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Rescue of Mammary Epithelial Cell Apoptosis and Entactin Degradation 
by a Tissue Inhibitor of Metalloproteinases-1 Transgene 
Carol ine  M. Alexander ,*  Eric  W. Howard,* Mina  J. Bissell, § and  Z e n a  Werb* 

*Department of Anatomy, Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, 
California 94143-0750; *University of Oklahoma Health Sciences Center, Department of Pathology, Oklahoma City, Oklahoma 
73104; and ~Life Sciences Division, Berkeley National Laboratory, Berkeley, California 94720 

Abstract. We have used transgenic mice overex- 
pressing the human tissue inhibitor of metalloprotein- 
ases (TIMP)-I gene under the control of the ubiquitous 
13-actin promoter/enhancer to evaluate matrix metallo- 
proteinase (MMP) function in vivo in mammary gland 
growth and development. By crossing the TIMP-1 
transgenic animals with mice expressing an autoactivat- 
ing stromelysin-1 transgene targeted to mammary epi- 
thelial cells, we obtained a range of mice with geneti- 
cally engineered proteolytic levels. The alveolar 
epithelial cells of mice expressing autoactivating 

stromelysin-1 underwent unscheduled apoptosis dur- 
ing late pregnancy. When stromelysin-1 transgenic mice 
were crossed with mice overexpressing TIMP-1, apop- 
tosis was extinguished. Entactin (nidogen) was a spe- 
cific target for stromelysin-1 in the extracellular matrix. 
The enhanced cleavage of basement membrane entac- 
tin to above-normal levels was directly related to the 
apoptosis of overlying mammary epithelial cells and 
paralleled the extracellular MMP activity. These results 
provide direct evidence for cleavage of an extracellular 
matrix molecule by an MMP in vivo. 

T 
IlE balance between extracellular proteolytic en- 
zymes and their inhibitors is likely to be an impor- 
tant modulator of cell-extracellular matrix (ECM) 1 

interaction. Matrix metalloproteinases (MMPs) are usu- 
ally considered to be essential to resorptive and lytic pro- 
cesses, and notably to the invasive lysis associated with tra- 
versing basement membranes. Indeed, an effective way to 
regulate the invasive behavior of normal and metastatic 
cells is to manipulate the concentration of one of the prin- 
cipal inhibitors of the MMP group of secreted proteinases, 
TIMP-1 (the tissue inhibitor of metalloproteinases). For 
example, expression of a transfected TIMP-1 gene lowers 
the metastatic potential of melanoma cells (Khokha, 
1994), and ablation of the TIMP-1 gene results in the en- 
hanced invasion of normal differentiated cells and altered 
metastasis of transformed cells (Alexander and Werb, 
1992; Soloway et al., 1996). The fact that MMPs can cleave 
ECM proteins and facilitate invasion prompted us to ask 
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1. Abbreviat ions used in this paper. ECM, extraceUular matrix; hTIMP-1, 
human TIMP-1; MMP, matrix metalloproteinase; p.c., postcoitum; S, 
stromelysin-1 transgenic; ST, human TIMP-1 and stromelysin-1 double 
transgenic; T, human TIMP-l-expressing; TIMP, tissue inhibitor of metal- 
loproteinases; WAP, whey acidic protein. 

what the effect would be of perturbing MMP expression 
on cells that have a clearly established ECM dependence. 

Mammary epithelial cells have been shown to depend 
on specific ECM components for the expression of differ- 
entiated functions in vitro (Streuli, 1993; Lochter and Bis- 
sell, 1995;), making it simple to evaluate functional 
changes in the celI-ECM interface by measuring milk pro- 
tein expression. Unexpectedly, overexpression of active 
stromelysin-1 in the mouse mammary gland resulted in 
profound changes of cell function and survival that in- 
cluded hyperplasia of the virgin gland and epithelial cell 
death in the late pregnant gland, resulting in smaller lac- 
tating alveoli (Sympson et al., 1994; Boudreau et al., 1995). 
These observations implicate the MMP family of secreted 
proteinases in growth control and morphogenesis of mam- 
mary gland. Stromelysin-1 and other MMPs are expressed 
in the mouse mammary gland during pregnancy; thus, the 
endogenous enzyme may serve in normal growth control, 
and this function may be usurped by expression of the 
transgenic autoactivating enzyme. To address this issue, 
we made transgenic mice overexpressing the MMP inhibi- 
tor TIMP-1 and used them to assess the normal role of 
MMPs. By crossing mice overexpressing TIMP-1 with 
mice overexpressing stromelysin-1, we were able to evalu- 
ate the bioactivity of the TIMP-1 transgene by looking for 
reversal of the phenotype induced by stromelysin-1. Con- 
trol, stromelysin-overexpressing, and TIMP-l-overexpress- 
ing mice, together with the heterozygous cross, have a spec- 
trum of altered proteolytic genotypes that were used to 
identify molecular targets for stromelysin-1. 
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Materials and Methods 

Materials 
Enhanced chemiluminescence (ECL) reagents were from Amersham (Ar- 
lington Heights, IL). Immobilon P was from Millipore Corp. (Bedford, 
MA). cDNA probes were human TIMP-1 (hTIMP-I) cDNA (Gasson et al., 
1985), mouse TIMP-1 (Alexander and Werb, t992), mouse keratin 18 
(Kulesh and Oshima, 1988), mouse entactin (courtesy of Dr. A.E. Chung, 
University of Pittsburgh, PA) and mouse stromelysin-1 (Sympson et al., 
1994). Sources of antibodies were as follows: antifibronectin primary anti- 
body (rabbit polyclonal antibody to mouse fibronectin; catalog No. Al17; 
GIBCO BRL, Gaithersburg, MD); antilaminin primary antibody (rabbit 
polyclonal antibody to mouse laminin; catalog No. 40023; Collaborative 
Research Inc., Lexington, MA); antientactin primary antibody (rat mAb 
to mouse entactin; catalog No. 05-208; Upstate Biotechnology, Inc., Lake 
Placid, NY); two other pairs of antibodies to entactin, one set of rabbit 
polyclonal antibodies to specific domains of entactin, namely the G1 do- 
main and the "E" domain linking the G2 and G3 domains (courtesy of Dr. 
A.E. Chung, University of Pittsburgh, Pittsburgh, PA; Hsieh et al., 1994), 
and one set of mouse mAbs to the G1 and G3 domains (courtesy of Dr. 
J.W. Fox, University of Virginia, Charlottesville, VA; Reinhardt et al., 
1993); antibromodeoxyuridine antibody (catalog No. 7580; Becton Dickin- 
son & Co., Mountain View, CA); secondary antibody for rabbit primary 
antibodies (HRP-conjugated donkey anti-rabbit IgG; catalog No. NA9340; 
Amersham); secondary antibody for rat primary antibody (HRP-conju- 
gated sheep anti-rat IgG; catalog No. NA9320; Amersham); and secondary 
antibody for mouse primary antibody (FITC-conjugated sheep anti- 
mouse IgG; catalog No. N1031; Amersham). 

Assembly of the Transgene Construct 
4.3 kb of the 5' sequence from the human 13-actin gene (including 3 kb of 
flanking sequence, 78 bp of noncoding sequence, and 832 bp of intron 1) 
was placed upstream of a HindIII cloning site and 877 bp of 3' untrans- 
lated sequence from the same gene in a Bluescript vector (Stratagene, La 
Jolla, CA). A full-length human cDNA for TIMP-1 (an EcoRI fragment 
tailed with HindIII linkers) was inserted, and the whole construct was re- 
moved by cleavage with KpnI and XbaI for microinjection into the pronu- 
clei of CD-1 mouse eggs with the use of standard transgenic technology 
(Hogan et al., 1994). The transgenic mouse line m2-5, which expresses au- 
toactivating rat stromelysin-1 from the whey acidic protein (WAP) pro- 
moter, was described previously (Sympson et al., 1994). 

Mammary Gland Protein Lysates 
Pieces of gland tissue were homogenized in RIPA buffer (150 mM NaC1, 
1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 nM Tris-HCl, pH 8.0) at 
0.25 mg wet wt/~l. Lysates were spun for 15 min at 4°C in a microcentri- 
fuge, and soluble fractions were removed for estimation of TIMP-1 inhibi- 
tor concentrations. Insoluble fractions (ECM-enriched fractions) were 
washed once in RIPA and boiled into SDS sample buffer. 

Measurement of h TIMP- I Concentrations 
hTIMP-1 was measured in tissue lysates and serum by using a radioimmu- 
noassay. Serum was obtained from the tail veins of homozygote and het- 
erozygote hTIMP-1 transgenic female mice, and the concentration of 
hTIMP-1 was measured by standard radioimmunoassay with a rabbit 
polyclonal antibody raised against hTIMP-1 (which shows no cross-reac- 
tion with mouse TIMP-1) and competition with pure radioiodinated 
hTIMP-1 (Bullen et al., 1995). Background values, determined from con- 
trol animals, were subtracted. 

Analysis of Conditioned Medium by Immunoblotting 
and Zymography 
Medium conditioned by embryonic fibrublasts isolated from 16.5-d post 
coitum (p.c.) embryos was prepared by overnight incubation of semicon- 
fluent fibroblasts in serum-free medium (DME with 0.2% lactalbumin hy- 
drolysate and 0.4% UltroSer; IBF Biotechnics, Columbia, MD). The re- 
sulting medium was diluted into sample buffer without dithiothreitol for 
zymography, or was boiled into reducing sample buffer for SDS-PAGE. 
Gelatin zymography for visualization of proteinases and reverse gelatin 
zymography for visualization of proteinase inhibitors were done according 

to the methods described by Alexander and Werb (1992). Immunologic 
blots of proteins transferred to Immobilon P were probed with the anti- 
body to hTIMP-1 used for the radioimmunoassay, and were developed us- 
ing the ECL system according to the manufacturer's instructions. 

Histology and Immunochemistry 
Mammary glands from 16-d pregnant CD-1 females of ai1 four genotypes 
were fixed for 4 h in 4% fresh paraformaldehyde and embedded in paraf- 
fin for sectioning and staining with hematoxylin and eosin by standard 
techniques. Mitotic indices from the same series of mice were measured 
by injecting mice 2 h before killing with 0.1 mg bromodeoxyuridine/g body 
wt. Glands were infiltrated with 20% sucrose and embedded in OCT, and 
10-~m sections were stained with antibromodeoxyuridine according to the 
manufacturer's instructions. 

Results 

TIMP-I Transgenic Mice Express Inhibitor in Tissues 
and Serum 

We made a construct consisting of hTIMP-1 and driven by 
a human [3-actin promoter and 3' untranslated region (Fig. 
1 a) that would reduce the endogenous activity of MMPs 
and serve as a probe of their normal function in transgenic 
mice. mRNA for hTIMP-1 was expressed in every tissue 
examined at expression levels that paralleled the endoge- 
nous ~-actin gene expression (data not shown), hTIMP-1 
protein was present in the serum of transgenic mice at up 
to 50 ng/ml (Fig. 1 b). The serum level of hTIMP-1 het- 
erozygote transgenic mice was about half of that in ho- 
mozygotes. Fibroblasts from hTIMP-l-expressing (T) 
mouse embryos (Fig. 1 c) secreted hTIMP-1 that comi- 
grated with mouse TIMP-1 and had inhibitory activity. Ex- 
pression of MMP and other TIMP activities seen by zy- 
mography and expression of endogenous mouse TIMP-1 
mRNA was unchanged by transgene expression (Fig. 1, d 
and e). 

The elevated levels of hTIMP-1 in tissues and plasma 
produced no dramatic changes during embryonic mouse 
development (14-18 d p.c.). Although endogenous TIMP-1 
shows highly regulated expression patterns in developing 
bone and in cycling ovaries of mice (Nomura et al., 1989), 
the morphology or function of most adult tissues in T mice 
appeared unaffected. Skeletons of transgenic embryos 
showed little effect of hTIMP-1 on bone morphogenesis, 
and there was no change in the morphology or size of cal- 
varia and long bones of adult mice. T females were fertile 
(Alexander et al., 1996) and appeared to remain fertile for 
as long as nontransgenic siblings. Mammary glands of T 
mice had normal lactational capacity. A continuous excess 
of hTIMP-1 did not appear to alter general ECM turnover 
or accumulation. Using Masson's trichrome staining as a 
measure of collagen accumulation, we saw no generalized 
fibroses in a variety of tissues, even at I yr of age (data not 
shown). All in all, the transgene was remarkably benign. 

Crossing TIMP-l-Overexpressing Mice 
with Stromelysin-I Transgenic Mice Reverses 
Precocious Involution 

To assess the bioactivity of the hTIMP-1 transgene, we 
crossed T mice with mice ectopically expressing rat stromel- 
ysin-1 directed to mammary epithelial cells by the WAP 
promoter (Sympson et al., 1994). These crosses generated 
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Figure 1. 13-actin gene pro- 
moter-driven ubiquitous ex- 
pression of transgenic 
hTIMP-1 in mice. (a) Scheme 
of vector construct. 4.3 kb of 
the human ~-actin promoter 
drives expression of a 
hTIMP-1 eDNA, with the 
13-actin 3' untranslated re- 
gion (UTR) and poly A site 
(AAA). The restriction sites 
shown are XbaI (Xb), SmaI 
(Sm), EcoRI (R1), SalI (S), 
EcoRV (RV), and KpnI (K). 
Two HindlII (H3) sites were 
deleted during construction 
of the vector. (b) Circulating 
levels of hTIMP-1 in het- 
erozygote (HET) and ho- 
mozygote (HZ) transgenic 
mice. Bars indicate standard 
error. (c) Expression of 
transgenic TIMP-1 by cul- 
tured cells. Proteins secreted 
into serum-free medium by 
embryonic fibroblasts (equiv- 
alent of proteins secreted by 
105 cells/20 h per lane) de- 
rived from heterozygote T 
(T) and control wild-type 
(con) 16.5-d p.c. sibling mouse 
embryos were separated by 
SDS-PAGE, blotted to Im- 
mobilon P, and probed with 
anti-hTIMP-1 antibody. The 
third lane (reed) contains se- 
rum-free tissue culture me- 
dium. Molecular weight stan- 
dards (in kilodaltons) are 
shown at left. (d) Inhibitor 
activity of transgenic protein. 
Conditioned medium from 
the experiment described in c 
was analyzed by reverse zy- 
mography (con, wild-type 
control fibroblasts; T, trans- 

genie fibroblasts). Gelatinolytic activities are revealed as white bands (indicated by bracket on left margin), and inhibitors of gelati- 
nolytic activities are revealed as dark bands. Cultured cells typically express endogenous TIMP-1; in this case, synthesis of the 29-kD 
TIMP-1 inhibitor was effectively doubled by expression of the transgenic construct (TIMP-1). The scanning densitometric evaluation of 
inhibitory activity is shown in the panel on the right. The values are normalized to control gland as 1.0. (e) mRNA expression of the en- 
dogenous and transgenic TIMP-1 genes in embryonic fibroblasts, mRNA was prepared from embryonic fibroblasts from control wild- 
type (con) and transgenic (T) embryonic fibroblasts and RNA blots with 10 I~g of RNA per lane, and were probed with either a mouse 
(moTIMP-1) or human (hTIMP-1) TIMP-1 eDNA probe. (EtBr, ethidium bromide-stained 18S rRNA bands.) (f) Expression of the 
TIMP-1 transgenic protein during mammary gland development, hTIMP-1 was measured in the RIPA-soluble fraction of mammary 
gland lysates by radioimmunoassay. V, virgin; dp, days pregnant; dL, days of lactation; di, days of involution. (g) Cartoon of the strategy 
used to generate an array of proteolytic genotypes in the mammary gland. Heterozygous male mice carrying the stromelysin transgene, 
directed by the WAP promoter (S), were crossed with heterozygous females carrying the human TIMP-1 transgene, directed by the 
[3-actin promoter (T). Their offspring segregated into four different genotypes, carrying either transgene alone (T and S), none at all 
(con), or both (ST). These genotypes are arrayed in increasing order of amount of extracellular proteolysis. Female pups at maturity 
were mated, and timed pregnant glands were used for the analyses. 

four types of  animals with distinct proteolytic genotypes: 
wild-type (control), T, stromelysin-1 transgenics (S), and 
double heterozygotes carrying both hTIMP-1 and stromel- 
ysin-1 transgenes (ST). In mammary  gland lysates from T 
females, hTIMP-1 protein increased in concentrat ion 
throughout  pregnancy (Fig. 1 JO and then decreased in lac- 

tating glands (in parallel with expression of the endoge- 
nous actin gene), accumulating again after weaning. 

Transgenic stromelysin-1 expression in the S animals 
produced partial unscheduled involution of  the late preg- 
nant mammary  gland by inducing basement membrane  
degradation and apoptosis of  mammary  epithelial cells. 
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This led to the significantly smaller alveolar cross section 
characteristic of S glands during lactation (Fig. 2). By in 
situ analysis, S glands were indistinguishable from controls 
at 10.5 d p.c., but had approximately sevenfold increased 
numbers of apoptotic cells at 16.5 d p.c. compared to con- 
trol (data not shown). Coexpression of the TIMP-1 trans- 
gene with stromelysin-1 in lactating glands of ST animals 
restored the alveolar volume to control size, as determined 
by histologic evaluation of stained sections (Fig. 2). To 
confirm that this rescue was the result of suppression of 
proteinase-induced apoptosis, we evaluated cell growth 
and apoptotic rates in late pregnant (16.5 d p.c.) glands. To 
assess the proliferative rates in all four types of glands, 
we injected mice with bromodeoxyuridine, removed the 
glands 90 min later, and stained the sections with an anti- 
body to bromodeoxyuridine. All four types of glands 
showed similar proliferative rates (Fig. 2 c). However, the 

apoptotic cell death seen in the stromelysin-1 transgenics 
by means of analysis of DNA extracts for nuclease-depen- 
dent laddering was effectively reversed in the ST double 
transgenics (Fig. 3). Intriguingly, even in the presence of 
elevated expression of the stromelysin-1 transgene, MMP- 
dependent apoptosis ceased during lactation (Fig. 4), 
when epithelial proliferation ceased (data not shown). 

Upregulation of Endogenous Stromelysin-1 
in Stromelysin-1 Transgenic Mice Is Reversed by 
Overexpression of the TIMP-1 Transgene 

Stromelysin-1 is upregulated during normal postlacta- 
tional mammary gland involution (Talhouk et al., 1992; 
Lund et al., 1996). We noted that ectopic expression of rat 
stromelysin-1 in 16.5-d p.c. glands induced the expression 
of endogenous mouse stromelysin-1 mRNA (Fig. 4) when 

Figure 2. Morphologic evaluation of mammary glands with four different genotypes. 16.5-d p.c. glands from control (con), TIMP-1- 
expressing (T), and stromelysin-1--expressing (S) mice and from mice carrying both genes (ST) were evaluated by (a) Masson's 
trichrome staining of paraformaldehyde-fixed paraffin sections (16 dp) and showed no genotype-specific phenotype. (b) Frozen sections 
of 8-d lactating glands (8 dL) showed that although the S mammary glands had the characteristically reduced alveolar volume, this 
phenotype was restored to normal by the coexpression of the TIMP-1 transgene (ST). T glands were indistinguishable from controls. (c) 
The mitotic index of these glands was similar in all four types, as measured by staining glands from mice injected with bromodeoxyuri- 
dine (BuDR) with an FITC-conjugated anti-BuDR antibody. 
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Figure 3. Analysis of the rescue of stromelysin-1--dependent ap- 
optosis by expression of the TIMP-1 transgene. Analysis of cell 
death in mammary glands of all four genotypes. DNA was ex- 
tracted from pregnant and lactating mammary glands of all four 
genotypes (see Fig. 2) and analyzed for apoptotic laddering on 
2% agarose gels (Boudreau et al., 1995). Samples from 16-d p.c. 
pregnant glands (16dp) show that the apoptotic laddering in- 
duced by the stromelysin-1 transgene was reversed by the coex- 
pression of the TIMP-1 transgene (ST). During lactation (lOdL), 
the WAP promoter increased transgenic expression of stromel- 
ysin-1; however, the mammary epithelial cells became resistant to 
apoptosis during this developmental phase. 

precocious involution was extensive. The rat stromelysin-1 
transgene was expressed at very low levels, detectable only 
by reverse transcription followed by PCR, and did not con- 
tribute to the signal seen by RNA blotting (Sympson et al., 
1994). Accordingly, we checked to see if this secondary 
molecular phenotype of involution in stromelysin-1 trans- 
genic mice was reversed in ST mice. There was no signifi- 
cant alteration in actin/keratin 18 mRNA ratio in any type 
of gland (Fig. 4, a and b), confirming morphologic obser- 
vations that the epithelial/stromal cell ratio was un- 
changed. Expression of hTIMP-1 m R N A  was identical in 
T and ST animals (Fig. 4 a), and expression of the endoge- 
nous mouse TIMP-1 gene was not affected by expression 
of the transgene (Fig. 4 b). Interestingly, endogenous 
stromelysin-1 m R N A  expression in T glands was similar to 
that in controls, but the three- to fourfold upregulation of 
stromelysin-1 expression typical of S glands was restored 
to normal levels in ST animals (Fig. 4 b). 

We next determined whether the expression of other 
MMPs was affected in mice of all four proteinase geno- 
types. To assess the impact of the stromelysin-1/TIMP-1 
balance on the activation status of MMPs, we analyzed ly- 
sates of mammary glands by zymography (Fig. 5). Gelati- 
nase A (72 kD) was the most prominent activity in mam- 
mary gland, and its expression and activation (indicated by 
a decrease in molecular mass of the activity to 60 kD) were 
almost constant throughout pregnancy; activation ceased 
during lactation. Because gelatinase A expression and ac- 
tivation were at the same low levels in all four types of 
glands at 16.5 d of pregnancy, we concluded that neither 
stromelysin-1 nor TIMP-1 expression affects gelatinase A 
activation in transgenic mice. This suggests that (a) the au- 
toactivating stromelysin-1 is not initiating a cascade of 
MMP activation, as is the case with purified enzymes in 
vitro (Sorsa et al., 1992); and (b) gelatinase A is not di- 
rectly involved in the induction of apoptosis. 

Figure 4. RNA blot analysis of transgene expression and reversal 
of stromelysin-l-induced amplification of endogenous gene ex- 
pression by exogenous TIMP-1. 10 Ixg of RNA extracted from 
16.5-d p.c. mammary glands of control (con), T, S, and ST mice 
(defined in the legend to Fig. 2), was analyzed for the expression 
of several mRNA species: (a) Keratin 18 (K18, an epithelial cell 
marker, used here as an internal standard; top) and hTIMP-1 
transgene (bottom). (b) Scanning densitometric quantification of 
RNA blots probed with actin, endogenous mouse TIMP-1 
(moTIMP-1), or mouse stromelysin-1 (moSL) normalized with 
respect to the internal keratin 18 (K18) standard, where control 
(con) values are set at 1.0. There were no significant differences 
in the expression of endogenous mouse TIMP-1 in the presence 
of transgenic TIMP-1 mRNA. The three- to fourfold upregula- 
tion of endogenous stromelysin-1 expression observed with the S 
transgene was effectively reversed by the coexpression of 
hTIMP-1 mRNA. 

Entactin Is a Molecular Target for  Proteolysis during 
Normal and Unscheduled Apoptosis 

Next, we exploited the four proteolytic genotypes to look 
for molecular targets in the ECM that underlie the mor- 
phologic changes. In particular, we searched for a stromel- 
ysin-l-dependent physiologic effector of the apoptotic re- 
sponse during late pregnancy. Protein extracts enriched 
for ECM were separated on 6% SDS-polyacrylamide gels 
and showed no gross changes. A representative profile of 
proteins extracted by SDS-PAGE sample buffer from 
ECM-enriched fractions of mammary glands is shown in 
Fig. 6 a. This profile was dominated by collagens, and 
these proteins showed some quantitative variability be- 
tween the samples that was genotype independent. We 
next examined the profiles for specific ECM proteins by 
immunoblotting, followed by quantification by means of 
scanning densitometry. Interestingly, when normalized for 
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Figure 5. Analysis of MMP expression in mammary glands of dif- 
ferent proteolytic genotypes. RIPA lysate supematants (de- 
scribed in the legend to Fig. 1 J0 of glands from control (con), S, 
T, and ST mice were analyzed by gelatin zymography (described 
in the legend to Fig. 1 d) on 10% polyacrylamide gels. Gelatinase 
A (72-kD gelatinase; gel A) predominates in the profile, and the 
amount of the activated cleavage product at 60 kD (A*) is inde- 
pendent of proteolytic genotype. Gelatinase B (92-kD gelatinase; 
gel B) and its activated cleavage product (B*) are minor constitu- 
ents, but show the same independence of genetic background. 

total extractable protein, laminin, which is bioactive in de- 
termining the differentiated function of mammary epithe- 
lial cells in vitro (Streuli et al., 1995), and fibronectin were 
present in similar amounts, and there were no prominent 
smaller bands that would imply accumulation of MMP- 
specific cleavage products in these late pregnant glands 
(Fig. 6, b and c). However, entactin (nidogen), the major 
basement membrane cross-linker between laminin and 
collagen, showed significant changes (Fig. 6, d-f). Al- 
though the total amount of entactin mRNA (data not 
shown), the amount of extractable entactin protein rela- 
tive to laminin (Fig. 6 J0, and the solubility characteristics 
of this protein were not significantly affected by the level 
of extracellular proteolysis, we identified two major cleav- 
age products (110 and 100 kD) of entactin accumulating in 
extracts of pregnant glands. These fragments have also 
been observed in lysates of the developing salivary gland 
(Kadoya et al., 1995) and in Engelbreth-Holm-Swarm Sar- 
coma matrix preparations (Ekblom et al., 1994). These 
cleavage products paralleled the proteolytic genotype of 
the gland (Fig. 6 d). Control glands contained tow amounts 
of these two cleavage products (~4% of total entactin), 
whereas S glands contained elevated levels, especially the 
ll0-kD fragment (up to 40% of total entactin protein). 
This is in keeping with observed low but significant num- 
bers of apoptotic cells by in situ analysis in the control 
glands (data not shown). Raising the local MMP inhibitor 
concentration in the T and ST animals resulted in greatly 
reduced amounts of these proteolytic fragments to levels 
even lower than control (Fig. 6, d and e). 

If entactin degradation is related to mammary gland ap- 
optosis, then its fragments should also be evident during 
the normal epithelial involution induced by postlactational 
weaning. Half of the extractable entactin appeared in the 
110- and 100-kD fragments in control animals weaned 4 d 
after 8 d of lactation (Fig. 6, d and e). 

Within the tertiary structure of entactin, there is a do- 
main on the NH2-terminal flank of the G2 domain that 
is selectively cleaved by proteinases of several classes 

(Mayer et al., 1993) and also contains an epitope that con- 
fers 131-integrin binding (Fig. 7). To confirm that the 110- 
and 100-kD proteins also reacted with other antientactin 
antibodies in these crude ECM-enriched lysates, and to 
identify the site of cleavage in the gland in vivo, we probed 
Western blots of involuting gland lysates with two sets of 
domain-specific antibodies, one polyclonal and the other 
monoclonal. Antibodies to the rod domain separating G2 
and G3 and antibodies to G3 reacted with all three pro- 
teins (150, 110, and 100 kD), whereas antibodies to G1 re- 
acted only with the native 150-kD protein. From the size 
of the fragments and their lack of G1 epitopes, we con- 
clude that approximately the same site is cleaved in vivo as 
in vitro. The collagen IV-binding G2 domain and the lami- 
nin-binding G3 domain remain linked, maintaining the in- 
terconnecting bridge, and the G1 domain (of unknown 
function) is clipped off. 

Discuss ion  

The significance of these observations is threefold: (a) Sys- 
temic overexpression of TIMP-1 does not produce major 
morphologic changes in the mouse or, more particularly, 
during mammary gland development in late pregnancy 
and lactation. This conclusion is derived from simple histo- 
logic evaluation. (b) Transgenic expression of an active 
MMP results in the proteolytic cleavage of a target ECM 
molecule (entactin) in vivo; and (c) the biologic properties 
of entactin imply that this cleavage may have an effector 
role in inducing the apoptotic phenotype. 

Although the MMPs can cleave various components of 
the ECM in vitro (Birkedal-Hansen et ah, 1993), there has 
been little direct evidence for physiologic MMP-depen- 
dent proteolysis of ECM molecules. A neoepitope of ag- 
grecan that is likely to be generated by MMP proteolysis 
has been immunolocalized in articular cartilage during in- 
flammatory arthritis (Singer et al., 1995). Fragments of 
link protein-3 that have been isolated from young cartilage 
show the same cleavage specificity as those produced in 
vitro by incubation with purified stromelysin-1 (Hughes et al., 
1992). Purified entactin is notably susceptible to proteo- 
lytic cleavage by various classes of proteinase (Mayer et al., 
1993; Sires et al., 1993), including the MMPs stromelysin-1 
and matrilysin. Entactin is a 150-kD extended molecule, 
comprising three globular domains linked by a flexible se- 
quence and a rigid rod (E domain; Fig. 7). The second 
globular domain (G2) has an affinity for collagen type IV, 
and the third globular domain (G3) binds laminin (Au- 
mailley et al., 1993; Chung et al., 1993). The function of the 
first globular domain (G1) is so far unknown. Proteinases 
cleave entactin according to their own specificity, but usu- 
ally within the flexible linker that connects the G1 and G2 
domains. This cleavage typically generates fragments of 
110 and 100 kD (Mayer et al., 1993). 

Entactin is a mediator of mesenchymal-epithelial cross- 
talk; it is produced by mesenchymal cells and deposited in 
the subepithelial basement membrane (Warburton et al., 
1984; Thomas and Dziadek, 1993; Ekblom et al., 1994). 
Entactin accelerates the formation of macromolecular 
clusters of laminin and collagen type IV in vitro, implying 
a bridging or structural role in the assembly of basement 
membranes. The proteolytic susceptibility of entactin after 
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Figure 6. Biochemical analysis of ECM fractions from 16.5-d p.c. mammary glands with four different proteolytic genotypes (con, T, S, 
and ST, as defined in the legend to Fig. 2) and from RIPA-insoluble lysates prepared from involuting mammary glands from control 
mice that were allowed to lactate for 8 d and were weaned for 4 d (/). (a) RIPA-insoluble fractions were boiled for 3 rain in sample 
buffer containing 5% SDS, and extracted proteins were separated on 6% SDS-polyacrylamide gels. The gel was stained with Coomassie 
blue to evaluate the total protein pattern in control (con), T, S, and ST glands. Bands indicated with an asterisk (*) were sensitive to di- 
gestion with clostridial collagenase. (b-f) Evaluation of specific ECM components in ECM-enriched fractions from all four types of 
glands. Replicate gels of the extracts shown in a were blotted to Immobilon P and probed with specific antibodies to ECM components: 
(b) antifibronectin; (c) antilaminin; and (d) antientactin. (e) Quantification of the ll0-kD proteolytic fragment of entactin in the four 
types of pregnant gland and normal involuting gland. Quantitative data from the gel shown in d, a representative example of entactin 
profiles from the four types of pregnant gland and normal involuting gland, were obtained from four separate blots by means of scan- 
ning densitometry. (f) Quantification of ratios of entactin and laminin in the four types of gland. Scanning densitometry of bands on im- 
munologic blots from several extracts, analyzed as described for c and d, was used to quantify the relative amounts of entactin and lami- 
nin in each genotype. The ratio of entactin to laminin was not genotype dependent. Bars indicate standard error. 

assembly into basement membrane  networks is unclear, 
although when it forms a complex with the laminin P1 do- 
main, the secondary cleavage site that generates the 100-kD 
fragment in vitro is protected (Mayer et al., 1993). In addi- 
tion to its structural properties, entactin binds to cell-sur- 
face receptors, specifically the et3131-integrin (G2 domain) 
(Dedhar  et al., 1992) and the tXv133-integrin (E domain). In 
pure form, entactin can alter at tachment and migratory re- 
actions in a number  of  cell types in culture (Chung et al., 
1993; Sires et al., 1993). Function-perturbing antibodies to 
the entactin/nidogen binding site of  the laminin-~/1 chain 

inhibit growth and branching morphogenesis of  lung and 
kidney epithelial cells in vitro (Ekblom et al., 1994). The 
accessibility of the integrin-binding sites of entactin en- 
meshed in basement membranes  is unknown. Both  the 
structural and cell-surface ligation properties of entactin 
are suggestive of effector roles that could be modulated by 
proteolysis. First, raising the quantity of  cleaved entactin 
from 4 to 40% of the total could lower the integrity of the 
basement membrane  enough to induce cell death in a 
number  of the overlying cells; or second, cleaved entactin 
could generate an integrin-mediated signal that leads to 
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Figure 7. Determination of MMP-dependent cleavage site in en- 
tactin in mammary gland in vivo. ECM extracts from involuting 
glands of CD-1 females (weaned 4 d after 8 d of lactation) were 
separated as described in Fig. 6 and probed in Western blots with 
two pairs of epitope-specific antibodies to entactin. (a) Polyclonal 
rabbit antibodies to the E and G1 domains and monoclonal 
mouse antibodies to the G1 and G3 domains showed the same 
pattern of reaction. All four antibodies reacted with native entac- 
tin (150 kD), but the anti-G1 antibodies did not react with the 
100/ll0-kD derivative proteins. Removal of a 40-50-kD frag- 
ment containing all the G1 epitopes by MMP-dependent cleavage 
is consistent with the site identified in vitro as a proteinase-sensi- 
tive zone. Relevant domains and functions in the entactin mole- 
cule are cartooned in b. The proteinase-sensitive and integrin- 
binding sites are marked, together with the binding affinities of 
each specific domain. 

apoptosis. In a study published in 1980, the administration 
of cis-hydroxyproline (which inhibits the secretion and 
production of collagens, including collagen IV) induced 
apoptosis in mammary epithelial cells dividing in response 
to steroid injection (Wicha et al., 1980). Histologic evalua- 
tion of basement membranes from treated glands showed 
they were disorganized and fragmented, leading the au- 
thors to conclude that this was the cause of epithelial cell 
death. ECM components interact to stabilize one another 
and to stabilize their cognate cell surface receptors (Wu et al., 
1995); therefore, changes in one component are likely to 
affect several others. The issue under investigation here is 

what constitutes a basement membrane that sustains the 
overlying cells: is it a level of structural integrity, or a se- 
ries of specific ECM-cell  interactions? 

Modulation of cell surface integrin-ECM interaction by 
MMP activity is not without precedent. Our earlier studies 
showed that fibronectin or collagen substrates, stromel- 
ysin-1 expression, and function-perturbing 13rintegrin an- 
tibodies all induce apoptosis of mouse mammary epithelial 
cells in culture (Boudreau et al., 1995). Indeed, proteolytic 
fragments of a complex basement membrane not only fail 
to support differentiation of mammary epithelium in vitro, 
but also act in a dominant-negative manner to inhibit 
ECM-mediated differentiation (Streuli et al., 1995). MMP 
activity expressed by melanoma cells plated on a collagen 
gel substrate in vitro changes the basis of the celI-ECM in- 
teraction from ligation of the 0t2[3rintegrin to an cry-medi- 
ated interaction (Montgomery et al., 1994). Clearly, differ- 
ent intracellular signals are generated by the ligation of 
different integrin receptors with proteolytic fragments of 
ECM molecules (Huhtala et al., 1995). It will be interest- 
ing to test the possibility that entactin is an intermediary 
for stromelysin-l-dependent apoptosis of cultured mam- 
mary epithelial cells. 

Our surprising observation was that apoptosis ceased in 
the stromelysin-1 transgenic mammary glands during lac- 
tation, even though basement membrane destruction was 
maximal (Sympson et al., 1994). Cell proliferation was 
equally high during pregnancy in all four genotypes, but 
ceased during lactation. The withdrawal of cells from the 
cell cycle may eliminate their sensitivity to ECM-directed 
apoptosis. Upon entering the cell cycle, there are critical 
checkpoints that determine whether the cell will divide or 
die (Ashkenas and Werb, 1996). In support of this model, 
our preliminary data indicate that during involution, after 
weaning, normal mammary epithelial cells reenter the cell 
cycle before apoptosis (MacAuley, A., L. Lund, and Z. 
Werb, unpublished observations). Moreover, we have ob- 
served that mammary epithelial cells in culture enter the 
cell cycle before initiating apoptosis (Boudreau et al., 
1996). Pregnant, lactating, and involuting mammary glands 
of all four genotypes should provide a novel system in 
which to evaluate the contribution of cell cycle to apopto- 
sis in vivo. 

Increased extracellular proteolysis is a feature of many 
inflammatory and degenerative diseases, and also of tu- 
morigenesis (Sympson et al., 1995), and is implicated in 
ECM modification, growth factor availability, and angio- 
genesis (Mignatti and Rifkin, 1993). The key to under- 
standing the role of proteinases in these processes lies in 
the identification of their substrates. Our biochemical 
evaluation of ECM targets for the stromelysin-1 transgene 
during stromelysin-l-induced apoptosis in the mammary 
gland provides a conceptual basis for the design of strate- 
gies that use proteinase inhibitors as a probe of proteinase 
function in disease processes. Such an approach will be 
useful for evaluating the functions of other members of 
the MMP and TIMP families. 
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