
UC Davis
UC Davis Previously Published Works

Title
Genome-wide association analysis and accuracy of genome-enabled breeding value 
predictions for resistance to infectious hematopoietic necrosis virus in a commercial 
rainbow trout breeding population

Permalink
https://escholarship.org/uc/item/63k527jg

Journal
Genetics Selection Evolution, 51(1)

ISSN
0999-193X

Authors
Vallejo, Roger L
Cheng, Hao
Fragomeni, Breno O
et al.

Publication Date
2019-12-01

DOI
10.1186/s12711-019-0489-z
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63k527jg
https://escholarship.org/uc/item/63k527jg#author
https://escholarship.org
http://www.cdlib.org/


Vallejo et al. Genet Sel Evol           (2019) 51:47  
https://doi.org/10.1186/s12711-019-0489-z

RESEARCH ARTICLE

Genome-wide association analysis 
and accuracy of genome-enabled breeding 
value predictions for resistance to infectious 
hematopoietic necrosis virus in a commercial 
rainbow trout breeding population
Roger L. Vallejo1* , Hao Cheng2, Breno O. Fragomeni3, Kristy L. Shewbridge1, Guangtu Gao1, 
John R. MacMillan4, Richard Towner5 and Yniv Palti1

Abstract 

Background: Infectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is caused by the IHN virus 
(IHNV). Under intensive aquaculture conditions, IHNV can cause significant mortality and economic losses. Currently, 
there is no proven and cost-effective method for IHNV control. Clear Springs Foods, Inc. has been applying selective 
breeding to improve genetic resistance to IHNV in their rainbow trout breeding program. The goals of this study were 
to elucidate the genetic architecture of IHNV resistance in this commercial population by performing genome-wide 
association studies (GWAS) with multiple regression single-step methods and to assess if genomic selection can 
improve the accuracy of genetic merit predictions over conventional pedigree-based best linear unbiased prediction 
(PBLUP) using cross-validation analysis.

Results: Ten moderate-effect quantitative trait loci (QTL) associated with resistance to IHNV that jointly explained up 
to 42% of the additive genetic variance were detected in our GWAS. Only three of the 10 QTL were detected by both 
single-step Bayesian multiple regression (ssBMR) and weighted single-step GBLUP (wssGBLUP) methods. The accuracy 
of breeding value predictions with wssGBLUP (0.33–0.39) was substantially better than with PBLUP (0.13–0.24).

Conclusions: Our comprehensive genome-wide scan for QTL revealed that genetic resistance to IHNV is controlled 
by the oligogenic inheritance of up to 10 moderate-effect QTL and many small-effect loci in this commercial rainbow 
trout breeding population. Taken together, our results suggest that whole genome-enabled selection models will be 
more effective than the conventional pedigree-based method for breeding value estimation or the marker-assisted 
selection approach for improving the genetic resistance of rainbow trout to IHNV in this population.
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provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Background
Infectious hematopoietic necrosis (IHN) is an economi-
cally important disease of salmonid fish that is caused 
by IHN virus (IHNV), which is a single-stranded nega-
tive-sense RNA rhabdovirus [1]. IHNV is endemic to the 
Pacific Northwest in North America [2] and has spread 
throughout continental Europe, China, and Japan [3–5]. 
IHNV is infectious to Pacific salmon and trout (Onco-
rhynchus spp.), as well as to Atlantic salmon (Salmo salar) 
[2]. Under intensive conditions of aquaculture, IHNV can 
cause significant mortality and losses at nearly all stages 
of production [6, 7]. Currently, there is no proven and 
cost-effective method for IHNV prevention or treatment. 
Thus, the development of rainbow trout strains with 
genetic resistance to IHNV can aid in improving animal 
welfare and in decreasing the economic losses that are 
caused by this highly infectious disease to aquaculture 
production.

The additive genetic basis for IHNV resistance is evi-
dent from the moderate estimates of heritability for 
IHNV survival status (h2 = 0.23 − 0.55) and survival days 
(h2 = 0.02 − 0.20) in a steelhead trout (O. mykiss) popu-
lation [2]. These results suggest that resistant rainbow 
trout strains can be developed using family-based selec-
tive breeding methods. However, to date, selecting and 
developing strains with improved resistance to IHNV in 
rainbow trout has not been successful. Phylogenetic and 
nucleotide sequence analyses of 84 IHNV isolates have 
revealed an unusually high genetic diversity of IHNV 
in trout aquaculture, making the process of selecting 
IHNV-resistant strains difficult [8]. Nonetheless, selec-
tive breeding of a rainbow trout strain for resistance to 
IHNV has been implemented at the Clear Springs Foods 
Inc. breeding program since the year 2000 [9]. Between 
2000 and 2016, the selection differential for resistance 
to IHNV has been on average 10% for the last eight gen-
erations and the mortality rate in challenge trials has 
decreased on average by 3% per generation (Richard 
Towner, unpublished results).

Few quantitative trait loci (QTL) mapping stud-
ies have been conducted to identify genetic polymor-
phisms that are associated with IHNV resistance in 
rainbow trout. A number of moderate-large-effect QTL 
associated with IHNV resistance were found on 12 
rainbow trout chromosomes using linkage analysis [3, 
10–12] and genome-wide association studies (GWAS) 
[9] methods. However, these previous QTL mapping 
studies had several limitations. First, they performed 
only single-marker association (SMA) tests using sin-
gle-regression or linear mixed models. A key concern 
with SMA compared to the multiple-marker associa-
tion test model is that it ignores both the information 
that is contained in the joint distribution of all markers 

[13, 14] and the linkage disequilibrium (LD) between 
neighboring loci [15, 16]. Consequently, with the multi-
marker model, a weak signal may be more apparent 
when other QTL are accounted for, and a false signal 
may be weakened by the inclusion of a stronger signal 
from a real QTL in the model [17, 18]. Second, most 
of the reported QTL for IHNV resistance were identi-
fied using linkage-based methods and GWAS was per-
formed within individual segregating families, using 
relatively small samples and consequently with low 
QTL detection power. Third, the previous studies used 
low-density genotyping platforms and did not have a 
reference genome sequence for accurate prediction of 
the order and physical proximity of the tested markers.

There is ambiguity on the best computational algorithm 
when using multiple-regression based models in GWAS 
and genomic selection (GS) studies because the genetic 
architecture of the trait and the population structure can 
have a major impact on power to detect marker effects 
and on the accuracy of genomic predictions. Therefore, it 
is important to compare the results from the best availa-
ble computational methods when elucidating the genetic 
architecture of a complex disease trait for the first time in 
a population. This approach will ensure the effective dis-
covery of QTL underlying the genetic basis of the disease 
under study, and better control of the type I error rate, 
which is often high in GWAS.

In multiple-regression based GWAS models that fit 
all single nucleotides polymorphisms (SNPs) with high 
quality genotypes, the genomic best linear unbiased pre-
diction (GBLUP) method assumes that all SNPs have 
a non-zero contribution to the variance of the trait of 
interest, with equal variance for each SNP, and that the 
distribution of the SNP effects follows a normal dis-
tribution [19–21]. In addition, the single-step GBLUP 
(ssGBLUP) method was developed, which combines the 
pedigree-based ( A ) and genomic relationship ( G ) matri-
ces into the H relationship matrix [22, 23]. Conversely, 
the Bayesian variable selection model assumes that the 
genetic variance of the trait is explained by a relatively 
small number of loci, each with a small-moderate or large 
effect [15, 21, 24–26]. Based on the underlying assump-
tions of these models, the GBLUP model is expected 
not to perform as well as the Bayesian variable selec-
tion model when the genetic architecture of the trait 
is not predominantly polygenic. For that reason, the 
GBLUP method was extended to the weighted ssGBLUP 
(wssGBLUP) method, which mimics the Bayesian vari-
able selection model by fitting all SNPs in the multiple-
regression model but assigning differential weights to the 
SNPs based on the individual variance of each SNP effect 
[27]. More recently, Bayesian variable selection mod-
els that use single-step methods have been developed 
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[18, 28–30], including the single-step Bayesian multiple 
regression (ssBMR) method [18, 29].

The development of these GWAS methods, along 
with the development of the rainbow trout 57  K SNP 
array [31], a dense genetic linkage map with ~ 48 K SNPs 
[32], and the release of the chromosome-level rainbow 
trout reference genome (GenBank Assembly Acces-
sion GCA_002163495.1) [33] have recently provided the 
essential tools to identify genomic regions that are associ-
ated with IHNV resistance and perform genome-enabled 
selection for resistance against IHNV in rainbow trout. 
The main objectives of this study, therefore, were to (1) 
identify QTL or genomic regions that are associated with 
IHNV resistance; (2) determine the genetic architecture 
of resistance to IHNV; (3) compare the QTL detected 
by the wssGBLUP and ssBMR methods; and (4) evalu-
ate the accuracy of genomic predictions for resistance to 
IHNV using cross-validation analysis. All analyses were 
conducted using data from a commercial rainbow trout 
breeding population.

Methods
Ethics statement
This study used rainbow trout fin clips that were col-
lected after controlled exposure to IHNV, as part of a 
selective breeding program at the Clear Springs Foods 
Inc. research facility. As farm animals used in a com-
mercial breeding program, these fish are exempted from 
regulation under the US Animal Welfare Act and were 
therefore not subject to oversight by an Institutional 
Animal Care and Use Committee or other such ethics 
committee. This exemption is defined in US Code title 7, 
chapter 54, section 2132g. However, experimentation and 
handling were conducted in accordance with US govern-
ment principles for the use and care of vertebrate animals 
used in testing, research, and training, which includes 
provisions to minimize animal suffering. Specific meas-
ures for amelioration of animal suffering during the fish 
pathogen testing (described in detail in the section “Fish 
rearing and IHNV challenge”) included minimization of 
handling, maintenance of optimal water temperature and 
oxygen saturation, and the fish were fed a standard fish 
meal diet to satiation daily. Fish near death with severe 
symptoms of infection during the observation period 
were removed and euthanized (by immersion in a lethal 
dose of MS222) before collection of fin tissue to mini-
mize suffering. After the 3-week observation period, sur-
viving fish were euthanized by immersion in a lethal dose 
of MS222 before sampling and disposal.

Fish rearing and IHNV challenge
Samples were collected from disease-naïve parents and 
their disease challenged offspring fish in brood years 2014 

and 2016, respectively, by staff at the Clear Springs Foods 
Inc. research facility in Buhl, Idaho. Briefly, healthy fish 
from the previous generation were artificially spawned 
to produce ~ 5000 fertilized eggs from 100  year-class 
(YC) 2016 families. Fin tissue samples from each parent 
fish were collected at the time of spawning. The offspring 
were grown to ~ 1  g (62  days post-fertilization) and 50 
fish per family were selected randomly for disease chal-
lenge and were infected with IHNV by immersion into a 
volume of water equivalent to 10× the total body weight 
of the fish in g containing 10,000 plaque-forming units of 
IHNV per mL for 1 h (IHNV isolate 220-90). After expo-
sure, the fish were moved to 19-L tanks by family (50 
fish/family/tank), because young and small fish cannot be 
labeled individually, and monitored for a 21-day period, 
with mortality recorded daily. Fin tissue samples were 
collected from mortalities during the 21-day monitor-
ing period and survivor samples were taken at the end of 
the challenge. Fin clips from all fish (mortalities and sur-
vivors) were individually kept in 95% ethanol until DNA 
was isolated using already described protocols [34].

Rainbow trout population used in GWAS
The fish used in the GWAS included 100 pedigreed full-
sib (FS) families from year-class (YC) 2016 of the com-
mercial breeding company Clear Springs Foods, Inc. 
(CSF). These 100 FS families included 41 paternal half-
sib (HS) families and four maternal HS families and were 
generated using 78 sires and 98 dams. Fifty-nine families 
were generated by mating each of 59 sires with a single 
dam. Among the families that were generated by mating 
a sire with multiple dams: 17 sires were mated with two 
dams, one sire was mated with three dams, and another 
sire was mated with four dams. These YC 2016 families 
represented a commercial nucleus breeding population 
that was undergoing intensive selection for growth and 
IHNV resistance for the past eight generations, since 
2000. The fish were evaluated for IHNV survival in the 
laboratory challenge, with one tank per family with an 
initial stocking of 50 fish per tank. The 100 families were 
evaluated by groups of 7 to 10 families at 11 challenge 
dates. After the IHNV challenge, the dataset included 
IHNV resistance phenotype records on n = 4987 fish. The 
associated pedigree file included 6308 records.

IHNV resistance phenotypes
The discrete IHNV resistance phenotype survival days 
(DAYS), i.e. the number of days post-challenge until 
the fish succumbed to the disease, was recorded for all 
mortalities, while survivors were assigned a value of 21. 
Each fish also had a binary survival status (STATUS) 
record. The resistance phenotype STATUS had two 
categories: 1 for fish that died during the 21  days post 
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challenge evaluation period; and 2 for fish that survived 
for the duration of the challenge. The DAYS and STATUS 
records were analyzed separately using the univariate 
GWAS models described below.

SNP genotyping platform
The fish sampled from the CSF population were geno-
typed using the Rainbow Trout Affymetrix 57K SNP 
array (Chip) following previously described procedures 
[31] by a commercial service provider (AKESOgen, Nor-
cross, GA) following the Axiom genotyping procedures 
described by the array manufacturer (Affymetrix). We 
randomly sampled five survivor offspring and five early 
dying offspring per family (in total N = 1000) for SNP 
genotyping. We also genotyped all the sires from which 
fin clips were available (N = 53). The dams were not 
sampled. The quality control (QC) bioinformatics pipe-
line applied to the chip-SNP genotype data was previ-
ously described [35]. Briefly, the QC pipeline filtered out 
the SNPs that showed a significant distortion from the 
expected Mendelian segregation in each FS family (Bon-
ferroni adjusted to P < 0.05) and removed offspring fish 
that did not have matching genotypes with the parents 
given in the pedigree (i.e. that did not pass the pedigree 
check). After this initial genotype data QC, 42,045 SNPs 
were included in the raw chip genotype dataset.

Before conducting GWAS analyses, the raw marker 
genotype dataset was further QC filtered using the algo-
rithms that are implemented in the software BLUPF90 
[36]. The QC retained SNPs with a genotype calling rate 
higher than 0.90, minor allele frequency higher than 
0.05, and with departures from Hardy–Weinberg equi-
librium lower than 0.15, based on the difference between 
expected and observed frequency of heterozygotes. 

Parent-progeny pairs were tested for discrepant homozy-
gous SNPs, and SNPs with a conflict rate higher than 1% 
were discarded from further analysis. Next, we deter-
mined the physical map position (GenBank Assembly 
Accession GCA_002163495.1) [33] of each of the QC fil-
tered SNPs and those that did not have a physical map 
location were removed. After this data QC, we were left 
with data on 35,397 genotyped SNPs and 1044 genotyped 
fish (992 offspring plus 52 sires) for GWAS (Table 1).

Estimation of genetic parameters for IHNV resistance
The phenotypes of DAYS and STATUS (n = 4987) were 
fit to an animal linear and a threshold model, respec-
tively, to estimate genetic variance parameters for IHNV 
resistance phenotypes. The variance components analysis 
was performed using pedigree-based BLUP (PBLUP) and 
PBLUP with genomic data (ssGBLUP) under a Bayes-
ian framework, using computer applications from the 
BLUPF90 family of programs [36]. The discrete data sur-
vival DAYS was analyzed using an animal linear model 
with the software GIBBS2F90; and the binary data sur-
vival STATUS was analyzed using an animal threshold 
model with the software THRGIBBS1F90. The Gibbs 
sampling scheme included one million iterations, of 
which the first 200,000 iterations were discarded; from 
the remaining 800,000 iterations one sample was saved 
from every 100 iterations, such that results from 8000 
samples were used in the analysis. Proper mixing and 
convergence of the MCMC chains were assessed with the 
R package CODA [37].

Heritability for DAYS or STATUS was estimated as: 
h2 = σ 2

a /

(
σ 2
a + σ 2

f /d + σ 2
e

)
 ; where h2 is the estimated 

narrow-sense heritability; σ 2
a  is the estimated additive 

genetic variance; σ 2
f /d is the estimated variance due to the 

Table 1 Experimental variables and genetic parameter estimates for IHNV resistance in rainbow trout

Offspring from year-class 2016 families from the nucleus breeding population of Clear Springs Foods, Inc.
a IHNV resistance phenotypes: survival days after disease challenge (DAYS) and binary survival status (STATUS)
b Variance components analysis was performed using pedigree-based BLUP (PBLUP) and PBLUP with genomics data (ssGBLUP)
c Sampled fish were genotyped with the 57 K SNP array (Chip)
d Effective number of genotyped SNPs and fish after data quality control, respectively; the initial raw dataset had 1044 fish (sires = 52; offspring = 992) genotyped 
with 42,045 SNPs
e n.a. indicates that data are not available; the PBLUP model uses only pedigree and phenotype records in the analysis
f Genetic parameter estimate (± standard error): σ 2

g  is the additive genetic variance; σ 2

f /d is the variance due to nested effects of families within challenge date; 
σ 2
e  is the residual error; and h2 is the estimated narrow-sense heritability. For the binary STATUS, the heritability estimated on the underlying scale of liability was 

transformed to the observed scale of disease survival

IHNV 
resistance 
 phenotypea

Methodb Number 
of families

Phenotyped fish Genotypedc Sliding 
1-Mb 
windows

Genetic  parameterf

SNPsd Fishd
σ 2
g σ 2

f/d
σ 2
e h2

DAYS PBLUP 100 4987 n.a.e n.a. n.a. 9.44 ± 3.22 1.77 ± 1.05 17.06 ± 1.67 0.33 ± 0.10

ssGBLUP 100 4987 35,397 1044 1414 6.35 ± 1.25 2.40 ± 0.77 18.58 ± 0.72 0.23 ± 0.04

STATUS PBLUP 100 4987 n.a. n.a. n.a. 2.22 ± 17.41 0.29 ± 1.16 1.00 ± 0.04 0.28 ± 0.14

ssGBLUP 100 4987 35,397 1044 1414 0.81 ± 0.23 0.19 ± 0.07 1.00 ± 0.03 0.25 ± 0.07
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nested effect of families within the challenge date; and σ 2
e  

is the estimated residual error variance. The heritability 
for the binary survival STATUS estimated on the under-
lying scale of liability using a threshold model was trans-
formed to the observed scale of disease survival STATUS 
using procedures already described [35].

GWAS with weighted single-step GBLUP
We performed GWAS with the wssGBLUP method using 
1-Mb sliding SNP windows [27, 36]. In the first step, 
effects were calculated for individual SNPs, as shown 
below. Afterwards, the effects of all SNPs within a 1-Mb 
distance were summed and compiled for each sliding 
window. Briefly, the 1-Mb window slides by one SNP at a 
time from the first SNP until the last SNP on each chro-
mosome and the results for SNPs that are included in 
the window are jointly summarized; thus, the estimates 
for SNP effects is a moving average of n adjacent SNPs 
included in the 1-Mb window [36]. The choice of a 1-Mb 
window size was based on our recent estimate of strong 
LD ( r2 ≥ 0.25) spanning on average over 1 Mb in the rain-
bow trout genome [38]. The GWAS with wssGBLUP uses 
all available information on sampled fish, including pedi-
gree, genotype, and phenotype records, including those 
offspring fish without genotype data, n = 3995 [22, 39]. 
The CSF sample used in GWAS included n = 4987 off-
spring fish from 100 YC 2016 families that had IHNV 
resistance records (Table 1). From these phenotyped off-
spring fish, a subset of 992 offspring fish and 52 sires had 
genotype data for 35,397 effective SNPs.

In GWAS with wssGBLUP, the weights for each SNP 
are 1 for the first iteration, which means that all SNPs 
have the same weight (i.e., single-step GBLUP). For the 
next iterations (2nd, 3rd, etc.), the weights are SNP-
specific variances that are calculated using the estimate 
of the SNP allele-substitution effect from the preceding 
iteration and the corresponding SNP allele frequencies 
[27]. Estimates of SNP effects were calculated using a 
weighted relationship matrix, using the following equa-
tion: û = DM′

[
MDM′

]−1
âg , where û is the vector of the 

estimated SNP effects; D is a diagonal matrix of weights 
for variances of SNP effects; M is a matrix relating geno-
types of each SNP to each individual; and âg is the esti-
mate of the additive genetic effect for genotyped animals. 
The individual variance of SNP effects, which corre-
sponds to the diagonal elements of D , was estimated as 
[40]: σ̂2u,i = û2i 2pi(1− pi) , where: û2i  is the square of the 
effect at SNP i , and pi is the observed allele frequency for 
the second allele of SNP i . In this study, we used results 
from the second iteration of wssGBLUP, because gener-
ally they provide the highest accuracy genomic predic-
tions [41] and marker effects [27, 42, 43].

We fitted mixed linear and threshold models for DAYS 
and STATUS, respectively, using the following animal 
model: y = 1µ+ Za +Wc+ e , where 1 is a vector of 1 s, 
µ is the overall mean of phenotypic records, a is a vector 
of random individual animal effects, c is a vector of ran-
dom common environment effects, e is a vector of resid-
ual effects, and Z and W are incidence matrices relating 
records to random animal and common environment 
effects in a and c , respectively. The variances of a , c and 
e are:

where σ 2
a  , σ 2

c  and σ 2
e  are additive genetic, common envi-

ronment and residual variances, respectively, and H is a 
matrix that combines pedigree ( A ) and genomic ( G ) rela-
tionship matrices, as in Aguilar et al. [22], and its inverse 
as defined elsewhere [22, 39].

The full-sib fish progeny from each family were allo-
cated to one tank for IHNV challenge evaluation, so the 
tank and family effects were confounded. The 100 tested 
families were evaluated in 11 challenge dates (date), with 
7 to 10 families per date. This nested random family/date 
effect was used to account for the common environment 
effect.

The GWAS for DAYS and STATUS was also performed 
using Bayesian methods implemented in the BLUPF90 
family of programs [36]. The GWAS for DAYS was per-
formed with the software GIBBS2F90, and the GWAS 
for STATUS was performed with the software THRGI-
BBS1F90. The MCMC Gibbs sampling scheme and the 
assessment of correct mixing and convergence of the 
MCMC iterations were similar to those described in the 
section of estimation of genetic parameters.

GWAS with single-step Bayesian multiple regression
We performed GWAS for IHNV survival DAYS with a 
single-step Bayesian multiple regression (ssBMR) model 
using 1-Mb non-overlapping SNP windows [28, 29]. The 
ssBMR model uses the pedigree information and all ani-
mals that had phenotype and genotype records, as in 
the wssGBLUP method. In ssBMR, the genotypes for 
non-genotyped animals are imputed explicitly given the 
pedigree information, and corresponding imputation 
residuals are fitted in the model. Thus, the GWAS anal-
ysis with ssBMR model was performed using the same 
phenotype and genotype data records used for wssGB-
LUP (Table 1). The 1-Mb window’s posterior probability 
of association (WPPA) with the analyzed phenotype was 

var




a
c
e



 =




Hσ 2

a 0 0

0 Iσ 2
c 0

0 0 Iσ 2
e



,
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used to estimate the window’s proportion of false positive 
as PFP = 1−WPPA.

In GWAS for DAYS, we fitted this Bayesian linear 
mixed model: y = 1µ+ Xb+ Za +Wc+ e ; where X is 
an n× k matrix of observed or imputed genotype covari-
ates for k total number of SNPs across the genome for 
both genotyped and non-genotyped n individuals; b is 
a vector of random regression coefficients of k additive 
SNP effects; and a is a vector of random polygenic effects.

The GWAS for DAYS was performed with ssBMR 
using the Bayesian variable selection BayesB method 
(BayesB) [30] implemented in the software JWAS [44]. 
The BayesB method fits a mixture model to estimate 
marker effects, which assumes that there are two types 
of SNPs: a fraction of SNPs with non-zero effects (1− π) 
that are drawn from distributions with a marker-specific 
variance 

(
σ 2
α

)
 , and another known fraction of SNPs (π) 

that a priori have zero effect on the quantitative trait [45]. 
In our study, the mixture parameter π was assumed to be 
known and defined to meet the condition k ≤ n ; where 
n is the number of fish with genotype records, p is the 
effective number of SNPs, and k = (1− π)p is the num-
ber of markers sampled as having a non-zero effect that 
are fitted simultaneously in the Bayesian multiple regres-
sion model [16]. In this study, we tested three values for 
π that met the condition k ≤ n, 0.990, 0.995, and 0.999. 
Then, we used π = 0.999 in the final GWAS because this 
π value yielded a GWAS that detected the largest number 
of genomic windows associated with IHNV resistance 
and with the largest additive genetic variance.

Method BayesB uses MCMC Gibbs sampling in the 
GWAS analysis [16]. The Gibbs sampling scheme and 
diagnosis methods to assess the proper mixing and con-
vergence of the MCMC iterations were like those used 
in GWAS with wssGBLUP. We did not perform GWAS 
using sliding SNP windows under a Bayesian framework 
analysis and GWAS with ssBMR for the binary STATUS 
because these methods have not been implemented in 
the software JWAS.

Detection of QTL that are associated with IHNV resistance
The results from the analyses conducted with wssGBLUP 
and ssBMR were used to identify 1-Mb SNP windows 
that are associated with IHNV resistance. A two-step 
approach was used to identify QTL associated with 
IHNV resistance. First, the 1-Mb windows that explained 
additive genetic variance (EGV) higher than 2% of the 
total were defined as associated with IHNV resistance, 
and 1-Mb windows with 1% ≤ EGV < 2% were defined 
as windows with suggestive association. Second, to deter-
mine if neighboring or overlapping windows on the same 
chromosome belonged to the same QTL region, we 
used the following criteria: all 1-Mb windows associated 

with IHNV resistance that were located within a region 
smaller than 20 Mb and that were less than 10 Mb apart 
from another associated 1-Mb window were grouped 
into a single QTL region. We applied these fairly conserv-
ative criteria for QTL identification based on our previ-
ous experience with QTL mapping [46–48] and GWAS 
[49] in rainbow trout and with the aim of focusing on the 
QTL with the strongest signal and minimizing the type I 
error rate in this study.

Accuracy and bias of breeding value predictions for IHNV 
resistance
The accuracy and bias of breeding value predictions for 
DAYS and STATUS were estimated using five-fold cross-
validation (CV) analysis. Briefly, the fish with pheno-
type and genotype records ( n = 992 offspring fish) were 
randomly assigned to five groups (validation sets) of 
about 198 fish (20% of the complete dataset). The breed-
ing value predictions for fish of the validation sets were 
determined one validation set at a time by using the 
remaining 80% of the complete dataset as the training set. 
In addition, the fish that had only phenotype and pedi-
gree records ( n = 3995) were included in the training set. 
The breeding values for fish in each validation set were 
estimated using the PBLUP, ssGBLUP, and wssGBLUP 
methods. The CV analyses were performed using the 
BLUPF90 family of programs [36] and computer scripts 
that were written to automate the CV analysis (available 
from the authors). The DAYS and STATUS records were 
analyzed using the models and methods described in the 
section of GWAS with wssGBLUP. The Gibbs sampling 
scheme and diagnosis of proper mixing and convergence 
of the MCMC iterations were like those described in the 
GWAS section. We did not assess the accuracy or bias 
of breeding value predictions with the ssBMR method 
because the threshold model routine to analyze binary 
trait STATUS has not been implemented in the software 
JWAS.

The accuracy of breeding value predictions was 
used to assess the performance of each prediction 
method for the validation set and was estimated as: 
rGEBV ,BV = rGEBV ,y/h ; where rGEBV ,y is the correlation 
of the breeding value predictions (EBV or GEBV) of ani-
mals in the validation data based on a given model and 
training data with the observed phenotypes of those ani-
mals, and h is the square root of the narrow-sense her-
itability estimated with the ssGBLUP method [50–52]. 
The bias of the breeding value predictions from each 
model was estimated as the regression coefficient of the 
resistance phenotype (DAYS or STATUS) on the breed-
ing value predictions (EBV or GEBV) for each validation 
set. Before calculating the regression coefficients, the 
predicted EBV and GEBV for the binary trait STATUS, 
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which were estimated on the underlying scale of liabil-
ity using the threshold model, were transformed to the 
observed scale using procedures that were described 
elsewhere [35]. Finally, the accuracy and bias reported 
are the averages across the five-fold CV sets, with 10 rep-
lications of the CV analysis to minimize the stochastic 
variation in the CV analysis.

Results
Heritability of IHNV resistance
Fish mortality rate in the IHNV challenge was equal to 
0.36 in the YC 2016 families of this breeding popula-
tion. Estimates of narrow-sense heritability were moder-
ately high, with a range of values from 0.23 to 0.33 and 
from 0.25 to 0.28 for DAYS and STATUS, respectively 
(Table 1). Overall, estimates of heritability using genomic 
data (ssGBLUP; 0.23 and 0.25) were lower than those 
estimated with the pedigree-based model (PBLUP; 0.28 
and 0.33). However, the ssGBLUP estimates had lower 
standard errors (SE) than the PBLUP estimates.

QTL associated with IHNV resistance
Fifty-one 1-Mb windows that explained more than 1% 
EGV were detected (see Additional file  1: Table  S1). 
These windows were used to define 21 QTL regions, of 
which 10 were categorized as QTL associated with IHNV 
resistance (EGV ≥ 2%) (QTL2.2, 4.1, 4.2, 6.1, 16.1, 17.1, 
21.1, 25.1, 26.1 and 28.1) and 11 as QTL with suggestive 

association (1% ≤ EGV < 2%) (QTL 1.1, 2.1, 3.1, 5.1, 5.2, 
8.1, 8.2, 14.1, 15.1, 25.2 and 29.1).

The IHNV resistance phenotypes of survival days and 
status are highly correlated. Hence, as expected, the QTL 
that were detected for STATUS were also detected for 
DAYS (see Additional file 1: Table S1). Manhattan plots 
from GWAS using wssGBLUP for DAYS (Fig.  1b) and 
STATUS (see Additional file 2: Figure S1b) show that the 
same QTL regions were detected for both traits (win-
dows with EGV ≥ 2%). Thus, for the sake of clarity, in the 
remainder of this paper, we present results from GWAS 
for survival days and treat them as good proxies for QTL 
for the IHNV resistance trait.

Fifteen 1-Mb windows associated with IHNV resist-
ance (EGV ≥ 2%) were detected using either the wssGB-
LUP or the ssBMR GWAS methods (Table  2). Of these 
windows, seven were detected with wssGBLUP and 
eight were detected with ssBMR. These 15 SNP windows 
cover 10 QTL regions associated with IHNV resistance 
that jointly explained up to 42% of the additive genetic 
variance when accounting only for the largest effect SNP 
window for each QTL region. The QTL 4.2 (EGV = 8.8%, 
Fig. 1b), 21.1 (EGV = 6.2%, Fig. 1b) and 25.1 (EGV = 6.7%, 
Fig. 2) had explained the highest proportions of genetic 
variance for IHNV resistance.

Three QTL associated with IHNV resistance (4.2, 17.1, 
and 25.1) were detected by both GWAS methods (Table 2 
and Fig. 3). Interestingly, the QTL 17.1 and 25.1 had the 

Fig. 1 Manhattan plot showing the association of 1-Mb sliding-windows with IHNV survival DAYS. a GWAS using single-step GBLUP (ssGBLUP). b 
GWAS using weighted single-step GBLUP (wssGBLUP)
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lowest PFP, i.e. 0.14 and 0.09, respectively, when detected 
with ssBMR; thus, they were the most significant QTL 
detected with the ssBMR method. Three QTL (2.2, 4.1 

and 21.1) were detected only with wssGBLUP (Fig.  3), 
and four QTL (6.1, 16.1, 26.1 and 28.1) were detected 
only with ssBMR.

Table 2 Summary of QTL identified for IHNV survival DAYS

Offspring from year-class 2016 families from the nucleus breeding population of Clear Springs Foods, Inc.
a Summary of QTL regions including only those 1-Mb genomic windows with an explained additive genetic variance (EGV) higher than 2%
b GWAS was analyzed using weighted single-step GBLUP (wssGBLUP) and single-step Bayesian multiple regression (ssBMR); the ssBMR was performed using BayesB 
with the mixture parameter π = 0.999

Omy QTLa GWAS  methodb EGV (%) Physical map (bp) Window flanking SNP SNPs 
per window

Start End Start End

2 2.2 wssGBLUP 3.2 45,383,323 46,361,331 Affx-88954877 Affx-88928987 24

4 4.1 wssGBLUP 2.0 9,789,985 10,738,830 Affx-88917261 Affx-88929814 31

4 4.2 wssGBLUP 8.8 68,038,853 68,982,815 Affx-88923800 Affx-88922397 42

4 4.2 ssBMR 2.2 74,007,109 74,987,590 Affx-88939425 Affx-88928526 21

6 6.1 ssBMR 3.0 68,134,086 68,990,700 Affx-88929527 Affx-88939372 19

16 16.1 ssBMR 3.0 24,057,372 24,944,118 Affx-88954356 Affx-88951804 18

17 17.1 ssBMR 3.6 51,034,316 51,997,613 Affx-88955435 Affx-88944415 26

17 17.1 ssBMR 4.8 59,030,557 59,975,343 Affx-88934715 Affx-88947595 36

17 17.1 wssGBLUP 4.7 59,332,327 60,281,825 Affx-88919103 Affx-88944127 34

21 21.1 wssGBLUP 2.1 22,119,421 23,117,999 Affx-88932453 Affx-88916492 40

21 21.1 wssGBLUP 6.2 39,913,253 40,900,383 Affx-88932908 Affx-88907074 23

25 25.1 ssBMR 6.7 14,168,054 14,988,042 Affx-88923380 Affx-88924756 29

25 25.1 wssGBLUP 2.8 14,387,782 15,344,868 Affx-88930881 Affx-88908721 28

26 26.1 ssBMR 2.0 15,009,533 15,969,232 Affx-88931236 Affx-88925053 24

28 28.1 ssBMR 2.4 13,000,180 13,927,035 Affx-88912736 Affx-88929314 24

Fig. 2 Manhattan plot showing the association of non-overlapping 1-Mb windows with IHNV survival DAYS based on single-step Bayesian multiple 
regression (ssBMR) with BayesB
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The physical map coordinates of the identified QTL 
regions for IHNV resistance (Table  2) were queried 
against the rainbow trout reference genome sequence 
annotation (RefSeq Accession GCF_002163495.1) 
[33]. In total, 774 predicted coding genes were iden-
tified within the QTL regions (see Additional file  3: 
Table S2).

The 1-Mb windows that were detected with 
EGV ≥ 1% for IHNV resistance using wssGBLUP and 
ssBMR are compared in Table S3 (see Additional file 4: 
Table  S3). More windows were detected with ssBMR 
(21) than with wssGBLUP (17), which also translated 
to more QTL regions detected with ssBMR (16) than 
with wssGBLUP (12). Of those QTL regions, seven 
were detected by both GWAS methods, five were 
detected only by wssGBLUP and nine were detected 
only by ssBMR.

Accuracy and bias of breeding value predictions for IHNV 
resistance
Overall, across the IHNV resistance phenotypes, the 
accuracy of breeding value predictions was higher for 
the genomic prediction models ssGBLUP (0.30–0.34) 
and wssGBLUP (0.33–0.39) than for the pedigree-based 
PBLUP model (0.13–0.24) (Table  3). Across prediction 
methods, the accuracies of predicted breeding values 
for survival STATUS (0.24–0.39) were higher than those 
for survival DAYS (0.13–0.33). The relative increase in 
accuracy of genomic predictions methods over the ped-
igree-based PBLUP is shown in Fig.  4. The accuracy of 
predictions with the wssGBLUP and ssGBLUP models 
substantially outperformed the pedigree-based PBLUP 
model, by 63 to 154% and 42 to 131%, respectively.

The bias of breeding value predictions was lower (i.e. 
closer to 1.0) for DAYS (0.27–0.50) than for STATUS 

Fig. 3 Co-localized 1-Mb QTL windows associated with IHNV survival DAYS (EGV ≥ 2%) detected with weighted single-step GBLUP (wssGBLUP) and 
single-step Bayesian multiple regression (ssBMR) with BayesB
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(0.11–0.14) (Table  3). For survival DAYS, the genomic 
prediction methods ssGBLUP and wssGBLUP (0.37–
0.50) had lower bias than pedigree-based PBLUP (0.27). 
For DAYS, ssGBLUP (0.50) had lower predictions bias 
than wssGBLUP (0.37). The predictions for STATUS 
had the highest bias and may not be valid because of 
the use of binary phenotype records when computing 
the regression coefficient in the CV analysis.

Discussion
In this genome-wide association study, we detected 10 
QTL regions that were associated with IHNV resistance 
and that together explained up to 42% of the additive 
genetic variance for IHNV resistance in a commercial 
rainbow trout breeding population. Only two of these 
QTL (17.1 and 25.1) were reported in previous studies 
(see Additional file 5: Table S4) [3, 10, 12] and the other 
eight QTL are novel (Table 2). We also determined that 
resistance against IHNV in rainbow trout is controlled 
by the oligogenic inheritance of a few loci with moderate 
effects (EGV = 2.0–8.8%) and a large-unknown number 
of loci each with small effects.

In addition, for the first time for this important disease 
resistance trait, we show that, based on empirical data, 
genomic prediction is expected to substantially outper-
form the classical pedigree-based predictions (PBLUP) 
in terms of accuracy. These results highlight the potential 
utility of genome-enabled selection for genetic improve-
ment of resistance against IHNV in this commercial rain-
bow trout breeding population.

Heritability of IHNV resistance
Estimates of heritability for IHNV resistance in our study 
were moderately (0.23–0.33) and somewhat lower than 
those reported previously using pedigree-based model 
in a different rainbow trout population [2]. Still, our esti-
mates underline the potential for genetic improvement 
for IHNV resistance in this commercial rainbow trout 
population through selective breeding. Our heritability 
estimates based on genomic data (ssGBLUP) were con-
sistently lower than those based on PBLUP. However, 
estimates from ssGBLUP had much lower standard errors 
than those estimated with PBLUP. Interestingly, our esti-
mate of heritability for survival STATUS using genomic 
data (0.25) was also lower than the heritability estimate 
for IHNV mortality using a pedigree-based model by 
Brieuc et al. [2] (0.38). With the pedigree-based PBLUP 
model, there is a confounding between the phenotype 
and the Mendelian sampling term, and we expect this 
confounding to be less of a problem when using genomic 
data with ssGBLUP, since the covariances between Men-
delian sampling terms of relatives can be quantified based 
on the proportion of the genome that they share [53, 54].

QTL associated with IHNV resistance
In this study, we did not detect large-effect QTL for 
IHNV resistance, which suggests that marker-assisted 
selection is not likely to be an effective strategy for 
improving the genetic resistance of rainbow trout against 
IHNV in this specific commercial population. However, 
further fine-mapping of the detected IHNV-QTL regions 

Table 3 Accuracy and  bias of  breeding value predictions 
for IHNV resistance using three methods

Offspring from year-class 2016 families from the nucleus breeding population of 
Clear Springs Foods, Inc.
a Animal breeding value predictions were performed using pedigree-based 
BLUP (PBLUP), single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP)
b Discrete data survival days after disease challenge (DAYS). The accuracy and 
bias of animal merit predictions for DAYS were estimated using five-fold cross-
validation analysis with 10 replications
c Binary data survival status (STATUS). The accuracy and bias of animal merit 
predictions for STATUS were estimated using five-fold cross-validation analysis 
with 10 replications
d Accuracy of breeding value predictions was estimated as the correlation of 
phenotypic records y (DAYS or STATUS) with the animal merit predictions (EBV 
or GEBV) divided by the square root of heritability 

(
h2days = 0.23; h2status = 0.25

)

e Bias of breeding value predictions was estimated as the regression coefficient 
of phenotypic records y (DAYS or STATUS) on the animal merit predictions (EBV 
or GEBV)

Methoda DAYSb STATUSc

Accuracyd Biase Accuracyd Biase

PBLUP 0.13 0.27 0.24 0.11

ssGBLUP 0.30 0.50 0.34 0.14

wssGBLUP 0.33 0.37 0.39 0.11

Fig. 4 Relative increase in accuracy of genomic prediction for IHNV 
resistance (DAYS and STATUS) over pedigree-based BLUP (PBLUP). 
Genomic predictions were performed with single-step GBLUP 
(ssGBLUP) and weighted single-step GBLUP (wssGBLUP)
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and subsequent identification of putative candidate genes 
or causative mutations would be valuable for advancing 
the understanding of the mechanisms of genetic resist-
ance to IHNV in rainbow trout and the underlying biol-
ogy of host–pathogen interactions. This can be achieved 
by genotyping a large number of SNPs at positions within 
and near the major QTL regions, and by re-sequencing 
highly characterized IHNV resistant and susceptible 
fish, as was effectively done in the search for the IPNV 
resistance gene in Atlantic salmon [55]. We generated an 
initial preliminary list of positional candidate genes for 
the IHNV-QTL regions by cross-examining the rainbow 
trout reference genome sequence annotation (RefSeq 
Accession GCF_002163495.1) [33]. Overall, we identi-
fied 774 protein-encoding features located within the 
QTL identified for IHNV resistance (see Additional file 3: 
Table S2), which are now available for future analyses and 
research efforts that are beyond the scope of this study.

Previous QTL mapping studies have reported 36 QTL 
for IHNV resistance in rainbow and steelhead trout back-
cross populations (see Additional file  5: Table  S4) [3, 
9–12] but most of those QTL were not detected in our 
study. Only two out of the 10 QTL identified in our study 
were previously reported, i.e. QTL17.1 [3, 10] and 25.1 
[12], which interestingly had the lowest PFP in our study. 
Thus, we report eight novel unpublished QTL for IHNV 
resistance in rainbow trout. This poor overlap of the QTL 
detected in our study with those from previous reports is 
caused, in part, by differences in the genetic background 
and in population or sampling structures between the 
studies.

It is worth noting that Campbell et al. [9] detected 19 
RAD SNPs associated with IHNV resistance in this same 
CSF commercial breeding population, although using 
data from two generations previous to the current data 
(see Additional file  5: Table  S4). Surprisingly, none of 
their reported QTL overlap or were close to the 10 QTL 
regions detected here. These conflicting results in QTL 
mapping can be explained by several reasons including: 
(1) this population has not been closed and additional 
families were introduced to the breeding population in 
the past two generations; (2) QTL effects can be popu-
lation- and/or family-specific, with unique extent/phase 
of linkage and extent of LD between QTL and marker 
alleles; and (3) the previously detected QTL may repre-
sent false positive results due to limitations and weak-
nesses on experimental design and methods used for data 
analyses.

Comparison of GWAS methods
The use of correct statistical models and computer 
algorithms is crucial for uncovering the underlying 
genetic basis of resistance to diseases with multifactorial 

inheritance using GWAS. In this study, we scanned the 
genome for loci that were associated with IHNV resist-
ance using two single-step multiple regression based 
GWAS methods that estimate the effect of all markers 
simultaneously, thus accounting for LD between neigh-
boring loci [15, 16, 56]. A unique feature of these mul-
tiple regression single-step GWAS methods is that, in 
the analysis, they employ all available pedigreed animals 
with genotype and/or phenotype records. Thus, they are 
expected to have higher power of QTL detection than 
GWAS methods that do not use a single-step approach 
and test for association using one-marker at a time with-
out accounting for LD between linked loci and without 
using phenotypes on non-genotyped relatives. Of the 10 
QTL regions identified for IHNV resistance, only three 
were detected by both GWAS methods, and seven were 
detected by only one method, which supports the utility 
of using different GWAS algorithms to uncover the QTL 
associated with a complex disease resistance trait.

We also evaluated GWAS models that assume a purely 
polygenic inheritance for IHNV resistance and a normal 
distribution of the marker effects and found that ssGB-
LUP (Fig.  1a) and RR-BLUP [20, 21, 57] did not result 
in enough power to detect QTL for IHNV resistance 
(results not shown). These results confirmed the supe-
riority of GWAS methods such as ssBMR and wssG-
BLUP, which assume that the genetic variance of a trait 
is explained by a reduced number of QTL with moder-
ate-to-large effects, instead of purely polygenic inher-
itance [29, 58, 59]. Furthermore, these results support 
the importance of testing several GWAS methods when 
attempting, for the first time, to elucidate the underlying 
genetic basis of resistance to complex diseases such as 
IHNV in rainbow trout.

The marginal difference in power of QTL detection 
between the two single-step based GWAS methods is 
due to differences in their assumptions. The Bayesian 
variable selection model BayesB that was performed with 
ssBMR was shown to be robust to population structure 
and to cryptic family relationships in GWAS and GS with 
admixed populations [18], and also more powerful than 
standard mixed linear GBLUP-based models when the 
trait under study is controlled by few genes/loci with a 
moderate to large effect and many loci with a small effect, 
i.e. for an oligogenic inheritance trait [35, 59, 60].

We also found that ssBMR detected a larger number of 
QTL (7) associated with DAYS (Fig. 2) than the standard 
BayesB method (4) [15, 45] (see Additional file 6: Figure 
S2), which uses only individuals that have both pheno-
type and genotype records ( n = 992), because ssBMR 
used all the animals ( n = 4987) available in this study [28, 
29], including animals that had only phenotype records 
( n = 3995).
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Accuracy and bias of breeding value predictions
Across the evaluated methods, the accuracy of breeding 
value predictions for STATUS were higher than those for 
DAYS (Table 3). However, the predictions for DAYS were 
less biased than those for STATUS. The computed bias 
of predictions for STATUS when using the CV analysis is 
incorrect and, consequently, was the most biased due to 
extreme-phenotype problems in which all binary obser-
vations within class variables are identical, i.e. each ani-
mal has one binary survival phenotype record of either 0 
or 1 [52]. The incorrect bias estimation for breeding value 
predictions when using binary data in CV analysis is 
known and it is an area of active research [61–63], which 
is outside the scope of this study. However, this problem 
can be circumvented by assessing the accuracy and bias 
of breeding value predictions using progeny performance 
data (i.e. offspring survival rate per evaluated family), as 
we have shown elsewhere [35, 41]. We are in the process 
of generating those progeny performance records for a 
future report.

The accuracy of pedigree-based EBV predictions for 
STATUS was 0.24 when performing CV analysis using 
IHNV records from the 2016 CSF families (Table  3). 
Remarkably, this accuracy was quite close to the average 
historical accuracy of EBV predictions for IHNV resist-
ance (0.25) (see Additional file 7: Table S5). This histori-
cal accuracy of EBV predictions was estimated by using 
progeny performance data from IHNV evaluations per-
formed over five generations in the CSF breeding popu-
lation, as the correlation of mid-parent EBV with the 
offspring survival rate from each evaluated family in each 
generation.

Overall, accuracies of genomic predictions for DAYS 
and STATUS with wssGBLUP (0.33–0.39) and ssGBLUP 
(0.30–0.34) were higher than those from the pedigree-
based PBLUP model used with both CV analysis (0.13–
0.24) and historical progeny performance data (0.25). 
Therefore, these results show the high potential for effec-
tive genetic improvement of IHNV genetic resistance 
using genome-enabled selective breeding in this com-
mercial rainbow trout population.

Conclusions
Our comprehensive genome-wide scan for QTL for 
IHNV resistance revealed that genetic resistance to 
IHNV in this commercial rainbow trout breeding popu-
lation is controlled by the oligogenic inheritance of up to 
10 QTL with moderate effects and many loci with small 
effects. Taken together, our results suggest that whole-
genome-enabled breeding value prediction models will 
be more effective than the conventional pedigree-based 
prediction method or the marker-assisted selection 

approach for improving genetic resistance of rainbow 
trout against IHNV in this economically important 
breeding population.
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Additional file 1: Table S1. Summary of the genomic windows with 
an explained genetic variance (EGV) higher than 1% for IHNV resistance 
phenotypes (DAYS and STATUS) detected in the Clear Springs Foods, Inc. 
rainbow trout breeding population. The data provided represents all the 
genomic windows that had an EGV higher than 1% when performing 
GWAS for IHNV survival DAYS and STATUS using weighted single-step 
GBLUP (wssGBLUP) and single-step Bayesian multiple regression (ssBMR) 
in the Clear Springs Foods, Inc. rainbow trout breeding population.

Additional file 2: Figure S1. Manhattan plot showing the association 
between 1-Mb sliding-windows and IHNV survival STATUS in Clear Springs 
Foods, Inc. rainbow trout breeding population: (a) GWAS using ssGBLUP. 
(b) GWAS using wssGBLUP. These plots represent the explained additive 
genetic variance for IHNV survival STATUS by each 1-Mb-sliding window 
that was tested along the rainbow trout genome with single-step GBLUP 
(ssGBLUP) and weighted single-step GBLUP (wssGBLUP) in the Clear 
Springs Foods, Inc. rainbow trout breeding population.

Additional file 3: Table S2. List of the 774 genes that are located within 
the 1-Mb windows that are associated with IHNV resistance in the Clear 
Springs Foods, Inc. rainbow trout breeding population. This data repre-
sents a list of 774 genes that are located in the QTL windows associated 
with IHNV resistance generated by query of the rainbow trout reference 
genome sequence annotation (RefSeq Accession GCF_002163495.1).

Additional file 4: Table S3. Comparison of genomic windows with 
an explained genetic variance (EGV) higher than 1% for IHNV survival 
DAYS and QTL regions detected with wssGBLUP and ssBMR in the Clear 
Springs Foods, Inc. rainbow trout breeding population. The data provided 
represent all the genomic windows that had an EGV higher than 1% when 
performing GWAS for IHNV survival DAYS using weighted single-step 
GBLUP (wssGBLUP) and single-step Bayesian multiple regression (ssBMR) 
in the Clear Springs Foods, Inc. rainbow trout breeding population. 
Table S3 was built to perform a fair comparison between wssGBLUP and 
ssBMR GWAS methods.

Additional file 5: Table S4. Summary of QTL for IHNV resistance reported 
in previous studies in rainbow trout populations. The data provided 
represent a summary of all reported QTL for IHNV resistance in past QTL/
GWAS studies performed in rainbow trout populations. This table provides 
information on experimental variables including sample size, number 
of markers, disease phenotype, method of analysis, software, location of 
reported QTL on genetic and physical maps, and statistics such as nominal 
P value and LOD score for the reported QTL.

Additional file 6: Figure S2. Manhattan plot showing the association 
between 1-Mb exclusive-windows and IHNV survival DAYS using the 
BayesB method in Cold Springs Food, Inc. rainbow trout breeding popula-
tion. These plots represent the explained additive genetic variance for 
IHNV survival STATUS by each 1-Mb-exclusive window when using the 
standard BayesB method with complete data (i.e., 992 fish that had both 
phenotype and genotype records) in the Clear Springs Foods, Inc. rainbow 
trout breeding population.

Additional file 7: Table S5. Historical accuracy of pedigree-based EBV 
predictions for IHNV resistance in Clear Springs Foods, Inc. rainbow trout 
breeding population. These data represent the historical accuracy of ani-
mal merit predictions that were estimated with the pedigree-based PBLUP 
model using empirical progeny survival records from IHNV challenges per-
formed in year-class 2008, 2010, 2012, 2014 and 2016 families in the Clear 
Springs Foods, Inc. rainbow trout breeding population. The accuracy of 
predicted EBV are estimated as the correlation coefficient of mid-parent, 
sire or dam EBV with their offspring or progeny survival rate.
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