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Abstract

Current clinical practice relies on clinical history to determine the time since stroke onset (TSS). 

Imaging-based determination of acute stroke onset time could provide critical information to 

clinicians in deciding stroke treatment options such as thrombolysis. Patients with unknown or 

unwitnessed TSS are usually excluded from thrombolysis, even if their symptoms began within the 

therapeutic window. In this work, we demonstrate a machine learning approach for TSS 

classification using routinely acquired imaging sequences. We develop imaging features from the 

magnetic resonance (MR) images and train machine learning models to classify TSS. We also 

propose a deep learning model to extract hidden representations for the MR perfusion-weighted 

images and demonstrate classification improvement by incorporating these additional deep 

features. The cross-validation results show that our best classifier achieved an area under the curve 

of 0.765, with a sensitivity of 0.788 and a negative predictive value of 0.609, outperforming 
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existing methods. We show that the features generated by our deep learning algorithm correlate 

with MR imaging features, and validate the robustness of the model on imaging parameter 

variations (e.g., year of imaging). This work advances magnetic resonance imaging (MRI) analysis 

one step closer to an operational decision support tool for stroke treatment guidance.

Keywords

Deep learning; autoencoder; acute ischemic stroke; stroke onset time; MR perfusion imaging

I. INTRODUCTION

WITH approximately 795,000 new cases each year, stroke is the fifth leading cause of death 

and the primary cause of long-term disability in the United States [1]. Acute stroke 

treatments focus on restoring blood flow to hypoperfused regions to minimize infarction 

(i.e., tissue death). Intravenous (IV) tissue plasminogen activator (tPA) remains the dominant 

thrombolytic treatment for acute stroke, with a strict time usage guideline (no more than 4.5 

hours from witnessed stroke symptom onset, i.e., time-since-stroke (TSS) A < 4.5hrs) due to 

the increased risk of hemorrhage when administered beyond that time interval. Mechanical 

thrombectomy (clot retrieval) is an alternative or adjunct therapy to IV tPA, yet its optimal a 

treatment time window remains uncertain [2]. Although IV tPA administration is the most 

common clinical therapy in most stroke centers, about 30% of the population cannot receive 

IV tPA because of unknown TSS (e.g., wake-up strokes or unwitnessed strokes). These 

patients are ineligible for tPA treatment despite the fact that their strokes may have actually 

occurred within the treatment window [3].

Previous work has argued for administering tPA based on a “tissue clock” determined via 

image analysis [4]. Studies are underway to investigate the use of a simple imaging feature, 

a mismatch pattern between magnetic resonance (MR) diffusion weighted imaging (DWI) 

and fluid attenuated inversion recovery (FLAIR) imaging, to estimate TSS. This method is 

based on the fact that the ischemic tissue is nearly immediately visible in DWI at stroke 

onset whereas it takes 3–4 hours for the ischemic tissue to appear in FLAIR [5]–[8]. The 

mismatch pattern is known as “DWI-FLAIR mismatch,” which is defined as the presence of 

visible acute ischemic lesions on DWI with no traceable hyperintensity in the corresponding 

region on FLAIR imaging (Fig. 1). Several clinical trials are ongoing to evaluate this 

mismatch method and determine if it is a suitable technique to apply on unwitnessed acute 

stroke patients in clinical settings [9]–[11]. While this is the current state-of-the-art method 

for determining eligibility for thrombolytic therapy in cases of unknown TSS, computing 

mismatch using MR imaging is a difficult task that requires extensive training and for which 

clinician inter-observer agreement has been found to be only moderate [12], [13]. Most of 

the previous studies [6]–[8] reported that the mismatch method could only achieve a 

specificity of 0.60 to 0.80 with a moderate sensitivity of 0.5 to 0.6 and a moderate negative 

predictive value (NPV) of 0.2 to 0.5. One study reported an area under the receiver operator 

curve (AUC) of 0.58 [8]. The preliminary work of the DWI-FLAIR mismatch method 

demonstrates a potential opportunity for using image analysis to classify TSS. However, the 

mismatch method may be too stringent, and therefore miss individuals who could benefit 
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from thrombolytic therapy [14]. A recent study has shown that lesion water uptake obtained 

from Computed Tomography (CT) images may estimate TSS more accurately than MRI 

[15], yet CT research on TSS classification is limited. Furthermore, many stroke centers skip 

CT imaging and obtain only MRI prior to stroke intervention to save time and because it 

provides more information for clinical diagnosis.

Machine learning models have been applied widely and can achieve good classification 

performance for problems in the healthcare domain because of their ability to learn and 

utilize patterns from data to make predictions. In particular, recent developments in an area 

of machine learning, deep learning [16], have drawn significant research interest because of 

the technique’s ability to automatically learn feature detectors specific to the data for 

classification, achieving state-of-the-art performance in challenging medical imaging 

problems (e.g., brain tumor segmentation [17], high-resolution histological segmentation 

[18], organ classification [19], retinal image anomaly detection [20], etc.).

Predictive models have been made in attempt to predict stroke patient outcomes (e.g., 

mortality) using basic imaging features (e.g., lesion volume) [21], [22]. While much work 

has been done in predicting stroke patient outcome and treatment response, there is limited 

work in determining TSS using MR perfusion-weighted images (PWIs). These images may 

contain information that encodes TSS [23]–[25]. Ho, et al. [26] have previously shown the 

potential of classifying TSS from MR images using only a simple feature (i.e., mean 

intensity value) in a dataset of 105 patients. In the current work, we built off of this 

preliminary analysis by developing a set of hundreds of imaging features and analyzed the 

performance on a larger acute stroke patient dataset. We developed a deep learning 

algorithm based on an autoencoder architecture [27] to extract latent representative imaging 

features (i.e., deep features) from PWIs and evaluate the effectiveness of classifiers with and 

without the deep features to classify TSS.

In summary, the main contributions of this work are:

1. We developed a set of imaging features from the MR images (DWI, ADC, and 

FLAIR) and the perfusion parameter maps (derived from the PWIs) and 

compared five machine learning models on TSS classification using these 

imaging features.

2. We proposed a deep learning model with training patch coupling strategies to 

learn latent deep features from four-dimension (4-D) PWIs that can be used in 

TSS classification.

3. We compared our proposed machine learning models (with and without deep 

features) and show that the deep features improve TSS classification and the 

models outperform the DWI-FLAIR mismatch method.

This work is the illustration of machine learning models on TSS classification using imaging 

features derived from the MR images and the perfusion parameter maps. The results show 

that imaging features derived from stroke images can be predictive of TSS, demonstrating a 

possible alternative to DWI-FLAIR mismatch, which is known to be difficult to evaluate 
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consistently. This work represents a step towards an operational decision support tool for 

guiding acute stroke treatment.

II. MATERIALS AND IMAGE PREPROCESSING

A. Patient Cohort and Imaging Data

Under institutional review board (UCLA IRB#18–000329) approval, a total of 181 patient 

MR images were examined from the University of California-Los Angeles picture archiving 

and communication system (PACS) between December 2011 and December 2017. The 

inclusion criteria were all patients with: 1) acute ischemic stroke due to middle cerebral 

artery (MCA) occlusion; 2) a recorded time of observed stroke symptom onset; 3) a recorded 

time of initial pretreatment imaging; and 4) a complete MR imaging sequence set (PWI, 

FLAIR, DWI, and ADC). The presence of a DWI-FLAIR mismatch was determined [28] by 

an expert neuroradiologist (Dr. S. El-Saden) using Medical Image Processing, Analysis, and 

Visualization (MIPAV) software [29], following the published protocol [8]. The presence of 

a DWI-FLAIR mismatch was labeled 1. The absence of a DWI-FLAIR mismatch was 

labeled 0. Patients’ TSS was calculated by subtracting the time at which the stroke 

symptoms were first observed from the time at which the first imaging was obtained. We 

followed the existing DWI-FLAIR TSS classification task [8] to binarize the TSS into two 

classes: positive (<4.5hrs) and negative (≥4.5hrs). After applying the inclusion criteria, a 

total of 131 patients were retrieved for the analysis (85 positive class; 46 negative class). 

This cohort subset was used to build the models for TSS classification. The patient 

characteristics are summarized in Table I.

All patients underwent MRI using a 1.5 or 3 Tesla echo planar MR imaging scanner 

(Siemens Medical Systems); scanning was performed with 12-channel head coils. The PWIs 

were acquired using a repetition time (TR) range of 1,490 to 2,640 ms and an echo time 

(TE) range of 23 to 50 ms. The pixel dimension of the PWIs varied from 1.72 × 1.72 × 6.00 

to 2.61 × 2.61 × 6.00 mm. The FLAIR images were acquired using a TR range of 8,000 to 

9,000 ms and a TE range of 88 to 134 ms. The pixel dimension of the FLAIR images varied 

from 0.688 × 0.688 × 6.00 to 0.938 × 0.938 × 6.50 mm. The DWI/ADC images were 

acquired using a TR range of 4,000 to 9,000 ms and a TE range of 78 to 122 ms. The pixel 

dimension of the DWI images varied from 0.859 × 0.859 × 6.00 to 1.85 × 1.85 × 6.50 mm. 

We note that in MR imaging, each brain voxel has three spatial dimensions for three axes 

(x-, y-, z-). We ignore the z-dimension in data generation (i.e., patch creation) due to slice 

thickness. Thus, our notation is simplified as we may denote the size of a “voxel” as 1 × 1 

only.

B. Image Preprocessing

Intra-patient registration of pre-treatment PWIs, DWI, ADC and FLAIR images was 

performed with a six degree of freedom rigid transformation using FMRIB’s Linear Image 

Registration Tool (FLIRT) [30]. Through the registration, each voxel in the PWI, DWI, and 

ADC images was made to correspond to the same anatomical location in FLAIR. Gaussian 

filters with a size of 2.35 mm full width at half maximum (FWHM) were applied to remove 

spatial noise. Skulls and different tissue type masks (e.g., cerebrospinal fluid (CSF), gray/
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white matter) were identified using Statistical Parametric Mapping 12 (SPM12) [31]. CSF 

was excluded from this analysis. Perfusion parameter maps were generated using block-

circulant singular value decomposition (bSVD) as provided by the sparse perfusion 

deconvolution toolbox (SPD) [32]; the arterial input function (AIF) was generated by the 

ASIST-Japan Perfusion mismatch analyzer (PMA) [33]. All DWI, ADC, and FLAIR 

intensity values were standardized to zero-mean and unit-variance globally on a brain-by-

brain basis. The standardized images were used in the feature generation step for TSS 

classification.

III. METHODS

Inspired by the extensive research work in other medical domains (e.g., lung nodule 

detection [34]), in which hundreds of hand-crafted imaging features were defined for 

classification, we propose to train machine learning models with imaging features derived 

from MR images and perfusion parameter maps to classify TSS. This section is divided into 

four parts: A. Imaging Feature Generation describes the set of baseline imaging features and 

deep learning features for TSS classification; B. Machine Learning Models for TSS 
Classification describes the details of using machine learning models for TSS classification; 

C. Experimental Setup describes the implementation details of the deep learning models, the 

machine learning model training configuration; D. Evaluation describes the evaluation 

analysis and the metrics. The overview of the TSS classification is shown in Figure 2.

A. Imaging Feature Generation

PWIs are spatio-temporal imaging data (4-D) that show the flow of a gadolinium-based 

contrast bolus into and out of the brain over time. They contain concentration time curves 

(CTCs) for each brain voxel, that describe the flow of the contrast (i.e. signal intensity 

change) over time. The global arterial input function (AIF) describes the contrast input to the 

vasculature (within a voxel) at a certain time t and it is defined in the MCA [35]. Perfusion 

parameter maps [36] can be derived from the AIF and CTCs, including cerebral blood 

volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), time-to-peak (TTP), 

and time-to-maximum (Tmax). Briefly, CBV describes the total volume of flowing blood in 

a given volume of a voxel and CBF describes the rate of blood delivery to the brain tissue 

within a volume of a voxel. CBV and CBF are used to derive MTT, which represents the 

average time it takes the contrast to travel through the tissue volume of a voxel. TTP is the 

time required for the CTC to reach its maximum, which approximates the time needed for 

the bolus to arrive at the voxel with delay caused by brain vessel narrowing or obstruction. 

Tmax is the time point where the contrast residue function reaches its maximum, which 

approximates the true time needed for the bolus to arrive at the voxel.

We proposed and compared two ways to generate the imaging features for TSS 

classification. The first way was to generate imaging features from the MR images and the 

perfusion parameter maps, in which descriptive statistical features (e.g., mean) were defined. 

The second way was to generate imaging features directly from the 4-D PWIs. We proposed 

to use a deep autoencoder to learn hidden representation of every CTC within the PWIs. 

After transforming the CTCs into a number of hidden features using the trained 
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autoencoders, we then aggregated these hidden representations into new feature maps that 

indicated hidden characteristics of the stroke tissue. The descriptive statistical features could 

then be generated from these new feature maps for TSS classification.

The imaging feature generation involved three parts: (1) region of interest generation, (2) 

baseline imaging feature generation, and (3) deep imaging feature generation.

1) Region of Interest Generation: Generating imaging features based on entire brain 

MR images may be less descriptive to the stroke pathophysiology and less predictive of TSS 

because often stroke occurs in only one cerebral hemisphere. Therefore, we first needed to 

define the regions of interest (ROIs) to generate the imaging features. Specifically, the ROIs 

were defined by Tmax>6s, which captures both the dead tissue core and the salvageable 

tissue that can possibly be saved by intervention aimed at restoring blood flow [37]. The 

largest connected region in which Tmax>6s on the stroke hemisphere was used as the ROI 

mask.

2) Baseline Imaging Feature Generation: The imaging features are summarized in 

Table II. The baseline imaging features were generated from the MR images (DWI, ADC, 

and FLAIR), the perfusion parameter maps (CBV, CBF, MTT, and TTP), and the Tmax>6s 

ROI mask. There are two major types of imaging features: descriptive statistics and the 

morphological features. Descriptive statistics included the maximum, minimum, median, 

mean, standard deviation, and variance of the intensity/parameter value within the ROI. 

Relative value (i.e., the ratio between the value of interest and the corresponding value on 

the contralateral side of the brain) has been shown to be predictive in stroke tissue outcome 

prediction [38], and therefore relative statistics (e.g., relative maximum) were also included 

as part of the descriptive statistics. Relative statistics of ADC-to-FLAIR and DWI-to-FLAIR 

were included, as inspired by the DWI-FLAIR mismatch method. This resulted in a set of 96 

baseline descriptive features. Morphological features [34] were calculated using the ROI 

mask, including area, volume, circularity, and sphericity. Two shape features [39] were 

included: the ratio between the volume of the ROI and its bounding box (BE), and the ratio 

between the lesion surface area and the lesion volume (SV). The maximum and minimum 

diameter of the ROI mask were also included. This resulted in a set of 8 baseline 

morphological features. In total, a set of 104 baseline imaging features were generated. All 

the features were standardized independently to zero mean with a standard deviation of 1 for 

TSS classification.

3) Deep Imaging Features Generation: We hypothesized that a deep learning 

approach can automatically learn feature detectors to extract latent features from PWIs that 

can improve TSS classification. We implemented a deep autoencoder (deep AE) that is 

based on a stacked autoencoder [27] to learn the hidden features from PWIs (Fig. 3). Each 

PWI voxel CTC at location i , with a size of 1 × t (t = time for perfusion imaging), is 

transformed by the deep AE into K new feature representations that can represent complex 

voxel perfusion characteristics (in this work, the optimal value of K for AE reconstruction is 

determined by cross-validation). The learning of these features is automatic, and it is 

achieved by the hierarchical feature detectors, which are sets of weights that are learned in 

training via backpropagation. The deep AE consists of an encoder and a decoder. The 
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encoder consists of two components: 1) an input layer; and 2) fully-connected layers, in 

which input neurons are fully-connected to each previous layer’s output neuron. The 

encoder is connected to the decoder, which follows reversely the same layer patterns of the 

encoder. The encoder output (i.e., the middle layer output of the deep AE) is the set of K 
new feature representations. Each new feature representation of all CTCs is aggregated to 

form a new feature map, known as “AE feature map” (Fk):

Fk = aei
k , ∀i ∈ I (1)

where I is the set of pixels in a PWI. In total, there are K new AE feature maps for a PWIs. 

New AE deep imaging features (descriptive statistics) were then generated from the AE 

features maps following the same procedure as described in 2) Baseline Imaging Feature 
Generation.

The proposed deep AE is trained via an unsupervised learning procedure in which the 

decoder output is the reconstruction of the encoder input. The network is optimized to obtain 

weights, Θ, that minimize the binary cross-entropy loss between the input, I , and the 

reconstructed output, I (Θ), across the samples with size n [40]:

arg min
Θ

1
n ∑

i = 1

n
(Ii * log(I (Θ)) + (1 − Ii) * log(1 − I (Θ)) (2)

4) Training Input Patch Coupling and Generation: Previous work [41], [42], 

suggests that regional information corresponding to a voxel’s surroundings improves 

classification in the MR images. Therefore, a small region (8 neighboring voxels) was 

included with each training voxel, leading to a size of 3×3 ×t (width × height × time; the z-

dimension is omitted; t = 64 in our dataset), where the center of the patch is the voxel of 

interest for the deep AE feature learning. Previous work showed that patch coupling in 

voxel-wise stroke classification could improve the learning of hidden features, yielding 

better performance [43]. Therefore, we proposed three approaches for patch coupling: (1) 

training patch with global AIF patch; (2) training patch with its corresponding contralateral 

patch, which could be used as a matched control (reference) to improve feature learning 

[44]; (3) training patch with both the AIF patch and the contralateral patch. Each training 

patch (with the coupled patch(es)) was then unrolled from a size of 3 × 3 × t × p ( p = 2 or p 
= 3, depending on the number of coupled patches) into a 1-D vector. The 1-D data were used 

to train the deep AEs, which consisted of the fully-connected layers. Three different deep 

AEs were optimized for the three patch coupling methods. In total, 105,000 training data 

were generated by sampling randomly and equally from all the patient PWIs to train the 

deep AEs.

B. Machine Learning Models for TSS Classification

We constructed and compared the performance of five machine learning methods for binary 

TSS classification (TSS<4.5hrs or TSS≥4.5hrs): logistic regression (LR), random forest 
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(RF), gradient boosted regression tree (GBRT), support vector machine (SVM), and 

stepwise multilinear regression (SMR). Briefly, LR is a probabilistic classification model in 

which binary label probabilities are found by fitting a logistic function of feature values [45]. 

RF is an ensemble learning method in which a multitude of decision trees are randomly 

constructed and the classification is based on the mode of the classes output by individual 

trees [46]. GBRT is an ensemble learning method similar to RF, in which a multitude of 

decision trees are randomly generated, yet these trees are added to the model in a stage-wise 

fashion based on their contribution to the objective function optimization [47]. SVM is a 

supervised learning classification algorithm that constructs a hyperplane (or set of 

hyperplanes) in a higher dimensional space for classification [48]. SMR is a stepwise 

method for adding and removing features from a multilinear model based on their statistical 

significance (e.g., F-statistics) to improve model performance [49]. In addition to the five 

machine learning models, we also trained four popular end-to-end convolutional neural 

networks (CNNs) to classify TSS. The input to the CNNs were the stacked images (the MR 

images + the perfusion parameter maps) and the output was the TSS classification. The 

details of the CNN implementation are described in the supplementary materials (S.1).

C. Experimental Setup

1) Autoencoder configurations and implementations details: We optimized the 

deep AE using Adam, which computes adaptive learning rates during training and has 

demonstrated superior performance over other optimization methods [50]. An early-stopping 

strategy was applied to improve the learning of deep AE weights and prevent overfitting, 

where the training would be terminated if the performance did not improve over five 

consecutive epochs (maximum number of training epochs: 50). The deep AE was 

implemented in Torch7 [40], and the training was done on two NVIDIA Titan X GPUs and 

an NVIDIA Tesla K40 GPU. Ten-fold patient-based cross-validation was performed to 

determine the optimal deep AE architectures, including the number of encoder hidden layers 

(from 1–3) and the number of hidden units (factor of 4, 8, 16, 32).

2) Machine Learning Model Training: The LR, RF, and SVM were developed using 

the Python Scikit-learn library [51]. The SMR and GBRT were developed using MATLAB 

and the XGBoost library [52] respectively. Different model hyperparameters (e.g., a LR’s 

hyperparameter, C) contribute differently to the classification and different machine learning 

methods may not perform equally on the same feature set. Evaluating model performance 

without hyperparameter tuning may lead to decreased predictive power due to over-fitting, 

especially on small and imbalanced datasets. Therefore, we performed nested ten-fold cross-

validation for all five classifier evaluation to avoid classification bias [53]. Briefly, an outer 

ten-fold cross-validation was performed to obtain the overall classifier performance. Within 

each outer fold (in which a validation fold was held out), an inner ten-fold cross-validation 

was performed first to determine the optimal model hyperparameters using the training data 

(i.e., the nine folds), and then the model was trained with the optimal hyperparameters and 

applied to the validation fold. The details of the optimal model hyperparameter 

determination are described in the supplementary materials (S.2).
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D. Evaluation

1) ROI Sensitivity Analysis: To investigate the effect of ROI generation on 

classification, we explored the impact of two additional Tmax cutoff values [37], [54]. One 

is Tmax>4s, which is a softer cutoff value that may include normal brain tissue; one is 

Tmax>8s, which is a stricter cutoff value that captures only the severe hypoperfused stroke 

region. We followed the same experimental procedures to extract the imaging features from 

the ROIs generated by the two new cutoff values and evaluated their performance.

2) Feature Correlation Analysis: A question one may ask is the correlation of the new 

deep features to the baseline imaging features. Recently, deep learning has been criticized as 

a “black-box” approach [55] that yields state-of-the-art performance, yet the classification 

mechanism is unclear. To understand what the deep features represented, we proposed an 

approach based on the correlation analysis. First, we calculated the correlation between the 

deep AE features and the baseline imaging features. Then, for each baseline imaging feature, 

the most correlated deep AE feature was identified. For each identified deep AE feature, the 

top five correlated baseline imaging features were obtained. All correlations were calculated 

using Pearson correlation [56].

3) TSS Subgroup Classification Analysis: The dataset was created from the patient 

imaging exams obtained from 2011 to 2017. Changes in MR image acquisition parameters 

(e.g., field strength) across any years may impact the classifier performance [57]. We 

explored the impact of two image-related variations, magnetic field strength and year of 

imaging acquisition, on the TSS classification. For the field strength, we performed two-fold 

cross-validation to evaluate the classifiers on TSS classification, i.e., trained on a data subset 

with one field strength (e.g., 1.5T) and evaluated on a data subset with another field strength 

(e.g., 3T). For the year of imaging, we trained the classifiers with the data collected from 

2011–2014 and evaluated the models with the data collected from 2015–2017. This 

evaluation was meant to explore whether the model still performed well on the newer data 

when training on the older data.

4) Metrics: We computed the area under the ROC curve (AUC), which is a classifier’s 

probability of predicting an outcome better than chance, for all five classifiers. To determine 

if the performance of the models significantly differed, we used the Hanley and McNeil 

significant test [58] with the improved covariance calculation [59] to compare the model 

AUCs. We also computed the model AUCs using the method published by Ho, et al. in 2017 

[26] trained with our dataset. Sensitivity, specificity, F1-score, positive predictive value 

(PPV), and negative predictive value (NPV) were calculated for the DWI-FLAIR mismatch 

method. Given the DWI-FLAIR mismatch method specificity, the performance (sensitivity, 

F1-score, PPV, and NPV) was calculated for the machine learning classifiers and compared 

against the DWI-FLAIR mismatch method.
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IV. RESULTS

A. TSS Classification

The optimal AE model architectures (number of layers, number of hidden units) for three 

types of coupling patch were determined (Table III). All three optimal AE architectures had 

32 hidden units (AE1 to AE32) in the middle layer (i.e., 32 deep feature maps), with mean 

square error (MSE) of at least 40% smaller than the average MSE of all of the trained AEs. 

These optimal AE models were used to generate deep feature maps from the patient PWIs, 

in which the ROI masks were applied to generate the deep AE features. The classifiers were 

trained with three different groups of features: (1) the baseline imaging (BI) features (96 

descriptive statistics and 8 morphological features); (2) the deep AE features (384 

descriptive statistics); (3) the baseline and deep AE features. The AUCs of the classifiers are 

depicted in Table IV.

With the baseline imaging features alone, all classifiers (LR, RF, GBRT, SVM, and SMR) 

achieved an AUC of at least 0.6 on TSS classification. With the deep AE features alone, 

most classifiers also achieved an AUC of at least 0.6, showing that the proposed deep AEs 

extracted hidden features in PWIs which are predictive of TSS. With the combination of 

baseline imaging features and deep features, all classifiers (except the GBRT trained with 

AIF coupling patch) showed improvement in AUC (compared to when using only the 

baseline imaging features). Among all the patch coupling methods, deep features generated 

from the AIF + contralateral coupling method improved TSS classification in most of all 

classifiers, e.g., LR has the best AUC with the AIF + contralateral patches (0.765 vs. 0.658 

vs. 0.676). Both LR and SVM had significantly better AUCs (p-value=0.003 and p-

value=0.024 respectively) with the features from the AIF + contralateral coupling than with 

the features from only the baseline imaging. Comparing to the method published by Ho et al. 
in 2017, all classifiers (AIF + contralateral patches) performed better using the current 

method.

Figure 4 shows the ROCs of the classifiers trained with the baseline features and the deep 

features (generated from the deep AE with the AIF + contralateral coupling patch), and the 

neuroradiologist performance using the DWI-FLAIR mismatch method. Three classifiers 

(LR, SMR, and SVM) achieved higher sensitivity (while having the same specificity) than 

the DWI-FLAIR mismatch method with the addition of the deep features, demonstrating the 

ability of using imaging features with machine learning models to classify TSS. Among all 

the classifiers, the LR trained with baseline imaging features and the deep features 

performed the best, with an AUC of 0.765. Comparing to the mismatch method, LR 

achieved higher sensitivity (0.788 vs 0.694), F1-score (0.788 vs 0.728), NPV (0.609 vs 

0.519), and PPV (0.788 vs 0.766) while maintaining same specificity (0.609). Therefore, LR 

with the baseline imaging features and the deep AE features was determined to be the most 

suitable classifier for the TSS classification.

B. Example of Classification

Figure 5 shows the TSS classification example of the optimal LR classifier, trained with both 

the baseline and deep AE features (generated from the AIF + contralateral coupling patch). 
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The classifier was able to classify patients with clear mismatch between DWI and FLAIR 

(Figure 5, patient #1 and patient #2). In cases where the mismatch was not clear, the 

classifier was able to correctly classify some cases (patient #3), but occasionally resulted in 

misclassifications (patient #4 and patient #5).

C. ROI Sensitivity Analysis

We performed the ROI sensitivity analysis on the deep AE feature maps generated from the 

AIF + contralateral coupling patch. Table V shows the TSS classification results. We 

observed that the deep AE features were still able to improve the performance of almost 

every classifier and threshold combination. The only exception was SMR with Tmax>8s, but 

the difference was not statistically significant (p-value=0.089). These results show that the 

deep AE feature generation is robust across ROI generation thresholds. Among all the cutoff 

values, Tmax>6s provided ROIs that resulted in optimal performance in all classifiers with 

baseline and deep AE features.

D. Feature Correlation Analysis

Table VI shows several examples of the deep AE feature correlation to the baseline imaging 

features. It is interesting to observe that different deep AE features correlated well with 

certain categories of baseline imaging features. For example, the AE8 feature correlated well 

with the time-related baseline imaging features (TTP and MTT), whereas the AE7 feature 

correlated well with the morphological baseline imaging features (e.g., area). Some deep AE 

feature (e.g., AE16) correlated well to an image type (e.g., ADC). The correlation analysis 

demonstrates that the deep AE features capture a variety of complex representations (i.e., 

shape, morphology) that led to better TSS classification.

E. TSS Subgroup Classification Analysis

The TSS subgroup classification result is shown in Table Three out of five classifiers showed 

improvement with the addition of deep AE features on the field strength subgroup analysis, 

and four out of five classifiers showed improvements on the year of imaging subgroup 

analysis. We observed that the SMR (with the baseline imaging features and the deep AE 

features) did not perform well (AUC=0.488) in the year of imaging subgroup analysis. We 

suspect that this may be due to the nature of the SMR feature selection mechanism, where 

small feature set could be selected and led to poor performance. Overall, we could still 

observe the improvement of the TSS classification with the additional new imaging features. 

The subgroup analysis shows that the classifiers were robust to both field strength and year 

of image acquisition.

V. DISCUSSION

Determining stroke onset time independent of patient history is a challenging and important 

task for better stroke evaluation and stroke treatment decision-making. The DWI-FLAIR 

mismatch method is the current state-of-the-art method that can provide clinicians with 

insight into stroke onset time based on observable mismatch patterns between DWI and 

FLAIR. One study reported the DWI-FLAIR mismatch method could achieve an AUC of 

0.58 in a data set of 194 ischemic stroke patients [8]. A clinical trial showed that using this 
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method is safe (i.e., no increased risk of hemorrhage) in selecting patients whose stroke 

onset time is unknown for IV tPA treatment [11]. Yet, this method suffers from its simplicity, 

i.e., the mismatch pattern between DWI and FLAIR may not capture all patients in whom 

TSS<4.5hrs [14], which can lead to a misclassification. In this work, we proposed a 

classification framework (defining ROIs, generating features, and training classifiers) for 

TSS classification. To generate useful information with a limited number of patients (n=131) 

and high dimensional data (4-D PWIs), we proposed to first use an autoencoder with several 

patch-coupling strategies to learn voxel-wise hidden representations. We then aggregated 

these hidden representations to generate new feature maps, which can be used to generate 

new AE features. Using this approach, we developed new imaging features from routinely 

acquired MR imaging sequences, perfusion parameter maps, and deep AE feature maps that 

capture information predictive of TSS. Our results show that this machine learning approach 

can potentially serve as an improved alternative to the DWI-FLAIR mismatch method. The 

proposed methodology may also be applied to other medical imaging data (e.g., cardiac 

PWIs).

With only the baseline imaging features, the best classifier (SMR) can achieve an AUC of 

0.661 on TSS classification (Table IV). This indicates that the machine learning models 

capture signal changes from the MR images and the perfusion parameter maps that are 

predictive of TSS. One possible signal is the change of the perfusion parameter value (e.g., 

CBV) over time within the ischemic stroke regions, previously demonstrated in animal 

studies [24], [25]. This also shows that the enriched baseline imaging feature set improves 

the TSS classification, in which previous work [26] showed a limited performance 

(AUC<0.700) with a single mean intensity value feature. There is an interesting observation 

that the deep AE feature maps generated from the AIF + contralateral coupling input are 

more predictive than the deep AE feature maps generated from the AIF coupling input or the 

contralateral coupling input. This supports our hypothesis that the AIF patch provides the 

base for the initial bolus setting (e.g., how fast the bolus is injected) whereas the 

contralateral patch provides a matched control for the healthy brain concentration time 

curve. We also observe that adding the deep imaging features (from the AIF + contralateral 

coupling) could improve the best classifier (LR) by at least an AUC of 0.1, and the 

correlation shows that 4 out of 10 top-10 correlated are the deep AE features (supplementary 

material Table SII). These observations suggest that the deep AE features are important for 

improving the TSS classification. Compared to the best proposed model, the best end-to-end 

CNN had a lower AUC (0.575 vs. 0.765, p-value = 0.0001; supplementary material Table 

SI). We suspect that the low performance may be due to the limited training data, a common 

problem with medical datasets, and a large number of trainable weights (>100,000).

Deep learning approaches have been criticized as “black-box”, in which the learning and the 

classification mechanism are too complicated and difficult to understand, engendering doubt 

in medical applicability because clinical decision making is ideally evidence-based [60]. In 

this work, we interpreted the complex deep AE features via a correlation analysis and found 

that some deep AE features correlated well with some baseline intuitive imaging features 

(e.g., morphology and time). This is an important first step because it shows clinicians what 

these deep AE features may represent, helping them to understand more about how the 

classifiers make the classification and why they can achieve better performance. The next 
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important step will be the visualization [26], which may bring further insight into TSS 

classification, like highlighting the important brain regions that drive a specific 

classification. Through a comprehensive visualization tool, clinicians may then be able to 

associate clinical reasoning (e.g., the location and the strength of the highlighted signals) 

with the TSS classification, making the deep learning approach more intuitive and therefore 

integral to the medical decision-making process.

Our study does have some limitations. The machine learning models were trained and 

validated on only the MR images. Our next step will be collecting the Computed 

Tomographic (CT) perfusion images and validating the robustness of our model on the new 

imaging modality. CT perfusion imaging is cheaper, faster and more readily available than 

MRI and could become the imaging modality of choice for acute ischemic stroke patients if 

TSS analysis on CT images was accurate and independent of clinical history. Finally, we did 

not consider clinical variables (e.g., age) in our classification, which may further improve 

the TSS classification. We plan to explore the existing machine learning models, 

incorporating clinical variables for TSS classification in the future.

VI. CONCLUSION

In this work, we developed new imaging features from MR images, perfusion parameter 

maps, and deep AE feature maps, and showed that they can be utilized by machine learning 

models to classify TSS. We showed that the best machine learning model can outperform the 

current state-of-the-art DWI-FLAIR mismatch method. We also proposed a correlation 

method to interpret the deep AE features and demonstrated that our proposed classification 

method is robust to variations in imaging acquisition. The method proposed here provides a 

foundation to utilize deep learning and machine learning techniques in TSS classification, 

which could ultimately provide decision-making guidance for clinicians in acute stroke 

intervention treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of DWI-FLAIR mismatch. LEFT: presence of DWI-FLAIR mismatch (TSS = 

1hr); RIGHT: absence of DWI-FLAIR mismatch (TSS = 8hrs). Hyperintensities are 

indicated by the red arrows.
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Fig. 2. 
The overview of the TSS classification. The classification involved four steps: (1) ROI 

generation, (2) deep AE map learning, (3) feature generation, and (4) TSS classification. The 

ROI generation step defines the region of interest (Tmax > 6s) for generating imaging 

features. The deep AE map learning step generates new feature maps using deep 

autoencoders (AEs). The feature generation step includes imaging feature generation from 

the MR images, the perfusion parameter maps and the deep AE maps, resulting in a set of 

104 baseline imaging features and 384 deep AE features. The TSS classification step trains 

five machine learning models with the imaging features to classify TSS<4.5 hrs.
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Fig. 3. 
Deep AE feature generation. Training patches (with a size of 3 × 3 × 64) were randomly 

generated from PWIs. Each patch was coupled with an extra patch (AIF only, contralateral 

only, or AIF+contralateral) and the combined matrix was unrolled into a 1D vector that 

would be fed into the deep network. The proposed deep AE consisted of an encoder and 

decoder, in which the encoder output would be the new compact representation for the input. 

The encoder outputs of all PWI voxels were aggregated into the final deep AE feature maps. 

A ROI mask (Tmax>6s) was then applied to the new feature maps to generate the imaging 

features (descriptive statistics). Note that the input z-dimension is not included.
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Fig. 4. 
The ROCs of different classifiers trained with both the baseline imaging features and the 

deep features (generated from the deep AE with the AIF + contralateral coupling patch). The 

red cross indicated the neuroradiologist classification using the DWI-FLAIR mismatch 

method.
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Fig. 5. 
Examples of TSS classification of the optimal LR classifier trained with both the baseline 

and deep AE features. Patient #1 (deep white matter infarct) and patient #2 (cortical infarct) 

were correctly classified as having TSS<4.5hrs and showed clear mismatch between DWI 

and FLAIR. In patient #3, the mismatch between DWI and FLAIR was less obvious, but the 

classifier still classified correctly. Patient #4 was misclassified because there was a visible 

mismatch between DWI and FLAIR images, but clinical history determined TSS to be > 

4.5hrs. In patient #5, the infarct was more conspicuous on DWI but essentially matched on 

FLAIR, and was also misclassified.
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TABLE I

ISCHEMIC STROKE PATIENT COHORT CHARACTERISTICS

Patients (n = 131)

Demographics

     Age 72.9±13.9

     Gender 72 females

Clinical Presentation

     Time since stroke (continuous) 256±247 minutes

     NIHSS
† 10.1±7.87

     Atrial fibrillation 37

     Hypertension 87

Stroke location (hemisphere)

     Left 65

     Right 66

Classification Label

     Time since stroke (binary) <4.5hrs (85); ≥4.5hrs (46)

†
NIHSS = NIH Stroke Scale International; scale: 0 (no stroke symptoms) −42 (severe stroke)
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TABLE III

OPTIMAL AE ARCHITECTURE FOR EACH COUPLING TYPE

Coupling Patch Type Optimal AE Architecture (# of hidden units/layer) Optimal MSE (Average Deep AE MSE)

AIF patch only 1152–192-32–32-192–1152 0.606 (1.54)

Contralateral patch only 1152–288-32–32-288–1152 1.16(1.95)

AIF + Contralateral patch 1728–288-32–32-288–1728 1.06 (4.49)
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TABLE V

THE AUCS OF CLASSIFIERS (WITH AIF + CONTRALATERAL PATCH) ON TSS CLASSIFICATION IN 

ROI SENSITIVITY ANALYSIS

Classifier
Tmax>4s Tmax>6s

¥  Tmax>8s

BI
†

BI+AE
Ω BI BI+AE BI BI+AE

LR 0.520 0.690* 0.618 0.765* 0.622 0.651

RE 0.667 0.678 0.640 0.690 0.610 0.666

GBRT 0.607 0.650 0.608 0.670 0.618 0.644

SVM 0.479 0.649* 0.636 0.746* 0.624 0.683

SMR 0.494 0.591 0.661 0.730 0.696 0.624

†
BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 morphological features)

Ω
BI + AE = Models were trained with the baseline and deep AE features

¥
The result is obtained from Table IV
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TABLE VI

FEATURE CORRELATION BETWEEN THE DEEP AE FEATURES AND THE BASELINE IMAGING 

FEATURES

Rank AE8 relative minimum AE7 Relative max AE16 variance AE23 Relative variance

1 TTP relative minimum Area ADC variance DWI relative maximum

2 TTP minimum Maximum diameter ACD-FLAIR relative mean DWI variance

3 MTT relative minimum Volume ADC-FLAIR Relative variance FLAIR relative maximum

4 TTP maximum Minimum diameter MTT variance DWI-FLAIR relative variance

5 DWI minimum TTP minimum ADC mean SV

Interpretation Time-related Morphology-related ADC-related DWI-related
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