
UCLA
UCLA Electronic Theses and Dissertations

Title
Extending the Limits of Hydrodynamics to Dense Plasmas and High Mach Number 
Cavitation in Compressible Fluids

Permalink
https://escholarship.org/uc/item/63n7z0vd

Author
Krimans, Daniels

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63n7z0vd
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Extending the Limits of Hydrodynamics to Dense Plasmas and High Mach Number

Cavitation in Compressible Fluids

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Physics

by

Daniels Krimans

2024



© Copyright by

Daniels Krimans

2024



ABSTRACT OF THE DISSERTATION

Extending the Limits of Hydrodynamics to Dense Plasmas and High Mach Number

Cavitation in Compressible Fluids

by

Daniels Krimans

Doctor of Philosophy in Physics

University of California, Los Angeles, 2024

Professor Seth J. Putterman, Chair

In this dissertation, I investigate the limits of the hydrodynamic approach to many-body

systems. Due to the impracticality of solving equations of motion for individual particles,

hydrodynamics provides an effective description, reducing complex systems to a few macro-

scopic variables, such as density, entropy, and velocity. However, the validity of hydrody-

namic equations has to be carefully assessed when applied to small length scales comparable

to the average interparticle distance. I explore this limitation by analyzing systems under

extreme physical conditions in two scenarios.

First, I study strongly coupled plasmas, where traditional hydrodynamic methods fail. In

such plasmas, the electrostatic interaction is sufficiently strong to influence their equilibrium

and out-of-equilibrium behavior. I use a variational approach to derive generalized hydrody-

namic equations from first principles, where the effects of strong coupling are included using

nonlocal terms. The obtained results are compared in the linear regime to numerical exper-

iments, showing excellent agreement for a wide range of coupling strengths. This suggests

exploring the developed framework for nonlinear problems and other long-range systems in

the future.

Second, I examine extreme bubble collapse when the bubble is surrounded by a compress-

ible fluid. The goal is to evaluate the response of the compressible fluid when its motion
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reaches high Mach numbers. This is challenging to describe with existing numerical methods

due to the presence of large gradients within the fluid. I implement a uniform density and

pressure approximation inside the bubble, which allows for quick and accurate computations

that include the effects of compressibility of the surrounding fluid. To check the accuracy of

the created solver, I derive an asymptotic analytic benchmark for late stages of the collapse.

This key limit was achieved in the simulations. The obtained results in the future can be

coupled with molecular dynamics for the gas inside the cavity to estimate the possibility of

thermal fusion in such collapses.

iii



The dissertation of Daniels Krimans is approved.

Stuart Brown

Troy A. Carter

Gary A. Williams

Seth J. Putterman, Committee Chair

University of California, Los Angeles

2024

iv



“The sciences do not try to explain, they hardly even try to interpret, they mainly make

models. By a model is meant a mathematical construct which, with the addition of certain

verbal interpretations, describes observed phenomena. The justification of such a

mathematical construct is solely and precisely that it is expected to work.”

- John von Neumann
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CHAPTER 1

Introduction and summary

In this dissertation, I explore a theoretical problem of formulating and understanding the

limits of a physics theory. To approach such a general issue, I concentrate my attention on

many-body systems consisting of a large number of particles, which are interesting because

the naive approach of solving equations of motion for each of the individual particles forming

the system is not practically feasible. Because of this difficulty, the question of deriving

and understanding an appropriate theory arises. To avoid the issue of considering each of

the many particles individually, one of the widely used approaches is to create an effective

description using hydrodynamics, where the full description of a many-body system is given

in terms of just a few smooth macroscopic variables, such as density, entropy, and velocity

[1]. Such an approach has been explored using, for example, Euler, Navier-Stokes, elasticity

and two-fluid plasma equations [1, 2, 3, 4], and has been demonstrated to be successful

for problems in gases, liquids, solids, and also plasmas, where particles interact using long-

range forces. Indeed, this approach allows the investigation of linear problems, such as

the propagation of longitudinal and transverse waves, but also more complicated nonlinear

problems, such as rapid bubble collapse in liquids. The goal of this dissertation is to explore

hydrodynamic approaches and their limits when applied to problems with extreme physical

conditions.

When discussing the limits of hydrodynamic equations, it is claimed that such an aver-

aged macroscopic description can be valid only when the length scales in the problem are

much greater than the average distance between the particles forming the system [1, 2].

For example, in the case of low amplitude wave propagation, the characteristic length scale

for changes in hydrodynamic variables is the wavelength of a wave. In nonlinear problems,

1



the mentioned criterion is particularly important, as large gradients for the hydrodynamic

profiles might develop, in which case the macroscopic properties change over a small length

scale. An extreme case of that is a shock wave, having a boundary across which the hydrody-

namic functions are discontinuous [1]. In such cases, the predictions based on hydrodynamics

must be carefully assessed. I am interested in understanding to which extent hydrodynamic

methods can be accurate in the limit where the length scales in the problem are small, and

to understand whether it is possible to improve and extend them beyond this limit.

An interesting aspect to note is that typically hydrodynamic equations are written in

terms of local differential equations. So, even if the particles forming the system interact

using long-range forces, such as charged particles in a plasma, the hydrodynamic equations

describing their interaction are written for macroscopic, averaged electric and magnetic fields,

which reduces the problem to local equations. Therefore, not much is explored and under-

stood in using nonlocal differential equations to describe hydrodynamic motion. This opens

up an alternative pathway to extend the hydrodynamic description beyond the previously

mentioned limitations.

In this dissertation, I analyze two problems where extreme physical conditions can be

attained, and the validity of hydrodynamic approaches can be probed. The first of these is

a description of a strongly coupled one-component plasma, which is discussed in detail in

Chapter 2. Such a plasma is relevant in astrophysical applications but has recently been

created and described in a laboratory setting. In a strongly coupled plasma, the electro-

static interaction between the charged particles is so strong that it significantly influences

its thermodynamic and out-of-equilibrium properties, leading to the plasma exhibiting solid-

like behavior. This happens because the plasma has a sufficiently high density, which forces

particles to be closer to each other and experience stronger interaction, while the temper-

ature is sufficiently low, which decreases the random thermal motion of particles, making

it more difficult for them to escape the interaction. In such a system, it is claimed that

the hydrodynamic description in the manner of Navier-Stokes is not valid at any coupling

strength [5]. In my work, I argue that the hydrodynamic methods can be very successful

2



in explaining the properties of a strongly coupled plasma, even at small length scales. The

issue is that the correct equations are not Navier-Stokes equations but rather they have to be

extended. To do so, I derived from first principles a set of generalized hydrodynamic equa-

tions, which include the effects of strong coupling. Such equations were formulated with the

help of nonlocal terms, which are commonly omitted in hydrodynamic descriptions. These

nonlocal terms were key to accurately capture the effects of long-range electrostatic interac-

tion in the regime of strong coupling. The success of the derived hydrodynamic equations

was shown by computing longitudinal and transverse dispersion laws, where the agreement

with the molecular dynamics data is excellent even up to wavelengths of the same order of

magnitude as the average interparticle distance, showing that for a strongly coupled plasma

the common view on the limits of validity of the hydrodynamic approach does not apply.

In particular, I discuss:

• how to formulate a variational principle for hydrodynamic motion, including nonlocal

terms that represent long-range interaction,

• how to derive equations of motion, momentum and energy conservation laws for actions

that include nonlocal terms,

• how to ensure the consistency of nonlocal variational principles with the thermody-

namics of strong coupling by using the derived energy conservation law,

• what the difficulties are in uniquely specifying the nonlocal action for the out-of-

equilibrium motion of a strongly coupled plasma and what the key additional assump-

tions are needed to obtain the correct hydrodynamic equations,

• how to derive longitudinal and transverse dispersion laws when nonlocal terms are

included,

• that the obtained dispersion laws agree excellently with the data available from molec-

ular dynamics simulations, even when the wavelength is comparable to the average

interparticle distance.
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The agreement of the developed general theoretical framework with numerical experi-

ments suggests considering more complicated problems in strongly coupled plasmas, which

are experimentally relevant but where numerical data are not yet available, such as the

motion of vortices, adiabatic expansion, and shock waves. Additionally, it also motivates

applying the nonlocal hydrodynamic approach to other long-range systems, such as Yukawa

fluids, two-component plasmas, and fluids consisting of electric and magnetic dipoles.

The second problem analyzed in this dissertation is the extreme bubble collapse in com-

pressible fluids, which is discussed in detail in Chapter 3. Experimentally, during a single

collapse, the bubble’s radius can decrease by a factor of a hundred [6], and so the pressure,

number density, and temperature for the gas in the bubble can increase by many orders of

magnitude. In fact, the temperature achieved could be so high as to allow for thermal fusion

[7]. Due to the extreme conditions and the large gradients developed in the hydrodynamic

profiles at late stages of such rapid collapses, it is not clear to what degree the hydrodynamic

equations can describe them. Therefore, the goal is to explore the results obtained from hy-

drodynamics and compare them to the experimental data. Even though the bubble starts

from rest, by the end of the collapse, it achieves a velocity larger than the ambient speed of

sound of the outside fluid, showing the necessity of including the effects of compressibility.

To do so, local Euler equations are used together with the Tait-Murnaghan equation of state

[2]. Nevertheless, due to the multiple length and time scales involved in the collapse, even

the numerical solvers that were recently developed just for this problem are not able to ac-

curately compute the rapid collapses with the parameters found in experiments. To resolve

this issue, I implemented an approximation where the pressure and density inside the bubble

are assumed to be uniform. Such a simplification is unable to capture all the complicated

phenomena for the gas in the bubble, such as shock wave formation, but it allows, for the

first time, the exploration of the effects of compressibility for the experimentally relevant

parameters. Additionally, I extended an asymptotic analytic result for the late stages of

collapse, which was previously discussed in the context of water, to a wide range of liq-

uids. In the rapid collapses investigated numerically, such an asymptotic result was indeed
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achieved, showing both the accuracy of our approach and the possibility of attaining such

an asymptotic regime in real experiments.

In particular, I discuss:

• the issues with currently available numerical solvers for the problem of bubble collapse,

which show limitations for sufficiently strong collapses and cannot be used to address

the problem within the available computational resources,

• how to numerically implement the uniform bubble approximation for the gas in the

cavity, allowing for quick and accurate computation of the problem,

• how to perform analytic computations for the asymptotic behavior of the outside fluid

during the late stages of the collapse, which creates a benchmark to test the numerical

solvers,

• the obtained solution of the problem with relevant experimental parameters for water

and liquid lithium, where the collapse was shown to achieve the predicted asymptotic

behavior.

The obtained numerical results, with their excellent numerical convergence properties

and agreement with the asymptotic behavior, motivate coupling them to molecular dynamics

simulations for the gas in the bubble [8, 9, 10]. In that case, it should be possible to observe

the effects of compressibility of the outside fluid on the motion within the gas. This would

allow to predict the optimal combination of the gas inside the cavity and the outside fluid for

achieving thermal fusion, which could then be suggested for experimental investigation. Such

experimental data would then determine whether the predictions based on hydrodynamic

models are appropriate in such extreme scenarios.
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CHAPTER 2

Variational principles for the hydrodynamics of the

classical one-component plasma

This chapter is a modified version of a published paper and is reproduced from D. Kri-

mans and S. Putterman, “Variational principles for the hydrodynamics of the classical one-

component plasma,” Phys. Fluids 36, 037131 (2024), with the permission of AIP Publishing.

2.1 Introduction

We are interested in formulating and analyzing variational approaches to obtain hydrody-

namic equations for classical systems with long-range interactions and considerable coupling

strength. In our analysis, the variational principles should be understood in the sense of

the mechanical least action principle, as discussed in classical mechanics [11] and classical

field theory [12], where such an approach is very successful. This can be contrasted with

variational approaches that focus on obtaining thermodynamic properties of a system, for

example, by minimizing the Helmholtz free energy [13]. One of the simplest and best-known

examples of a system with long-range interactions and strong coupling effects is the one-

component plasma (OCP), which we utilize as a basis for our analysis. It consists of two

types of charged particles, with all particles interacting pairwise via the Coulomb potential

ϕ(r) = q1q2/4πε0r, where q1 and q2 represent the charges of any two particles, and r denotes

the distance between them. However, in this plasma, only one component moves, while the

other forms a stationary neutralizing background.

The OCP is important for understanding white dwarfs in astrophysics [14, 15]. The linear
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regime can be probed using scattering experiments on molten salts [16, 17], as molten salts are

believed to be strongly coupled plasmas [18]. Nonlinear effects can be experimentally tested

using plasma expansion during laser breakdowns [19], expansion of ultracold neutral plasma

[20], and by considering photoelectron sources, where the emitted electrons are strongly

coupled immediately after emission [21]. Additionally, the OCP can be thought of as a

limit of more complicated Yukawa fluids, where particles interact using Yukawa potential.

Such Yukawa fluids can be experimentally realized as dusty plasmas [22]. Therefore, insights

from the variational hydrodynamics of the OCP might be used to understand variational

principles for Yukawa fluids.

The OCP has been numerically investigated in thermal equilibrium [23, 24]. Due to the

long-range interaction, in addition to the ideal gas terms, there are nonlocal contributions to

the energy and pressure that depend not only on the interaction potential but also on the pair

distribution function g(r), which gives the probability of two particles being distance r apart.

For the OCP, thermodynamic properties depend on the coupling parameter, which is the

ratio of the average potential energy due to the Coulomb interaction and the thermal energy

due to temperature T . It is given for the moving particles as Γ = q2/4πε0akBT , where q is

the charge of the moving particles, and a is the average distance between moving particles.

This average distance can be estimated using the number density n as 4πa3/3 = 1/n. We

will be especially interested in cases where the coupling between particles is significant, and

thus, Γ ≥ 1. From numerical experiments, the pair distribution function [25] and nonlocal

contributions to energy and pressure [26, 27] are known as functions of Γ. These results

are used in our variational approach to ensure that the conserved energy of our theory

correctly matches the known result in thermal equilibrium, ensuring the consistency of our

calculations with thermodynamics. Additionally, numerical experiments have shown that

the OCP experiences a phase transition at around Γ = 172 between the fluid and body-

centered cubic crystalline phases [28]. As we are specifically interested in the fluid phase, we

will only examine the region with Γ < 172.

Using numerical simulations, one can investigate the linear behavior of the OCP close to
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equilibrium by computing dispersion curves [29, 30]. For example, one can find that there

is an onset of negative dispersion for longitudinal waves after reaching some critical value of

Γ [31], and propagating transverse waves are observed at sufficiently short wavelength [32].

The extensive available data on the dispersion curves provide a perfect opportunity to test

our general theoretical framework.

To theoretically analyze dispersion curves, one can, for example, use the generalized

Langevin equation with memory functions [33] or the quasilocalized charge approximation

(QLCA) [34, 35]. Both of these approaches yield excellent results compared to numerical

simulations [31, 36]. However, they rely on the approximation of strong coupling, Γ ≫ 1,

and are not able to produce predictions for nonlinear effects. Moreover, QLCA does not

include thermodynamic effects that would result in the usual speed of sound term at weak

coupling [35]. While it is possible to add such a term phenomenologically [37, 38], we

believe it lacks rigorous justification. In contrast, our variational approach is consistent with

thermodynamics, capable of predicting nonlinear effects, and does not rely on the assumption

of a very strong coupling.

Additionally, it is possible to use molecular dynamics simulations to numerically analyze

the nonlinear effects of the OCP on short time scales [39, 40]. However, to an even greater

extent than in the case of linear behavior, accurate numerical simulations of nonlinear prob-

lems require vast computational resources, especially for large systems and long observation

times. In comparison, hydrodynamic equations are independent of the number of particles

in the plasma, and the equations are usually quickly solved numerically. This is evident for

some nonlinear problems, such as the expansion of the ultracold neutral plasma [20]. Other

examples of nonlinear phenomena that interest us are solid body rotation, vortex motion,

and shock waves. Finally, working in terms of a few macroscopic hydrodynamic variables

provides a clearer physical picture. The goal of the proposed variational approach is to

generate equations for reversible hydrodynamics analogous to Euler equations, which would

generalize the equilibrium state of the OCP to motion that depends on both space and time.

Both the linear and nonlinear dynamics of the OCP can be analyzed using the frame-
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work of kinetic theory and generalized hydrodynamics [41, 42, 43]. Such an approach has

the advantage of including effects of heat transfer, viscosity, and relaxation. However, the

challenge is to find an appropriate closure to the hierarchy of equations that would make

them simple enough for computations and, at the same time, consistent with thermodynam-

ics. In the development of our variational approach, our closure assumption is that a general

description of the OCP can be expressed in terms of a few macroscopic hydrodynamic vari-

ables. Then, the variational principle guarantees that the equations are closed and have

the conservation laws and symmetries built-in. We hope that such an alternative would, in

some cases, provide simpler and more practical results. Even though our approach does not

include heat transfer, viscosity, or relaxation, one can later introduce these effects, as in the

case of Navier-Stokes equations [1], generalized hydrodynamics [44, 43], or by considering

linear in velocity drag force between moving particles and the stationary background, as in

the case of two-fluid plasma equations [4].

The range of validity of hydrodynamic equations, such as the Euler and Navier-Stokes

equations, is generally determined by the transport processes, which are characterized by

the mean free path of the collisions of the particles forming the system [1]. Motions on

a shorter length scale fall outside the regime of classical hydrodynamics’ validity. In the

case of the strongly coupled OCP, we propose that the range of validity for the continuum

equations is even greater than that for classical fluids. In particular, we conjecture that

the stresses introduced by strong coupling lead to hydrodynamic equations at the level of

description of the Euler equations that are valid even when the length scale for the motion

under consideration is smaller than a. This is confirmed by comparing our obtained results

to molecular dynamics simulations and will be determined in the future through experiments

testing our theory.

In hydrodynamics, there are two ways of describing the fluid: the Eulerian approach,

where the hydrodynamic quantities depend on the position in the laboratory frame, and

the Lagrangian approach, where the hydrodynamic quantities depend on reference positions

in some reference state. For example, the reference positions can be initial or equilibrium
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positions of particles forming the fluid. It is known that Euler equations of hydrodynamics,

which are successful in explaining many hydrodynamic phenomena, can be obtained from

variational principles in both Eulerian and Lagrangian approaches [45, 46, 47, 48], but we

are not aware of generalizations to the case of systems with nonlocal interaction, where the

effects of strong coupling are included. In our work, we present variational principles for the

classical OCP for both Eulerian and Lagrangian approaches. Although they only differ by

a choice of coordinates, different assumptions about the out-of-equilibrium behavior of the

pair distribution function are more natural in each of them. This leads to different equations

of motion with different properties. This will be shown to be crucial in understanding

the hydrodynamics of strongly coupled systems. For example, assuming that the out-of-

equilibrium behavior of the pair distribution function depends on reference positions rather

than on laboratory positions is what permits the propagation of small amplitude transverse

waves, as observed in numerical simulations.

We start by postulating a nonlocal Lagrangian field density from which we derive well-

defined equations of motion and conservation laws for energy and momentum. The chosen

complete set of variables for the variational principle is exactly the same as in the case of

Euler equations. In the Eulerian approach, it is given by number density n, velocity v⃗, and

specific entropy s, while in the Lagrangian approach, it is given by the displacement field

x⃗. To analyze the obtained equations of motion, the expression for the conserved energy is

evaluated at equilibrium and then matched to the results of thermal equilibrium, making

our variational principles consistent with thermodynamics.

Three distinct variational principles are analyzed, differing in the assumed behavior of

the pair distribution function, g, out of equilibrium. In the Eulerian action, we assume

g(n, s, |x⃗− x⃗′|), where x⃗, x⃗′ are positions in the laboratory frame. In the Lagrangian action,

we assume g(n, s, |⃗a − a⃗′|), where the dependence on positions is instead to be understood

with respect to the reference positions a⃗, a⃗′. Finally, motivated by the obtained results,

the Lagrangian action is improved by considering the modified Lagrangian action, where

g(nref, T (n, s), |⃗a − a⃗′|) is assumed. The difference arises from working in terms of number
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density and temperature instead of number density and specific entropy, and assuming that

the temperature is evaluated at a given laboratory position, while the independent number

density variable, nref, is evaluated at the reference state.

We then linearize the equations of motion and obtain expressions for both longitudinal

and transverse dispersion laws, and discuss the difficulties of relating coefficients in the

dispersion relation to the thermodynamic parameters due to nonlocal effects. To have simple

and practical expressions for the dispersion laws and due to insufficient numerical data, we

use a simple step function approximation for the pair distribution function, as has been

done for QLCA [36]. This also gives a better physical understanding of the different terms

appearing in the linearized equations. Such calculations are performed for all of the different

variational principles discussed, and the differences between them are analyzed. The results

are also compared to the theoretical calculations using QLCA [36] and to the numerical

results of molecular dynamics [30, 31, 32].

The key results can be seen in Figs. 2.1 and 2.2, which show that different variational

principles with varying assumptions on the out-of-equilibrium behavior of the pair distribu-

tion function yield significantly different results. For example, it can be observed that in

the Eulerian approach, there are no transverse modes, unlike in the modified Lagrangian

approach. Furthermore, the modified Lagrangian variational principle provides excellent re-

sults for both longitudinal and transverse dispersion curves for all equilibrium values of the

coupling parameter, Γ0, and the results remain accurate even at wavelengths comparable

to the average distance between particles. It correctly predicts that the onset of negative

dispersion occurs at Γ0 = 9.5, consistent with the values estimated by the molecular dy-

namics calculations ranging from Γ0 = 9.5 to Γ0 = 10.0 [30, 31]. Moreover, it was checked

numerically that in the strong coupling limit, where Γ0 → ∞, the results of the modified

Lagrangian variational principle tend towards the QLCA result. Thus, it accurately predicts

the finite values of both longitudinal and transverse frequencies as the wavelength tends to

zero [36].
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Figure 2.1: The longitudinal dispersion law is shown in normalized variables for various

values of Γ0. The results from the variational approaches are as follows: Eulerian (dashed

purple line, as discussed in Section 2.2.3) and modified Lagrangian (solid red line, as de-

scribed in Section 2.3.4). The step function approximation for the pair distribution function

is assumed, and u(Γ) = −0.9Γ+ 0.5944Γ1/3 − 0.2786 is defined in Eq. (2.30) and taken from

Ref. [27]. For comparison, we include the result from QLCA [36] (dotted black line) and

values of the longitudinal current fluctuation spectrum obtained from molecular dynamics

simulations provided by the authors of Ref. [30] (colored background with large values being

white and small values being blue), where the dispersion law is identified by the peaks of the

spectrum. Note that the QLCA dispersion law shows negative dispersion for all Γ0, while

the proposed modified Lagrangian and simulations show a transition to negative dispersion

around Γ0 = 9.5. Additionally, the purely Eulerian theory shows instability, where ω2
L < 0,

for Γ0 ≥ 7.9.
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Figure 2.2: The transverse dispersion law is shown in normalized variables for different

values of Γ0. The results from the variational approaches are as follows: Eulerian (dashed

purple line, as discussed in Section 2.2.3) and modified Lagrangian (solid red line, as de-

scribed in Section 2.3.4). The step function approximation for the pair distribution function

is assumed, and u(Γ) = −0.9Γ + 0.5944Γ1/3 − 0.2786 is defined in Eq. (2.30) and taken

from Ref. [27]. For comparison, we include the result from QLCA [36] (dotted black line)

and values of the transverse current fluctuation spectrum obtained from molecular dynamics

simulations provided by the authors of Ref. [30] (colored background with large values being

white and small values being blue), where the dispersion law is identified by the peaks of

the spectrum.
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2.2 Eulerian approach

2.2.1 Equations of motion

Let us assume that we are working with the OCP consisting of two species of charged par-

ticles. The particles that move have a charge q+, while the particles forming a stationary

neutralizing background have a charge q−. In the Eulerian approach, each of the hydrody-

namic functions is assumed to depend on the position in the laboratory frame, x⃗, and time,

t. Similar to the case of Euler equations [45, 46, 47], we assume that the complete set of

variables for the hydrodynamic motion of moving particles consists of velocity, v⃗, number

density, n, and specific entropy, s. The latter two satisfy continuity equations.

∂n

∂t
+ ∇⃗ · (nv⃗) = 0,

∂s

∂t
+ v⃗ · ∇⃗s = 0. (2.1)

Therefore, our goal is to write a variational principle with a nonlocal Lagrangian density

for the OCP that would include the effects of strong coupling, from which the equation of

motion for v⃗ could be found.

To satisfy the continuity equations given by Eq. (2.1), we introduce additional Lagrange

multiplier fields α and β, as in the case of usual Euler equations. In general, one should

also introduce an additional Lagrange multiplier field to ensure that the initial coordinates

of fluid particles do not change along a particle’s path [46, 47, 48]. However, we do not

explicitly consider it in our calculations, as it does not change the obtained results.

Next, we propose the following Lagrangian for the generalized model of the OCP in the

Eulerian approach, where the variation is performed for n, v⃗, s, and also for the functions

α, β. The local terms, which are integrated only over x⃗, correspond exactly to the Lagrangian

for Euler equations. The first local term, including the mass m of a single moving particle,

represents kinetic energy, and the second local term represents the local internal energy that

generates the local pressure.

On the other hand, the nonlocal terms, which are integrated over both x⃗ and x⃗′, represent

nonlocal interaction between the particles. The first nonlocal term describes the interaction
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between the moving particles and, without any loss of generality, is written as an arbitrary

function F (n, n′, s, s′, |x⃗− x⃗′|), where we use the notation n′, s′ to indicate that the functions

are evaluated at x⃗′ instead of x⃗. For this term, we assume that the dependence on coordinates

is solely through the combination |x⃗ − x⃗′|, ensuring conservation laws for both linear and

angular momentum.

The second nonlocal term represents the interaction between oppositely charged parti-

cles, which is necessary to ensure that the equations have an equilibrium solution. The

third nonlocal term represents the interaction between the particles that form the stationary

neutralizing background, necessary to ensure that the expression for the energy of the OCP

is well-defined in the thermodynamic limit. Here, we assume that the interaction between

charged species is due to the Coulomb potential, ϕij(r) = qiqj/4πε0r, where i, j correspond

to the species of the particles, and r is the distance between particles. Additionally, n−

represents the time-independent number density of the particles forming the neutralizing

background.

L =

∫
L1dx⃗+

∫∫
L2dx⃗dx⃗

′

=

∫ (
1

2
mnv⃗2 − nf(n, s) + α

(
∂n

∂t
+ ∇⃗ · (nv⃗)

)
+ β

(
∂s

∂t
+ v⃗ · ∇⃗s

))
dx⃗

+

∫∫ (
− nn′F (n, n′, s, s′, |x⃗− x⃗′|)− nn′

−ϕ+−(|x⃗− x⃗′|)

−1

2
n−n

′
−ϕ−−(|x⃗− x⃗′|)

)
dx⃗dx⃗′

(2.2)

Performing variations with respect to fields α, β gives the continuity equations in Eq. (2.1),

as intended. However, for variations with respect to the remaining functions, one must be

careful when analyzing the nonlocal terms. To perform the variations, change variables under

the integral from (x⃗, x⃗′) to (x⃗′, x⃗), which has a unit Jacobian.

It is useful to introduce, for each function f , the notation fT to mean taking f but

replacing all occurrences of x⃗ with x⃗′ and all occurrences of x⃗′ with x⃗. For example,

fT (n, n′) = f(n′, n). In that case, for any field that is being varied, denoted as Ψ, and

any functions f, g, we have that (fg)T = fTgT , and (∂Ψ′f)T = ∂Ψ(f
T ).

Using these results, we obtain the following equations of motion from the variational
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principle.

δn :
1

2
mv⃗2 − f(n, s)− n

∂f

∂n

∣∣∣
s
− ∂α

∂t
− v⃗ · ∇⃗α

=

∫ (
n′(F + F T ) + nn′∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|

+ n′
−ϕ+−(|x⃗− x⃗′|)

)
dx⃗′,

(2.3)

δv⃗ : mnv⃗ + β∇⃗s− n∇⃗α = 0⃗, (2.4)

δs : n
∂f

∂s

∣∣∣
n
+

∂β

∂t
+ ∇⃗ · (βv⃗) = −

∫
nn′∂(F + F T )

∂s

∣∣∣
n,n′,s′,|x⃗−x⃗′|

dx⃗′. (2.5)

Our goal with the variational principle is to understand the equation of motion for ∂v⃗/∂t.

However, when examining the obtained Eqs. (2.3), (2.4), (2.5), one can see one of the dis-

advantages of the Eulerian formulation of variational principles. In this formulation, the

resulting equations depend on the constraint fields α, β, which then must be solved by using

clever manipulations in terms of n, s, v⃗. To achieve this, we repeat computations similar to

those for Euler equations [45].

From Eq. (2.4), one can solve for ∇⃗α and not for α itself. Therefore, one takes the gradient

of Eq. (2.3), expands the gradients of f, (F + F T ) using the chain rule, and substitutes the

expression for ∇⃗α. Then, the resulting equation does not depend on α anymore, but depends

on derivatives of (β∇⃗s)/n. The time derivative of (β∇⃗s)/n can be simplified by using the

product rule and then using the time derivatives of n, s, β as given in Eqs. (2.1), (2.5).

The remaining terms with β can be simplified by using the product rule and the identity

a⃗× (⃗b× c⃗) = (⃗a · c⃗)⃗b− (⃗a · b⃗)c⃗ with a⃗ = nv⃗, b⃗ = ∇⃗(β/n), c⃗ = ∇⃗s. Finally, to simplify the terms

with cross products and curls, use the mathematical identity ∇⃗(β/n)×∇⃗s = ∇⃗× (β∇⃗s/n),

and use Eq. (2.4) to obtain ∇⃗ × (β∇⃗s/n) = −m∇⃗ × v⃗. Finally, use the following identity

for derivatives of the velocity field.

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ =

∂v⃗

∂t
+ ∇⃗

(
v⃗2

2

)
− v⃗ × (∇⃗ × v⃗) (2.6)

The final equation of motion for v⃗ is as follows, but at this point, functions f, F are still
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arbitrary.

mn

(
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

)
= −∇⃗

(
n2∂f

∂n

∣∣∣
s
+

∫
n2n′∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|

dx⃗′
)

−
∫ (

nn′∂(F + F T )

∂x⃗

∣∣∣
n,n′,s,s′,x⃗′

+ nn′
−
∂ϕ+−

∂x⃗

∣∣∣
x⃗′

)
dx⃗′

(2.7)

2.2.2 Conservation laws

Let us consider the momentum and energy conservation laws of our theory in the Eulerian

approach. In particular, energy conservation will be important because the expression for the

conserved energy coming from the variational principle that depends on functions f, F can

be computed in equilibrium and compared to the expression found in thermodynamics. This

ensures both the consistency of our theory with thermodynamics and allows us to identify

what functions f, F should be in terms of the thermodynamic quantities.

We now examine the momentum conservation law in each of the directions i = 1, 2, 3.

The momentum conservation law relies on the observation that in Eq. (2.2), the local part

of the Lagrangian density, L1, does not depend explicitly on x⃗, and the term with F in the

nonlocal part of this Lagrangian density, L2, as well as ϕ+−, ϕ−−, all depend explicitly on

x⃗, x⃗′ only in a translationally invariant combination x⃗− x⃗′. It is important to note that it is

not true that L2 depends explicitly on x⃗, x⃗′ in a translationally invariant way, as the number

density of the stationary neutralizing background, n−, might depend on x⃗.

To compute the momentum conservation law for our nonlocal variational principle, we

use an approach analogous to that used in the case of local variational principles [12, 49]. We

apply the chain rule to expand the full derivatives of L1 and, motivated by the equation of

motion in Eq. (2.7), (1/2)
∫
(L2 +LT

2 )dx⃗
′ with respect to xi. Due to nonlocality, we also use

the chain rule to expand the full derivative of (L2+LT
2 )/2 with respect to x′

i. It is important

to note that the integral over x⃗′ of the latter is zero, as can be shown by integration by

parts. We add these calculations and simplify terms using all of the equations of motion

obtained from the variational principle, and then apply the product rule. Finally, to simplify

the obtained equation in our particular case, we use the chain rule, integration by parts, and
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our assumptions regarding L1, F, ϕ+−, ϕ−− to obtain the following equation that nearly has

the form of a conservation law.

∂

∂t

(
α
∂n

∂xi

+ β
∂s

∂xi

)
− ∂

∂xi

(
1

2
mnv⃗2 − nf

)
+

3∑
j=1

∂

∂xj

(
α
∂(nvj)

∂xi

+ βvj
∂s

∂xi

)

= −
∫

n′
−
∂n

∂xi

ϕ+−dx⃗
′ −
∫

n′

(
∂n

∂xi

(F + F T )

+n
∂n

∂xi

∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|

+ n
∂s

∂xi

∂(F + F T )

∂s

∣∣∣
n,n′,s′,|x⃗−x⃗′|

)
dx⃗′

(2.8)

Similar to the equations of motion obtained from the variational principle, the resulting

momentum conservation law depends on the constraint fields α, β, which highlights a dis-

advantage of Eulerian formulation. We will now rewrite it so that it is expressed solely in

terms of n, s, v⃗.

As α is only given in the equations of motion in Eqs. (2.3), (2.4) through its derivatives,

we use the product rule to introduce an additional spatial derivative to α in all of the terms

containing it. This enables us to employ Eqs. (2.3), (2.4), along with the continuity equation

for number density given in Eq. (2.1), to eliminate all of the terms containing α. After this

simplification, all of the terms with β also disappear. Finally, to simplify the nonlocal terms

that contain F, ϕ+−, we expand the derivatives using the chain rule, and then use assumptions

about the explicit dependence of x⃗, x⃗′ in F, ϕ+−, and apply integration by parts. The final

result is given next.

∂(mnvi)

∂t
+ ∇⃗ · (mnviv⃗) +

∂

∂xi

(
n2∂f

∂n

∣∣∣
s
+

∫
n2n′∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|

dx⃗′
)

= −
∫ (

nn′∂(F + F T )

∂xi

∣∣∣
n,n′,s,s′,x⃗′

+ nn′
−
∂ϕ+−

∂xi

∣∣∣
x⃗′

)
dx⃗′

(2.9)

Notice that this equation could also be obtained directly by adding the equation of motion

for v⃗ given by Eq. (2.7) to the continuity equation for number density in Eq. (2.1) and using

the product rule. However, this method requires the knowledge that the correct expression

for the momentum density in our theory is indeed mnv⃗.

The momentum conservation law given by Eq. (2.9) allows us to define the full momentum

P⃗ of the particles that move in the OCP and consider how it changes over time. In particular,
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we integrate Eq. (2.9) with respect to x⃗ and use integration by parts. To further simplify

nonlocal terms, we use the properties that for all functions f, g, we have (fT )T = f, (f+g)T =

fT + gT , (fg)T = fTgT . Additionally, we note that the integral of f over x⃗, x⃗′ is the same as

the integral of fT . We also use the following identity.(
∂(F + F T )

∂xi

∣∣∣
n,n′,s,s′,x⃗′

)T

=
∂((F + F T )T )

∂x′
i

∣∣∣
n,n′,s,s′,x⃗

(2.10)

These identities together with the assumption that F depends explicitly on x⃗, x⃗′ only

through the combination x⃗− x⃗′ are used to show the following integral is zero.∫∫
nn′∂(F + F T )

∂xi

∣∣∣
n,n′,s,s′,x⃗′

dx⃗dx⃗′ = 0 (2.11)

Finally, the time evolution for the momentum P⃗ in each direction is given as follows. It

can be observed that the momentum of moving particles is not necessarily conserved and

can change due to the force from the stationary neutralizing background.

dPi

dt
=

d

dt

(∫
mnvidx⃗

)
= −

∫∫
nn′

−
∂ϕ+−

∂xi

∣∣∣
x⃗′
dx⃗dx⃗′ (2.12)

Notice that the momentum of moving particles is conserved in the case when the neu-

tralizing background is both uniform and infinite, as can be shown by Eq. (2.12) by using

that ϕ+− depends on x⃗, x⃗′ only through combination x⃗− x⃗′, and by integrating by parts.

Let us now explore the energy conservation law that will be used to match functions in

the variational principle to the thermodynamic quantities. Energy conservation law relies

on the observation that in the proposed Lagrangian in Eq. (2.2) both the local part of the

Lagrangian density, L1, and the nonlocal part, L2, do not depend explicitly on time t.

To compute the energy conservation law for our nonlocal variational principle, we employ

an analogous approach as in the case of local variational principles [12, 49]. We use the chain

rule to expand the full derivatives of L1 and, motivated by the equation of motion in Eq. (2.7),

(1/2)
∫
(L2 + LT

2 )dx⃗
′ with respect to t. We add these calculations and simplify terms using

all of the equations of motion obtained from the variational principle and the product rule.

To further simplify the obtained equation in our particular case, we rewrite time derivatives
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of n, s and n′, s′ in the nonlocal terms using the continuity equations given in Eq. (2.1), and

then apply integration by parts to the nonlocal terms with derivatives with respect to x⃗′.

∂

∂t

(
− 1

2
nmv⃗2 + nf − α∇⃗ · (nv⃗)− βv⃗ · ∇⃗s+

∫ (
nn′

2
(F + F T ) +

nn′
−

2
ϕ+−

+
n′n−

2
ϕ+− +

n−n
′
−

2
ϕ−−

)
dx⃗′

)
+

3∑
j=1

∂

∂xj

(
α
∂(nvj)

∂t
+ βvj

∂s

∂t

)

=

∫ (
n′

2
(F + F T )∇⃗ · (nv⃗) + nn′

2

∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|

∇⃗ · (nv⃗)

+
nn′

2

∂(F + F T )

∂s

∣∣∣
n,n′,s′,|x⃗−x⃗′|

v⃗ · ∇⃗s+
nn′

2
v⃗′ · ∂(F + F T )

∂x⃗′

∣∣∣
n,n′,s,s′,x⃗

−n(n′)2

2

∂(F + F T )

∂n′

∣∣∣
n,s,s′,|x⃗−x⃗′|

∇⃗′ · v⃗′
)
dx⃗′

+

∫ (
n′
−

2
ϕ+−∇⃗ · (nv⃗) + n′n−

2
v⃗′ · ∂ϕ+−

∂x⃗′

∣∣∣
x⃗

)
dx⃗′

(2.13)

As before, we observe a disadvantage of the Eulerian formulation of the variational prin-

ciples, as the obtained energy conservation law depends on the constraint fields α, β. We

now rewrite it so that it is given only in terms of n, s, v⃗, using a similar strategy as when

analyzing the momentum conservation law.

As α appears in the equations of motion in Eqs. (2.3), (2.4) only through its derivatives,

we use the product rule to introduce an additional spatial derivative to α in all terms con-

taining it. This allows to utilize Eqs. (2.3), (2.4), together with the continuity equation for

specific entropy in Eq. (2.1), to eliminate all terms that include α. Following this simplifi-

cation, all terms with β also vanish. Finally, for simplifying nonlocal terms, we employ the

chain rule and integration by parts. The final result is provided next.

∂E
∂t

+
3∑

j=1

∂Jj
∂xj

= σ, (2.14)

E =
1

2
mnv⃗2 + nf +

∫ (
nn′

2
(F + F T ) +

nn′
−

2
ϕ+− +

n′n−

2
ϕ+− +

n−n
′
−

2
ϕ−−

)
dx⃗′, (2.15)
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Jj = vj

(
1

2
mnv⃗2 + nf + n2∂f

∂n

∣∣∣
s

+

∫ (
nn′

2
(F + F T ) + n2n′∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|

+
nn′

−

2
ϕ+−

)
dx⃗′

)
,

(2.16)

σ =

∫
nn′

2

(
n(∇⃗ · v⃗)∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|

− n′(∇⃗′ · v⃗′)∂(F + F T )

∂n′

∣∣∣
n,s,s′,|x⃗−x⃗′|

)
dx⃗′

+

∫
nn′

2

(
v⃗′ · ∂(F + F T )

∂x⃗′

∣∣∣
n,n′,s,s′,x⃗

− v⃗ · ∂(F + F T )

∂x⃗

∣∣∣
n,n′,s,s′,x⃗′

)
dx⃗′

+

∫ (
n′n−

2
v⃗′ · ∂ϕ+−

∂x⃗′

∣∣∣
x⃗
−

nn′
−

2
v⃗ · ∂ϕ+−

∂x⃗

∣∣∣
x⃗′

)
dx⃗′.

(2.17)

Notice that this equation could also be obtained by directly computing the time derivative

of the correct energy density as given in the energy conservation law. Then, one can use

the product rule and time derivatives found in the equations of motion given by Eqs. (2.1),

(2.7). To simplify, one employs the product rule, the chain rule, integration by parts, and

the identity v⃗ · (v⃗ · ∇⃗)v⃗ = v⃗ · ∇⃗(v⃗2/2). This approach avoids issues with constraint fields α, β

but requires knowledge of the correct expression for the energy density in our theory.

The energy conservation law, given by Eq. (2.14), allows us to define the energy E of the

OCP and consider how it changes over time. To achieve this, we integrate Eq. (2.14) with

respect to x⃗ and use integration by parts. To further simplify nonlocal terms, we employ the

following properties: for all functions f, g, we have (fT )T = f, (f + g)T = fT + gT , (fg)T =

fTgT , and the integral of f over x⃗, x⃗′ is the same as the integral of fT . To simplify nonlocal

terms involving ϕ+−, we use the fact that (∂ϕ+−/∂x⃗)
T = ∂(ϕT

+−)/∂x⃗
′, and that ϕT

+− = ϕ+−

due to the assumption that it depends on x⃗, x⃗′ through |x⃗− x⃗′|. To simplify nonlocal terms

with F , we use the identity in Eq. (2.10), and analogous identities, where in Eq. (2.10), xi, x
′
i

are replaced by n, n′ and s, s′, respectively.

dE

dt
=

d

dt

(∫ (
1

2
mnv⃗2 + nf

)
dx⃗+

∫∫ (
nn′

2
(F + F T ) +

nn′
−

2
ϕ+−

+
n′n−

2
ϕ+− +

n−n
′
−

2
ϕ−−

)
dx⃗dx⃗′

)
= 0

(2.18)
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Now, we would like to consider the expression for the energy, E, in the thermodynamic

equilibrium. In terms of our variational principle, this means that we consider the hydrody-

namic functions n, s, v⃗ to be uniform and time-independent with values n = n0, s = s0, v⃗ = 0⃗,

which correspond to no macroscopic motion. To fully specify the value of the energy, we

also assume that the number density of the stationary neutralizing background is uniform,

with a value n− = n−,0. To relate n0, n−,0, we use an assumption that the total charge

of the OCP is zero. This assumption is relevant to strongly coupled plasma experiments

[14, 15, 16, 17, 19, 20, 22]. In terms of equilibrium number densities, this charge neutrality

condition becomes q+n0 + q−n−,0 = 0.

In the thermodynamic limit, where the number of moving particles N → ∞ and the

volume of the system V → ∞ while the number density is fixed, the equilibrium energy

of the OCP diverges. Therefore, instead, we consider the equilibrium energy per particle,

E0/N . From Eq. (2.18), we obtain the following expression, where we change variables

inside the integrals to R⃗ = (x⃗+ x⃗′)/2, r⃗ = x⃗− x⃗′, which has a unit Jacobian. This change of

variables allows us to simplify the integrals, as we assume that F, ϕ+−, ϕ−− depend explicitly

on x⃗, x⃗′ only through the combination x⃗− x⃗′. Finally, we can further simplify the expression

using the assumed form of the potential ϕij(r) = qiqj/4πε0r, where i, j are the corresponding

species of the particles, and r is the distance between the particles.

E0

N
= f(n0, s0) +

n0

2

∫ (
(F + F T )(n0, n0, s0, s0, |r⃗|)−

q2+
4πε0|r⃗|

)
dr⃗ (2.19)

This expression can be compared to the expression from the thermodynamics of the

thermodynamic equilibrium energy of the OCP per moving particle, Eth/N [23, 24], where

T is the temperature and g is the equilibrium pair distribution function.

Eth

N
=

3

2
kBT (n0, s0) +

n0

2

∫
q2+

4πε0|r⃗|
(g(n0, s0, |r⃗|)− 1) dr⃗ (2.20)

By comparing Eqs. (2.19) and (2.20), we have the following constraints on functions f, F .

Here, we use that F T (n0, n0, s0, s0, |r⃗|) = F (n0, n0, s0, s0, |r⃗|) directly from the definition.

f(n0, s0) =
3

2
kBT (n0, s0), F (n0, n0, s0, s0, |r⃗|) =

q2+
8πε0|r⃗|

g(n0, s0, |r⃗|). (2.21)
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This constraint uniquely determines function f , but not F . This is because F is specified

by this constraint only for values when n is equal to n′, and when s is equal to s′. To resolve

this issue, from now on we replace Lagrangian in Eq. (2.2) with a less general Lagrangian,

where F is assumed to be a function of only n, s, |x⃗ − x⃗′|. Notice that this is not a unique

choice as one could also take, for example, F = F ((n + n′)/2, (s + s′)/2, |x⃗ − x⃗′|) or F =

F (
√
nn′,

√
ss′, |x⃗− x⃗′|). However, in some sense, our choice is the simplest possible, and then

F is uniquely determined from the constraint in Eq. (2.21). Therefore, we have the following

result.

f(n, s) =
3

2
kBT (n, s), F (n, s, |r⃗|) =

q2+
8πε0|r⃗|

g(n, s, |r⃗|). (2.22)

Such identification allows us to rewrite the equation of motion for velocity given by

Eq. (2.7) in the following way in terms of thermodynamic functions. Here, we use ϕij(r) =

qiqj/4πε0r, where i, j are the corresponding species of the particles, and r is the distance

between the particles.

mn

(
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

)
= −∇⃗

(
3

2
kBn

2∂T

∂n

∣∣∣
s
+

q2+
8πε0

∫
n2n′

|x⃗− x⃗′|
∂g

∂n

∣∣∣
s,|x⃗−x⃗′|

dx⃗′

)

− q+n

4πε0

∫ (
q+n

′ ∂

∂x⃗

(
1

|x⃗− x⃗′|
(g + gT )

2

) ∣∣∣
n,n′,s,s′,x⃗′

+ q−n
′
−
∂

∂x⃗

(
1

|x⃗− x⃗′|

) ∣∣∣
x⃗′

)
dx⃗′

(2.23)

2.2.3 Dispersion laws

While discussing the energy conservation law, we considered equilibrium solutions in which

hydrodynamic functions, n, s, v⃗, are uniform and time-independent, with values n = n0, s =

s0, v⃗ = 0⃗. In this context, the stationary neutralizing background has a uniform number

density with the value n− = n−,0, which is related to n0 by using the charge neutrality

assumption, q+n0 + q−n−,0 = 0.

Now, we would like to examine the linearized equations of motion that correspond to the

OCP being close to thermodynamic equilibrium. In this case, we assume the following form

for the time-dependent functions, where n1, s1, v⃗1 denote first-order corrections.

n = n0 + n1(x⃗, t), s = s0 + s1(x⃗, t), v⃗ = v⃗1(x⃗, t). (2.24)
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With such assumptions regarding n, s, v⃗, we will expand equations of motion given by

Eqs. (2.1), (2.23) up to the first order. However, let us first consider these equations of motion

and determine whether our proposed equilibrium solutions satisfy them. The continuity

equations in Eq. (2.1) are satisfied since all hydrodynamic functions do not depend on either

spatial coordinates or time, resulting in their derivatives being zero.

In Eq. (2.23), the terms on the left-hand side are zero because v⃗ = 0⃗ in equilibrium. The

first term under the gradient on the right-hand side is also zero since it does not depend

on spatial coordinates due to its dependence on n0, s0. As for the second term under the

gradient, we can use the fact that n = n0, n
′ = n0, so the integral is only over a function

that depends on x⃗, x⃗′ through x⃗− x⃗′. This allows us to change variables under the integral

to r⃗ = x⃗− x⃗′, making it independent of x⃗.

Finally, let us consider the remaining nonlocal terms on the right-hand side. We can use

the fact that n, s, n− are all uniform in space, so the integrals become over a full derivative

with respect to x⃗, which can be integrated by parts to become zero.

The expanded continuity equations up to the first order are as follows.

∂n1

∂t
+ n0(∇⃗ · v⃗1) = 0,

∂s1
∂t

= 0. (2.25)

To expand the equation of motion for v⃗, given by Eq. (2.23), up to the first order, we use

the fact that the functions inside the integrals often depend on x⃗, x⃗′ solely through x⃗ − x⃗′.

This allows us to switch from derivatives with respect to x⃗ to derivatives with respect to

x⃗′, enabling us to apply integration by parts. The resulting linearized equation for v⃗1 shows

that n1, s1 only appear in it through gradients.

To combine the linearized equations of motion, we take the gradient of Eq. (2.25) and

an additional time derivative of the linearized equation of motion for v⃗1. This yields the

following equation, which depends solely on v⃗1, with the subscript “0” indicating that a

function is evaluated at equilibrium values. We also simplify using g0 = (gT )0 and (∂g/∂n)0 =
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(∂gT/∂n′)0.

m
∂2v⃗1
∂t2

= ∇⃗(∇⃗ · v⃗1)

([
∂

∂n

(3
2
kBn

2∂T

∂n

∣∣∣
s

)∣∣∣
s

]
0

+
q2+n0

8πε0

∫
1

|x⃗− x⃗′|

[
∂

∂n

(
n2 ∂g

∂n

∣∣∣
s,|x⃗−x⃗′|

)∣∣∣
s,|x⃗−x⃗′|

]
0

dx⃗′

)

+
q2+n0

4πε0

∫
∇⃗′(∇⃗′ · v⃗′1)
|x⃗− x⃗′|

(
g0 + n0

[
∂g

∂n

∣∣∣
s,|x⃗−x⃗′|

]
0

)
dx⃗′

(2.26)

To solve this equation, we use the Fourier transform with respect to the spatial coordi-

nates, x⃗, and use the following convention.

V⃗ (k⃗, t) = ̂⃗v1(k⃗, t) = ∫ v⃗1(x⃗, t)e
−ik⃗·x⃗dx⃗ (2.27)

With this convention, we find that for any functions f, g that depend on x⃗, ̂∂f/∂xj = ikj f̂

and f̂ ∗ g = f̂ ĝ, where ∗ denotes convolution. Using these results and changing variables

under the first integral from x⃗′ to r⃗ = x⃗ − x⃗′, which has a unit Jacobian, one can take the

Fourier transform of Eq. (2.26) to obtain a differential equation for each value of k⃗.

One must be careful with the convergence of integrals. From thermodynamics [23], it

is known that for the equilibrium pair distribution function, g(n0, s0, |r⃗|) → 1 as |r⃗| → ∞.

Therefore, it is convenient to rewrite everything in terms of g− 1 instead of g. Additionally,

we use that the Fourier transform of 1/|r⃗| is 4π/|⃗k|2 [50].

m
∂2V⃗

∂t2
= −k⃗(k⃗ · V⃗ )

([
∂

∂n

(3
2
kBn

2∂T

∂n

∣∣∣
s

)∣∣∣
s

]
0

+
q2+n0

8πε0

∫
1

|r⃗|

[
∂

∂n

(
n2∂(g − 1)

∂n

∣∣∣
s,|r⃗|

)∣∣∣
s,|r⃗|

]
0

dr⃗

+
q2+n0

ε0|⃗k|2
+

q2+n0

4πε0

∫
e−ik⃗·r⃗

|r⃗|

(
(g − 1)0 + n0

[
∂(g − 1)

∂n

∣∣∣
s,|r⃗|

]
0

)
dr⃗

) (2.28)

To simplify the analysis of the longitudinal and transverse dispersion modes, it is conve-

nient to rotate the coordinate system so that, in the rotated coordinate system, k⃗ = (0, 0, |⃗k|).

In this case, the transverse modes correspond to the x, y directions, while the longitudinal

mode corresponds to the z direction. To do this, we use the fact that the differential equation
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is linear, consider the properties of the dot product under a rotation, and also rotate the

integration variable. Moreover, we can simplify further by switching to spherical coordinates

and performing the angular integrals.

We find that for the transverse directions, ∂2Vx/∂t
2 = ∂2Vy/∂t

2 = 0, indicating the

absence of transverse modes. In other words, the transverse dispersion law is ωT (|⃗k|) = 0.

For the longitudinal direction, we have the following dispersion law.

ω2
L(|⃗k|) =

q2+n0

mε0
+ |⃗k|2

([
∂

∂n

(3kB
2m

n2∂T

∂n

∣∣∣
s

)∣∣∣
s

]
0

+
q2+n0

2mε0

∫ ∞

0

r

[
∂

∂n

(
n2∂(g − 1)

∂n

∣∣∣
s,r

)∣∣∣
s,r

]
0

dr

)

+
q2+n0 |⃗k|
mε0

∫ ∞

0

sin(|⃗k|r)

(
(g − 1)0 + n0

[
∂(g − 1)

∂n

∣∣∣
s,r

]
0

)
dr

(2.29)

One can see that the longitudinal dispersion relation does not only depend on the equilib-

rium pair distribution function but also on its adiabatic derivatives, in other words, deriva-

tives with respect to the number density at constant entropy. In the usual case of Euler

equations, the dispersion relation depends on the adiabatic derivatives of the local energy

[1]. In our case, the nonlocal contribution to the energy of the OCP depends on the pair

distribution function, as can be seen in Eq. (2.20). Therefore, the adiabatic derivatives of

the pair distribution function in the dispersion relation are related to the adiabatic deriva-

tives of the nonlocal energy. This means that our dispersion relation accounts for both

local and nonlocal contributions to the total energy of the OCP in a way consistent with

thermodynamics.

In thermal equilibrium, it is convenient to work with a parameter that describes the ratio

between the average potential Coulomb energy of the moving particles and their average

thermal kinetic energy, Γ = q2+/4πε0akBT , where T is the temperature, and a is the average

interparticle distance defined by 4πa3/3 = 1/n [23, 24]. It is known that g(n, s, |r⃗|) =

g(Γ, |r⃗|/a), and the expressions for the equilibrium energy E0 and equilibrium pressure p0
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are as follows, where u is the excess internal energy describing nonlocal contributions.

E0

NkBT
=

3

2
+ u(Γ),

p0
nkBT

= 1 +
u(Γ)

3
. (2.30)

When analyzing the dispersion relation of the OCP, the newly introduced variables Γ and

a will also oscillate around their respective equilibrium values, Γ0, a0, due to their dependence

on n, s. Nevertheless, it is convenient to rewrite the longitudinal dispersion law in Eq. (2.29)

in terms of normalized variables, so that the dispersion law is parametrized only in terms of

Γ0, similar to E0, p0. To do this, one introduces the plasma frequency of the moving particles,

ωp, as ω
2
p = q2+n0/mε0, and the normalized wavevector q⃗0 = k⃗a0 [29, 30, 31]. To compute the

term in Eq. (2.29) that is related to the temperature derivatives, we use the following result

from thermodynamics [51]. Note that to compute it, we need knowledge of both E0 and p0.

∂T

∂V

∣∣∣
s
= −(∂E0/∂V |T + p0)

∂E0/∂T |V
(2.31)

As mentioned in the discussion of the energy law, we are interested in the thermodynamic

limit, where the number of moving particles N → ∞ and the volume of the system V → ∞.

Therefore, it is convenient to work with densities and E0/N . One can use the chain rule

to rewrite derivatives of V in terms of n in the previous equation. Combining this with

Eq. (2.30) leads to the following.

n

T

∂T

∂n

∣∣∣
s
=

2

3

(
1− (Γ2/3)d(u/Γ)/dΓ

)
(
1− (2Γ2/3)d(u/Γ)/dΓ

) =
2

3
f1(Γ) (2.32)

This result also allows us to take derivatives at constant s of functions of Γ. In particular,

we have the following, derived from the definition of Γ.

n
∂Γ

∂n

∣∣∣
s
= n

(
∂Γ

∂n

∣∣∣
T
+

∂Γ

∂T

∣∣∣
n

∂T

∂n

∣∣∣
s

)
=

Γ

3
− 2Γ

3
f1(Γ) (2.33)

To analyze the terms in Eq. (2.29) with integrals of g − 1, in addition to the previous

identities, we use the fact that g = g(Γ, |r⃗|/a). To do this, we move the number density

derivatives outside of the integrals, change variables inside the integrals to x = r/a, and

introduce the normalized wavevector q⃗ = k⃗a. In this case, the integrals are rewritten in
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terms of functions of Γ and |q⃗|, allowing us to use the following identity, which holds for an

arbitrary function f(Γ, |q⃗|), to perform number density derivatives at constant s. Here, we

use Eq. (2.33) and ∂|q⃗|/∂n|s = −|q⃗|/3n.

n
∂f

∂n

∣∣∣
s
(Γ, |q⃗|) = 1

3

(
∂f

∂Γ

∣∣∣
|q⃗|
Γ
(
1− 2f1(Γ)

)
− ∂f

∂|q⃗|

∣∣∣
Γ
|q⃗|
)

(2.34)

Combining all of the computations, we obtain the following longitudinal dispersion rela-

tion in Eq. (2.35) in the normalized variables, which indeed depends solely on the equilibrium

value Γ0. The terms appearing in the dispersion relation are given by Eqs. (2.32), (2.36),

(2.37), (2.38), and the derivative at a constant value of s is given by Eq. (2.34).(
ωL

ωp

)2

(Γ0, |q⃗0|) = 1 +
|q⃗0|2

Γ0

f2(Γ0) +

(
n
∂j

∂n

∣∣∣
s

)
(Γ0, |q⃗0|)

+

(
n
∂

∂n

(
n
∂j

∂n

∣∣∣
s

) ∣∣∣
s

)
(Γ0, |q⃗0|) + h(Γ0, |q⃗0|) +

(
n
∂h

∂n

∣∣∣
s

)
(Γ0, |q⃗0|),

(2.35)

f2(Γ) =
1

3

(
f1(Γ) +

2

3
f 2
1 (Γ) +

Γ

3

df1
dΓ

(Γ)
(
1− 2f1(Γ)

))
, (2.36)

j(Γ, |q⃗|) = |q⃗|2

2

∫ ∞

0

x
(
g − 1

)
(Γ, x)dx, (2.37)

h(Γ, |q⃗|) = |q⃗|
∫ ∞

0

(
g − 1

)
(Γ, x) sin(|q⃗|x)dx. (2.38)

In principle, the longitudinal dispersion relation can now be computed for an arbitrary

pair distribution function, g(Γ, |r⃗|/a). However, it is important to notice that it depends not

only on the integrals with respect to the variable x = |r⃗|/a but also on the Γ derivatives

of such integrals. This implies that, for a precise evaluation of the dispersion law, a pair

distribution function should be known precisely as a function of Γ. Precise fits for the excess

internal energy in Eq. (2.30), u(Γ), are known [26, 27]. However, we are not aware of a precise

numerical fit for g(Γ, |r⃗|/a). For example, a multiparameter fit for the pair distribution

function that is accurate for a wide range of Γ values as a function of x = |r⃗|/a is known

[25]. Nevertheless, the Γ derivative of such a fit is imprecise, as can be confirmed when using

it to numerically compute the thermodynamic heat capacity because the obtained results

contradict the direct results from Monte Carlo simulations [23, 24, 26]. For other theoretical
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approaches, such as QLCA [34, 35], this is not an issue as their predictions do not include Γ

derivatives.

To address this issue, we will use an approximation for the pair distribution function

that has previously been employed in QLCA and has yielded good results when compared

to using the pair distribution function without any approximations [36]. We assume that

the pair distribution function, g(Γ, |r⃗|/a), takes the form of a step function with a value of

0 when |r⃗|/a < (R/a)(Γ) and 1 when |r⃗|/a > (R/a)(Γ). Notice that these values have been

chosen to be consistent with the behavior of the pair distribution function as |r⃗| → 0 and

|r⃗| → ∞ [23, 24, 25]. More complicated approximations for the pair distribution function

are also possible, such as the two-step approximation that has been used to analyze strongly

coupled Yukawa fluids [52]. However, in that case, it was noticed that it does not provide a

significant improvement over the single-step function approximation [36]. Because of that,

in our calculations, we decided to use the single-step function approximation.

To establish the correct dependence on Γ, we compute the equilibrium energy in Eq. (2.20)

using this approximation and use Eq. (2.30) to establish the relationship between (R/a)(Γ)

and u(Γ). The latter is known with precision. In particular, in Eq. (2.20), we go to spherical

coordinates, change variables to x = |r⃗|/a, and then apply the assumed form for g(Γ, |r⃗|/a),

along with the definitions of a and Γ. This yields the following result.

E0

N
=

3

2
kBT − 3

4
kBTΓ

(
R

a

)2

(Γ) (2.39)

When comparing this expression to Eq. (2.30), one can derive the following.(
R

a

)
(Γ) =

√
−4

3

u(Γ)

Γ
(2.40)

This step function approximation also simplifies the calculation of the dispersion law.

The integrals in Eqs. (2.37), (2.38) can now be evaluated exactly, leading to simpler and

more practical expressions while avoiding additional numerical errors resulting from the

computation of the integral.

j(Γ, |q⃗|) = −|q⃗|2

4

(
R

a

)2

(Γ), h(Γ, |q⃗|) = cos

(
|q⃗|
(
R

a

)
(Γ)

)
− 1. (2.41)
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First, let us consider a simple fit u(Γ) = −0.9Γ, which is accurate for very strong coupling

where Γ ≫ 1 [27]. For such a fit, where u(Γ) is linear in Γ, we can observe from Eq. (2.40)

that R/a is independent of Γ. In this case, R/a =
√

6/5. This means that, according

to Eq. (2.41), the functions j, h are both independent of Γ. This greatly simplifies taking

number density derivatives at constant s as described in Eq. (2.34). Additionally, it is worth

noting that for such a fit, f1(Γ) = 1 based on Eq. (2.32), as u(Γ)/Γ is independent of Γ.

For this particular fit, the longitudinal dispersion law in Eq. (2.35), complemented with

Eq. (2.36) and the simplified expressions in Eq. (2.41), takes the following form. The first

term, proportional to the |q⃗0|2, represents the local and nonlocal parts of the pressure, which

are the terms under the gradient in Eq. (2.23). The last two terms arise from the remaining

force terms in Eq. (2.23).(
ωL

ωp

)2

(Γ0, |q⃗0|) =
(

5

9Γ0

+
1

15

)
|q⃗0|2 + cos

(√
6

5
|q⃗0|

)
+

√
2

15
|q⃗0| sin

(√
6

5
|q⃗0|

)
(2.42)

The results for different values of Γ0 are presented in Fig. 2.3(a). Several key properties

can be observed from the figure. For weak coupling, where Γ0 = 1, the dispersion relation

resembles the behavior of an ideal gas. However, as Γ0 increases, the behavior undergoes a

dramatic change. At a critical value of Γ0 = 4.2, we observe the onset of negative dispersion.

In other words, for small values of |q⃗0|, it holds true that ωL ≤ ωp instead of ωL ≥ ωp.

Additionally, as Γ0 increases, an unstable region emerges, where ω2
L < 0.

The simpler fit for u(Γ) does not incorporate thermal effects for the nonlocal interaction

[27]. Due to this limitation, it is interesting to consider a more precise fit, u(Γ) = −0.9Γ +

0.5944Γ1/3 − 0.2786, which is accurate for Γ ≥ 1 and includes thermal effects [27]. The

results for different values of Γ0 are presented in Fig. 2.3(b), and one can observe that the

results are qualitatively similar to those obtained with the simpler fit, with small quantitative

differences. For instance, the onset of negative dispersion is now observed at Γ0 = 4.9.

The results for the more precise fit are also compared to the results obtained by QLCA [36]

using the same pair distribution function approximation. Additionally, we compare them to

the current fluctuation spectra obtained from molecular dynamics simulations, provided by
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Figure 2.3: The longitudinal dispersion law in the Eulerian approach using normalized vari-

ables for different values of Γ0, as given by Eq. (2.35). The step function approximation for

the pair distribution function is assumed, and we use Eqs. (2.32), (2.36), (2.40), (2.41) for a

given u(Γ) defined in Eq. (2.30). In (a), we set u(Γ) = −0.9Γ, and the corresponding result

is given by Eq. (2.42). In (b), we use u(Γ) = −0.9Γ + 0.5944Γ1/3 − 0.2786.

the authors of Ref. [30], where dispersion laws are identified by the peaks of the spectra. The

comparison for the longitudinal dispersion law is presented in Fig. 2.1. It can be observed

that for small values of Γ0, where Γ0 = 1 or Γ0 = 5, the predicted longitudinal dispersion

law reasonably agrees with the results of molecular dynamics simulations, unlike the QLCA

result. However, as Γ0 increases, the predicted dispersion law starts to diverge from the

results of the molecular dynamics simulations.

In particular, the latter do not exhibit regions of instability where ω2
L < 0. Additionally,

the onset of negative dispersion for the predicted dispersion law occurs at Γ0 = 4.9, in

contrast to the range of values from Γ0 = 9.5 to Γ0 = 10.0 estimated by the molecular

dynamics simulations [30, 31]. Furthermore, the predicted longitudinal dispersion law in the

limit as Γ0 → ∞ does not converge to the QLCA result, which is considered accurate in such

a limit [36].

The comparison for the transverse dispersion law is presented in Fig. 2.2. It correctly

predicts that for small values of the wavevector, there are no transverse waves. However, it

fails to predict a result that is known numerically, where at large values of the wavevector,
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transverse waves appear and are well-described by QLCA [32].

The issues found for the predicted dispersion laws and their comparison with the results

from QLCA and molecular dynamics simulations motivate us to consider an alternative

variational approach, where we consider formulating it in the Lagrangian coordinates. It is

discussed in the next Section 2.3.

2.3 Lagrangian approach

2.3.1 Equations of motion

Let us assume once again that we are dealing with the OCP, which consists of two species

of charged particles. The particles in motion have a charge q+, while the particles forming

the stationary neutralizing background have a charge q−. However, in this case, we consider

a Lagrangian approach that employs Lagrangian coordinates. Similar to the case of Euler

equations [45, 46], we assume that the complete set of variables for the hydrodynamic motion

comprises solely the displacement field x⃗. This field represents the current location of a

particle in the fluid at time t, given that its position in some conveniently chosen reference

state was a⃗. The choice of a reference state usually depends on the specific problem. For

example, one can select the reference positions as the initial positions at the start of the

experiment. Alternatively, as is useful in the case of the dispersion law, one can choose them

to be the corresponding positions of the particles in thermal equilibrium.

In the Lagrangian coordinates, the number density n and specific entropy s are not

independent hydrodynamic functions that need to be solved. Instead, they can be expressed

in terms of the displacement field x⃗ and time-independent number density nref and specific

entropy sref that correspond to the reference state. The continuity equations, as given in

Eq. (2.1), are rewritten in Lagrangian variables as follows [45, 46].

n(x⃗, t) =
nref

det (∂x⃗/∂a⃗)
, s(x⃗, t) = sref . (2.43)

As discussed in the Eulerian approach, our objective is to formulate a variational principle
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with a nonlocal Lagrangian density for the OCP that includes the effects of strong coupling.

In the case of Lagrangian coordinates, this formulation should yield an equation of motion

for x⃗.

As in the case of the Eulerian approach, we may consider the Lagrangian given in

Eq. (2.2), which can be rewritten in Lagrangian coordinates by changing the variables under

the integral from x⃗, x⃗′ to the reference state coordinates a⃗, a⃗′. For the stationary particles, we

can choose an independent reference state. For convenience, we will choose it to be the one

where a⃗ represents the initial position of the stationary particle, making x⃗ = a⃗. Additionally,

it is useful to introduce the number density of the stationary neutralizing background in the

reference state, nref
− .

In the case of Lagrangian variables, the number density n and the specific entropy s

are not independent variables, eliminating the need to introduce constraint fields α, β. So,

the Lagrangian used in the Eulerian approach is as follows when rewritten in Lagrangian

coordinates, where the notation (nref)′ now indicates that the function nref is evaluated at

a⃗′ instead of a⃗.

L =

∫
L1da⃗+

∫∫
L2da⃗da⃗

′

=

∫ (
1

2
mnref

(
∂x⃗

∂t

)2

− nreff

(
nref

det (∂x⃗/∂a⃗)
, sref

))
da⃗

+

∫∫ (
− nref(nref)′F

(
nref

det (∂x⃗/∂a⃗)
,

(nref)′

det (∂x⃗′/∂a⃗′)
, sref , (sref)′, |x⃗− x⃗′|

)
−nref(nref

− )′ϕ+−(|x⃗− a⃗′|)− 1

2
nref
− (nref

− )′ϕ−−(|⃗a− a⃗′|)
)
da⃗da⃗′

(2.44)

It is not surprising that when one performs the variations, the equation of motion for

x⃗, which arises from the Lagrangian in Eq. (2.44) and is subsequently rewritten in Eulerian

variables, is identical to Eq. (2.7). This is because the only difference in the calculations lies

in using a different coordinate system, while the form of the Lagrangian remains the same.

However, in Lagrangian variables, it becomes evident how one can generalize the Lagrangian

shown in Eq. (2.44). In particular, each particle has two positions available: the position

of the particle in the laboratory frame x⃗ and its reference position a⃗. Therefore, one can
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assume that the function F also depends on a⃗, a⃗′. This extension does not contradict any of

the conservation laws but allows for a different model for the OCP, as we will discuss next.

As an alternative to the Lagrangian given in Eq. (2.44), we propose the following La-

grangian.

LL =

∫
LL

1da⃗+

∫∫
LL

2da⃗da⃗
′

=

∫ (
1

2
mnref

(
∂x⃗

∂t

)2

− nreff

(
nref

det (∂x⃗/∂a⃗)
, sref

))
da⃗

+

∫∫ (
− nref(nref)′F

(
nref

det (∂x⃗/∂a⃗)
,

(nref)′

det (∂x⃗′/∂a⃗′)
, sref , (sref)′, |x⃗− x⃗′|, a⃗, a⃗′

)
−nref(nref

− )′ϕ+−(|x⃗− a⃗′|)− 1

2
nref
− (nref

− )′ϕ−−(|⃗a− a⃗′|)
)
da⃗da⃗′

(2.45)

As in the case of Eulerian coordinates, one must be cautious when performing variations

of the nonlocal terms, but the strategy is analogous. To carry out the variations, change

variables under the integral from (⃗a, a⃗′) to (⃗a′, a⃗), which has a unit Jacobian. It is once

again useful to introduce the notation fT for each function f that indicates taking f but

now, as we are working in Lagrangian coordinates, replacing all occurrences of a⃗ with a⃗′

and all occurrences of a⃗′ with a⃗. For example, fT (x⃗, x⃗′) = f(x⃗′, x⃗). In this case, for any

argument Ψ of a nonlocal function and any functions f, g, we have that (fg)T = fTgT , and

(∂Ψ′f)T = ∂Ψ(f
T ). Additionally, we can use the following property of determinants [45] that

holds for all directions i, j.

3∑
j=1

∂

∂aj

(
∂(det (∂x⃗/∂a⃗))

∂(∂jxi)

)
= 0 (2.46)

Combining these results, we obtain the following equation of motion for each of the

directions of x⃗ parametrized by i = 1, 2, 3. At this point, functions f and F are still

arbitrary. Again, notice that, unlike in the Eulerian case, there are no constraint functions

in the Lagrangian given in Eq. (2.45). Therefore, the resulting equations of motion are
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already in their final form, and no additional manipulations are needed.

mnref ∂
2xi

∂t2
= −

3∑
j=1

∂(det (∂x⃗/∂a⃗))

∂(∂jxi)

∂

∂aj

(
n2∂f

∂n

∣∣∣
s

+

∫
n2(nref)′

∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|,⃗a,⃗a′

da⃗′

)

−
∫ (

nref(nref)′
∂(F + F T )

∂xi

∣∣∣
n,n′,s,s′,x⃗′ ,⃗a,⃗a′

+ nref(nref
− )′

∂ϕ+−

∂xi

∣∣∣
a⃗′

)
da⃗′

(2.47)

To check the consistency with the Eulerian approach, it can be demonstrated that if F

does not depend on a⃗, a⃗′, then Eq. (2.47) can be rewritten in Eulerian variables by changing

coordinates from (⃗a, a⃗′) to (x⃗, x⃗′). This transformation results in exactly Eq. (2.7). Here,

Eq. (2.43) is used, along with the following identity for an arbitrary function f , which is

obtained from the chain rule [45] and holds for all directions i, j.

3∑
j=1

∂(det (∂x⃗/∂a⃗))

∂(∂jxi)

∂f

∂aj
= det

(
∂x⃗

∂a⃗

)
∂f

∂xi

(2.48)

2.3.2 Conservation laws

Let us consider the momentum and energy conservation laws of our theory in the Lagrangian

approach. As in the Eulerian case, the energy conservation law will be important because the

expression for the conserved energy coming from the variational principle can be computed

in equilibrium and compared to the expression found in thermodynamics. This ensures

that the Lagrangian approach is also consistent with thermal equilibrium and allows to

identify functions in the variational principle in terms of the thermodynamic quantities.

Such comparison also shows how the Lagrangian approach is different from the previously

described Eulerian approach.

We now examine the momentum conservation law in each of the directions, i = 1, 2, 3.

As in the Eulerian case, the momentum conservation law now also relies on the observation

that in Eq. (2.45), the local part of the Lagrangian density, LL
1 , does not depend on x⃗

explicitly but only on its derivatives. Furthermore, the term with F in the nonlocal part of

this Lagrangian density, LL
2 , depends on x⃗, x⃗′ only in a translationally invariant combination,
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x⃗ − x⃗′, as well as on their derivatives. It is important to note that it is not true that LL
2

depends explicitly on x⃗, x⃗′ in a translationally invariant way, as ϕ+− depends on x⃗− a⃗′.

In the Lagrangian variables, the variational principle is applied to the displacement field x⃗

to obtain the equations of motion. Therefore, the momentum conservation law is determined

by the equations of motion obtained in Eq. (2.47). To show that it nearly takes the form

of a conservation law, we rewrite it by considering that nref does not depend on time and

applying the product rule along with Eq. (2.46).

∂

∂t

(
mnref ∂xi

∂t

)
+

3∑
j=1

∂

∂aj

(
∂(det (∂x⃗/∂a⃗))

∂(∂jxi)
n2∂f

∂n

∣∣∣
s

+
∂(det (∂x⃗/∂a⃗))

∂(∂jxi)

∫
n2(nref)′

∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|,⃗a,⃗a′

da⃗′

)

= −
∫ (

nref(nref)′
∂(F + F T )

∂xi

∣∣∣
n,n′,s,s′,x⃗′ ,⃗a,⃗a′

+ nref(nref
− )′

∂ϕ+−

∂xi

∣∣∣
a⃗′

)
da⃗′

(2.49)

The momentum conservation law, as given in Eq. (2.49), allows us to define the total

momentum P⃗ of the particles moving in the OCP and examine how it changes over time.

To accomplish this, integrate Eq. (2.49) with respect to a⃗ and use integration by parts. For

further simplification of nonlocal terms, employ the properties that hold for all functions

f, g, (fT )T = f, (f + g)T = fT + gT , (fg)T = fTgT , and note that the integral of f over a⃗, a⃗′

is the same as the integral of fT . Additionally, use an analogous identity as in Eq. (2.10),

where F now depends also on a⃗, a⃗′ as well. By combining these results with the assumption

that F depends explicitly on x⃗, x⃗′ only through the combination x⃗ − x⃗′, we get that the

following integral is zero.∫∫
nref(nref)′

∂(F + F T )

∂xi

∣∣∣
n,n′,s,s′,x⃗′ ,⃗a,⃗a′

da⃗da⃗′ = 0 (2.50)

The time evolution of the momentum P⃗ in each direction is provided below. Here, it is

evident that the momentum of moving particles may not be conserved and can change due

to the force exerted by the stationary neutralizing background.

dPi

dt
=

d

dt

(∫
mnref ∂xi

∂t
da⃗

)
= −

∫∫
nref(nref

− )′
∂ϕ+−

∂xi

∣∣∣
a⃗′
da⃗da⃗′ (2.51)
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One can demonstrate that the expression for momentum in the Lagrangian approach is

the same as in the Eulerian approach, as given by Eq. (2.12), by changing the coordinates

under the integral from a⃗ to x⃗ and using the definition of n provided by Eq. (2.43). Addi-

tionally, as in the Eulerian case, the momentum of moving particles is conserved when the

neutralizing background is both uniform and infinite. This can be shown from Eq. (2.51)

by noting that ϕ+− depends on x⃗, a⃗′ only through the combination x⃗ − a⃗′ and by applying

integration by parts.

Now, let us explore the energy conservation law, which we will use to match functions in

the variational principle to the thermodynamic quantities. The energy conservation law is

based on the observation that in the proposed Lagrangian in Eq. (2.45), both the local part

of the Lagrangian density, LL
1 , and the nonlocal part, LL

2 , do not explicitly depend on time

t.

To derive the energy conservation law for our nonlocal variational principle, we follow

a similar approach to that used in the case of local variational principles [12, 49] and in

the Eulerian approach. We employ the chain rule to expand the full derivatives of LL
1 and,

guided by the equation of motion provided in Eq. (2.47), (1/2)
∫
(LL

2 +(LL
2 )

T )da⃗′ with respect

to t. These calculations are then combined and simplified using all the equations of motion

obtained from the variational principle, along with the product rule. Similar to the case of

equations of motion, computations in the Lagrangian coordinates offer the advantage over

Eulerian coordinates as they require no additional manipulations for the resulting energy

law, as there are no constraint fields.

∂EL

∂t
+

3∑
j=1

∂JL
j

∂aj
= σL, (2.52)

EL =
1

2
mnref

(
∂x⃗

∂t

)2

+ nreff +
1

2

∫ (
nref(nref)′(F + F T )

+nref(nref
− )′ϕ+−(|x⃗− a⃗′|) + (nref)′nref

− ϕ+−(|x⃗′ − a⃗|)

+nref
− (nref

− )′ϕ−−(|⃗a− a⃗′|)
)
da⃗′,

(2.53)
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JL
j =

3∑
i=1

∂xi

∂t

∂(det (∂x⃗/∂a⃗))

∂(∂jxi)

(
n2∂f

∂n

∣∣∣
s
+

∫
n2(nref)′

∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|,⃗a,⃗a′

da⃗′
)
, (2.54)

σL =
1

2

3∑
i=1

3∑
j=1

∫ (
n2(nref)′

∂(F + F T )

∂n

∣∣∣
n′,s,s′,|x⃗−x⃗′|,⃗a,⃗a′

∂(det (∂x⃗/∂a⃗))

∂(∂jxi)

∂2xi

∂aj∂t

−nref(n′)2
∂(F + F T )

∂n′

∣∣∣
n,s,s′,|x⃗−x⃗′|,⃗a,⃗a′

∂(det (∂x⃗′/∂a⃗′))

∂(∂′
jx

′
i)

∂2x′
i

∂a′j∂t

)
da⃗′

+
1

2

3∑
i=1

∫
nref(nref)′

(
∂(F + F T )

∂x′
i

∣∣∣
n,n′,s,s′,x⃗,⃗a,⃗a′

∂x′
i

∂t

−∂(F + F T )

∂xi

∣∣∣
n,n′,s,s′,x⃗′ ,⃗a,⃗a′

∂xi

∂t

)
da⃗′ +

1

2

3∑
i=1

∫ (
(nref)′nref

−
∂ϕ+−

∂x′
i

∣∣∣
a⃗

∂x′
i

∂t

−nref(nref
− )′

∂ϕ+−

∂xi

∣∣∣
a⃗′

∂xi

∂t

)
da⃗′.

(2.55)

Note that the energy conservation law in Eq. (2.52) can also be derived by directly

computing the time derivative of the correct energy density given in Eq. (2.53) using the

equations of motion, as shown in Eq. (2.47). To simplify, we apply the chain rule, use the

definition of n as given in Eq. (2.43), and consider that in the reference state nref , sref , nref
−

are all independent of time. Afterward, we can combine terms using the product rule and

apply the identity regarding determinants, as shown in Eq. (2.46). Similar to the Eulerian

case, the drawback of this approach is the requirement to know the correct expression for

the energy density.

In the case where the function F does not depend on a⃗, a⃗′, one can demonstrate that the

energy law in the Lagrangian approach can be rewritten in Eulerian variables by changing

coordinates from (⃗a, a⃗′) to (x⃗, x⃗′). This results in precisely the same energy law as in the

Eulerian approach, as given by Eqs. (2.14), (2.15), (2.16), and (2.17). One has to be careful

as a⃗ might represent the reference state position of either moving particles or the neutralizing

stationary background.

For the term in Eq. (2.53) with ϕ−−, it is worth noting that due to nref
− being independent

of time, its time derivative is zero, just like for the analogous term in the Eulerian energy

density in Eq. (2.15). That means that terms with ϕ−− can be added or removed as needed.

For the term in Eq. (2.53) with (nref)′nref
− , one can compute the time derivative using the chain
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rule. This computation results in the following, which corresponds to a term in Eq. (2.55).

∂

∂t

(
1

2

∫ (
(nref)′nref

− ϕ+−(|x⃗′ − a⃗|)
)
da⃗′
)

=
1

2

3∑
i=1

∫ (
(nref)′nref

−
∂ϕ+−

∂x′
i

∣∣∣
a⃗

∂x′
i

∂t

)
da⃗′ (2.56)

Due to this identity, change of variables can be carried out independently for these two

terms, separate from the others. To achieve this, switch from a⃗ to x⃗ by using the assumed

displacement field for the neutralizing stationary background, where x⃗ = a⃗. Consequently,

we also have n− = nref
− . As for the integrals, perform variable transformations from a⃗′ to x⃗′

using the displacement field of the moving particles and make use of Eq. (2.43).

For all the other terms, replace nref in terms of n using Eq. (2.43). Change from a⃗ to

x⃗ by using the displacement field of the moving particles, and switch from a⃗′ to x⃗′ using

either the displacement field of the moving particles or that of the neutralizing stationary

background, where x⃗′ = a⃗′ and nref
− = n−. To simplify these terms, apply the chain and

product rules, along with the properties of determinants given in Eqs. (2.46), (2.48), and

the following property [53], where v⃗ represents Eulerian velocity, and ∇⃗ denotes the gradient

with respect to x⃗.
∂

∂t

(
det

(
∂x⃗

∂a⃗

))
= det

(
∂x⃗

∂a⃗

)
(∇⃗ · v⃗) (2.57)

The energy conservation law, as given in Eq. (2.52), allows us to define the energy EL

in the Lagrangian approach for the OCP and examine how it changes over time. To achieve

this, we integrate this equation with respect to a⃗ and employ integration by parts. To

further simplify nonlocal terms, we use the following properties: for all functions f, g, we

have (fT )T = f, (f + g)T = fT + gT , (fg)T = fTgT . Additionally, the integral of f over

a⃗, a⃗′ is the same as the integral of fT . Moreover, for any argument Ψ of a nonlocal function,

(∂Ψ′f)T = ∂Ψ(f
T ). To simplify nonlocal terms with ϕ+−, we use the definition of transpose.

In the following, the energy density EL is as defined in Eq. (2.53).

dEL

dt
=

d

dt

(∫
ELda⃗

)
= 0 (2.58)

It can be shown that if the nonlocal function F does not depend on a⃗, a⃗′, the expression

for the conserved energy in the Lagrangian approach is identical to the one in the Eulerian
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approach, as given by Eq. (2.18). To demonstrate this, change the variables inside the

integrals from (⃗a, a⃗′) to (x⃗, x⃗′), apply the continuity equation given in Eq. (2.43), and note

that for the neutralizing stationary background, the reference state was selected so that

x⃗ = a⃗ and, consequently, n− = nref
− .

Let us now consider equilibrium solutions and calculate the value of the energy, EL, in a

thermodynamic equilibrium. In the Lagrangian case, the only time-dependent hydrodynamic

function is the displacement of the moving particles, x⃗. We choose a reference state for

the moving particles where a⃗ represents the equilibrium position of a given particle, or

equivalently, its initial position, as in thermal equilibrium there is no macroscopic motion.

Therefore, x⃗ = a⃗ for all particles at all times. This also implies that the number density

and specific entropy of the moving particles in the reference state are their equilibrium

number density and equilibrium specific entropy, which are assumed to be uniform and

time-independent with values nref = n0, s
ref = s0.

Similar to the Eulerian case, to fully specify the value of the energy in equilibrium, we

assume that the number density of the stationary neutralizing background is uniform, with

a value nref
− = n−,0. We also apply the charge neutrality condition q+n0+ q−n−,0 = 0, which,

as discussed before, is consistent with the experiments. In the thermodynamic limit, where

the number of moving particles N → ∞ and the volume of the system V → ∞ while the

number density is fixed, the equilibrium energy of the OCP diverges. Therefore, we consider

the equilibrium energy per particle, E0/N .

From Eqs. (2.53), (2.58), we obtain the following result. Simplification occurs when one

uses the assumed form of the potential ϕij(r) = qiqj/4πε0r, where i, j are the corresponding

species of the particles, and r is the distance between the particles. For integrals involving

ϕ+−, ϕ−−, one can change variables to R⃗ = (⃗a+ a⃗′)/2, r⃗ = a⃗− a⃗′, which has a unit Jacobian.

E0

N
= f(n0, s0) +

N

2V 2

∫∫
(F + F T )(n0, n0, s0, s0, |⃗a− a⃗′|, a⃗, a⃗′)da⃗da⃗′

−n0

2

∫
q2+

4πε0|r⃗|
dr⃗

(2.59)

This expression can be compared to the expression for the thermodynamic equilibrium
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energy of the OCP per moving particle, Eth/N , as given in Eq. (2.20). It is important to note

that in thermodynamics, the nonlocal integral term depends solely on r⃗ = |⃗a−a⃗′|. Therefore,

to maintain consistency with this result, we modify our assumption from F depending on a⃗, a⃗′

to instead depend on the combination |⃗a− a⃗′|. Consequently, the integral involving F + F T

in Eq. (2.59) can also be simplified by changing variables to R⃗ = (⃗a+ a⃗′)/2, r⃗ = a⃗− a⃗′.

When comparing the result to Eq. (2.20), we derive the following constraints on the func-

tions f, F . Here, we can use the fact that F T (n0, n0, s0, s0, |r⃗|, |r⃗|) = F (n0, n0, s0, s0, |r⃗|, |r⃗|),

directly from the definition.

f(n0, s0) =
3

2
kBT (n0, s0), F (n0, n0, s0, s0, |r⃗|, |r⃗|) =

q2+
8πε0|r⃗|

g(n0, s0, |r⃗|). (2.60)

In the Lagrangian approach, we encounter the same issue as we did in the Eulerian

approach, namely that the constraint in Eq. (2.60) uniquely determines the function f but

not F . This occurs because F is specified by this constraint only for values when n is equal

to n′ and when s is equal to s′. As discussed previously, we address this by modifying our

choice of F to a more restrictive one that depends solely on n, s, |x⃗− x⃗′|, |⃗a− a⃗′|.

However, in the Lagrangian approach, this still does not uniquely determine F due to

its dependence on a⃗, a⃗′ because the constraint is specified only for the case when |x⃗− x⃗′| is

equal to |⃗a− a⃗′|. Now, let us consider four simple possible options for F that are consistent

with the equilibrium constraint, but they differ in their dependence on |x⃗− x⃗′| and |⃗a− a⃗′|.

F (n, s, |x⃗− x⃗′|, |⃗a− a⃗′|) =
q2+

8πε0|x⃗− x⃗′|
g(n, s, |x⃗− x⃗′|), (2.61)

F (n, s, |x⃗− x⃗′|, |⃗a− a⃗′|) =
q2+

8πε0|x⃗− x⃗′|
g(n, s, |⃗a− a⃗′|), (2.62)

F (n, s, |x⃗− x⃗′|, |⃗a− a⃗′|) =
q2+

8πε0|⃗a− a⃗′|
g(n, s, |x⃗− x⃗′|), (2.63)

F (n, s, |x⃗− x⃗′|, |⃗a− a⃗′|) =
q2+

8πε0 |⃗a− a⃗′|
g(n, s, |⃗a− a⃗′|). (2.64)

The first option, as provided in Eq. (2.61), exactly corresponds to the function F that

we considered in the Eulerian approach and will result in the same equations of motion. In
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contrast, the third and fourth options, given in Eqs. (2.63), (2.64), under the assumption of

weak coupling, where g(n, s, |r⃗|) = 1, will yield ∂(F + F T )/∂xi = 0. Consequently, these

options will not generate the nonlocal electrostatic force between the moving particles, as

described in Eq. (2.47). Therefore, we now turn our attention to the second option provided

in Eq. (2.62). In this case, we can rewrite the equations of motion, as given in Eq. (2.47),

by using the fact that ϕij(r) = qiqj/4πε0r, where i, j represent the corresponding species of

the particles, and r represents the distance between the particles.

mnref ∂
2xi

∂t2
= −

3∑
j=1

∂(det (∂x⃗/∂a⃗))

∂(∂jxi)

∂

∂aj

(
3

2
kBn

2∂T

∂n

∣∣∣
s

+
q2+
8πε0

∫
n2(nref)′

|x⃗− x⃗′|
∂g

∂n

∣∣∣
s,|⃗a−a⃗′|

da⃗′

)

−q+n
ref

4πε0

∫ (
q+(n

ref)′
(g + gT )

2

∂

∂xi

(
1

|x⃗− x⃗′|

) ∣∣∣
x⃗′

+q−(n
ref
− )′

∂

∂xi

(
1

|x⃗− a⃗′|

) ∣∣∣
a⃗′

)
da⃗′

(2.65)

As one can observe from this equation, the equations of motion in the Lagrangian ap-

proach differ from those in the Eulerian approach, as given by Eq. (2.23), due to the nonlocal

force term. In this term, now (g+ gT )/2 is no longer inside the derivative with respect to x⃗.

Therefore, it is possible to generate the vorticity required for transverse waves.

2.3.3 Dispersion laws

While discussing the energy conservation law, we explored equilibrium solutions, where the

reference state for the moving particles is chosen such that a⃗ represents the position of a

particle in thermal equilibrium, and as a result, x⃗ = a⃗ at all times. Additionally, the number

density and specific entropy of the moving particles in this reference state correspond to

thermal equilibrium, where they are assumed to be uniform and time-independent, with

values nref = n0, s
ref = s0. The stationary neutralizing background also has a uniform number

density in the reference state corresponding to thermal equilibrium, with a value nref
− = n−,0.

This value is related to n0 through the charge neutrality assumption q+n0 + q−n−,0 = 0.
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Now, we would like to examine the linearized equations of motion that correspond to the

OCP being close to thermodynamic equilibrium. In that scenario, we assume the following

form for the displacement field x⃗, where ξ⃗ denotes the first-order correction.

x⃗ = a⃗+ ξ⃗(⃗a, t) (2.66)

With this assumption about x⃗, we will expand the equations of motion given in Eq. (2.65)

up to the first order. However, let us first consider these equations of motion and determine

whether they are satisfied for the proposed equilibrium solution.

The left-hand side of Eq. (2.65) is zero because x⃗ = a⃗ does not depend on time. On the

right-hand side, the sum over derivatives with respect to aj is zero because the function for

which this derivative is taken does not depend on a⃗. To see this, we can use the continuity

equations provided in Eq. (2.43), along with the result that for x⃗ = a⃗, we have det (∂x⃗/∂a⃗) =

1. This leads to the conclusion that n = n0, s = s0.

For the integral, we notice that the functions inside it only depend on r⃗ = a⃗− a⃗′, so we

can eliminate the dependence on a⃗ by changing the integration variable to r⃗. To demonstrate

that the nonlocal force is zero, we directly perform derivatives with respect to xi and use the

equilibrium results along with n = n0, s = s0 to show that the functions inside the integral

depend on a⃗, a⃗′ only through the combination r⃗ = a⃗ − a⃗′. After changing the integration

variable to r⃗, we can use the fact that the function inside the integral is odd with respect to

ri.

Let us now consider the linearized equations. Since the equations of motion given in

Eq. (2.65) depend on n, s, it is useful to expand the continuity equations, as given in

Eq. (2.43), up to the first order.

n(x⃗, t) = n0(1− ∇⃗ · ξ⃗) + ..., s(x⃗, t) = s0. (2.67)

Now, let us expand the equations of motion provided in Eq. (2.65) up to the first order.

The derivatives of det (∂x⃗/∂a⃗) can be expanded through direct computation. Other terms

can be simplified using Eq. (2.67), q+n0+q−n−,0 = 0, as well as the fact that for any function
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f depending solely on x⃗, x⃗′ through the combination x⃗ − x⃗′, we have ∂f/∂xi = −∂f/∂x′
i.

For some integrals, it is useful to change the integration variable to r⃗ = a⃗− a⃗′. Additionally,

we reintroduce the notation where the subscript “0” signifies that a function is evaluated at

equilibrium values. Using this notation, we can further simplify the result by using g0 = (gT )0

and (∂g/∂n)0 = (∂gT/∂n′)0.

m
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+
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∫
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(2.68)

To solve this equation, we employ the Fourier transform with respect to the spatial

coordinates a⃗ and use the same convention as we did in the Eulerian approach, as given in

Eq. (2.27).

Ψ⃗(k⃗, t) =
̂⃗
ξ(k⃗, t) =

∫
ξ⃗(⃗a, t)e−ik⃗·⃗ada⃗ (2.69)

With this convention, we once again obtain the results that, for any functions f, g that

depend on a⃗, ̂∂f/∂aj = ikj f̂ and f̂ ∗ g = f̂ ĝ, where ∗ denotes convolution. Using these

results, we take the Fourier transform of Eq. (2.68) to obtain a differential equation for each

value of k⃗. As in the Eulerian approach, we simplify by changing the integration variable to

r⃗ = a⃗− a⃗′ when it is convenient.

Once again, it is important to be careful regarding the convergence of integrals. As

before, we rely on the result from thermodynamics [23] that g(n0, s0, |r⃗|) → 1 as |r⃗| → ∞.

Therefore, it is convenient to express everything in terms of g − 1 instead of g. In addition

to using the Fourier transform of 1/|r⃗| being 4π/|⃗k|2 [50], we use the following results [54]

for the derivatives of 1/|r⃗|, where δ(r⃗) represents the Dirac delta distribution centered at the
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origin.
∂

∂rj

(
1

|r⃗|

)
= − rj

|r⃗|3
,

∂2

∂ri∂rj

(
1

|r⃗|

)
=

3rirj − δij|r⃗|2

|r⃗|5
− 4π

3
δijδ(r⃗). (2.70)

Combining these results, we can express the Fourier transform of Eq. (2.68) as follows.
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(2.71)

To simplify the analysis of the longitudinal and transverse dispersion modes, we employ

the same strategy used in the Eulerian approach, where the coordinate system is rotated in

such a way that, in the rotated coordinate system, k⃗ = (0, 0, |⃗k|). In this case, the transverse

modes correspond to the x, y directions, while the longitudinal mode corresponds to the z

direction. To achieve this, we use the fact that the differential equation is linear, properties of

the dot product under a rotation, and rotate the integration variable. It is worth noting that

due to some of the functions under the integrals being odd with respect to the integration

variables, certain integrals become zero. Further simplification for the remaining integrals

can be achieved by going to spherical coordinates and performing the angular integrals.

We find that for the transverse directions, ∂2Ψx/∂t
2 = −ω2

T (|⃗k|)Ψx and ∂2Ψy/∂t
2 =

−ω2
T (|⃗k|)Ψy. It is in contrast to the Eulerian approach, as now there are transverse modes,

as given by the following transverse dispersion law. It is worth noting that this expression

exactly matches the QLCA result [34, 35, 36].

ω2
T (|⃗k|) =

q2+n0

mε0

∫ ∞

0

(g − 1)0

|⃗k|r2

(
sin(|⃗k|r) + 3

cos(|⃗k|r)
|⃗k|r

− 3
sin(|⃗k|r)
|⃗k|2r2

)
dr (2.72)

For the longitudinal direction, we find ∂2Ψz/∂t
2 = −ω2

L(|⃗k|)Ψz, along with the following

longitudinal dispersion law. When comparing this to the longitudinal dispersion law obtained
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in the Eulerian approach, as given in Eq. (2.29), we observe that the terms independent of

|⃗k| and the terms purely proportional to |⃗k|2 are the same. Furthermore, the terms that do

not contain derivatives with respect to the number density n are identical to those given by

the QLCA [34, 35, 36].
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(2.73)

From the obtained dispersion laws given in Eqs. (2.72), (2.73), we see that the transverse

dispersion relation depends solely on the equilibrium pair distribution function, whereas

the longitudinal dispersion relation also depends on its adiabatic derivatives, similar to the

Eulerian approach. This is expected, as the nonlocal contribution to the energy of the OCP

depends on the pair distribution function, as shown in Eq. (2.20). Therefore, the adiabatic

derivatives of the pair distribution function in the dispersion relation are related to the

adiabatic derivatives of the nonlocal energy. This parallels the usual Euler equations [1] and

shows that the dispersion relation accounts for both local and nonlocal contributions to the

total energy of the OCP, consistent with results in thermodynamics.

As discussed in the Eulerian approach, it is convenient to express the obtained dispersion

laws in the normalized variables. We can again use the results from thermodynamics, which

state that g(n, s, |r⃗|) = g(Γ, |r⃗|/a) and that the expressions for equilibrium energy E0 and

equilibrium pressure p0 are given by Eq. (2.30), which also define the excess internal energy

u. As before, the variables Γ and a will oscillate around their respective equilibrium values

Γ0, a0 due to their dependence on n, s.

To compute the term with the temperature derivatives at constant entropy in the lon-

gitudinal dispersion law given in Eq. (2.73), one uses previously discussed results on the
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temperature derivative as in Eq. (2.32) and on the derivative at constant entropy of a func-

tion of Γ as in Eq. (2.34).

To analyze terms with integrals of g − 1 in both of the dispersion laws, in addition to

the previous identities, use the strategy already discussed in the Eulerian approach. Using

g = g(Γ, |r⃗|/a), take number density derivatives outside of the integrals, change variables

inside the integrals to x = r/a, and introduce normalized wavevector q⃗ = k⃗a. In that case,

integrals are rewritten in terms of functions of Γ and |q⃗|, and we can use the identity given

in Eq. (2.34).

Combining all of these results, one gets the following transverse dispersion relation in

the normalized variables that is parametrized only by the equilibrium value Γ0. Again, we

emphasize that this result exactly corresponds to the QLCA result [34, 35, 36].(
ωT

ωp

)2
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− 3
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)
dx (2.74)

The result for the longitudinal dispersion relation in the normalized variables that is

parametrized only by the equilibrium value Γ0 is given next in Eq. (2.75). Here, the terms

appearing in the dispersion relation are given by Eqs. (2.32), (2.36), (2.37), (2.76), (2.77),

and the derivative at constant s is given by Eq. (2.34).(
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(2.75)

b(Γ, |q⃗|) = 2

∫ ∞

0

(
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(
3
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|q⃗|2x2

− 3
cos(|q⃗|x)
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)
dx, (2.76)

ℓ(Γ, |q⃗|) =
∫ ∞

0

(
g − 1

)
(Γ, x)

x

(
sin(|q⃗|x)
|q⃗|x

− cos(|q⃗|x)
)
dx. (2.77)

As in the Eulerian approach, in principle, the obtained dispersion laws in the normal-

ized variables can now be computed for an arbitrary pair distribution function, g(Γ, |r⃗|/a).

However, as before, the longitudinal dispersion relation depends on derivatives with respect

to Γ of integrals that include the pair distribution function. This means that for a precise
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evaluation of the longitudinal dispersion law, a pair distribution function should be known

precisely as a function of Γ. However, as discussed in detail while analyzing the Eulerian

approach, such precise fits are not known in the literature. Only the precise dependence of

the excess internal energy, u(Γ), is known as a function of Γ.

To resolve this issue, we will use the same approximation as discussed in the Eulerian

approach, where the pair distribution function, g(Γ, |r⃗|/a), takes the form of a step function

with a value of 0 when |r⃗|/a < (R/a)(Γ), and 1 when |r⃗|/a > (R/a)(Γ). The dependence

of R/a on Γ is obtained by computing the equilibrium energy given in Eq. (2.20) for the

assumed approximation. We use Eq. (2.30) to relate it to u(Γ), the result of which is

given in Eq. (2.40). This approximation simplifies the integrals appearing in the dispersion

law, leading to simpler and more practical expressions and allowing us to avoid additional

numerical errors due to the computation of the integral. The transverse dispersion relation

is now given in Eq. (2.78). In this equation, R/a is taken to be the correct value for a given

Γ0 and agrees with the QLCA result for the same pair distribution function approximation

[36]. (
ωT

ωp

)2

(Γ0, |q⃗0|) =
1

3
+

cos (|q⃗0|R/a)

(|q⃗0|R/a)2
− sin (|q⃗0|R/a)

(|q⃗0|R/a)3
(2.78)

The integrals in the longitudinal dispersion relation, as given by Eqs. (2.37), (2.76),

(2.77), can be rewritten as shown in Eqs. (2.41), (2.79), with R/a taken to be the correct

value for a given Γ.

b(Γ, |q⃗|) = −2

3
− 2

cos (|q⃗|R/a)

(|q⃗|R/a)2
+ 2

sin (|q⃗|R/a)

(|q⃗|R/a)3
, ℓ(Γ, |q⃗|) = sin (|q⃗|R/a)

(|q⃗|R/a)
− 1. (2.79)

Now, let us consider different fits for the excess internal energy u(Γ) as defined in

Eq. (2.30). First, let us consider a simple fit u(Γ) = −0.9Γ that is accurate for a very

strong coupling where Γ ≫ 1 [27]. As discussed before, for such a fit, R/a =
√
6/5, inde-

pendent of the value of Γ. From Eq. (2.78) it can be observed that in this approximation

the transverse dispersion relation is independent of Γ. The results for various values of Γ0

are shown in Fig. 2.4(a).

Moreover, from Eqs. (2.41), (2.79), this implies that the functions j, b, ℓ appearing in
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Figure 2.4: The transverse dispersion law in the Lagrangian approach, expressed in normal-

ized variables, is shown for different values of Γ0 as given by Eq. (2.78). We assume the

step function approximation for the pair distribution function for a given u(Γ) defined in

Eq. (2.30). In (a), u(Γ) = −0.9Γ. In (b), u(Γ) = −0.9Γ + 0.5944Γ1/3 − 0.2786.

the longitudinal dispersion relation given in Eq. (2.75) are also independent of Γ. These

results greatly simplify the calculations of taking number density derivatives at constant s,

as shown in Eq. (2.34). Furthermore, as before, for such a fit, we have f1(Γ) = 1 by Eq. (2.32).

With these results, the longitudinal dispersion law given in Eq. (2.75), supplemented with

Eq. (2.36) and the simplified expressions in Eqs. (2.41), (2.79), becomes as follows.(
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) (2.80)

The results for different values of Γ0 are presented in Fig. 2.5(a). Several key properties

can be observed from the figure. Similar to the Eulerian approach, for weak coupling where

Γ0 = 1, the dispersion relation resembles the behavior of an ideal gas. However, as Γ0 is

increased, the behavior changes dramatically. Nonetheless, at no value of Γ0 do we observe

the onset of negative dispersion because for small values of |q⃗0|, ωL ≥ ωp. Furthermore, this

remains true for all values of |q⃗0|.

The simpler fit for u(Γ) does not account for thermal effects in the nonlocal interaction.
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Figure 2.5: The longitudinal dispersion law in the Lagrangian approach, expressed in normal-

ized variables, is shown for different values of Γ0 as given by Eq. (2.75). We assume the step

function approximation for the pair distribution function, and therefore, we use Eqs. (2.32),

(2.36), (2.40), (2.41), (2.79) for a given u(Γ) defined in Eq. (2.30). In (a), u(Γ) = −0.9Γ,

and the result is provided by Eq. (2.80). In (b), u(Γ) = −0.9Γ + 0.5944Γ1/3 − 0.2786.

Therefore, we also consider a more precise fit, u(Γ) = −0.9Γ+ 0.5944Γ1/3 − 0.2786, which is

accurate for Γ ≥ 1 and includes thermal effects [27]. The results for different values of Γ0 for

the transverse dispersion law are shown in Fig. 2.4(b), and for the longitudinal dispersion

law, they are presented in Fig. 2.5(b). Similar to the Eulerian approach, it is evident that

the more complex fit for u(Γ) yields results that are qualitatively the same as in the case of

the simpler fit, with minor quantitative differences.

The results for the more precise fit are also compared to the results obtained by QLCA

[36] using the same approximation of the pair distribution function. The results are also

compared to the current fluctuation spectra obtained from molecular dynamics simulations

provided by the authors of Ref. [30], where dispersion laws are identified by the peaks of the

spectra.

Results for QLCA and molecular dynamics for the longitudinal dispersion law can be

seen in Fig. 2.1. It can be observed that as Γ0 increases, the predicted dispersion law starts

to differ from the results of the molecular dynamics simulations. In particular, the latter

shows the onset of negative dispersion in the range of values from Γ0 = 9.5 to Γ0 = 10.0
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[30, 31], contrary to the predicted dispersion law that has no such onset. Moreover, the

predicted longitudinal dispersion law, in the limit as Γ0 → ∞, does not tend to the QLCA

result, which is considered accurate in such a limit [36].

Results for QLCA and molecular dynamics for the transverse dispersion law can be seen

in Fig. 2.2. The predicted transverse dispersion law, at all values of Γ0, agrees with the

QLCA result for the same pair distribution function approximation. It also agrees with the

results of molecular dynamics simulations at large values of wavevector and correctly predicts

that the transverse dispersion law tends to the value ωp/
√
3 in the limit as |q⃗0| = |⃗k|a0 → ∞.

However, it fails to predict the numerically observed disappearance of the transverse waves

at small values of wavevector [32]. Nonetheless, as in the case of QLCA, this issue can be

remedied by considering relaxation in the context of generalized hydrodynamics [32].

Compared to the Eulerian approach, the discussed Lagrangian approach now accurately

predicts the transverse dispersion law for large values of wavevector. However, there are still

issues with the longitudinal dispersion law. In the Lagrangian approach, there is no longer

an onset of negative dispersion, and the results still do not agree with the results from QLCA

and molecular dynamics simulations at high values of Γ0. This motivates us to consider the

final alternative variational approach, discussed in the next Section 2.3.4.

2.3.4 Modified Lagrangian approach

The difference in the previously described Eulerian and Lagrangian variational principles lies

in how the pair distribution function is assumed to behave out of equilibrium. Specifically,

in the Eulerian approach, the pair distribution function is a function of number density n,

specific entropy s, and the difference in positions in the laboratory frame |x⃗−x⃗′|. In contrast,

in the Lagrangian approach, it is assumed to depend on n, s, and the difference in positions

in the reference state |⃗a − a⃗′|. Such a difference results in distinct dispersion laws. For

example, it determines whether there are transverse dispersion modes and whether there are

regions where longitudinal dispersion modes become unstable with ω2
L < 0.

Notice that there are other possible changes to how the pair distribution function behaves
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out of equilibrium. For example, instead of depending on n, it might depend on the number

density nref in a reference state. Similarly, instead of depending on s, it might depend on the

specific entropy sref in a reference state. Due to the continuity equations given by Eq. (2.43),

changing the dependence from s to sref would not change the results, but changing it from

n to nref might lead to significant differences. This possibility may be of particular interest,

given that the transverse dispersion law in the Lagrangian approach reasonably agrees with

the molecular dynamics simulations, unlike the longitudinal dispersion law. Notice that, as

shown by Eqs. (2.72), (2.73), only the longitudinal dispersion law depends on derivatives

of the pair distribution function with respect to number density. Therefore, only the longi-

tudinal dispersion law would be sensitive to the discussed change. This might allow us to

improve the longitudinal dispersion law without affecting the transverse modes.

In the case of the local energy term f , both of the previously considered variational

approaches had it such that, out of all thermodynamic functions, it depends only on tem-

perature T . To be consistent with the Euler equations [45, 46, 47], it is necessary to have it

depend on n, s instead of nref , sref . This motivates the consideration of the pair distribution

function out of equilibrium as a function of temperature T rather than specific entropy s,

and to assume that T depends on n, s, and not on nref , sref .

However, there is a dependence on number density in the pair distribution function that

does not come from the temperature, and there is no reason to believe it must depend on

n rather than nref . In particular, both of our previously considered approaches assumed

dependence on n, so we would like to explore what happens if one assumes dependence on

nref instead. In other words, we assume that the pair distribution function out of equilibrium

is a function of the form g(n, s, |⃗a− a⃗′|) = g(nref , T (n, s), |⃗a− a⃗′|).

With such an assumption regarding the pair distribution function, the equations of mo-

tion remain as given by Eq. (2.65). The momentum law is still described by Eq. (2.49), and

the energy law is still governed by Eqs. (2.52), (2.53), (2.54), (2.55), with the same identifi-

cation of functions f, F as provided in Eqs. (2.60), (2.62). The transverse and longitudinal

dispersion laws are also retained and described by Eqs. (2.72), (2.73). However, one must
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be careful with computing derivatives at constant s.

As previously mentioned, it is convenient to rewrite the obtained dispersion laws in

normalized variables. We again make use of results from thermodynamics, stating that in

equilibrium, g(n0, s0, |r⃗|) = g(Γ0, |r⃗|/a0), and the expressions for equilibrium energy E0 and

equilibrium pressure p0 are provided in Eq. (2.30), which also define the excess internal

energy u. With our new assumption regarding how g behaves out of equilibrium, we have

g(n, s, |r⃗|) = g(Γ(n0, T (n, s)), |r⃗|/a0). Consequently, the variable Γ will oscillate around its

respective equilibrium value Γ0 due to its dependence on n, s. However, the value of a

remains fixed during the motion of the system at its equilibrium value a0.

The computation of the term in the longitudinal dispersion law involving the temperature

derivatives at constant entropy is the same as in both previous approaches. One uses results

on the temperature derivative, as shown in Eq. (2.32), and on the derivative at constant

entropy of a function of Γ, as demonstrated in Eq. (2.34).

To analyze terms with integrals of g − 1 in both of the dispersion laws, in addition

to the previous identities, use the following strategy, which is slightly different from the

strategy used in the two previous approaches. First, take number density derivatives outside

of the integrals. Then, change variables inside the integrals to x = r/a0 and introduce the

normalized wavevector q⃗0 = k⃗a0. In this case, integrals are rewritten in terms of functions

of Γ(n0, T (n, s)) and |q⃗0|. Next, one can use the following identity for an arbitrary function

f(Γ(n0, T (n, s)), |q⃗0|) on the derivative of number density at constant entropy, where we use

the chain rule, Eq. (2.32), and the definition of Γ.

n
∂f

∂n

∣∣∣
s

(
Γ(n0, T (n, s)), |q⃗0|

)
= −2

3
Γ(n0, T (n, s))

∂f

∂Γ

∣∣∣
|q⃗0|

f1
(
Γ(n, T )

)
(2.81)

The transverse dispersion relation in the normalized variables is the same as in the

Lagrangian approach, as given by Eq. (2.74), as it does not depend on number density

derivatives at constant entropy.

However, the longitudinal dispersion relation in the normalized variables is now different.

For each equilibrium value Γ0, it is provided in Eq. (2.82). The terms appearing in the
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dispersion relation are given by Eqs. (2.32), (2.36), (2.37), (2.76), (2.77), (2.83), (2.84),

(2.85). (
ωL

ωp

)2

(Γ0, |q⃗0|) = 1 +
|q⃗0|2

Γ0

f2(Γ0) + j1(Γ0, |q⃗0|) + j2(Γ0, |q⃗0|)

+b(Γ0, |q⃗0|) + ℓ1(Γ0, |q⃗0|),
(2.82)

j1(Γ, |q⃗|) = −2Γ

3

∂j

∂Γ

∣∣∣
|q⃗|
(Γ, |q⃗|)

(
f1(Γ)−

2

3
f 2
1 (Γ) +

Γ

3

df1
dΓ

(Γ)
(
1− 2f1(Γ)

))
, (2.83)

j2(Γ, |q⃗|) =
4Γ2

9
f 2
1 (Γ)

∂2j

∂Γ2

∣∣∣
|q⃗|
(Γ, |q⃗|), (2.84)

ℓ1(Γ, |q⃗|) = −2Γ

3
f1(Γ)

∂ℓ

∂Γ

∣∣∣
|q⃗|
(Γ, |q⃗|). (2.85)

As discussed in both previous variational approaches in detail, due to insufficient numer-

ical data regarding how the pair distribution function g(Γ, |r⃗|/a) depends on Γ, we use a

step function approximation to simplify integrals and make calculations more practical. The

step function approximation for the pair distribution function is such that it has a value of

0 when |r⃗|/a < (R/a)(Γ), and 1 when |r⃗|/a > (R/a)(Γ).

The dependence of R/a on Γ is determined by computing the equilibrium energy, as given

in Eq. (2.20), for the given approximation. We then use Eq. (2.30) to relate it to u(Γ). The

result of this computation is provided in Eq. (2.40).

In this case, the transverse dispersion relation is provided in Eq. (2.78), where R/a is

the correct value for a given Γ0. This result agrees with the QLCA result for the same pair

distribution function approximation [36]. The integrals found in the longitudinal dispersion

relation, as given by Eqs. (2.37), (2.76), (2.77), can be simplified as before, as described by

Eqs. (2.41), (2.79), where R/a is the correct value for a given Γ.

Now, let us consider different fits for the excess internal energy, u(Γ), as defined in

Eq. (2.30). First, let us examine a simple fit u(Γ) = −0.9Γ, which is accurate for very strong

coupling where Γ ≫ 1 [27]. As discussed previously, for such a fit, R/a =
√
6/5, independent

of the value of Γ. The results for the transverse dispersion relation for different values of Γ0

are presented as before in Fig. 2.4(a).
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As before, from Eqs. (2.41), (2.79), it follows that the functions j, b, ℓ appearing in the

longitudinal dispersion relation, as given in Eq. (2.82), are also independent of Γ. This

significantly simplifies the dispresion relation, and from Eqs. (2.83), (2.84), (2.85), we deduce

that j1, j2, ℓ1 are all zero. Additionally, as previously discussed, for such a fit, we have

f1(Γ) = 1 according to Eq. (2.32). With these results, the longitudinal dispersion law, as

given in Eq. (2.82) and supplemented with Eq. (2.36) and the simplified expression for b in

Eq. (2.79), becomes as follows. It is worth noting that this result is exactly the ideal gas speed

of sound term combined with the QLCA expression for the same pair distribution function

approximation [36]. The idea of phenomenologically combining the ideal gas speed of sound

term with the QLCA expression has appeared in the literature [37, 38]. However, here we

have provided a more rigorous justification for such a result, as it was derived from a general

theoretical framework. Additionally, notice that this result only holds when u(Γ) = −0.9Γ,

and our theory allows for a consistent generalization to the case when the functional form

of u(Γ) is more complicated.

(
ωL

ωp

)2

(Γ0, |q⃗0|) =
1

3
+

5

9

|q⃗0|2

Γ0

− 2
cos
(√

6
5
|q⃗0|
)

(√
6
5
|q⃗0|
)2 + 2

sin
(√

6
5
|q⃗0|
)

(√
6
5
|q⃗0|
)3 (2.86)

The results for different values of Γ0 are presented in Fig. 2.6(a), and the following

properties can be observed from the figure. As in both previous approaches, for weak coupling

where Γ0 = 1, the dispersion relation resembles the behavior of an ideal gas. However, as

Γ0 increases, the behavior undergoes a dramatic change. Similar to the Eulerian approach,

but unlike the original Lagrangian approach, there is a critical value of Γ0 = 7.0 at which

we observe the onset of negative dispersion. In other words, for small values of |q⃗0|, ωL ≤ ωp

instead of ωL ≥ ωp. However, unlike the Eulerian approach but similar to the original

Lagrangian approach, there are no unstable regions. This means that for all Γ0, we find that

ω2
L > 0 for all |q⃗0|.

The simpler fit for u(Γ) does not account for thermal effects in the nonlocal interaction.

Therefore, we also consider a more precise fit, u(Γ) = −0.9Γ+ 0.5944Γ1/3 − 0.2786, which is

accurate for Γ ≥ 1 and includes thermal effects [27].
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Figure 2.6: The longitudinal dispersion law in the modified Lagrangian approach, ex-

pressed in normalized variables, is shown for different values of Γ0 as given by Eq. (2.82).

We assume the step function approximation for the pair distribution function, and

therefore, we use Eqs. (2.32), (2.36), (2.40), (2.41), (2.79) for a given u(Γ) defined in

Eq. (2.30). In (a), u(Γ) = −0.9Γ, and the result is provided by Eq. (2.86). In (b),

u(Γ) = −0.9Γ + 0.5944Γ1/3 − 0.2786.

The results for different values of Γ0 for the transverse dispersion law are presented in

Fig. 2.4(b), and for the longitudinal dispersion law, they are shown in Fig. 2.6(b). As in both

previous approaches, one can observe that the more complicated fit for u(Γ) yields results

that are qualitatively the same as in the case of the simpler fit, with small quantitative

differences. For instance, the onset of negative dispersion is now observed at Γ0 = 9.5.

The results for the more precise fit are also compared to the results obtained by QLCA

[36] for the same approximation of the pair distribution function, as well as to current

fluctuation spectra obtained from molecular dynamics simulations provided by the authors

of Ref. [30], where dispersion laws are identified by the peaks in the spectra.

The comparison for the longitudinal dispersion law is presented in Fig. 2.1. The pre-

dicted dispersion law agrees with the molecular dynamics simulations. For Γ0 = 1, 5, 10,

the agreement extends through the range of 0 < |q⃗0| < 5. For the large value Γ0 = 80, the

agreement is observed for the range of 0 < |q⃗0| < 2. Additionally, the predicted onset of

negative dispersion at Γ0 = 9.5 aligns excellently with the range of values from Γ0 = 9.5 to
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Γ0 = 10.0, estimated by the molecular dynamics simulations [30, 31]. Moreover, the pre-

dicted longitudinal dispersion law in the limit as Γ0 → ∞ tends to the QLCA result, which

is considered accurate in such a limit [36]. This can be observed for a simpler fit for u(Γ) by

taking the limit Γ0 → ∞ directly in Eq. (2.86), while for the more complicated fit for u(Γ),

it was confirmed numerically. Consequently, in such a strong coupling limit, the predicted

longitudinal dispersion law, following the QLCA result, tends towards the value ωp/
√
3 in

the limit as |q⃗0| = |⃗k|a0 → ∞.

The comparison for the transverse dispersion law is presented in Fig. 2.2. Similar to

the previous case of the Lagrangian approach, the predicted dispersion law at all Γ0 exactly

agrees with the QLCA result and aligns with the results of molecular dynamics simulations

at large values of wavevector. It correctly predicts that the transverse dispersion law tends

to the value ωp/
√
3 in the limit as |q⃗0| = |⃗k|a0 → ∞. However, it fails to predict the

numerically observed disappearance of transverse waves at small values of the wavevector

[32]. Nonetheless, similar to the case of QLCA, this can be remedied by considering relaxation

in the context of generalized hydrodynamics [32].

2.4 Discussion and conclusion

We have explored variational principles for the hydrodynamics of the classical OCP in both

the Eulerian approach to hydrodynamics, where the hydrodynamic functions depend on the

position in the laboratory frame, and the Lagrangian approach, where the hydrodynamic

functions depend on some reference position, such as the initial or equilibrium position of a

fluid particle. We motivated Lagrangian densities that are used in the variational principles

and showed how to obtain equations of motion and conservation laws for momentum and

energy when the variational principle is nonlocal. In the Eulerian approach, one has to

introduce constraint fields in the variational principle to obtain continuity equations for

number density and specific entropy. Because of that, one has to be careful when eliminating

the introduced constraint fields from the resulting equations, as we have shown. In the

Lagrangian approach, such issues with constraint fields do not occur.
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Consistency with equilibrium results from thermodynamics was ensured by employing

the energy conservation law and calculating the energy expression from a given variational

principle. This expression was evaluated in equilibrium and matched with the known ther-

modynamic expression. Consequently, all the considered variational principles yield the same

result for equilibrium energy, even though their out-of-equilibrium behavior differs due to

various assumptions regarding the pair distribution function. To fully specify each of the

considered variational approaches, we also assumed that the out-of-equilibrium pair distri-

bution function depends solely on number densities and specific entropies in terms of n, s,

rather than using more complex models such as (n+ n′)/2, (s+ s′)/2 or
√
nn′,

√
ss′.

To analyze different proposed variational principles, we obtained linearized equations

of motion and calculated longitudinal and transverse dispersion laws. In all of these ap-

proaches, the dispersion laws depend not only on the pair distribution function but also on

its adiabatic derivatives. This is similar to the case of Euler equations, where dispersion

laws depend on the adiabatic derivatives of energy. However, in our case, we have included

a nonlocal contribution to the energy of the OCP that depends on the pair distribution

function. Nevertheless, we are not aware of precise numerical data regarding the adiabatic

derivatives of the pair distribution function.

Due to this lack of data, we used a simple step function approximation to the pair

distribution function. We chose the radius for the transition of the step function to be

consistent with the equilibrium energy expression. This approach allows us to significantly

simplify integrals that appear in the dispersion laws. We hope that our accurate results will

serve as motivation to perform a more careful numerical analysis of the pair distribution

function in equilibrium in the future. With precise knowledge of its adiabatic derivatives, we

can avoid the simple step function approximation we used and obtain even more accurate

results.

In each of the considered variational approaches, dispersion laws were computed using

two fits for the nonlocal contribution to the energy of the OCP. First, a simpler fit was

considered, which is valid for large values of the plasma parameter, Γ ≫ 1, and for which
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simple analytical expressions for the dispersion laws can be obtained, see Eqs. (2.42), (2.78),

(2.80), (2.86). Then, a more complicated fit that is valid for Γ > 1 was considered, for

which dispersion laws were computed numerically. We found that compared to the simpler

fit with its simple analytical expressions, the results are qualitatively the same, with some

small quantitative differences. This can be seen in Figs. 2.3, 2.4, 2.5, 2.6.

Finally, we compared the obtained dispersion laws for different variational approaches

across a wide range of equilibrium values of the plasma parameter, Γ0, to the results of

theoretical calculations using QLCA and the numerical results of molecular dynamics sim-

ulations. The results can be observed in Figs. 2.1, 2.2. Indeed, we can see that different

variational approaches yield significantly different results for the dispersion laws, empha-

sizing the importance of understanding how the pair distribution function behaves out of

equilibrium within the variational principles.

From the comparison of the transverse dispersion laws in Fig. 2.2, we can observe that

for small values of the wavevector, |q⃗0|, the Eulerian variational approach correctly predicts

the absence of transverse waves in the system. Meanwhile, for large values of the wavevector,

the modified Lagrangian approach agrees with the QLCA result and correctly predicts the

presence of transverse waves. As with QLCA, one can improve our models by introducing

relaxation, as done in generalized hydrodynamics, which allows for the accurate prediction

of the disappearance of transverse waves for small wavevector values. The transverse dis-

persion law does not differentiate all of the variational principles from the QLCA result. To

understand the differences between theoretical models, it is, therefore, better to examine the

longitudinal dispersion law, as shown in Fig. 2.1.

From the comparison of the longitudinal dispersion laws, we conclude that the modified

Lagrangian variational principle provides very accurate results for all values of the wavevec-

tor, |q⃗0|, and for all considered values of Γ0 when compared to the results of molecular

dynamics calculations. It is also more accurate than the other variational approaches con-

sidered and QLCA. In the regime of large wavelengths, so, small wavevectors, the modified

Lagrangian variational approach correctly predicts the onset of negative dispersion to occur
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at Γ0 = 9.5, in agreement with the range of values 9.5 ≤ Γ0 ≤ 10.0 predicted by the molec-

ular dynamics simulations. In the limit of strong coupling, where Γ0 → ∞, the modified

Lagrangian variational approach tends towards the QLCA result. Thus, in the regime of

small wavelengths, so, large wavevectors, it predicts that both longitudinal and transverse

dispersion laws tend towards the finite value ωp/
√
3 as |q⃗0| = |⃗k|a0 → ∞.

The excellent agreement of the dispersion laws predicted by the modified Lagrangian

variational principle, as compared to the molecular dynamics simulations, shows that our

variational hydrodynamic approach can be used to describe motion on small length scales

where the wavelength is comparable to the average distance between the particles. This

suggests that one can apply this general variational approach with reasonable confidence in

the future to nonlinear problems of the OCP, such as the motion of vortices and adiabatic

expansion, where molecular dynamics data might not be available. It also suggests that

one can apply it to other long-range systems, for example, Yukawa fluids, two-component

plasma, two-dimensional OCP, and fluids consisting of electric or magnetic dipoles.

Determining the correct action indeed requires experimental input, and we have shown

how the procedure of developing theory using the variational principle works. But once the

correct input has been achieved, and the complete set of variables has been assumed, one

gets the payoff that a self-consistent theory that can be applied to nonlinear processes has

been obtained.

In our analysis, we have ignored the effects of viscosity, relaxation, and heat transfer.

In the future, one can consider adding them by including additional terms in the equations

of motion produced by the variational principle. Viscosity can be included by adding a

term related to the velocity gradient, as seen in the case of the Navier-Stokes equations.

Relaxation can be included by adding a linear in velocity friction force between moving

particles and the stationary neutralizing background, as in the two-fluid plasma equations.

Alternatively, relaxation can be introduced for the hydrodynamic variables for their approach

to local thermodynamic equilibrium values, as in generalized hydrodynamics. Heat transfer

can be accounted for by adding a term related to the temperature gradient to the energy
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conservation law obtained from the variational principle, similar to the case of the Navier-

Stokes equations.
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CHAPTER 3

Rapid bubble collapse in a compressible Euler fluid

Section 3.2 is reproduced from D. Krimans and S. Putterman, “Power law singularity for

cavity collapse in a compressible Euler fluid with Tait–Murnaghan equation of state,” Phys.

Fluids 35, 086114 (2023), with the permission of AIP Publishing.

3.1 Introduction

Cavitation is the phenomenon wherein bubbles spontaneously form in a moving fluid. Their

subsequent motion can be so strong as to damage nearby boundaries [55, 56] and their

implosion can even form a light emitting plasma, a phenomenon called sonoluminescence

[6, 57]. The singularity underlying this multi-scale process was derived by Rayleigh [58]

for an empty cavity surrounded by an incompressible fluid. He showed that for spherical

symmetry, at the late stages of the collapse, the radius collapses to zero at a finite time tc

according to the following power-law solution.

R(t) = A(tc − t)n, (3.1)

where n = 2/5, A = (5/2)2/5(E/2πρ∞)1/5, with ρ∞ being the ambient mass density of the

surrounding fluid at an external pressure p∞, and E = (4π/3)p∞R3
m, which is the initial

energy of the fluid needed to form the initial cavity of radius Rm in an otherwise stationary

fluid. If the cavity contains gas, this implosion can lead to a strong concentration of energy

density, turning the gas into plasma that emits a picosecond-long flash of light [59]. Even

when the cavity is empty, so that the pressure at the cavity wall is zero, a large pressure

gradient appears inside the fluid near the wall [58]. The following expression applies at the
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late stages of the collapse, and Ṙ(t) is the velocity of the cavity wall, which can be computed

using Eq. (3.1).

p(r, t) =
ρ∞Ṙ2(t)

2

(
R(t)

r
−
(
R(t)

r

)4
)

(3.2)

From this expression, the maximum pressure value in the fluid occurs at the location

r = 1.6R with the value pmax = 0.16p∞(Rm/R)3, where R is the instantaneous radius of the

cavity. For an external pressure p∞ = 1 atm, when the bubble’s radius collapses to a value

of Rm/R = 27, the pressure within the fluid exceeds 3000 atm, which is the yield stress of

water. We refer here to the Tait-Murnaghan equation of state, which will be assumed for all

compressible fluids under consideration, where γ is a constant, but both B and ρ0 are slowly

varying functions of specific entropy [2, 60, 61].

p(ρ) = B

((
ρ

ρ0

)γ

− 1

)
, (3.3)

where for water, B = 3000 atm, γ = 7 [2, 60, 61], and ρ0 is the density at zero pressure. As

B is usually much greater than 1 atm, ρ0 can be estimated using the known value of density

at p = 1 atm. For example, taking the density of water at p = 1 atm and temperature

T = 20 °C leads to ρ0 = 1000 kg/m3 [62].

The adiabatic speed of sound, c, for such an equation of state is given by the following

equation:

c =

√
γ(p+B)

ρ
, (3.4)

which also allows to define the ambient speed of sound, c∞, by evaluating the expression at

pressure p∞ and mass density ρ∞. This is used to define the Mach number for a collapse in

a compressible fluid as M = Ṙ/c∞.

So, if cavitation takes place in water, compressibility needs to be taken into account

when the implosions are so strong that Rm/R > 27 is reached. In addition to its maximum

radius Rm, a sonoluminescing bubble is characterized by its ambient radius R0, achieved

when the pressure in the gas inside the cavity is p∞, and its minimum radius a, which is

largely determined by the van der Waals hard core size of the gas atoms. This phenomenon
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enjoys a broad parameter space: typically, 7 < R0/a < 10 and 8 < Rm/R0 < 24 have been

achieved for light-emitting bubbles [7, 63]. Taken together, typical sonoluminescing bubbles

in water reach Rm/R > 100, so, as emphasized by Ramsey [64], compressibility needs to

be taken into account if one is interested in probing the extent to which cavitation focuses

energy.

The speed at which a cavity collapses in an incompressible fluid after the initial stages

of collapse can be determined from Eq. (3.1).

Ṙ(t) = −
√

2p∞
3ρ∞

(
Rm

R(t)

)3/2

(3.5)

Comparing this velocity to the ambient adiabatic speed of sound in water, c∞ = 1400 m/s,

obtained using the values p∞ = 1 atm and ρ∞ = 1000 kg/m3, yields a Mach number of

M = 0.77 when Rm/R = 27. Therefore, describing cavitation collapse in a real fluid requires

analysis of high Mach number motion.

This point was made by Hunter [61], whose asymptotic calculation for the final stage of

collapse of an empty cavity, including effects of compressibility of the outside fluid, yielded

a power-law solution of the form given in Eq. (3.1) with n = 0.56 for water, different from

the incompressible result n = 0.40. However, water is not the only fluid in which cavitation

is possible and has been studied, and we will discuss the theory for fluids that have different

compressibility than water. One such example is liquid lithium [65, 66], where γ = 4.5,

B = 22000 atm [67], and ρ0 = 520 kg/m3, which is estimated using the density at p = 1 atm

and the melting temperature T = 450 K [68]. Motivated by this perspective, in Section 3.2

we use Hunter’s method and present an asymptotic calculation for the power-law exponents n

for a wide range of materials described by the equation of state in Eq. (3.3). It can be shown

that the power-law solution depends only on the parameter γ, and so we compute n(γ) for

a wide range of materials described by different values of γ, extending the results of Hunter

for water and of Rayleigh for incompressible fluid. Key results are displayed in Fig. 3.1.

For example, our results show that for liquid lithium, n = 0.62. These calculations provide

an asymptotic limit that can be used to evaluate the accuracy of more general numerical

solutions that we perform next and discuss in detail in Section 3.3.
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Figure 3.1: Predicted values of n as a function of γ (black dots), the proposed fit for the

range of γ close to the value of water that has γ = 7 of the form n = 0.4 + aγ−b, where

a = 0.657424, b = 0.735226 (solid red line), and the value for the incompressible fluid n = 0.4

(dashed magenta line). In (a), values of γ are those close to the water that has γ = 7. In

(b), a larger range of γ is considered.

The initial stages of bubble collapse can be well described by the incompressible Euler

equations. As R decreases, there is a transition to the asymptotic domain determined by

n(γ). An understanding of the evolution of the energy density requires a connection between

the initial state and the final stages of implosion, which in turn necessitates a description

of the transition region and a solution to the Euler equations for all Mach numbers. The

goal of the next calculation that we have performed is to demonstrate such a transition for

the case of spherical symmetry. To achieve this goal, we follow Hunter [61] and assume

homentropic flow, so the specific entropy is uniform and constant in time. This simplifies

the calculations as a simple equation of state given by Eq. (3.3) can then be used, for

which analytic asymptotic results are known. This allows us to confirm the accuracy of the

obtained numerical solution in the final stages of the collapse. Moreover, we believe that for

rapid collapses of interest, ignoring heat transfer can be a reasonable approximation. For

additional simplicity, we ignore the effects of viscosity, surface tension and mass transfer.

Numerical solutions of compressible equations for describing cavitation have a long his-

tory. Hunter [61] solved the homentropic compressible Euler equations for the fluid outside
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the cavity, but the cavity was assumed to be empty. Later, Wu and Roberts [69] solved Euler

equations for the motion of the gas within the bubble, while the effects of compressibility of

the outside fluid were introduced through an effective differential equation for the motion of

the cavity wall instead of solving full Euler equations. Fuster, Dopazo and Hauke [70] com-

puted spherical bubble collapse by solving the full hydrodynamic equations for both the gas

in the cavity and the compressible fluid outside of it and considered sufficiently strong col-

lapses where Rm/R = 13 was reached. The same problem, although without the assumption

of spherical symmetry, was recently approached by an all-Mach solver implemented in the

Basilisk solver [71] using the volume-of-fluid method. In that case, Rm/R = 5 was reached.

This solver was then modified for the case of spherical symmetry, and adiabatic collapses

reaching Rm/R = 13 were analyzed [72]. In none of these simulations, except Hunter, was

the asymptotic limit of Fig. 3.1 clearly demonstrated.

To simulate a homentropic, spherically collapsing cavity with gas inside it, but for

Rm/R > 100 relevant for experiments, we first considered the aforementioned all-Mach

solvers [71, 72]. Due to the extreme physical parameters found in such strong collapses,

a numerical instability appears near the cavity wall even in the initial stages of the col-

lapse, where it is incompressible. The instability would not disappear even after refining the

calculation to the limits of the available computational resources.

To resolve this issue, we modified the solver by introducing the uniform bubble approxi-

mation. Instead of directly solving the Euler equations for the gas in the cavity, we assume

that the pressure and the mass density of the gas are always uniform and consistent with

the equation of state. For simplicity, we adopt the form of an ideal adiabatic monatomic gas

equation of state. This approximation is accurate for early times when the motion is nearly

incompressible, as we will discuss later. Such an approach allows us to avoid the mentioned

numerical instability, but at later times, it neglects the behavior of the gas that might be

important, such as shock waves forming in the gas. Nevertheless, it provides a way to explore

the effects of compressibility for large collapses and allows for quick and accurate computa-

tions. In future work, one can include corrections to the solution for the motion of the gas
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by including higher-order terms in the Mach number of the gas that would correspond to

nonuniformities.

Fig. 3.2 shows plots of the transition to the asymptotic domain of a compressible implosion

in water. For Rm/R0 = 20 and R0 = 2.2 µm, motivated by experiments discussed in [6], for a

cavity with ambient pressure p∞ = 1 atm, ambient temperature T∞ = 293 K, and containing

an ideal xenon gas, the result based on our implementation of the all-Mach solver is shown

as the black solid line. The maximum Mach number, M = Ṙ/c∞, in this calculation is 2.8,

and the maximum ratio of radii is Rm/R = 320. This shows the necessity of an all-Mach

solver to include compressibility effects for strong collapses found in experiments. The red

dot-dashed lines in Fig. 3.2 are the solutions that describe the incompressible limit [2]. If the

water remained incompressible, the Mach number would reach 140, and the maximum ratio

of radii would be Rm/R = 1460. This figure also illustrates the goal of our work, which is a

demonstration of the transition to the compressibility asymptote that controls the moment

of collapse. The green dashed curve corresponds to the power-law solution of the form given

in Eq. (3.1) with Hunter’s value n = 0.56, which is a good fit to the asymptotic motion that

precedes the moment of collapse.

Cavitation in liquid lithium has been studied with regard to erosion [65] and nuclear

processes [66]. Using an ambient temperature T∞ = 450 K relevant for the experiments,

the motion of a bubble with putative parameters Rm/R0 = 20 and R0 = 2.2 µm is shown

in Fig. 3.3. We again assume that the cavity contains ideal xenon gas and the ambient

pressure is p∞ = 1 atm. At small radii, the motion agrees with the power-law solution of

the form given in Eq. (3.1) with n = 0.62, consistent with the asymptotic result obtained in

Section 3.2. The maximum Mach number reached with respect to liquid lithium, M = Ṙ/c∞,

for the incompressible case is 62, while for our compressible calculation, it is 1.6. Additionally,

the maximum ratio of radii reached in the incompressible case is Rm/R = 1460, but it is

Rm/R = 340 for the compressible scenario.

Figs. 3.2 and 3.3 are tests of the validity of our extension of the all-Mach solver to the

compressibility asymptote. The obtained solutions will facilitate coupling the fluid to the
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Figure 3.2: Implosion of an ideal gas xenon bubble in water for ambient pressure p∞ = 1 atm

and ambient temperature T∞ = 293 K, with Rm/R0 = 20 and R0 = 2.2 µm. The red

dot-dashed line represents the incompressible solution for the ambient density of water

ρ∞ = 1000 kg/m3. The black solid line is obtained by our modified all-Mach solver with

the uniform bubble approximation. The compressibility of water is given by Eq. (3.3) with

B = 3000 atm, γ = 7, and ρ0 = 1000 kg/m3. The dashed green line is a power-law fit of the

form as in Eq. (3.1) with n = 0.56, as predicted in [61]. The comparison is shown here from

a time t0, where R(t0) = Rm/5, as before this time, the compressible and incompressible

results agree. In (b), the solutions shown in (a) are zoomed in near the minimum radii of

the curves.
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Figure 3.3: Implosion of an ideal gas xenon bubble in liquid lithium for ambient pressure

p∞ = 1 atm and ambient temperature T∞ = 450 K, with Rm/R0 = 20 and R0 = 2.2 µm.

The red dot-dashed line represents the incompressible solution for the ambient density of

liquid lithium ρ∞ = 520 kg/m3. The black solid line is obtained by our modified all-Mach

solver with the uniform bubble approximation. The compressibility of liquid lithium is given

by Eq. (3.3) with B = 22000 atm, γ = 4.5, and ρ0 = 520 kg/m3. The dashed green line is a

power-law fit of the form as in Eq. (3.1) with n = 0.62, as predicted in Section 3.2 and shown

in Fig. 3.1. The comparison is shown here from a time t0, where R(t0) = Rm/5, as before

this time, the compressible and incompressible results agree. In (b), the solutions shown in

(a) are zoomed in near the minimum radii of the curves.
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molecular dynamics of the internal gas [7, 8, 9, 10], which is a future effort. Such molecular

dynamics simulations, when coupled to our results, would allow us to understand whether

a shock wave is launched internally to the gas contained in the collapsing cavity [69]. This

would set up a possibility for a second stage of energy focusing and would raise prospects for

the use of acoustics to achieve thermal fusion. The compressibility of the fluid slows down

the collapse and might inhibit the formation of a spherically focusing shock wave. However,

fluids with different equation of state parameters B, γ, ρ0 might allow for such higher levels

of concentration of energy density. Therefore, our calculations might motivate a search for

candidate liquids to achieve greater levels of energy focusing.

3.2 Asymptotic calculations for an empty cavity

3.2.1 Theory

In this section, we extend the results of Hunter [61] on the asymptotic calculation for the

final stage of collapse of an empty cavity, where the effects of compressibility of the outside

fluid are included. To do so, we use Hunter’s method and, unlike Hunter, apply it not only

to water but also to a wide range of materials described by the equation of state in Eq. (3.3).

This subsection provides a summary of the methods used to perform the computations.

We assume a spherically symmetric scenario in which a spherical empty cavity has its

center placed in the origin of the coordinate system and whose radius is described by a time

dependent function R(t). Outside of this radius, we assume an infinite ideal fluid which is

described by mass conservation law and the Euler equation, where due to spherical symmetry

fluid’s only nonzero component of velocity is radial component u, and both radial velocity

component and mass density ρ are only functions of radial coordinate r and time t. We

do not consider an equation for entropy as we assume that the flow is homentropic. The

following equations are considered for r > R(t).

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂p

∂r
, (3.6)
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∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

(
2u

r
+

∂u

∂r

)
= 0. (3.7)

To describe pressure p, we assume the Tait-Murnaghan equation of state given by Eq. (3.3).

As the flow is assumed to be homentropic, both functions B and ρ0 can be treated as con-

stants.

We would like to enforce two boundary conditions for both radial velocity u and pressure

p, where one is at the interface between the empty cavity and fluid at r = R(t), and the

other one is far from the cavity as r → ∞. For radial velocity, we assume that the empty

cavity is a free surface and that far away from the cavity the fluid is at rest. For pressure,

we assume that at the surface of the cavity, pressure is zero as the cavity is empty, and far

away it approaches some finite value p∞. Boundary conditions are summarized next, where

the dot represents the derivative with respect to the time.

u(R(t), t) = Ṙ(t), lim
r→∞

u(r, t) = 0. (3.8)

p(R(t), t) = 0, lim
r→∞

p(r, t) = p∞. (3.9)

Using the assumed equation of state, it is possible to compute the speed of sound squared

c2 as a function of ρ, and change variables describing fluid from u, ρ to u, c2. This is convenient

in order to apply similarity theory for the later parts of the collapse when R(t) → 0, as both

variables u and c2 can be directly compared to the velocity of cavity’s wall Ṙ(t).

c2 =
∂p

∂ρ
=

Bγργ−1

ργ0
, ρ =

(
ργ0c

2

Bγ

)1/(γ−1)

. (3.10)

Using the expression for c2 in terms of density ρ as in Eq. (3.10), spherical Euler equation,

Eq. (3.6), and mass conservation law, Eq. (3.7), are rewritten in terms of variables u, c2 as

follows.
∂u

∂t
+ u

∂u

∂r
+

1

(γ − 1)

∂c2

∂r
= 0, (3.11)

∂c2

∂t
+ u

∂c2

∂r
+ c2(γ − 1)

(
2u

r
+

∂u

∂r

)
= 0. (3.12)
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Using Eqs. (3.3), (3.10), it is possible to compute boundary conditions for c2 given by

constants c20, c
2
∞, from the corresponding boundary conditions for pressure as in Eq. (3.9).

c2(R(t), t) =
Bγ

ρ0
= c20, lim

r→∞
c2(r, t) = c2∞. (3.13)

Instead of solving the system of partial differential equations given by Eqs. (3.11), (3.12)

which would mean that we have to supply initial conditions, we consider similarity theory

that is motivated by numerical results [61]. As we approach the last phase of the collapse

where R(t) → 0, we assume that the length scale of the problem is given by R(t) and the

scale for velocities is given by Ṙ(t). So, we seek solutions of the following form, where we

are interested in finding functions f and g. The goal is to reduce the problem to a system

of ordinary differential equations for f and g.

u(r, t)

Ṙ(t)
= f

(
r

R(t)

)
,

c2(r, t)

Ṙ2(t)
= g

(
r

R(t)

)
. (3.14)

Motivated by the numerical results of the full hydrodynamic equations given in Eqs. (3.11),

(3.12) in the case of water [61], we additionally assume the power-law form R(t) = An(tc−t)n,

where tc is a time at which collapse happens and n is a power-law exponent that we would

like to compute. Using such power-law assumption and similarity approach for u, c2 as in

Eq. (3.14), we can rewrite Eqs. (3.11), (3.12) as two coupled ordinary differential equations

for functions f and g, where we introduce variable x = r/R(t). Then, differential equations

have to be solved in the range x > 1.

f ′(x) (f(x)− x) +

(
1− 1

n

)
f(x) +

g′(x)

(γ − 1)
= 0, (3.15)

g′(x) (f(x)− x) + 2

(
1− 1

n

)
g(x) + g(x)(γ − 1)

(
2f(x)

x
+ f ′(x)

)
= 0. (3.16)

As these equations are ordinary differential equations, we do not have to worry about

what kind of initial conditions to choose for u, c2, as functions f and g can be solved only

by the boundary conditions. To compute boundary conditions from those of u, c2 given in

Eqs. (3.8), (3.13), we use definitions of f, g in terms of u, c2 as in Eq. (3.14). However, for the

assumed form of c2 in Eq. (3.14), boundary conditions cannot be satisfied. Instead, because
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Ṙ(t) → −∞ as R(t) → 0, to get finite speeds of sounds at boundaries, we assume that g is

zero at the boundaries if all we are interested in is the late stage of the collapse.

f(1) = 1, lim
x→∞

f(x) = 0. (3.17)

g(1) = 0, lim
x→∞

g(x) = 0. (3.18)

The goal now is for each value of γ describing the equation of state of the fluid to find

the value of n so that differential equations given by Eqs. (3.15), (3.16) are satisfied with

the appropriate boundary conditions given by Eqs. (3.17), (3.18).

3.2.2 Numerical analysis

It is convenient to rewrite differential equations given by Eqs. (3.15), (3.16) in the following

way so that each equation contains a derivative of only one of the functions. To do this,

insert the expression for g′(x) from Eq. (3.16) to Eq. (3.15), or insert the expression for f ′(x)

from Eq. (3.15) to Eq. (3.16).

f ′(x)
(
(f(x)− x)2 − g(x)

)
= −

(
1− 1

n

)
f(x)(f(x)− x)

+2

(
1− 1

n

)
g(x)

(γ − 1)
+

2f(x)g(x)

x
,

(3.19)

g′(x)
(
(f(x)− x)2 − g(x)

)
=

(
1− 1

n

)
(γ − 1)f(x)g(x)

−2

(
1− 1

n

)
g(x)(f(x)− x) + 2(γ − 1)f(x)g(x)

(x− f(x))

x
.

(3.20)

Notice that the Eqs. (3.19), (3.20) are singular at x = 1 with the boundary conditions

chosen as Eqs. (3.17), (3.18) as at x = 1 it is not possible to solve for f ′(1) and g′(1) which

then would be used to numerically approximate values of f, g for some x > 1. So, instead

of solving equations numerically from x = 1, we start from x = 1 + ε, where 0 < ε ≪ 1. To

do that, we have to understand what are the new boundary conditions at such a point. To

compute them, we expand both functions in ε around x = 1 as given next, where we use
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boundary conditions at x = 1 as in Eqs. (3.17), (3.18).

f(1 + ε) = f(1) + f ′(1)ε+O(ε2) = 1 + f ′(1)ε+O(ε2),

f ′(1 + ε) = f ′(1) + f ′′(1)ε+O(ε2).
(3.21)

g(1 + ε) = g(1) + g′(1)ε+O(ε2) = g′(1)ε+O(ε2),

g′(1 + ε) = g′(1) + g′′(1)ε+O(ε2).
(3.22)

Consider differential equations given by Eqs. (3.19), (3.20) up to first order in ε. As

equations are singular at x = 1, no information is obtained from the zeroth order in ε.

However, from the first order in ε, it is possible to compute values of f ′(1), g′(1) and to

approximate boundary conditions as follows.

f(1 + ε) ≈ 1 +
1

γ

(
3− 2

(
1− 1

n

)
− 2γ

)
ε, (3.23)

g(1 + ε) ≈
(
1− 1

n

)
(1− γ)ε. (3.24)

For a given choice of γ, we search through values of n and for each guess of n we nu-

merically integrate Eqs. (3.19), (3.20) starting from x = 1 + ε, where boundary conditions

given by Eqs. (3.23), (3.24) are used, until x = 5. The maximum value of x is chosen from

practical considerations as then it is clear whether boundary conditions as x → ∞ given

by Eqs. (3.17), (3.18) are satisfied or not. If they are, we report this value of n as the

predicted value for the power law exponent of the cavity wall’s collapse. Value of ε used in

numerical calculations is ε = 10−3. It was checked that if this value is taken to be smaller

then the results do not change significantly. For example, if γ = 8, then predicted values for

ε = 10−3, 10−4, 10−5 are n = 0.540799, 0.540801, 0.540801, respectively. As an example of a

search of n for γ = 8, consider results in Fig. 3.4 which show how solutions of the function

g look like if n is smaller, equal, or greater than the predicted value.

First, we consider obtained results for n as a function of γ, where a range of γ is chosen

to be close to the value for water, γ = 7. We predict that the majority of materials have γ

values close to the one of water, so for this range, we propose the following fit that might

be useful for practical applications, n = 0.4 + aγ−b, where a = 0.657424, b = 0.735226. For
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Figure 3.4: Numerically obtained solutions for g(x) shown here from x = 1 + ε until x = 2,

where ε = 10−3 (solid black line), ε = 10−4 (dashed blue line), ε = 10−5 (dotted red line). In

(a), the guessed value of n is smaller than the predicted one by 10−4. In (b), it is equal to the

predicted value n = 0.540799, 0.540801, 0.540801 for ε = 10−3, 10−4, 10−5, respectively. In

(c), the guessed value of n is larger than the predicted value by 10−4. The guessed solutions

in (a) and (c) are not satisfactory because they are not smooth at around x = 1.55 and do

not satisfy the boundary condition given in Eq. (3.18) as x → ∞.

this range of γ, the results are shown in Fig. 3.1(a). We have checked that our calculation

for the case where γ = 7, that corresponds to the water, agrees with the obtained value of

n of Hunter [61]. However, the described method can also be used to compute n for large

values of γ, results for which are given in Fig. 3.1(b). We see that as γ → ∞, values indeed

approach the incompressible limit n = 0.4 [58].

3.3 Full calculations using the Euler equation

3.3.1 Theory

Just as during the analysis of asymptotic calculations, we assume a spherically symmetric

and homentropic scenario, where the center of the cavity filled with gas is placed at the

origin of the coordinate system. For both the gas inside the cavity and the fluid outside

of it, motion is described by the mass conservation law and the Euler equation, as given in

Eqs. (3.6) and (3.7). Due to our assumption of homentropic flow, we do not consider the

differential equation for specific entropy.
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These equations apply to the compressible fluid in the region outside the cavity, r > R(t),

corresponding to the subscript “f” in the future formulas, and to the gas which occupies the

space within the cavity, r < R(t), corresponding to the subscript “g”. To close the equations

of motion, an expression for pressure is required. For the compressible fluid in the region

r > R(t), the Tait-Murnaghan equation of state is assumed as given in Eq. (3.3). Because

the flow is homentropic, functions B and ρ0 can be treated as constants. For the gas inside

the cavity, the assumed equation of state is that of an ideal adiabatic monatomic gas, where

the function C, which generally depends on specific entropy, in a homentropic flow can be

treated as a constant [2]. Such a choice is consistent with our goal of isolating the effects of

compressibility and taking the simplest case where such effects could be observed.

p(ρ) = Cρ5/3 (3.25)

Even though the general goal is to solve the full hydrodynamic Eqs. (3.6) and (3.7) for

the gas in the cavity, when discussing numerical results, we will motivate and explain an

approximation that was used to avoid numerical instabilities and decrease the computational

time. In this approximation, the hydrodynamic equations for the gas inside the cavity are

solved under the assumption that both mass density and pressure are uniform within the

entire cavity at all times, and consistent with the equation of state given by Eq. (3.25).

The boundary conditions must be given at the boundaries of the domain, so, as r → 0

and r → ∞, but also at the interface between two fluids at r = R(t). As r → 0, the boundary

conditions are motivated by requiring that functions describing the mass density of the gas,

ρg(r, t), and radial velocity, ug(r, t), are smooth at the origin [70].

∂ρg
∂r

(0, t) = 0, ug(0, t) = 0. (3.26)

As r → ∞, a set of intuitive boundary conditions are that the outside fluid is at rest

at an ambient pressure, as given in Eqs. (3.8) and (3.9). However, the boundary conditions

assumed in our calculations differ. By assuming smoothness of solutions, alternative bound-

ary conditions can be derived from the more natural boundary conditions, but they offer the
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advantage of faster numerical convergence.

lim
r→∞

∂ρf
∂r

(r, t) = 0, lim
r→∞

∂uf

∂r
(r, t) = 0. (3.27)

Finally, at the interface, viscosity, mass transfer, and surface tension effects are ignored,

so the boundary conditions are as follows [2].

ug(R(t), t) = uf (R(t), t), pg(R(t), t) = pf (R(t), t). (3.28)

Due to the continuity of the radial velocity across the interface, the evolution of the

cavity’s wall is described in the following way.

Ṙ(t) = ug(R(t), t) = uf (R(t), t) (3.29)

The initial conditions must also be provided for the hydrodynamic functions for both

fluids and for the initial state of the cavity’s wall. Instead of specifying them for the radial

velocity and mass density of the fluids, we specify the radial velocity and pressure. From

this information, the initial mass density can be computed using the corresponding equation

of state. We take the initial state to be at time t = 0, where the cavity is at its maximum

radius Rm, and the collapse starts from rest.

R(0) = Rm, Ṙ(0) = 0,

ug(r, 0) = 0, for all r < Rm,

uf (r, 0) = 0, for all r > Rm.

(3.30)

The initial conditions for the pressure are estimated, assuming that the motion near the

beginning of the collapse is incompressible, as everything starts from rest. For the outside

fluid in the region r > R(t), the incompressible solution is given as follows [2, 58].

uf (r, t) = Ṙ(t)

(
R(t)

r

)2

, (3.31)

pf (r, t) =
ρ∞Ṙ2(t)

2

(
R(t)

r
−
(
R(t)

r

)4
)

+ p∞

(
1− R(t)

r

)
+ pg (R(t))

R(t)

r
, (3.32)

77



R̈(t)R(t) +
3

2
Ṙ2(t) = −(p∞ − pg(R(t)))

ρ∞
. (3.33)

In Eqs. (3.32) and (3.33), pg(R(t)) represents the uniform pressure for the gas in the

bubble at any given radius R(t). If the mass density for the gas is assumed to be uniform,

then by the mass conservation law and assuming ambient conditions with a radius of R0 and

a mass density of ρg,0,

ρg(R) = ρg,0

(
R0

R

)3

. (3.34)

The ambient uniform mass density of the gas can be computed from the ideal gas law

if the ambient temperature T∞ and the mass of a single gas atom m are known. Here, kB

represents the Boltzmann constant.

p∞ =
ρg,0kBT∞

m
(3.35)

Together with the assumed equation of state in Eq. (3.25), this provides the uniform

pressure for the ideal gas under consideration, which can then be used in Eqs. (3.32) and

(3.33).

pg(R) = p∞

(
R0

R

)5

(3.36)

Using these results, we adopt the following uniform initial pressure and mass density

profiles that are valid for all r < Rm, and ρg,0 is estimated from Eq. (3.35).

pg(r, 0) = p∞

(
R0

Rm

)5

, ρg(r, 0) = ρg,0

(
R0

Rm

)3

. (3.37)

The initial pressure profile for the outside fluid for all r > Rm is then derived from

Eq. (3.32) combined with Eq. (3.36), and evaluated at the initial conditions of the cavity’s

wall.

pf (r, 0) = p∞ +

((
R0

Rm

)5

− 1

)
p∞Rm

r
(3.38)

From here, the initial mass density profile for the outside fluid, ρf (r, 0), can be obtained

by inverting Eq. (3.38) using the equation of state provided by Eq. (3.3).

Our interest in cavity collapse is driven by our desire to understand the limits of energy

focusing achievable with sonoluminescence. As mentioned, this requires a parameter space
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where Rm/R0 > 8, where, at least for water, Eqs. (3.31), (3.32), and (3.33) are inaccurate

at long timescales. Nonetheless, comparing our calculations to such incompressible solutions

allows us to understand when the effects of compressibility become significant. Additionally,

later, we will discuss an improvement to the initialization of our computation by starting

it from a lower radius, as during the initial stage of the collapse, the compressibility effects

are negligible. In such a case, the initial conditions will be modified and estimated from the

incompressible solution, enabling faster numerical calculations.

3.3.2 Numerical analysis

To numerically solve the proposed problem, we use an all-Mach semi-implicit numerical solver

that employs the volume-of-fluid method [71], implemented in the Basilisk solver [73]. We

modify it for the case of spherical symmetry, as previously done in [72]. Here, we summarize

the key properties of this formulation.

To solve the Euler equations for two immiscible fluids, the interface at r = R(t) is

described by introducing a characteristic function f(r, t) that is 0 in the region r < R(t)

and 1 in the region r > R(t). The interface is located by the point of discontinuity of

this function. As the boundary moves with radial velocity Ṙ(t), the characteristic function

satisfies the following advection equation, which must be understood in the weak sense.

∂f

∂t
+ Ṙ(t)

∂f

∂r
= 0 (3.39)

The volume-of-fluid method numerically solves this differential equation by introducing

the volume of a reference phase with respect to the total volume of the grid interval. In

practice, the function f is smoothened within each computational grid interval, creating

regions where 0 < f(r, t) < 1. These regions are then interpreted as parts of the interface

between two fluids. For example, the radius of the cavity, R(t), can be numerically evaluated

as follows. Here, i represents a grid interval in the numerical domain, each of them having

the same width ∆r, and fi is the smoothed value of f in a grid interval.

R(t) = ∆r
∑
i

(1− fi) (3.40)
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For example, the Euler equation in Eq. (3.6) can be combined with the mass continuity

law in Eq. (3.7) to obtain the equation for the momentum density ρu for each of the fluids.

∂(ρu)

∂t
+

∂(ρu2)

∂r
+

2ρu2

r
= −∂p

∂r
(3.41)

This equation is then averaged using the characteristic function f to obtain a single

differential equation over the whole domain r > 0 for the averaged quantities [72]. For

example, the averaged radial velocity is defined by u = (1 − f)ug + fuf , which, due to

velocities at the interface being continuous, is also continuous. From this definition, indeed,

if r < R(t), f(r, t) = 0, and u = ug, while for r > R(t), f(r, t) = 1, and u = uf , consistent

with the previous definitions.

∂(ρu)

∂t
+

∂(ρu u)

∂r
+

2ρu u

r
= −∂p

∂r
(3.42)

To summarize, the boundary condition at r = R(t) is replaced by the differential equation

for f , and two sets of Euler equations for r < R(t) and r > R(t) are replaced by a single

evolution equation for the various averaged quantities. In addition to Eqs. (3.39) and (3.42),

the averaged equations for the individual components of densities and energies are solved.

All-Mach semi-implicit solvers are known to produce accurate results for compressible

problems even if shock waves are formed, while numerical schemes based on the volume-of-

fluid method have the advantage of sharply representing the interface between two fluids and

behaving well in the incompressible regime. The described numerical approach also employs

a consistent advection scheme of conservative quantities, avoiding any numerical diffusion of

mass, momentum, and energy across the interface during the advection step, thus greatly

reducing errors that appear during the advection of discontinuities. This is crucial in cases

of large density differences between the two fluids, which occur in our problem.

To solve the problem numerically, a uniform spatial grid with grid intervals of width ∆r

is used. In the future, the results could be improved by implementing adaptive gridding.

The full numerical region is taken to be 0 < r < λR(t = 0), where λ is a numerical parameter

specifying the high-radius cutoff, typically λ = 4 or 8, and R(t = 0) is the initial radius,
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which in our simulations is either R(t = 0) = Rm or Rm/5. The boundary conditions given

in Eq. (3.27), which theoretically apply in the limit of r → ∞, are applied at the cutoff

r = λR(t = 0). For the sake of quick calculations, it is useful to take λ as small as possible,

but this influences the accuracy of the obtained results due to the lower accuracy of the

boundary condition. The optimal value is determined by performing convergence studies,

which will be discussed later.

The time step size ∆t during the computation is not fixed and is chosen by a combination

of a fixed time step size parameter with adaptive time step size schemes. The time step size

parameter ∆tmax remains fixed throughout the calculation and determines the largest used

time step size. Two adaptive time step size schemes, ∆tu and ∆tc, are used, both inspired

by the CFL condition. Here, |u|max is the largest magnitude of the average radial velocity

across all grid intervals, and |c|max is the largest magnitude of the average speed of sound

across all grid intervals.

∆tu =
∆r

2|u|max

, ∆tc =
∆r

2|c|max

. (3.43)

Finally, at each instant, the time step size ∆t is determined as the smallest value among

∆tmax, ∆tu, and ∆tc. The adaptive methods allow for simple estimates of what the time

step size should be for the complicated nonlinear problem at hand, while ∆tmax allows for

further refinement until the desired level of accuracy. Additionally, a small value of ∆tmax

leads to fewer iterations and better convergence of the underlying multigrid Poisson solver.

For each specific problem, we start by fixing the value of λ = 4. Then, runs are performed

for various ∆r without using ∆tmax in the computation of ∆t, and we find the smallest

value of ∆r that allows us to solve the problem quickly. For this ∆r, we check numerical

convergence in λ by increasing it in factors of two and finding the value that will be used for

the remaining runs. Then, numerical convergence in ∆r and ∆tmax is analyzed. The first

value of ∆tmax is taken to be the typical value of ∆t in previous runs, where only adaptive

time step size methods were used. Then, both ∆r and ∆tmax are decreased in factors of two

until the desired accuracy is achieved or the limits of computational resources are reached.

Simultaneous refinement of ∆r and ∆tmax saves time spent studying the convergence of
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numerical solutions and was observed to enhance convergence for the obtained Ṙ(t) curves.

As the first numerical example before considering more rapid collapse, where Rm/R0 =

20, we solved for a smaller but still strong collapse with Rm/R0 = 10. The full hydrodynamic

equations are numerically solved for both the gas and the fluid outside the cavity with the

previously described boundary conditions. The gas inside the cavity is assumed to be xenon,

while the outside fluid is taken to be water. The initial conditions correspond to both the gas

and the fluid starting from rest, with the cavity at the maximum radius Rm. The ambient

physical parameters, R0 = 2.2 µm, p∞ = 1 atm, and T∞ = 293 K, are motivated by the

values found in the experiments [6].

During the initial stage of the collapse, when R(t) is still close to Rm, it is observed that

the mass density profile of the gas quickly transitions from being uniform to having a region

of low density near the cavity wall, while in the same region the speed of sound becomes

extremely high. As a result, the adaptive time step size based on the speed of sound becomes

very small, making the computation unfeasible. This effect does not completely disappear

with further refinement within the limits of the available computational resources. An exam-

ple with numerical parameters λ = 4, ∆r = Rm/512, and ∆tmax = (1/4)× 10−5R0

√
ρ∞/p∞,

is shown in Fig. 3.5. Indeed, after t = R0

√
ρ∞/p∞, where R(t) = 0.995Rm, Fig. 3.5(c) shows

a region in the gas near the cavity’s wall where the mass density is not uniform. A region

with a size of about Rm/20 = R0/2 is observed, where the mass density of the gas is much

smaller than everywhere else in the gas. On the other hand, the speed of sound, shown in

Fig. 3.5(d), at this time does not show unusual behavior. However, after t = 2R0

√
ρ∞/p∞,

with R(t) = 0.980Rm, Fig. 3.5(e) shows the mass density in the gas with nonuniformity on a

length scale of Rm/2 = 5R0, and near the cavity’s wall there is a region with a size of around

Rm/5 = 2R0, where the mass density is extremely small. Moreover, an extremely high value

of the speed of sound in the gas is observed in such a region. As can be seen from Fig. 3.5(f),

the speed of sound near the cavity’s wall reaches an extreme value of c̄ = 7× 106
√
p∞/ρ∞.

If instead the pressure and mass density in the gas were uniform, the speed of sound, from

Eq. (3.25), combined with mass density from Eq. (3.34) and pressure from Eq. (3.36), would
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be c̄ = 1.8
√

p∞/ρ∞ at R(t) = 0.980Rm.

To argue that the observed effect is a numerical artifact and not a physical process, we

use the observation that the effect happens at times sufficiently close to the initial state,

where R(t) ≈ Rm. As the cavity starts from rest, the motion of the gas can be analyzed

using a low Mach number expansion [74, 75], which is valid when the following dimensionless

parameter is small.

ε =
uref√
pref/ρref

(3.44)

In this definition, uref , pref , and ρref correspond to the typical (or reference) values of

radial velocity, pressure, and mass density, respectively, for the flow under consideration. In

this case, the leading term for the solution of both mass density and pressure is spatially

uniform but possibly time-dependent. The next-order correction describing nonuniformity

is of order ε2.

We now estimate ε for the initial motion of the gas. To estimate the typical values of

mass density and pressure, we use Eqs. (3.34) and (3.36), with R(t) = 0.980Rm, that leads

to pref = 1.1× 10−5p∞ and ρref = 5.7× 10−6ρ∞. The typical velocity can be estimated from

the velocity of the bubble using Eq. (3.33), by rewriting it in the energy form [58] and using

that pref ≪ p∞.

Ṙ(t) = −

√√√√2p∞
3ρ∞

((
Rm

R(t)

)3

− 1

)
(3.45)

Evaluating this expression at R(t) = 0.980Rm leads to uref = −0.20
√

p∞/ρ∞. Combining

these results, we obtain ε = −0.144 and ε2 = 0.021 ≪ 1. This indeed shows that the low

Mach number expansion for the motion of the gas should be reasonable and that the effects

of nonuniformity should be small, contradicting the observed numerical behavior.

We were not able to use the original all-Mach solver to obtain numerical results without

the issue of a region with small density appearing in the gas near the wall, and this led us

to consider an alternative approach. Motivated by the low Mach number expansion, which

should be accurate near the maximum radius, we assume that at all times the mass density

and the pressure inside the gas is uniform but time-dependent. Although at later times
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Figure 3.5: Implosion of an ideal gas xenon bubble in compressible water with ambient pres-

sure p∞ = 1 atm and ambient temperature T∞ = 293 K, with Rm/R0 = 10 and R0 = 2.2 µm.

The full hydrodynamic equations are solved for both the gas and the outside fluid starting

from the maximum radius Rm, where cavity is at rest. The numerical parameters are λ = 4,

∆r = Rm/512, and ∆tmax = (1/4)×10−5R0

√
ρ∞/p∞. The figure shows the solution at three

times t = 0.0, 1.0, 2.0, in units of R0

√
ρ∞/p∞, corresponding to (I), (II), (III), respectively.

Figures (a), (c), (e) show profiles of the average mass density, ρ, while (b), (d), (f) show the

average speed of sound, c. In (a)-(f), the red dashed line denotes the location of the cavity’s

wall at a given time. In (g), R(t) is shown.
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the cavity’s velocity increases by many orders of magnitude and such approximation would

start to fail, it allows us to consider the effects of compressibility of the outside fluid on

the collapse and bypass the mentioned numerical instability. Indeed, this is similar to the

incompressible solution given in Eqs. (3.32) and (3.33), where the pressure in the gas is

assumed to be uniform. However, such an approach does not allow us to directly capture

effects of nonuniformities in the gas, such as the formation of shock waves, but these could

be captured in the future by adding more terms in the low Mach number expansion solution

for the gas.

To numerically realize the uniform bubble approximation, during each time step we first

let the original all-Mach solver to perform all its procedures, such as solving Eq. (3.42) for

all r > 0, which includes the region with the gas. These procedures then also update the

location of the bubble, R(t), and its velocity, Ṙ(t). The value R(t) is found numerically by

Eq. (3.40), while Ṙ(t) is found by identifying the grid interval i with radial coordinates ri <

r < ri+1 = ri+∆r where R(t) is located, and estimating Ṙ(t) using the grid-centered average

radial velocity ui for this interval. Finally, before the time step is completed, we additionally

find all grid intervals i where fi = 0, which correspond to the interval being occupied only

by the gas. In all such grid intervals, according to our uniform bubble approximation, we

overwrite the values of mass density to be given by Eq. (3.34) and pressure to be given by

Eq. (3.36), both evaluated at the current radius R(t). Additionally, the velocity field in the

gas is rewritten according to the low Mach number result [74, 75].

ug(r, t) = Ṙ(t)
r

R(t)
(3.46)

To see how such an approximation influences numerical solutions, we consider the same

problem with the same physical and numerical parameters as the one we considered before

for a Rm/R0 = 10 collapse, which was previously solved using the original all-Mach solver

formulation. The results can be seen in Fig. 3.6, where we have enforced the region with low

mass density and high speed of sound to disappear. Additionally, the result at late times

is shown in Fig. 3.7, where one can observe that the numerical solution behaves well even

close to and after the minimum radius, where the collapse is the most rapid. For example,
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we can resolve the outgoing shock wave in the outside fluid that appears after reaching the

minimum radius at around t = 9.435R0

√
ρ∞/p∞.

In our simulations with the uniform bubble approximation, we also noticed that the

initial stage of the collapse is indistinguishable from the incompressible collapse. Because of

this, we introduce an additional approximation, where we start the bubble from a smaller

radius, in our calculations R = Rm/5. Then, the previously discussed initial conditions,

corresponding to the cavity starting at the maximum radius and from rest, are modified.

For the cavity’s wall, we take R(t = 0) = Rm/5 and Ṙ(t = 0) from Eq. (3.45), evaluated

at R(t = 0), where the approximation that the pressure in the gas is negligible compared

to p∞ is justified for strong collapses under consideration by Eq. (3.36). Using the uniform

bubble approximation, the initial values for the uniform mass density and pressure profiles

are given by Eqs. (3.34) and (3.36), while the velocity profile is given by the low Mach

solution in Eq. (3.46). As the motion of the outside fluid is still incompressible, the velocity

and pressure profiles are given by the incompressible solutions in Eqs. (3.31) and (3.32),

while the mass density profile is obtained by inverting the initial profile of pressure using the

equation of state given in Eq. (3.3).

Using the two introduced approximations: uniform gas in the bubble and starting the

calculation from R = Rm/5, we could obtain results for strong collapses, where Rm/R0 = 20,

as shown in Figs. 3.2 and 3.3. For the case of water shown in Fig. 3.2, the numerical

parameters are λ = 4, ∆r = R0/2
14 = R0/16384, and ∆tmax = (1/64) × 10−6R0

√
ρ∞/p∞.

For the case of liquid lithium shown in Fig. 3.3, the numerical parameters are λ = 8,

∆r = R0/2
13 = R0/8192, and ∆tmax = (1/64)×10−6R0

√
ρ∞/p∞. To produce the asymptotic

power-law solutions shown in Figs. 3.2 and 3.3, we used the form given in Eq. (3.1). For a

given n(γ) value, the constants A and tc were computed using two points R(t1) = 2Rmin and

R(t2) = 4Rmin from the obtained numerical result, where Rmin is the smallest radius value

in R(t).
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Figure 3.6: Implosion of an ideal gas xenon bubble in compressible water with ambient

pressure p∞ = 1 atm and ambient temperature T∞ = 293 K, with Rm/R0 = 10 and

R0 = 2.2 µm. The solution is obtained using the uniform bubble approximation and starts

from the maximum radius Rm, where the cavity is at rest. The numerical parameters are

λ = 4, ∆r = Rm/512, and ∆tmax = (1/4)× 10−5R0

√
ρ∞/p∞. The figure shows the solution

at three times t = 0.0, 1.0, 2.0, in units of R0

√
ρ∞/p∞, corresponding to (I), (II), (III), re-

spectively. Figures (a), (c), (e) show profiles of the average mass density, ρ, while (b), (d),

(f) show the average speed of sound, c. In (a)-(f), the red dashed line denotes the location

of the cavity’s wall at a given time. In (g), R(t) is shown.
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Figure 3.7: Implosion of an ideal gas xenon bubble in compressible water with ambient

pressure p∞ = 1 atm and ambient temperature T∞ = 293 K, with Rm/R0 = 10 and

R0 = 2.2 µm. The solution is obtained using the uniform bubble approximation and starts

from the maximum radius Rm, where the cavity is at rest. The numerical parameters are

λ = 4, ∆r = Rm/512, and ∆tmax = (1/4)× 10−5R0

√
ρ∞/p∞. The figure shows the solution

at three times t = 9.425, 9.435, 9.445, in units of R0

√
ρ∞/p∞, corresponding to (I), (II),

(III), respectively. Figures (a), (c), (e) show profiles of the average mass density, ρ, while

(b), (d), (f) show the average speed of sound, c. In (a)-(f), the red dashed line denotes the

location of the cavity’s wall at a given time. In (g), R(t) is shown.
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3.4 Conclusion

Our key interest in cavity collapse is driven by the singular manner in which it leads to

a spontaneous concentration of the energy density. The limitation of the extent to which

energy can be focused and especially the role of the compressibility of the fluid in controlling

this phenomenon is of particular interest. To isolate the issue of compressibility, we ignore

the effects of viscosity, surface tension, and mass transfer, which can be added later. A

standout feature of fluid compressibility is that for adiabatic equations of state, the collapse

approaches a finite-time singularity with an exponent that depends on the parameters in

this equation of state. Capturing this exponent using a computer simulation of fluid motion

is a key measure of whether one has a physically relevant theory of a strong collapse. This

problem has been specifically formulated and developed here.

First, we use the self-similar solution developed by Hunter to analyze water, and extend

the analytic results for the asymptotic behavior of an empty cavity collapse to a wide range

of compressible fluids described by the Tait-Murnaghan equation of state. Using the pro-

posed fit of our numerical data, one can readily apply our results for practical applications.

From the obtained quantitative results, we see that in the late stages of collapse, collapse

is faster if γ is larger. Therefore, selecting materials with high γ will facilitate achieving

higher levels of energy density focusing in a bubble. However, this result is true only in

the asymptotic regime, so the next goal was to understand whether such a regime can be

reached for the parameters found in experiments. Regardless of whether such a regime can

be reached experimentally, these results can also be used to check two-fluid numerical solvers

that use compressible Euler hydrodynamic equations by comparing the full solutions to the

asymptotic empty cavity result.

The approach to simulate the transition to the compressible asymptote is based on an

extension of the all-Mach solver available in the literature. Resolving the asymptotic ex-

ponent requires a strong collapse, which we have found is beyond the resolution of various

papers on cavity collapse. Indeed, inserting initial conditions that are sufficiently violent to

reach the asymptotic regime leads to strong anomalies in the simulation. For instance, a
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bubble starting out at the maximum radius after a very short time experiences an extremely

large speed of sound in the gas within the cavity, and an unphysical vacuum appears near

the boundary of the bubble wall - even though the wall is moving inward. To overcome this

issue, we have imposed the uniform bubble approximation, where at each step in the calcu-

lation the gas in the interior of the cavity has spatially uniform pressure and mass density

profiles, consistent with the ideal gas equation of state. In the future, one can alternatively

improve the solver by moving from a fixed grid to a grid with adaptive grid size, which might

allow for faster calculations and obtain a resolution that would avoid the mentioned issue

and accurately solve the full Euler equations for the gas in the cavity. Additionally, one can

consider higher-order terms for the low Mach number expansion of the motion of the gas,

which would allow for the inclusion of effects of nonuniformities that should be important

near the minimum radius.

Within our uniform bubble approximation, we have been able to compare the collapse

of a bubble surrounded by an incompressible fluid, a bubble in compressible water, and a

bubble in compressible liquid lithium. In each case, a strong collapse reaches the asymptotic

regime. The results for the radius and velocity of the cavity’s wall, as approaching the most

singular regions of motion, have been simulated at increasing levels of resolution and found

to converge to the analytically predicted asymptotes. These simulations also enabled the

calculation of the strong outgoing pulses that are launched by the implosion. The results

give us confidence that the effects of fluid compressibility have been captured and that the

method can be used to search for an optimal fluid in which bubble collapse would be the

most rapid. Our results can now also be coupled with a molecular dynamics simulation

where the peak internal temperature of the gas can be predicted.
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