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A SIMPLE AND EFFICIENT FINITE ELEMENT FOR
GENERAL SHELL ANALYSIS.

WORSAK KANOK-NUKULCHAI

Division of Structural Engineering and Structural Mechanics,
Department of Civil Engineering,University of California
Berkeley, California, U.S.A.

ABSTRACT

A simple, efficient and versatile finite element is introduced for shell
applications. The element is developed based on a degeneration concept, in
which the displacements and rotations of the shell mid-surface are independent
variables. Bilinear functions are employed in conjunction with a reduced
integration for the transverse shear energy. Several examples are tested to
demonstrate the effectiveness and versatility of the element. The numerical
results indicate that the shell element performs accurately for both thick and
thin shell situations.
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A SIMPLE AND EFFICIENT FINITE ELEMENT FOR

GENERAL SHELL ANALYSIS.

WORSAK KANOK-NUKULCHAI

Division of Structural Engineering and Structural Mechanics,
Department of Civil Engineering,University of California
Berkeley, California, U.S.A.

INTRODUCTION

The importance of shell structures and their generic analysis complexities has naturally
lead to a reliance on the finite element method for the solution to many types of shell prob-
lems. This, of course, requires a finite element representation of the shell behavior and over
the last 20 years many elements have been developed and employed in a multitude of pro-
grams. A history of shell elements is traced in [1,2] and only a brief summary will be included
here. The paper’s main theme is the development of a new shell element: the (B)ilinear
(D)egenerated (S)hell. The BDS element attempts to rectify problems inherent to most shell
elements: (a) the limited scope of problems which can be solved and, (b) the high formulation
cost of computing the element stiffness. The former restricts most elements to one class of
shells, either thin or thick shells, depending on the parent theory used for developing the ele-
ment. The element stiffness formulation may not be a cost factor for most linear problems but
is of paramount importance in nonlinear formulations. Thus the quest for the ideal shell ele-
ment that is universally applicable and cheap to use was a motivating force in the present study.

The approach taken in this paper explores an avenue that was successfully exploited by
Hughes et.al. [3] for developing a simple bilinear plate element. The element in [3] was based
on a one-point quadrature for the tranverse shear strain energy. The solution, despite its sim-
plicity, is surprisingly accurate for both thick and thin plates.

SHELL ELEMENT STRATEGIES

A shell element can be classified as a 3-D continuum, a classical shell, or a degenerated
shell. - Figure 1 portrays a skeletal outline of these classifications. To complement Figure 1, a
brief paragraph will describe the highlights as they relate to the main theme of this paper. The
details of previous shell formulations are contained in the references and the reader is referred
to them for a detailed understanding of the development of previous shell elements.

3-D Continuum Elements

The three dimensional field equations can be processed to form a 3-D continuum
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clement, Figure 1. This, of course, produces an element that is ignorant of the usual kinematic
constraints, or assumptions, of most shell problems. Popular among these is; the thickness of
the shell is small compared to the other dimensions. Coupled to this is that the shell generally
carrics load via bending and membrane action. The 3-D formulation is now at a distinct disad-
vantage: several layers of elements or higher order elements are required to portray bending.
Thus ecomonic considerations usually curtail the usefullness of this element. In addition, a 3-
D element is found to fail at a moderate length to thickness aspect ratio due to displacement
locking through the thickness. Wilson [4] suggested the use of incompatible displacement
modes to improve the basic 3-D thick shell performance. Dovey [2] followed with a study of
both the reduced integration technique and the idea of adding incompatible modes. These
modifications do produce the desired effect, a more flexible shell behavior hence better perfor-
mance. However, the convergence of these modified 3-D elements can not be guaranteed [2].

Classical Shell Elements

The classical shell element is derived by reducing the 3-D field equations to a particular
class of shell equations using analytical integration over the thickness while employing shell
assumptions. Common assumptions take advantage of one or more facets of the shell geometry
such as the rotation of the cross-section is simply the slope of the shell. This applies only when
the shell is relatively thin and its shear strain is negligible. As a result the normal to the refer-
ence surface remains normal. This is the Kirchhoff-Love hypothesis. Since most shell elements
of classical type invoke this assumption, its implications will be reviewed. The Kirchhoff-Love
hypothesis leads to displacement equations of equilibrium that are a coupled set of two second-
order differential equations inplane and a fourth-order differential equation in the transverse
direction of the shell. Therefore, a shell element based on this theory needs C! continuity,
thus, higher order interpolation functions are required than for the 3-D continuum. Nodal
variables must include at least three displacements and two derivatives of the transverse dis-
placement. The inplane, membrane, interpolation functions are usually of lower order than the
transverse, bending, function. This can create gaps or overlaps between the edges of two non-
planar elements. Many shell elements and shell theories also lack the presence of rigid body
modes. Despite these shortcomings many elements are reported to work satisfactorily in the
linear infinitesimal-displacement regime [4,5,6].

Degenerated Shell Elements

The degeneration concept described in Figure 1 directly discretizes the 3-D field equation
in terms of mid-surface nodal variables. This usually employs a shell assumption, i.e., the
straight normal at any point on the mid-surface remains straight. The formulation also includes the
transverse shear effect . thus no Kirchhoff-Love hypothesis is presumed. The equilibrium
equations in terms of independent variables (e.g., displacements and rotations ) are second-
order differential equations, therefore, the elements require only CY-continuous shape func-
tions.

Many authors [7,8,9,10] who developed shell elements based on this concept obtained
unsatisfactory results when these elements are applied in the thin shell regime. The difficulty
can be traced to the transverse shear energy which is O[(L/#)? ] higher than the remaining
terms, where L/h denotes the element length to thickness aspect ratio. Thus as the thickness
approaches zero, the computed shear stiffness completely dominates, and no effect of the bend-
ing stiffness remains with a finite computer word length. As a result, the element produces an
excessively stiff solution which does not reflect the correct bending behavior. Physically, this
phenomenon is known as a shear-locking [3].

Several techniques have been studied in an attempt to solve the shear-locking problem.
Wempner [10] introduced a discrete Kirchhoff hypothesis which enforced the Kirchhoff
hypothesis only at the mid-side of the elements. The poor performance of this element was
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due, presumably, to too many constraints being enforced. The correction employed in [10]
was 1o reduce the number of constraints. All shear energy was suppressed and good results
were obtained. The element with no shear energy reverts to being good for only thin shells
hence this solution-is wanting. - In-addition the technique used in-{10} leads to either unsym-
metric coefficient matrices to be solved for the nodal displacements or an increased number of
unknowns if Lagrange multiplier methods are used to satisfy the constraints. Zienkiewicz et.al.
[11] retained the transverse shear energy but used reduced integration for quadratic and cubic
isoparametric serendipity elements [12] and obtained good results for some thin and thick
shells. In this formulation, the transverse shear strain energy in the thin shell situation is a
penalty function for the Kirchhoff-Love hypothesis and requires under integration to avoid the
locking effect [13]. For certain boundary conditions, however, this element shows a tendency
10 lock in thin shell analysis due to the additional constraints imposed by the boundary condi-
tions.

THE BILINEAR DEGENERATED SHELL ELEMENT

The BDS element (Figure 2) evolves from an eight-node three dimensional brick. The
mid-surface ., enclosed by four straight sides, forms a hyperbolic paraboloid and, as the name
implies, the concept of degeneration is used. Due to the simplicity of the bilinear mid-surface
geometry and the displacement field, the strain energy can be integrated analytically over the
shell thickness. The integration over the reference mid-surface can then be performed numeri-
cally. This not only simplifies the derivation but also saves computer effort in formulating the
element stiffness. The rigid body modes are present since this is an isoparametric element.
The transverse shear strain energy is retained, consequently, the element is applicable to either
thick or thin shells. Only one-point numerical integration is used for this shear strain energy
al the center of the element to avoid the shear-locking effect. The element, when applied to
plates is equivalent to the plate element presented in [3].

Several examples are tested using the BDS element. The results show that the element is
capable of performing accurately for both thin and thick shells. The details of the formulation
are now presented.

Geometry and Displacement Field

The shell element, Figure 2, is defined by the natural, curvilinear coordinates, {r,s,t} such
that a bi-unit cube is uniquely mapped into the shell element. As the thickness of the shell ele-
ment is being input in the direction normal to the mid-surface at each node, the position at any
point in the element can be uniquely given in terms of nodal coordinates and thicknesses as

4
x(r,5,1) = ZN’(r,s){x’-k-ilz— ( hle. N (1

[=1]

where x/ are the coordinates of the mid-surface, A’ the thickness and é_,J' the normal unit vec-
tor, all at a node 1. The interpolation function N’ is bilinear, i.e.,

Ni(rs) = %(l-i—r’r)(l—%s’s) (2)

where r!, s’ are the natural coordinates of node 1.
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At any point on the mid-surface, an orthogonal set of local coordinates, { z }, is con-
structed such that its unit vectors are:

éz3(”5) =x,(rs) x x,(rs) /[x, x x| 3)

é.,(rs) =¢&.(rs) xx,(0,0) /

é;, xx,0,0)] 4)

é. (rs) =& (rs) x & (rs) (5

The first is normal, while the others are tangent to the midsurface at a point (r.s,0) on the
mid-surface (Figure 2).

The displacement vector at any point (r,s,t) in the element can be given in the form:

ulr,s,t) = Y N(r,s) {u+ul(r)} (6)
7

where u’ is the nodal displacement vector on the mid-surface, and u/ is the relative nodal dis-
placement vector produced by a normal rota}tion at the node. The vector u/ is to be expressed
explicitly in terms of the rotation vector, & , about each of the global axes at the node. Using
the shell assumption that straight normals to the reference mid-surface remain straight after defor-
mation, the displacement vector based on the local z coordinates , produced by the normal rota-

tion &' about local axes, is w, and expressed by

1 o
Wo(0) = St h =y (7)
0

/
For infinitesimal rotations, the usual transformations from w/ to u/ and &'/ to & , in view of
(7) lead to

!
uﬂn=%tm¢%x (8)
where
0 64 —04
(DI-_— “"93’3 0 91[3 (9)
053 —6{; 0O

in which 8, denotes the direction cosine from global to local coordinates, i.e.,

6, = (& .8.) (10)
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Substituting (8) into (6) yields the expression of the displacement vector at any point in the
shell element in terms of nodal variables:

ulr,st) = ZN’(r,s){u’%—%— ! h’(I)’a/} an
7

Stresses - Strains

At any point in the shell element, the local strain components of interest are

€11 wi/z)
€22 Wiz,
€(r,s51) = e, = wi/zytwy/z (12)
€43 W]/Z3+W3/Zl
€23 wyfz3+w3/z,

The symbol (.)/z, defines a derivative with respect to local curvilinear coordinates. The deriva-
tion of these strain components can be achieved by using the second-order tensor transforma-
tion of the displacement gradients, ie.,

W|/21 Wz/Z] W3/Z! U]..\'] uZ.X] u3,x]

7
Wl/Zz Wz/Zz W3/ZZ '—"@ UI'_,(Z uZ,XZ Ll3’x2 @ (13)
wl/:3 WZ/Z3 w3/23 u]..xg uZ,.\'3 u3,,x'3

where () , denotes a partial derivative with respect to the global cartesian coordinates and
©=I[¢,] is the transformation matrix defined in (10).

For a linear isotropic elastic material, the local stress components are obtained from the
usual shell constitutive equations which assume a state of plane stress in each lamina. Accord-

ingly
T{rst)=DE€(rs) (14)

where O (r,50) = o)) 0y, 0}, o3 o317 is the local stress vector and

[X+2u A0 0 0
A X240 0 0
D=| 0 0 wu 0 0 (15)
0 0 0 w/k, O
0 0 0 0 /..L/KSJ

in which «, is a shear deformation correction (1.2 is used for BDS), u is the shear modulus ,

and A is the plane-stress reduced Lame constant, i.e., A = vE/(1—v?) , where E is the modulus



of elasticity and v is Poisson ratio.

Derivation of the Element Stiffness

The standard form of the element stiffness, as derived by the general finite element pro-
cedure, is [20]

K”= [, (B)'DB’av (16)

inlwhich B’/is the standard strain matrix relating the local strain vector to the nodal variables
8 = [u/,a 17 such that

€(rs) =SB (17

!

It is convenient to split the stiffness in (16) into two parts : the transverse shear effect and
the bending and membrane effects. This will allow use of an appropriate order of numerical
integration for each part. Accordingly, let

K" =K/+K/ (18)
where
1 T J
Km - fy (Bm) Dm Bm dav (19)
.. T J
K/=[ B)"D,B!aV (20)

and B,,,B,,D,,, D, are defined according to

{

€,=leenepl’ =3B, O 2D
7
€, = leyenl’= TB!/S 22)
7
D, 0

To formulate the matrices B,, and B, , substitute (11) into (13) and the result into (12)
to yield

E,n(r,s,t) [Bllm B2Im+ 11 BBIm
€,(rs1) 7 B/, B!+ B

[ uII] (24)
(81




in which

B/ =L, (N) @ (25a)
B/, =L,(N) @ (25b)

/ Lo !
B, = 5 W N'L,(H)® & (25¢)

/ 1 INY) T /
B/, = 3 W N'L() O @ (25d)

/ 1 hnelod!
B{, =~ 'L, (N) O @ (25¢)

/ 1 rald!
Bi, = £} WL(N)® ] (250

The operators L,,(.) and L, () are gradient operators with respect to local coordinates which are
defined as

zglxl.f,x,\ 0 0
%
Lm(f) = 0 zaklf:xk 0 (26)
k

Y0if, XSy O
A k
and

zgkif..\’k 0 zglx'lf.xA
N k k
L,s (f) = O 29}\3‘/;“’ Zszf‘XK (27)
K k

Physically, B{ is the strain contribution of the inplane displacements at node I, and BJ+/B{ is
the strain contribution of the rotations at node I, which also includes the curvature effect.

Taking into account the way the local coordinates {z} are constructed, it can be shown via
an orthogonality condition that

LI?I(r) = ._Q (28)
which results in

Bi, =0 (29)
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Substituting (24) into (19}, in view of (21) and (29), results in

(Bllm)TDm Bljm f(BJI'n)TDm Bljm

| i 1
1
Ki= LSS ii)rp, BY, aml)7D, By, |0 ldrdsde (30)

tm

where | J | is the determinant of the Jacobian matrix obtained from (1). To be consistent with

the shell assumption of straight normals, J(r,s,t)| can be approximated by [J(r,s,0)| Since B,

and B; are functions of r and s only, the integral in (30) can be analytically integrated with

respect to t which leads to
| 1 2(Blm)TDm BJm

K,{,J‘:f f l 1 2 |/ (r,s,0) |drds (31

o .Q. ?(B:{m)TDm B.{m

Similarly, the shear part in (20) can be obtained as

K\U = fvlpfﬂ_

1 [12(B{) "D, B{, 2(B/) "D, By,
| 5 [J(r,s,0)|drds  (32)
2(B{)"D, B, 2(B{)TD, B{S+?(B3’S)TDS By,

The numerical integration is then used to evaluate the remaining integrals in (31) and (32). A
two-by-two Gaussian quadrature is employed for the integral in (31) and, as mentioned before,
a one-point Gaussian quadrature for the integral in (32). This will ensure singularity of the K”
which is necessary in order to avoid the shear-locking phenomenon.

Torsional Effect

In using a bilinear-element assemblage to approximate curved shells, convergence is
spoiled by a weakly-restrained torsional mode after the mesh reaches some state of refinement.
The reason can be explained as follows: The BDS element employs six degrees of freedom per
node, however, no stiffness corresponding to the torsional-rotation degree of freedom exists
locally in the f‘ormulaticlm. All the resistance to this rotation at each node I comes directly from
the coupling of the & -rotations of the non-planar elements surrounding node I. When the
finite-element mesh is refined, angles of the kinks between these elements are close to 2 7 and
the coupling effect is reduced. This weak coupling only generates a minute amount of stiffness
for the torsional rotation. Therefore, any slight disturbance in the generalized load correspond-
ing to this degree of freedom can amplify the torsional mode to an unrealistic amount, which
affects the global solution.

This problem is common to many shell elements which use six global degrees of freedom
per node. In the past, a fictitious torsional spring was added either locally at the element level,
or in some pseudo-normal direction defined at each node. This technique often is found unsa-
tisfactory, especially for a flexible system in which an unrealistic amount of strain energy in the
spring can be produced by a rigid body motion.

In a degenerated shell, the rotation of the normal and the mid-surface displacement field
are independent. The idea then is to derive an additional constraint between the torsional rota-
tion of the normal, a;', and the rotation of the mid-surface, 1/2(dw,/dz,~9w,/8z, ).

The deviation of the associated rotation from the mid-surface slope, Figure 3(a), is
governed by the transverse shear strain energy, i.e.,
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O (500 12 dd (33)
aZ]

T, =K M h fg [CKZ’(I',S)+

In fact, the transverse shear stiffness K, of Equation 20 can be obtained directly from the sta-
tionary value of m, . Similarly, the deviation of the torsional rotation of the normal from that
of the mid-surface, Figure 3(b), is assumed to have a governing strain energy,

]
=K ph fs [a:;'(r,s)—--l— { =2

awl 2
) 621 (r,s, 0) - —a-z;-(r,s, 0) } ] dA (34)

where k, is a parameter to be determined. If x, u 4 is chosen to be large relative to the factor
E h* (which appears in the bending energy), Equation 34 will play the role of penalty function
and results in the desired constraint:

'~1[§_ﬁ

awl
&y ~ = —

7 U Y ] (35)

al the Gauss points. A one-point numerical integration should be used in evaluating the
penalty integral in order to avoid an over-constrained situation similar to shear locking.

To derive a torsional stiffness from Equation 34, the local variables are expressed in terms
of global nodal variables, o, by bilinear shape functions. This gives Equation 34 in the form,

m=@®)TKIS (36)
where the torsional stiffness,
p A [RDTRL RIDTR]
KY=x, uh f“lf_l[m'{) R (R",)Tknjls./(r,s,o)ldrds (37
and
R) = 7(Z00N, ~ZouN, 00 (38)
R/ =N'[61; 0y 63 (39

Since two penalty functions are included in the thin shell situation, the penalty factors,
k, u hand k, u h, should have magnitude of the same order. The result displayed in Figure 5
indicates that the converged solution is insensitive to «, , as long as «, is large enough (>0.1)
to sufficiently restrain the troublesome torsional modes. This insensitivity demonstrates that
the addition of a torsional stiffness will not degrade the behavior of the system after the tor-
sional effect is deleted.

All numerical examples in this study employ a value of k=10 . It should be noted that in

example 2 when the real hyperbolic paraboloid shell geometry is exactly represented, an identi-
cal solution is obtained with or without the torsional stiffness.
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NUMERICAL EXAMPLES

To demonstrate the effectiveness and the versatility of the element, several examples of
different shell situations are analyzed.

Thin cylindrical shell roof: The thin cylindrical shell in Figure 4 is tested with meshes of 4,16 and
64 elements. The shell is supported at both ends on rigid diaphragms. This example shows a
situation where both membrane and bending actions are significant.

Initially the problem is solved without the addition of a torsional stiffness K,. The solu-
tion fails to converge as is evident in Figure 6, graph 8. A parameter study of k, is then carried
out for both thick and thin shells, using different element meshes. The results are displayed in
Figure 5. The adding of the torsional stiffness with sufficient amount of «, to restrain the free
torsional mode produces a unique and converged solution.

The convergence characteristics are compared with other elements in Figure 6. The
present solution converges to a complete (non-shallow) shell solution. This is also true for
many of the shell elements which possess no geometric slope continuity at the element boun-
daries [23]. The BDS element proves to be highly competitive ---- only some of the higher
order elements perform better for the same number of degrees of freedom. The bilinear ele-
ment, however, requires much less time to formulate due to its simplicity.

Figures 7 and 8 compare displacements to shallow-shell exact solutions. The correspond-
ing deep-shell solutions are not available. The stress-resultants are also shown to be very accu-
rate in Figure 9.

Clamped hyperbolic paraboloid shell: In this example, Figure 10, the element assemblage exactly
represents the real shell geometry. The shell is subjected to a uniform normal pressure. The
deflection along the center is plotted in Figure 11 and compared to the exact solution reported
in [19]. Figure 12 shows the rapid convergence of the solution compared to the relatively slow
convergence in [14]. In that reference, the element was specially designed for the shallow
hypar shell in which a cubic transverse displacement and linear inplane displacements were
used.

Thick cylindrical shell: The problem consists of a long cylindrical shell of uniform thickness, Fig-
ure 13, resting on a line suport and subjected to gravity loading. Figure 14 shows the deformed
mid-surface which checks well with the simple ring analytical solution. In comparison solu-
tions obtained by the 2-D plane-strain continuum element (Q-4) and the present element but
with exact numerical integration are shown. As expected, they are both too stiff.

Arch dam: This example provides a good test of the element in the case of an arbitrary , thick
shell with varying thickness. Figure 15 shows a doubly curved arch dam known to be type 5
[15.16]. Details of the geometry can be found in [15] and [16]. In Figure 16, the down stream
displacement is plotted and compared with the solutions from a thin shell element, a 3-D con-
tinuum element, and a higher-order element [12]

It is remarkable to note that accurate results are attainable with a very crude mesh (16
elements) using this low order element, and are comparable to those of the finer mesh (32 ele-
ments) using the higher-order element of [12].

Curved box girder: The last example shows a more complex structure of a curved box girder as
detailed in Figure 17. The present element is used for the flanges, curved webs and diaphragm
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of the box girder. For webs, a 1-by-2 Gaussian quadrature, Figure 18, is employed for the
inplane u -energy term to avoid the poor beam-bending behavior which is analogous to the
transverse shear-locking in the shell situation. The 2-point integration along the web thickness

is necessary to-incltude the equivalent effect of the analytical integration in a classical beam.
The diaphragm is treated as a membrane by deleting the bending stiffness.

The vertical deflection and normal stresses in both flanges are plotted in Figures 19,20
and 21. The solutions are compared with both the experiment and the higher-order finite-
element solutions reported in [17]. The present element proves to perform surprisingly well in
all aspects.

CONCLUSIONS

The attractiveness of the BDS element is attributed to its efficiency, effectiveness and ver-
satility . The simplest element geometry is chosen so that the element can serve as a con-
venient basis for unlimited forms of shell geometry. The degeneration concept, coupled with a
reduced integration technique, produces a shell element which performs accurately in both
thick and thin shell situations. With slight modification, the element is also capable of analyz-
ing other types of thin structures, such as a curved web of the curved box girder.
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Figure 2. Bllinear shell element.
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s = ksph [(ap+ dws )2dA
azl
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; 2
= ke phf [@s-172 (3w, - 9w)] “dA
dz, Oz

Figure 3. Penalty functlons: (a) transverse shear (b) torsion.
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Figure 4. Thin cylindrical shell. Geometry and meshes of 4 and 16 elements.
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VERTICAL DEFLECTION AT CENTER OF FREE EDGE, IN.
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GRAPH NO. ELEMENT TYPE D.O.F/ELEM. REF
[ CLOUGH- JOHNSON'S FLAT

56 PLATE (4-TRIANGLED) ELM 37 5
2 AHMAD'S PARABOLIC ELM. 40 12
5.4 3 AHMAD'S PARABOLIC ELM.
8 W/REDUCED SHEAR INTEG. 40 X
52+ 4 AHMAD'S CUBIC ELEMENT 60 12
5 ZIENKIEWICZ, TAYLOR & TOO
50k PARABOLIC W/2x2 INTEG. 40 X
6 SAME AS 5, BUT W/EXPLICIT
INTEGRATION THROUGH
4.8 - THICKNESS 40 22
7 COWPER'S HIGH ORDER,
SHALLOW TRIANGULAR ELM. 36 21
8 PRESENT ELEMENT
W/0 ET (KT=O) 24
9 PRESENT ELEMENT

EXACT, SHALLOW SHELL THEORY (REF. 18)
EXACT, DEEP SHELL THEORY (REF 23)
9

4 I

o

3.0

2.8 -

2.6 -

2.4

2.2+

2.0+

|8 ] ] | | ! ] |
0 200 400 600 800 1000 1200 1400

TOTAL NUMBER OF DEGREE-OF FREEDOM

Figure 6. Convergence of deflection versus degrees of freedom, thin
cylindrical shell roof's.
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E =28500 Ib/in? y
v=04

THICKNESS =0.8in. L F T
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AT F
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/ ST /
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// /~=—A=50in—/
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|/ / /
A e~ AN .___{ ;
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Figure 10. Clamped hyperbolic shell.
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Figure 11. Deflection at center line of hyperbolic shell. |

l
PRESENT ELEMENT

REF 14

u,v -BILINEAR
w -CuBIC
9x='w,x
By=-w,y

40+

_EXACT (REF IS)\
EXACT (REF. 14)

2.0 |
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MESH SIZE

Figure 12. Clamped hyperbolic shell, convergence of central deflectlon.
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E=4-0x10° psi P=20Ib END
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(a) SECTION A-A
LOCATION OF POINT LOAD
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(c) SECTION B-B

Figure 17. A horizontally curved box girder.
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FLANGE
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Filgure 18. Curved box girder, finite element idealization.
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APPENDIX A

Shell Stress-Resultants

The usual shell stress-resultants: membrane forces, shears and couples, are defined as fol-
low

Ny
Ny K2
N(rs) ={Np, =f*h/20'(r,s,t) dz; (A1)
N3
Ny
My h/2
M(rs) = {Mpf= [ 1 23 O (rs.0dzy (A2)
My,

The equation (24) is substituted in (14) and the result in (A1) and (A2) which are then
integrated to yield

Nu
N, ={Nnt=Y h(rs) D, Bf, u’ (A3)
Ny, !
N, = {~B =Y n(rs) D, [B{; B{] w (A4)
s — N23 - ’ s 1s 8225 a’

2
M=% %05 D, B, o (AS)
!
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APPENDIX B

Element Manual ; Bilinear Degenerated Shell (BDS) Element

a)
b)

a)
b)

c)

d)

ELEMENT DESCRIPTION

Geomelry : 4-node bilinear quadrilateral mid-surface, uniform or non-uniform thickness,
Material : linear elastic.
Applications : infinitesimal displacement analysis of

-shells (thick, thin, non-uniform),

-membranes,

-deep beams, shear panels,

-and any thin structures with user’s assigned selective integration scheme.

CODING ASPECT

Main program : FEAP74 (by Prof. R.L. Taylor, University of California ,Berkeley).
Element identification : ELM04

Modular subroutines : BMATRIX, CROSSP, JACOBI, LOAD, LOCALX, TRIMUL,
TORSION and SPACKD.

Input data cards :

FLOAD, WTABL
(2F10.0) omitted if LCODE = 0

E .» ,H,LCODE, «,ZB, p ,IBS
(7F10.0,15)

MA, 'ELM04" Alphanumerical information
(Standard card in MATERIAL section of FEAP)
Notation :
E - Modulus of Elasticity

v - Posson ratio

H - Uniform thickness (For non-uniform thickness, leave H blank and input
nodal thicknesses in VECT(NUMNP, 1) array - see section 6 of FEAP Manual)
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LCODE- 1 Dead load
2 Uniform load
3 Normal pressure
4 Water pressure

x, - cocflicient of torsional stiffness ( > 0.1 recommended)

ZB - ZB.ne.0 : all out-of-plane stiffness deleted.

p - Material density.

IBS - Selective integration scheme; three digits corresponding to numbers of
quadrature points for (bending,inplane shear,tranverse shear) see Note. IBS = 441
for shell (default) and IBS = 421 for deep beam.

FLOAD- Load intensity accordihg to

LCODE Meaning of FLOAD Direction
1 Specific weight Global x;
2 Uniform load/projected area  Global x; i
3 Normal pressure Local z;
4. Water pressure Local z5

WTABL- x; -coordinate of water table for LCODE=4 only

Note i

For the case of a deep beam application, the order of element nodal connection
must be such that sides 1-4 and 2-3 represent the beam thicknesses at both ends of
the beam element. In this case, H becomes the width of the beam. Integration
scheme IBS = 421 should be employed. It denotes a two-by-two quadrature being

used in evaluating the stiffness due to bending effect ( A -energy ), a one-by-two l
quadrature (the two on the line joining midsides 1-2 and 3-4) the stiffness due to |
inplane shear effect (1 -energy ), and a one-by-one the stiffness due to transverse '

shear effect.
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