ′, U ′′, and
the turbulent potential enstrophy (PE) ε = 〈(ñ−∇2φ̃)2〉 [31].
The latter is a proxy for the turbulence intensity. While other
choices are possible, the total PE ε +(N +U)2 is conserved,
so that the turbulent PE has the advantage of a dynamical de-
scription that is easy to write down.

The results for the particle flux are summarized in Figs. 1–
3. For |N′|, |U ′|. 1, the flux is a linear combination of diffu-
sive and nondiffusive terms.

Γ' ε(−DnN′+DuU ′), (10)

with Dn∼ 0.04 and Du∼ 0.015. The first, diffusive term is the
turbulent diffusion, which tends to relax the driving gradient.
The second term is non-diffusive and is previously unreported.
There are also higher-order saturation effects present at large
N′ and U ′. Not shown is the direct effect of the vorticity/shear
U , which tends to reduce the flux independent of the sign of
U . However, for typical values of the vorticity, this is a weak
effect in this system (. 10%).

FIG. 1: Diffusive part of the learned particle flux, i.e. the flux
at fixed U =U ′ =U ′′ = 0, as a function of N′ and ε . The

dependence on N′ may be summarized as linear, plus
saturation effects at large N′.

The non-diffusive term, proportional to the vorticity gradi-
ent, will tend to corrugate the density profile in the presence of

FIG. 2: Non-diffusive part of the learned particle flux, i.e. the
flux at fixed N′ =U =U ′′ = 0, as a function of U ′ and ε .

Again, the dependence on U ′ is roughly linear plus saturation
effects.

FIG. 3: Dependence of particle flux on both gradients: flux at
fixed U =U ′′ = 0 and fixed ε = 20, as a function of N′ and

U ′.

a quasiperiodic zonal flow, forming a staircase structure [32–
34]. It can be recovered by a simple calculation that retains
the background flow Vy. Due to the nonlinear convection of
vorticity, the background flow shifts the drift-wave frequency:

Reω =
ky(N′+V ′′y )

1+ k2 + kyVy (11)

Imω =
k2

y

α(1+ k2)3 (N
′+V ′′y )(k

2N′−V ′′y ), (12)

for α > 1. The coherent part of the particle flux is then
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FIG. 4: Plot of learned Reynolds stress against vorticity U, at
fixed N′ = 2 and U ′ =U ′′ = 0 and several values of the
intensity. Near U = 0, the behavior is that of a negative

viscosity.
.

straightforwardly computed as

Γ'− 1
α

∫
d2k

k2
y

(1+ k2)3

(
k2N′−U ′

)
εk, (13)

where we have used εk ' (1+ k2)2|φ̃k|2.
Our results for the Reynolds stress indicate that zonal flows

spontaneously generate by negative viscosity. For small U and
ε , the DNN obtains a model of the form

Π' ε f (N′,U ′)(−χ1U +χ3U3−χ4∂
2
x U), (14)

with χ1 ∼ 0.015 and χ3 ∼ 0.01, χ4 ∼ 0.0005, and

f (N′,U ′)' 1
1+0.04(N′+4U ′)2 . (15)

These results are shown in Figs. 4–7.
Using the learned form of the Reynolds stress, the vortic-

ity evolution ∂tU = ∂ 2
x Π (neglecting dissipation) has the basic

form of a Cahn-Hilliard equation [19] with dynamical coeffi-
cients. This agrees with previous theoretical work—see, for
example, Ref. [17]. The negative viscosity χ1 destabilizes
scales ` & (χ4/χ1)

1/2, and the cubic nonlinearity stabilizes
large vorticities U & (χ1/χ3)

1/2. The stabilizing hyperviscous
term is crucial for the stability of the vorticity evolution; in
its absence, the zonal flow is unstable at all small scales and
the dynamics are ill-posed. That the DNN recovers this small
term shows that the method passes a sensitive test.

The prefactor f is a new, higher-order effect which further
stabilizes the growth of the zonal flow; as U ′ steepens due to
the negative viscosity, the denominator of f increases, which
in turn reduces the Reynolds stress and inhibits further steep-
ening. The DNN also finds higher-order, saturating terms in U
which result in power-law decay of the Reynolds stress with
U .

FIG. 5: Plot of learned Reynolds stress against N′ at fixed
U = 1,ε = 10, U ′′ = 0, and several values of U ′. The
presence of a gradient in U ′ or N′ tends to reduce the

Reynolds stress.
.

FIG. 6: Plot of learned Reynolds stress against vorticity U at
fixed N′ = 2, U ′ = 0, ε = 20, and several values of U ′′. The

leading order contribution from U ′′ is a stabilizing linear
term.

.

The equations

∂tN +∂xΓ = 0 (16)

∂tU−∂
2
x Π = 0, (17)

(18)

equipped with the models for Γ and Π learned by the DNN,
can be coupled with a model for the evolution for the turbu-
lence intensity to obtain a reduced, three-field 1-D model for
the turbulence dynamics. An appropriate model equation is

∂tε +2(Γ−∂xΠ)(N′+U ′)ε =−γ0ε− γNLε
2. (19)
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FIG. 7: Plot of learned Reynolds stress against U ′′ at fixed
N′ = 2, U =U ′ = 0 and several values of the intensity. We

should have Π→−Π under U ′′→−U ′′ here, but the model
fails to precisely learn this, which may be attributed to the
relatively small contribution to the loss function from the

hyperdiffusion term. However, it is clear that this term scales
roughly as εU ′′.

.

This equation expresses conservation of the potential enstro-
phy W =

∫
d2x(n−∇2φ)2, equivalent to the mean square

charge density fluctuation. It can be derived either by integrat-
ing the wave-kinetic equation (WKE) over reciprocal space or
by manipulating the equations of evolution of ñ and ∇2φ̃ [31]
and neglecting the flux of turbulent PE, which models spread-
ing. The linear damping γ0 = Dnκ2

0 is necessary to model the
threshold density gradient for linear instability κ0. The non-
linear damping γNL models the transfer to dissipation via the
cascade.

The closed system for N,U and ε captures the initial growth
of turbulence, the spontaneous formation of a zonal flow, and
the back reaction on the profile. We will solve it numerically
and compare to DNS of the 2-D system in a forthcoming pa-
per.

We have thus used the deep learning method to extract a
simple mean-field model for the drift-wave/zonal flow system
directly from numerical solution data. The only other inputs
are exact symmetries and the choice of mean field parameters
(N′, U , ε , etc.). The method successfully reproduces previous
analytical results for the Reynolds stress, including the nega-
tive viscosity effect and crucial terms which regularize it. The
analogy to the Cahn-Hilliard equation, which models spinodal
decomposition of a mixture, has a clear physical interpreta-
tion: positively and negatively signed vortices spontaneously
separate.

Moreover, the method recovers a new, non-diffusive parti-
cle flux driven by the gradient of vorticity, in addition to the

well-known diffusive flux. The coupling to vorticity gradient
is significant, of the same order of magnitude as the density
gradient coupling, and far stronger than the direct coupling
to the shear. The physical origins of the non-diffusive effect
are in the nonlinear convection of vorticity, which shifts the
drift wave frequency. It has clear implications for structure
formation, as it tends to corrugate the density profile. The for-
mation of staircase-like structures in the profile is well-known
[32–34], but the mechanism highlighted in this work is dis-
tinct from previous models based on bistability [31, 35, 36].

On the other hand, our method has a number of limitations.
The assumption of spatial and temporal locality is, while stan-
dard, ad hoc and quite severe. In reality, the spectral struc-
ture of the turbulence, implicitly taken here to be constant in
time, will carry some memory of the time history. Moreover,
spatially nonlocal transport models have seen some success
[32, 37]. The mean-field approximation, too, is only reason-
able in the weak turbulence limit, wherein the flow retains its
axisymmetry and intermittency effects are relatively insignif-
icant.

While, in this work, the structure of the DNN model was
simple enough to interpret graphically, in other, more com-
plex applications, peering into the “black box” will likely pose
a greater challenge, and more sophisticated methods may be
necessary. Adjudicating the “correctness” of this structure is
another challenge altogether that requires physics intuition. In
this work, our confidence in the results rests primarily on (a)
their respect for underlying symmetries, (b) their respect for
the physical constraint that the fluxes must vanish at ε → 0,
(c) their agreement with analytical calculations, and (d) their
robustness to variations in the training data.

Collisional and neoclassical contributions to the fluxes were
neglected in this work, with collisional terms set deliberately
small. In a real system, these contributions may be significant
and/or have complex structure.

We anticipate our deep learning approach may be straight-
forwardly applied to other turbulent systems with quasisym-
metry along at least one spatial degree of freedom. Future
work will focus on such applications, as well as relaxing the
assumption of space-time locality.
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