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EPIGRAPH

In general, in life, it is about input with not knowing the outcome.

To invest EVERYTHING and not be sure what the outcome would be,

This is what makes life interesting∼

TT
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Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease account-

ing for about 10% of all congenital cardiac malformations. Due to improvements in surgical

technique, individuals with repaired TOF (rTOF) are surviving into adulthood but face residual

pulmonary regurgitation that can lead to adverse ventricular remodeling and, ultimately, heart

failure. Cardiovascular magnetic resonance (CMR) imaging is the gold standard for evaluation

in patients with rTOF, but the wealth of information available in CMR images is under-utilized.

We sought to use computational tools to extract atlas-based biomarkers of regional biventricular

shape and mechanics from standard of care CMR images to better aid clinical management
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of rTOF. Specifically, the aims of this dissertation were to 1) rapidly build biventricular shape

models from CMR data using machine learning; 2) formulate shape atlases from these models to

identify clinically meaningful shape variation within the population; and 3) construct biventricu-

lar biomechanics models to quantify shape marker relationships with differences in myocardial

mechanical properties. Herein we demonstrate a fully automated, end-to-end pipeline that can

robustly create biventricular shape models for the challenging anatomies present in rTOF. We

also discovered specific markers of biventricular shape that are better discriminators of clinical

prognosis than standard imaging indices. These markers of biventricular shape were also partial

determinants of systolic function and may also be surrogate measures for altered myocardial

contractility. Overall, patients with rTOF may benefit from routine atlas-based analyses of

biventricular shape and mechanics that can supplement clinical decision making and provide

insight into mechanisms underlying myocardial pathophysiology.
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Introduction

The wide-scale availability of large, heterogeneous patient datasets brings new opportu-

nities to tackle complex problems in clinical medicine. In the field of cardiology, advances in

cardiovascular imaging have the potential to enable more quantitative approaches to diagnosis,

surgical planning, and medical therapies, but much of the information in cardiac imaging data

goes under-utilized by routine clinical assessment methods. In diagnostics, cardiac magnetic

resonance (CMR) imaging is not routine in acquired heart diseases but is common in congenital

heart diseases (CHDs), where patients are often very young and repeated exposure to ionizing

radiation is contraindicated. Improved availability of clinical datasets for research is accelerating

the intersection of medicine and computational science, fostering collaborations within and

between the biomedical sciences, computational sciences, and clinical communities. Through

these collaborations, anecdotal and empirical clinical practice is evolving towards evidence-based

precision medicine. In this chapter, we provide background on tetralogy of Fallot (TOF), the

most common form of cyanotic CHD, and discuss the breadth of clinical challenges and research

strategies related to the clinical management of individuals with TOF.

0.1 Tetralogy of Fallot

Tetralogy of Fallot is the most common cyanotic CHD occurring in approximately 4-5 per

100,000 live births and accounting for about 7-10% of all congenital cardiac malformations [1, 2].

The anatomy of TOF, which is composed of four defects including an overriding aorta, pulmonary

valve stenosis, a ventricular septal defect (VSD), and right ventricular (RV) hypertrophy, was
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extensively described by the French physician Étienne-Louis Fallot in 1888 [3]. There are several

different phenotypes of TOF that include additional anatomical abnormalities, such as TOF with

pulmonary atresia or TOF with double outlet right ventricle. These phenotypes are much more

severe and may require different management and treatment strategies. In this overview and in

the studies presented in this dissertation, we focus on the “classic” TOF shown in Figure 0.1.

0.2 Surgical Management

The surgical approach to TOF repair has evolved considerably since it was first described

by Lillehei et al. in 1955 [4], but the primary objectives of closing the VSD and widening the

narrowed pulmonary outflow tract remain the same. Historically, surgical repair was conducted

via a ventriculotomy approach with aggressive right ventricular outflow tract (RVOT) obstruction

relief. However, follow-up studies of these initial operations showed that residual lesions from

this approach were common and resulted in late morbidity and mortality [5, 6, 7, 8]. In the modern

era, surgical repair is conducted via a transatrial or transatrial-transpulmonary approach to try and

preserve competence of the pulmonary valve with acceptance of some degree of residual RVOT

obstruction. Follow up studies of these operations demonstrated that this approach has excellent

long-term outcomes [9, 10, 11]. In both of these cases, the widening of the narrowed pulmonary

outflow tract is commonly achieved by performing a transannular patch repair. However, more

recently, other techniques have been used to either preserve pulmonary valve competence, such

as through pulmonary valvuloplasty [12, 13], or replace the pulmonary valve entirely, including

implantation of a monocusp valve [14], a valved right ventricle-to-pulmonary artery conduit

[15, 16], or a homograft valve [16]. Typically, complete intracardiac repair is performed in the

first year of life; however, in cases where the neonate is unable to undergo complete repair, a

palliative systemic-to-pulmonary artery shunt is placed to allow time for the pulmonary artery to

grow before conducting complete repair at a later time [17].
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0.3 Consequences of Repair

Due to these advancements in surgical technique and perioperative care, complete surgical

repair of TOF has resulted in a twenty-five-year mortality rate of only 5% [18], and there is now a

large and growing population of adults with repaired TOF (rTOF) who require lifelong specialized

medical care [19, 20]. This care includes monitoring for long-term sequelae, including pulmonary

regurgitation (PR), that can lead to RV volume overload [21, 22, 23]. Over time, chronic

pulmonary valve insufficiency and RV volume overload result in adverse RV remodeling and

declining RV and left ventricular (LV) function that are precursors to exercise intolerance

and arrhythmias [24, 25]. If the volume load is not eliminated or reduced, RV compensatory

mechanisms may eventually fail leading to heart failure and sudden cardiac death [26]. As the

adult rTOF population ages, the incidence of heart failure increases, but the characteristics of

heart failure in rTOF significantly differ from those in commonly acquired heart failure [26], and

may go unrecognized [27].

0.4 Pulmonary Valve Replacement

The strategy for preserving RV function in rTOF relies on surgical or transcatheter

pulmonary valve replacement (PVR) to restore pulmonary valve competence and reduce RV

volume overload [28]. Ideally, the optimal timing of PVR must strike a balance between being

timed early enough to prevent irreversible adverse remodeling, but late enough to reduce the

number of re-interventions and potential surgical complications [29]. Because of the difficulties

involved in assessing and predicting progressive RV dysfunction, however, the optimal timing of

PVR is controversial. The European Society of Cardiology, the Canadian Cardiovascular Society,

and the American College of Cardiology / American Heart Association provide recommendations

on indications for performing PVR [30, 31, 32], but they are largely qualitative in nature without

consensus characterizations, e.g. moderate to severe RV dysfunction, with few quantitative

descriptors based on global measures of cardiac mass/volume, e.g. RV end-diastolic volume
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index greater than 170 mL/m2. Other global measures of cardiac function, including RV mass-

to-volume ratio and RV end-systolic volume index, have also been proposed as thresholds

for predictors of outcomes [33]. These guidelines differ between recommending institutions,

however, and have several limitations including that they neglect differences between genders

and do not account for age differences since the time of initial repair [34], which has since shifted

to earlier timepoints in current clinical practice. Therefore, it stands to reason that the decision

and timing of PVR would greatly benefit from more detailed and mechanistic-based criteria.

Additionally, as RV-LV interactions may play an important role in physiology and prognosis

[35, 36], incorporating a quantitative biventricular assessment would be beneficial.

0.5 Clinical Assessment

CMR imaging is the gold standard for evaluation in patients with rTOF, enabling detailed

regional analysis of geometry and function [37, 38]. In spite of the wealth of information

available from a single CMR image dataset, its value towards clinical decision-making has

limitations. Assessment of medical image data requires specialized technical personnel, accurate

and reliable software to analyze images, and time to perform the analysis and interpret the results.

Additionally, current standards for the quantitative assessment of cardiac structure and function

have been under-utilized for prognostic purposes. It is clear that clinical practice surrounding the

treatment and management of rTOF could benefit from the translation of computational tools

that: 1) accelerate the process of extracting relevant information from image data; 2) condense

complex cardiac features into interpretable and quantifiable measures; and 3) provide new insight

into disease mechanisms and clinical outcome predictors.

0.6 Aims of the Dissertation

In this dissertation, we ask the question: Can we discover novel atlas-based biomarkers

of regional biventricular shape and mechanics from standard of care CMR images that are
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better predictors of clinical prognosis than standard imaging indices and that provide a deeper

understanding of biventricular remodeling patterns and mechanisms in rTOF? In order to address

this question, we use computational tools, i.e. machine learning models, statistical shape models,

and finite element biomechanics models, to extract, identify, and quantify salient features

of biventricular remodeling and assess their prognostic value. Specifically, the goals of this

dissertation were to 1) extract regional morphological information from CMR data to rapidly

build biventricular shape models; 2) formulate shape atlases from these models to identify

clinically meaningful shape variation within the population; and 3) construct biventricular

biomechanics models to quantify shape marker relationships with differences in myocardial

mechanical properties. The overall aim of this dissertation was to demonstrate the clinical utility

of computational modeling and atlas-based analyses for aiding clinical management of rTOF

and providing insight into disease mechanisms. Ultimately, we hope this precision medicine-

based approach can serve as a valuable clinical tool that can improve diagnosis, prognosis, and

treatment of individuals with TOF and other cardiac diseases.
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Figure 0.1. Anatomy of tetralogy of Fallot.
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Chapter 1

A Deep Learning Approach for Fully Aut-
omated Cardiac Shape Modeling in Tetra-
logy of Fallot

1.1 Abstract

Cardiac shape modeling is a useful computational tool that has provided quantitative

insights into the mechanisms underlying dysfunction in heart disease. The manual input and time

required to make cardiac shape models, however, limits their clinical utility. Here we present

an end-to-end pipeline that uses deep learning for automated view classification, slice selection,

phase selection, anatomical landmark localization, and myocardial image segmentation for the

automated generation of three-dimensional, biventricular shape models. With this approach,

we aim to make cardiac shape modeling a more robust and broadly applicable tool that has

processing times consistent with clinical workflows. Cardiovascular magnetic resonance (CMR)

images from a cohort of 123 patients with repaired tetralogy of Fallot (rTOF) from two internal

sites were used to train and validate each step in the automated pipeline. The complete automated

pipeline was tested using CMR images from a cohort of 12 rTOF patients from an internal site and

18 rTOF patients from an external site. Manually and automatically generated shape models from

the test set were compared using Euclidean projection distances, global ventricular measurements,

and atlas-based shape mode scores. The mean absolute error (MAE) between manually and
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automatically generated shape models in the test set was similar to the voxel resolution of the

original CMR images for end-diastolic models (MAE=1.9±0.5mm) and end-systolic models

(MAE=2.1±0.7mm). Global ventricular measurements computed from automated models were

in good agreement with those computed from manual models. The average mean absolute

difference in shape mode Z-score between manually and automatically generated models was

0.5 standard deviations for the first 20 modes of a reference statistical shape atlas. Using deep

learning, accurate three-dimensional, biventricular shape models can be created reliably. This

fully automated end-to-end approach dramatically reduces the manual input required to create

shape models, thereby enabling the rapid analysis of large-scale datasets and the potential

to deploy statistical atlas-based analyses in point-of-care clinical settings. Training data and

networks are available from cardiacatlas.org.

1.2 Background

Advances in computational medicine have enabled more quantitative approaches to

characterizing ventricular shape and remodeling in individuals with heart disease. One such

approach is the use of cardiac shape modeling to condense complex, multi-dimensional data

from standard of care cardiovascular magnetic resonance (CMR) images into statistical atlases

of cardiac structure and function [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. These

atlases are composed of interpretable shape and wall motion features that can be important

quantitative biomarkers of patient status and outcome and, in turn, aid in prognosis and treatment

of disease.

To extract the relevant features of cardiac morphology that are used to build these

statistical atlases, several steps are involved (Figure 1.1). Traditionally, most of these have been

performed manually, requiring a human analyst to identify relevant view and slice information

from a raw CMR image dataset, identify end-diastolic (ED) and end-systolic (ES) phases in

the cardiac cycle, label anatomical features such as the left ventricular (LV) apex and valvular
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insertion points, and trace endocardial and epicardial contours. This information can then be

collated and processed to build three-dimensional, biventricular shape models, including all four

valves (aortic, pulmonary, mitral, tricuspid), and used to build atlases of ED, ES, or systolic

wall motion (ES-ED) using principal component analysis. Semi-automated methods for image

segmentation have been developed that take advantage of guide-point modeling [53, 54, 55, 56],

and more recent efforts have focused on using deep learning (e.g., CNNs, FCNs, U-nets, and

RNNs) to completely automate image segmentation [57, 58]. Fully manual and even semi-

automated techniques, however, are time-consuming and require significant operator expertise to

achieve an acceptable level of accuracy. While fully automated methods have made advances in

accuracy, they are prone to error for challenging regions of the heart such as the right ventricle

(RV) and the complex anatomies of congenital heart disease (CHD) patients.

With improved availability of large, heterogenous clinical datasets and manually anno-

tated models for reference, the major steps involved in constructing three-dimensional, biventric-

ular shape models from raw CMR image datasets for use in statistical atlas-based analyses can

be automated. Herein, we detail the use of deep learning for automated view classification, slice

selection, phase selection, anatomical landmark localization, and myocardial image segmenta-

tion that together provide an end-to-end pipeline for cardiac shape modeling. Moreover, we

demonstrate this approach in a multi-institutional, international cohort of patients with repaired

tetralogy of Fallot (rTOF) — a patient population with particularly challenging anatomy. The

integration of these steps in an automated fashion can significantly reduce the manual input

and time required to create shape models, which has been a significant barrier to the clinical

application of atlas-based analyses to patient management.
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1.3 Methods

1.3.1 Study Population and Data Acquisition

This study used deidentified, retrospective CMR images of patients with repaired tetralogy

of Fallot (rTOF) from three clinical centers (Rady Children’s Hospital, San Diego, CA, US;

The Center for Advanced Magnetic Resonance Imaging, Auckland, NZ; and Evelina Children’s

Hospital, London, UK) with approval from local institutional review boards via waiver of

informed consent (UCSD IRB 201138; HDEC 16/STH/248; and 21/LO/0650, respectively).

Labeled CMR images from 123 rTOF patients were contributed from the Cardiac Atlas Project

(CAP) database (https://www.cardiacatlas.org) [59] from San Diego and Auckland (internal sites)

and were used as the training/validation set to optimize each step in the automated pipeline.

A separate test set composed of labeled CMR images from 30 rTOF patients from San Diego

(internal site) and London (external site) was used to evaluate the output of the automated

pipeline. A flow-diagram summarizing the datasets employed and how they were used to develop

the automated pipeline is shown in Figure 1.2. Summary characteristics of the study participants

in the training/validation and test sets are shown in Table 1.1. All patients underwent functional

CMR examination within the scope of standard clinical practice. CMR acquisition data for study

participants in the training/validation and test sets are shown in Table 1.2.

1.3.2 Automated Cardiac Shape Modeling Pipeline Overview

The automated cardiac shape modeling pipeline was developed as a series of five steps

for view classification, slice selection, phase selection, anatomical landmark localization, and

myocardial image segmentation, respectively. The view classification network was designed to

take a raw CMR image dataset and classify views as either two-chamber left (2CH LT), two-

chamber right (2CH RT), three-chamber (3CH), four-chamber (4CH), left ventricular outflow

tract (LVOT), right ventricular outflow tract (RVOT), short axis (SA), or other. After view

classification, optimal and non-optimal slices in the SA stack were characterized through the

10



slice selection network. Optimal slices were defined as SA slices that range from the LV apex

to the mitral and tricuspid base planes, while non-optimal slices were defined as SA slices

either below the LV apex or above the mitral and tricuspid base planes. ED and ES phases

were then identified from selected SA slices through the phase selection network. ED and

ES phases from the 3CH, 4CH, RVOT, and selected SA slices were then provided as inputs

to the anatomical landmark localization networks to identify the LV apex, RV inserts, and

mitral, tricuspid, aortic, and pulmonary valve inserts on corresponding views. These anatomical

landmarks are required for use with previously developed mesh fitting software, as described

below. Finally, ED and ES phases from the 2CH LT, 2CH RT, 3CH, 4CH, RVOT, and selected SA

slices were segmented using the myocardial image segmentation network from which contour

points were extracted for the LV and RV endocardium, epicardium, and septum. The LV papillary

muscles and RV trabeculae were included in the blood pool. The extracted contour points and the

anatomical landmark points were then converted from image to model coordinates using an affine

transformation and fit to a previously developed biventricular subdivision surface template mesh

[60, 61] via diffeomorphic non-rigid registration for contour points and landmark registration for

anatomical landmark points. An overview of the automated cardiac shape modeling pipeline is

detailed in Figure 1.1. Each step in the pipeline was designed to give the user the ability to make

manual corrections if necessary.

1.3.3 Technical Specifications, Network Architectures, and Optimization

For each step in the automated pipeline (view classification, slice selection, phase selec-

tion, anatomical landmark localization, and myocardial image segmentation), we report technical

specifications regarding the dataset and preprocessing, network architecture, and optimization

and evaluation. For the development of the view classification, slice selection, phase selection,

and anatomical landmark localization networks, we utilized Python v3.6.15 and Tensorflow

v2.4 on a machine with an NVIDIA Tesla V100 GPU. For myocardial image segmentation, we

utilized Python v3.7.10 and PyTorch v1.8.1 on a machine with an NVIDIA GeForce RTX 3090
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GPU. The 123 cases from the CAP database (https://www.cardiacatlas.org) were randomly split

at the patient level into 111 training and 12 validation cases (90-10 percent split), with roughly

equal cases from each internal site, San Diego and Auckland, in each set (Figure 1.2). For each

network detailed below, training cases with appropriate data were used to optimize the network

weights, while validation cases with appropriate data were used for hyper parameter tuning and

to estimate model performance.

1.3.4 View Classification

Dataset and Preprocessing

Of the 111 cases in the training set, 93 had complete raw CMR studies available (n=18

excluded) and were included in the training of the view classification network. Similarly, 8

of the cases in the validation set had complete raw CMR studies available (n=4 excluded) and

were used for validation. Each CMR series was manually classified into one of eight possible

view categories: 2CH LT, 2CH RT, 3CH, 4CH, LVOT, RVOT, SA, or other. Prior to training,

each CMR image was converted to an 8-bit integer RGB image and resized to 224 x 224 pixels

using bicubic interpolation. Images were normalized by zero-centering each color channel with

respect to the ImageNet dataset, without scaling. To improve model generalizability, real-time

data augmentations were utilized during training including random rotations (+/- 10%), random

zooms (+/- 20%), and random translations (+/- 10%).

Network Architecture

For view classification, the convolutional neural network (CNN) architecture ResNet50

was utilized. Feature extraction layers were imported with pretrained weights from the ImageNet

dataset. Classification layers consisted of a 2D global average pooling layer followed by a fully

connected dense layer with eight output classes and softmax activation.
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Optimization and Evaluation

Prior to training, the pretrained weights in the feature extraction layers were frozen. The

classification layers were then optimized with a sparse categorical cross entropy loss function for

a total of 25 epochs using a batch size of 16 and a stochastic gradient descent optimizer with a

learning rate of 0.0001 and momentum of 0.9. Next, the feature extraction layer weights were

unfrozen, the learning rate was decreased by a factor of 2, and training was continued for an

additional 50 epochs. Following training, view classification performance was assessed using

precision, recall, and F1-scores.

1.3.5 Slice Selection

Dataset and Preprocessing

All 111 cases in the training set and all 12 cases in the validation set had available SA

stacks and were included for the optimization of a SA slice selection network. SA slices were

split into two possible classifications: optimal and non-optimal. Optimal slices were defined

as slices that were manually selected for inclusion in the modeling process by users, which

typically range from the LV apex to the mitral and tricuspid base planes. Non-optimal slices were

defined as slices that were not included in the modeling process by the manual users. Of note,

not every slice between the apex and valve planes is required for modeling; as a result, there

was considerable variability in which slices were selected as optimal between cases and users.

Prior to training, each CMR image was converted to an 8-bit integer RGB image and resized

to 224 x 224 pixels using bicubic interpolation. Images were normalized by zero-centering

each color channel with respect to the ImageNet dataset, without scaling. To improve model

generalizability, real-time data augmentations were utilized during training including random

rotations (+/- 30%), random zooms (+/- 20%), and random translations (+/- 10%).
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Network Architecture

For slice selection, the CNN architecture ResNet50 was utilized. Feature extraction

layers were imported with pretrained weights from the ImageNet dataset. Classification layers

consisted of a 2D global average pooling layer followed by a fully connected dense layer with

eight output classes and softmax activation.

Optimization and Evaluation

Prior to training, the pretrained weights in the feature extraction layers were frozen. The

classification layers were then optimized with a sparse categorical cross entropy loss function

for a total of 25 epochs using a batch size of 16 and a stochastic gradient descent optimizer

with a learning rate of 0.0001 and momentum of 0.9. Next, the feature extraction layer weights

were unfrozen, the learning rate was decreased by a factor of 2, and training was continued for

an additional 50 epochs. Following training, slice selection performance was assessed using

precision, recall, and F1-scores.

1.3.6 Phase Selection

Dataset and Preprocessing

All 111 cases in the training set and all 12 cases in the validation set were used to optimize

the phase selection network. To produce ground-truth labels, the ES phase was manually labeled

for each case using a mid-ventricular slice from the SA stack. The ES phase was determined

using the LV and defined as the phase when the LV cavity volume was at a minimum. This label

was used to produce a normalized Gaussian distribution centered at the ES phase, with a sigma

of 4. In this way, a numerical value was assigned to each phase of the cardiac cycle, increasing

to 1 during systole and decreasing to 0 during diastole.

Inputs consisted of SA slices ranging from apex to base. For each slice, CMR images

from the complete cardiac cycle were utilized, producing a 2D + time input with 30 phases.

Cases with less than 30 phases in the SA stack were zero-padded to maintain a consistent input
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size. Prior to training, each CMR image was converted to an 8-bit integer RGB image and resized

to 224 x 224 pixels using bicubic interpolation. Images were normalized by zero-centering

each color channel with respect to the ImageNet dataset, without scaling. To improve model

generalizability, real-time data augmentations were utilized during training, including resizing to

256 x 256 pixels and randomly cropping back to 224 x 224 pixels, random brightness adjustments

(+/- 10%), and random contrast adjustments (+/- 5%). Inputs were also randomly shuffled along

the time axis, such that the ground-truth ES phase could occur at any time point in the 30-phase

input.

Network Architecture

The phase selection network consisted of a CNN combined sequentially with a long

short-term memory (LSTM) network. This network was chosen based on previously published

cardiac phase selection networks [62, 63]. The CNN is used to extract image features, while

the LSTM encodes temporal information. For the CNN feature extractor, the CNN architecture

ResNet50 was utilized. Feature extraction layers were imported with pretrained weights from

the ImageNet dataset. The ResNet50 architecture was followed by two LSTM layers and two

fully connected dense layers.

Optimization and Evaluation

Prior to training, the pretrained weights in the feature extraction layers were frozen. The

LSTM layers were then optimized with a mean squared error loss function for a total of 75 epochs

using a batch size of 4 and a stochastic gradient descent optimizer with a learning rate of 0.0005

and momentum of 0.9. Next, the feature extraction layer weights were unfrozen and training was

continued for an additional 150 epochs. Following training, ES phase selection performance was

assessed using the average absolute frame difference (AAFD) between predictions and manual

labels.
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1.3.7 Anatomical Landmark Localization

Dataset and Preprocessing

All 111 cases in the training set and all 12 cases in the validation set were used to optimize

the anatomical landmark localization networks. From these cases, the 3CH, 4CH, RVOT, and

optimal SA slices were selected. Ground truth anatomical landmarks were manually placed

throughout the cardiac cycle for each view by an expert analyst using Cardiac Image Modeller

(CIM) software (Auckland, NZ) [64]. In the 3CH view, mitral valve inserts and aortic valve

inserts were labeled. In the 4CH view, mitral valve inserts, tricuspid valve inserts, and the LV

apex were labeled. In the RVOT view, pulmonary valve inserts were labeled. In the SA slices,

RV inserts were labeled. Manual point labels were converted to a normalized Gaussian heat map

label with a sigma of 12 for all images. Gaussian heat maps were utilized based on recently

published literature on cardiac landmark localization [65].

For each cardiac view, inputs consisted of 2D images throughout the cardiac cycle.

To provide temporal information, the input for each time point t was concatenated with 2D

images from t-2, t-1, t+1, and t+2, producing a final 2D + time input with 5 channels. Prior to

training, the inputs were resized to 256 x 256 pixels using bicubic interpolation and normalized

to have a minimum of 0 and maximum of 1. To improve model generalizability, real-time data

augmentations were utilized during training, including random rotations (+/- 10%), random

zooms (+/- 20%), random translations (+/- 10%), random contrast adjustments (+/- 15%), the

addition of Gaussian noise, and histogram equalizations.

Network Architecture

The anatomical landmark localization networks utilized the U-net architecture, an

encoder-decoder with skip connections between mirrored layers in the encoder and decoder

stacks [66]. Scaled exponential linear units (SELU) were utilized for activation, with a LeCun

normal kernel initializer [67]. An individual U-net network was optimized for each cardiac view,

with the number of output channels determined by the number of landmarks present in each
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view.

Optimization and Evaluation

For each cardiac view, a U-net network was optimized with a mean squared error loss

function for a total of 150 epochs using a batch size of 40 and a stochastic gradient descent

optimizer with a learning rate of 1e-5 and momentum of 0.9. Following training, performance

for each network was assessed using absolute distance errors between predicted and ground truth

landmarks. For insertion points, the angulation error between predicted and ground truth valve

and septal planes was also measured.

1.3.8 Myocardial Image Segmentation

Dataset and Preprocessing

All 111 cases in the training set and all 12 cases in the validation set were used to optimize

the myocardial image segmentation networks. From these cases, the 2CH LT, 2CH RT, 3CH,

4CH, RVOT, and optimal SA slices were selected. Ground truth myocardial image segmentations

were generated from contours that were manually drawn at ED and ES for each view by an expert

analyst with greater than 10 years of cardiac modeling experience using Segment (Medviso,

Lund, Sweden) [68]. The LV papillary muscles and RV trabeculae were included in the blood

pool. In the 2CH LT view, the LV cavity and LV myocardium were labeled. In the 2CH RT and

RVOT views, the RV cavity and RV myocardium were labeled. In the 3CH, 4CH, and SA views,

the LV/RV cavity and LV/RV myocardium were labeled.

For each cardiac view, inputs consisted of 2D images at ED and ES. Prior to training,

inputs were cropped to their non-zero regions and normalized to have a minimum of 0 and

maximum of 1. To improve model generalizability, real-time data augmentations were utilized

during training, including random rotations (+/- 10%), random zooms (+/- 20%), random

brightness and contrast adjustments (+/- 15%), the addition of Gaussian noise and blur, gamma

correction, mirroring, and the simulation of low resolution.
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Network Architecture

The myocardial image segmentation networks utilized the nnU-net architecture, an

encoder-decoder with skip connections between mirrored layers in the encoder and decoder

stacks [69]. This architecture was chosen based on the results of prior multi-vendor, multi-disease

myocardial segmentation challenges [70]. Leaky rectified linear units (ReLU) were utilized

for activation [71], with an instance normalization initializer [72]. An individual nnU-net was

optimized for each cardiac view, with the number of output channels determined by the number

of cavity and myocardium labels present in each view.

Optimization and Evaluation

For each cardiac view, an nnU-net network was optimized with a sum of cross-entropy

and Dice loss function [73] for a total of 100 epochs using a batch size of 10 and a stochastic

gradient descent optimizer with an initial learning rate of 0.01 and Nesterov momentum of 0.99.

The learning rate was decayed throughout training following the ‘poly’ learning rate policy

[74]. Following training, performance for each network was assessed using Dice scores [75]

and Hausdorff distances [76] between predicted and ground truth contours using a single fold

validation.

Interobserver Analysis

To further characterize the performance of the nnU-net segmentations, an interobserver

analysis was conducted to determine the variation in myocardial segmentations between two

human observers. In this analysis, two expert analysts, each with greater than 10 years of cardiac

modeling experience, manually drew contours of the RV and LV myocardium and blood pool at

ED and ES for each cardiac view using Segment (Medviso, Lund, Sweden) [68]. This analysis

was performed for a subset of 36 cases from the training and validation sets. Dice scores between

contours drawn by the two analysts were calculated and compared to the Dice scores achieved

by the nnU-net network.
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1.3.9 Automated Cardiac Shape Modeling Pipeline Testing

The automated cardiac shape modeling pipeline was tested by comparing manually and

automatically generated shape models from study participants in the test set. Automatically

generated models were first aligned with manually generated models using a rigid registration.

Euclidean projection distances were then calculated between points on the automatically gen-

erated models and surfaces on the manually generated models, which was the metric used to

compute the mean absolute error (MAE) in a global and regional error analysis. Global ven-

tricular measurements were also compared between the manually and automatically generated

models by computing LV and RV volumes and masses at ED and ES by numerical integration of

mesh volumes. Lastly, manually and automatically generated models were projected onto an

ED/ES shape atlas constructed from the shape models in the training/validation set and computed

Z-scores were compared.

1.3.10 Statistical Analysis

Statistical analysis was carried out using the SciPy Python library (https://www.scipy.org).

Summary characteristics of study participants in the training/validation and test sets are reported

as mean ± standard deviation or as median (interquartile range), depending on the distribution,

for continuous variables and as the count for categorical variables. Normality was tested using

Shapiro-Wilks. Differences between these groups were assessed using two-sample t-tests or

Wilcoxon rank-sum tests, depending on the distribution, for continuous variables and Pearson’s

chi-squared tests for categorical variables. The AAFD between predicted and manual labels in

the validation set was compared to the AAFD between two manual analyst labels in the validation

set using a two-sided t-test. Differences in global ventricular measurements for manually and

automatically generated shape models in the test set were assessed using paired-sample t-tests.

The distribution of Z-scores for the manually and automatically generated shape models were

assessed by a two-sample Kolmogorov-Smirnov test with a significance level of 0.05 and a
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Holm-Bonferroni correction for multiple comparisons.

1.4 Results

1.4.1 Individual Network Performance

View Classification

Precision, recall, and F1-scores for view classification predictions on the validation set

are shown in Table 1.3. Cardiac views were reliably classified.

Slice Selection

Precision, recall, and F1-scores for slice selection predictions on the validation set are

shown in Table 1.4. SA slices were reliably classified.

Phase Selection

The AAFD between predicted ES phase labels and manual labels in the validation set is

shown in Table 1.5. The AAFD between two manual analyst labels in the validation set is shown

for reference. There was no significant difference between the AAFD between the predicted and

manual labels and the AAFD between interobserver labels, as assessed by a two-sided t-test with

a significance level of 0.05.

Anatomical Landmark Localization

Absolute distance errors between predicted and ground truth anatomical landmarks in the

validation set are shown in Table 1.6. For insertion points, the angulation error between predicted

and ground truth valve and septal planes is also shown. Representative anatomical landmark

localization predictions are shown in Figure 1.3. Anatomical landmarks were reliably localized.

Myocardial Image Segmentation

Dice scores and Hausdorff distances between predicted and ground truth contours in

the validation set are shown in Table 1.7. Representative myocardial image segmentation
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predictions are shown in Figure 1.4. Segmentation performance was found to be highly reliable

and comparable to the interobserver segmentation error between two expert manual analysts, as

shown in Table 1.8.

1.4.2 Automated Cardiac Shape Modeling Pipeline Results

Comparison with Manual Models

A representative output of the cardiac shape modeling pipeline is shown in Figure 1.5,

which depicts the myocardial contours and anatomical landmark points that are generated for each

cardiac view that are then fit to a subdivision surface template mesh to build a three-dimensional,

biventricular shape model. In order to assess the performance of the automated pipeline, the

MAE between manually and automatically generated models in the test set was computed. This

was done on a global and regional basis for ED and ES models as shown in Table 1.9. The

overall error of the automated models is within voxel resolution of the original CMR images for

ED models and approximately at voxel resolution for ES models (Table 1.2). In order to assess

systematic inward or outward surface displacement of the automated models compared to the

manual models, the average algebraic Euclidean projection distance for each coordinate point

in the biventricular surface mesh was computed and is shown in Figure 1.6. Global ventricular

measurements including volume and mass metrics were also compared between manually and

automatically generated models in the test set. A summary of the global ventricular measurements

computed in manually and automatically generated models is shown in Table 1.10, along with

the differences and correlations. Figure 1.7a shows regression plots and Figure 1.7b shows

Bland-Altman plots between global ventricular measurements for manually and automatically

generated models.

Pipeline Timing and Manual Intervention Requirements

For a subset of the test set (n=12), the time required to generate cardiac shape models

using the automated pipeline was recorded. Statistics were recorded at multiple institutions for
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multiple users. Shape models were generated in 5.1 ± 2.8 minutes on average per model (range

2.5 – 10.2 minutes). This represents a significant time savings over manual approaches, which

typically take 60-90 minutes on average for a single model. For this subset of cases, the number

of times manual override was required was also recorded. The automated pipeline was designed

so the user could manually override the automated predictions at each step if necessary. Manual

override was only required during the landmark localization step, with interventions occurring

for 11.4% of landmarks. The most frequently corrected predictions were for the aortic valve

insertions (40% of corrections) and pulmonary valve insertions (40% of corrections). A summary

of the necessary manual overrides can be seen in Table 1.11.

Evaluation of Useability for Statistical Shape Modeling

In order to assess the robustness of the automated cardiac shape modeling pipeline for

statistical shape modeling applications, the manually and automatically generated models in

the test set were projected onto an ED/ES shape atlas derived from shape models in the train-

ing/validation set. The mean absolute difference in Z-scores between manually and automatically

generated models was then computed for the first 20 modes of the atlas (Figure 1.8), which

explain approximately 87% of the shape variation in the training/validation set cases. The mean

absolute difference in Z-score was below one standard deviation for each of the first 20 modes,

and the average mean absolute difference in Z-score for the first 20 modes was 0.5 standard

deviations. The distribution of Z-scores for the manually and automatically generated models

were not significantly different for each of the first 20 modes, except mode 8, as assessed by a

two-sample Kolmogorov-Smirnov test with a significance level of 0.05 and a Holm-Bonferroni

correction for multiple comparisons.

1.5 Discussion

In this study, we demonstrate the use of deep learning for automated view classification,

slice selection, phase selection, anatomical landmark localization, and myocardial image seg-
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mentation that together provide an end-to-end pipeline for cardiac shape modeling. While others

have developed automated cardiac shape modeling pipelines [77, 78, 79, 80], the pipeline pre-

sented herein is the first, to our knowledge, to reliably generate three-dimensional, biventricular

shape models, including all four valves, from a raw CMR image dataset for the challenging

anatomies seen in rTOF. Overall, the automated pipeline performed well on an independent,

multi-institutional test set that included a variety of CMR scanners, including several models

that were not included in the training/validation set. (Figure 1.2 and Table 1.2).

The highest errors between the automated and manual models were observed around the

valve planes (Table 1.9 and Figure 1.6). This was probably due to the high sensitivity of the

fitting of the biventricular subdivision surface template mesh to the location of the valve insertion

points, which are extremely sparse compared with the contour points used to fit the LV and RV

endocardial and epicardial surfaces. Even with manually generated biventricular shape models,

slight deviations in the locations of the valve insertion points can result in significant differences

in the valvular anatomy of the fitted models.

With this new automated cardiac shape modeling pipeline, which includes a manual

confirmation or override for each step of the workflow, a single cardiac shape model can be

made in 5.1 ± 2.8 minutes on average, whereas manual models generally require 60-90 minutes

per model for an expert analyst. This dramatic reduction in processing time can be useful for

estimating global ventricular volumes and masses, for which the automatically generated models

demonstrated good agreement with the manual models (Table 1.10 and Figure 1.7). Although

differences between automated and manual models reached statistical significance for several

global measurements, the magnitude of these differences were small and unlikely to be clinically

significant. Moreover, these differences and correlations were similar to previously reported

manual interobserver errors and differences between existing clinical techniques, such as the

error between cardiac MRI and echocardiography [81, 82]. The reduction in processing time

can also significantly increase the throughput and clinical translation of more specific atlas-

based analyses of biventricular shape. The automatically generated models were able to capture
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relevant features of regional ED/ES shape variation to within 0.5 standard deviations on average

per mode compared with the manually generated models (Figure 1.8). With this automated

workflow, the analysis of large retrospectively collected datasets, such as the INDICATOR cohort

[83], can be rapidly achieved, yielding larger and more comprehensive statistical atlases for

shape, biomechanics, and electrophysiology analyses with more statistical power when assessing

relationships with independent measures of outcome. Additionally, with an end-to-end pipeline

that has processing times more consistent with clinical workflows, the ability to deploy atlas-

based analyses in a point-of-care clinical setting to quantify patient-specific anatomy, function,

or risk relative to the population would be greatly enhanced.

1.5.1 Limitations

In the current iteration of the pipeline, the anatomical landmark localization and my-

ocardial image segmentation networks were only trained on cardiac shape models created at

ED and ES. This was done because reference manual anatomical landmarks and segmentations

for training/validation were only available at ED and ES. This can readily be extended to other

timepoints, however, by validating the automated model performance on timepoints throughout

the cardiac cycle compared to manual models derived at these same timepoints. Doing so would

enable the quantification of dynamic information throughout the cardiac cycle and enable the

creation of statistical atlases with much greater temporal resolution. This could assist in the

analysis of the effects of ventricular electrophysiologic activation (e.g. bundle branch block,

pacing, large scars or patches) on shape and biomechanics. Since the current pipeline was

designed as a series of five steps, each of the networks can be improved upon independently of

each other. This modularity will be especially useful for extending the automated pipeline to

other CHDs with two ventricle morphology, such as coarctation of the aorta, because testing,

performance assessment, and any required network retraining will need to be done only on

specific steps as needed.

In this study, the ES phase was selected based on the LV cavity in a mid-ventricular SA
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slice. For some patients, the presence of right bundle branch blocks or other dyssynchrony may

necessitate the selection of independent LV and RV phases. The demonstration of statistical

shape modeling presented in this manuscript requires temporal synchronization and the selection

of a single ED and ES phase, which may lead to inaccuracies in the RV in the setting of a

right bundle branch block. However, the pipeline provides the option of manually selecting

independent LV and RV phases, allowing the user to select the option most appropriate for their

analyses.

1.6 Conclusions

Through the use of deep learning, we were able to automate all of the major steps involved

in constructing three-dimensional, biventricular shape models including view classification, slice

selection, phase selection, anatomical landmark localization, and myocardial image segmentation.

To our knowledge, this is the first fully automated, end-to-end pipeline that can robustly create

shape models for the challenging anatomies present in rTOF. With this approach, we can greatly

reduce the manual input required to create shape models enabling the rapid analysis of large-

scale datasets and the potential to deploy statistical atlas-based analyses in point-of-care clinical

settings.
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Table 1.1. Summary characteristics of study participants in the training/validation and test sets.

Characteristic Training/Validation Set (n=123) Test Set (n=30) p-value

Sex (m/f) 73/50 15/15 0.35
Age (y) 17 (12-26) 22 ± 13 0.47
Height (cm) 161 (150-168) 163 (155-176) 0.07
Weight (kg) 58 ± 25 63 ± 18 0.31
BSA (m2) 1.57 ± 0.42 1.72 (1.52-1.82) 0.27
LV EDV (mL) 128 ± 44 119 ± 36 0.31
LV ESV (mL) 66 (51-83) 60 (47-70) 0.19
LV SV (mL) 59 ± 21 57 ± 16 0.52
LV EF (%) 48 (41-52) 48 ± 7 0.23
LV Mass (g) 118 ± 35 111 ± 33 0.28
RV EDV (mL) 205 ± 67 197 ± 51 0.54
RV ESV (mL) 127 ± 46 121 ± 37 0.48
RV SV (mL) 78 ± 28 76 ± 23 0.78
RV EF (%) 38 ± 7 39 ± 7 0.72
RV Mass (g) 58 (43-77) 53 ± 24 0.16

Data are reported as mean ± standard deviation or as median (interquartile range), depending on the distribution, for
continuous variables and as the count for categorical variables. Normality was tested using Shapiro-Wilks.
Differences between the training/validation set and test set were assessed using two-sample t-tests or Wilcoxon
rank-sum tests, depending on the distribution, for continuous variables and Pearson’s chi-squared tests for
categorical variables. BSA: body surface area; LV: left ventricular; RV: right ventricular; EDV: end-diastolic
volume; ESV: end-systolic volume; SV: stroke volume; EF: ejection fraction.
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Table 1.2. CMR acquisition data for study participants in the training/validation and test sets.

Parameter Training/Validation Set (n=123) Test Set (n=30)

Imaging
Flip Angle (°) 64 (15-80) 57 (45-81)
Phase Spatial Resolution (mm) 1.9 (0.9-3.0) 1.4 (0.5-2.1)
Frequency Spatial Resolution (mm) 1.6 (0.8-2.8) 1.4 (0.5-2.1)
Slice Thickness (mm) 7.1 (4.0-10.0) 7.7 (4.5-10.0)
Repetition Time (ms) 15.8 (2.6-48.7) 16.6 (2.7-60.5)
Echo Time (ms) 1.4 (1.1-3.3) 1.4 (1.1-1.8)

Magnetic Field Strength
1.5 Tesla 120 (98) 30 (100)
3 Tesla 3 (2) -

Manufacturer
Siemens 55 (45) 13 (43)
Philips Medical Systems 41 (33) 8 (27)
GE Medical Systems 27 (22) 9 (30)

Model
Avanto 55 (45) 3 (10)
Intera 41 (33) 8 (27)
Discovery MR450 14 (11) 3 (10)
Signa HDxt 10 (9) 1 (3)
Discovery MR750w 3 (2) -
Aera - 10 (33)
Achieva - 3 (10)
Ingenia - 2 (7)

Numerical data are reported as mean (range). Categorical data are reported as the count (percentage). CMR:
cardiovascular magnetic resonance.
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Table 1.3. Precision, recall, and F1-scores for cardiac view classification predictions on the validation set.

Cardiac View Precision Recall F1-score

2CH LT 0.88 0.94 0.91
2CH RT 0.96 0.95 0.96
3CH 0.38 0.83 0.52
4CH 0.85 0.92 0.89
LVOT 1.00 0.92 0.96
RVOT 0.78 0.79 0.79
SA 0.90 0.96 0.93
OTHER 0.97 0.89 0.93

2CH LT: two-chamber left; 2CH RT: two-chamber right; 3CH: three-chamber; 4CH: four-chamber; LVOT: left
ventricular outflow tract; RVOT: right ventricular outflow tract; SA: short axis.
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Table 1.4. Precision, recall, and F1-scores for SA slice selection predictions on the validation set.

SA Slice Optimality Precision Recall F1-score

Optimal 0.81 0.93 0.86
Non-optimal 0.96 0.87 0.91

SA: short axis.
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Table 1.5. AAFD between predicted ES phase labels and manual labels in the validation set. The AAFD between
two manual analyst labels in the validation set is shown for reference.

Predicted vs. Manual Interobserver p-value

AAFD 1.15 ± 1.02 1.39 ± 1.35 0.18

The AAFD is reported as mean ± standard deviation. AAFD: average absolute frame difference; ES: end-systolic.

30



Table 1.6. Anatomical landmark localization distance errors and valve and septal plane angulation errors in the
validation set.

Cardiac View and
Anatomical Landmark Distance Error (mm) Plane Angulation Error (°)

3CH View
MV Insert 1 7.1 ± 3.4 MV 14.3 ± 12.2
MV Insert 2 6.4 ± 3.3
AV Insert 1 10.8 ± 7.5 AV 19.5 ± 17.0
AV Insert 2 9.8 ± 7.5

4CH View
MV Insert 1 4.3 ± 2.6 MV 7.1 ± 5.7
MV Insert 2 6.0 ± 3.3
TV Insert 1 4.9 ± 2.7 TV 10.2 ± 13.1
TV Insert 2 5.0 ± 3.4
LV Apex 6.2 ± 3.6

RVOT View
PV Insert 1 13.6 ± 8.1 PV 48.7 ± 37.8
PV Insert 2 17.0 ± 10.4

SA View
RV Insert 1 5.9 ± 5.3 Septal 8.7 ± 13.5
RV Insert 2 5.0 ± 3.2

Distance and angulation errors are reported as mean ± standard deviation. 3CH: three-chamber; 4CH: four-chamber;
RVOT: right ventricular outflow tract; SA: short axis; LV: left ventricular; RV: right ventricular; MV: mitral valve;
AV: aortic valve; TV: tricuspid valve; PV: pulmonary valve.
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Table 1.7. Myocardial image segmentation Dice scores and Hausdorff distances in the validation set.

Cardiac View and Contour Dice Score Hausdorff Distance (pixels)

2CH LT View
LV cavity 0.96 ± 0.02 2.73 ± 1.04
LV myocardium 0.88 ± 0.06 2.94 ± 1.13

2CH RT View
RV cavity 0.97 ± 0.02 3.66 ± 2.40
RV myocardium 0.79 ± 0.12 4.88 ± 3.04

3CH View
LV cavity 0.96 ± 0.02 3.57 ± 1.68
LV myocardium 0.90 ± 0.03 4.25 ± 3.90
RV cavity 0.95 ± 0.02 2.90 ± 1.95
RV myocardium 0.76 ± 0.09 5.98 ± 6.28

4CH View
LV cavity 0.97 ± 0.01 2.57 ± 1.34
LV myocardium 0.90 ± 0.03 4.07 ± 3.12
RV cavity 0.96 ± 0.03 3.60 ± 2.73
RV myocardium 0.77 ± 0.12 3.74 ± 2.06

RVOT View
RV cavity 0.94 ± 0.03 4.05 ± 2.32
RV myocardium 0.78 ± 0.09 4.25 ± 2.48

SA View
LV cavity 0.94 ± 0.03 4.51 ± 3.05
LV myocardium 0.90 ± 0.02 5.40 ± 3.22
RV cavity 0.94 ± 0.02 4.50 ± 2.35
RV myocardium 0.78 ± 0.03 8.62 ± 3.94

Dices scores and Hausdorff distances are reported as mean ± standard deviation. 2CH LT: two-chamber left; 2CH
RT: two-chamber right; 3CH: three-chamber; 4CH: four-chamber; RVOT: right ventricular outflow tract; SA: short
axis; LV: left ventricular; RV: right ventricular.
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Table 1.8. Interobserver analysis results showing myocardial image segmentation Dice scores between two expert
analysts for a subset of the training and validation sets (n=36).

Cardiac View and Contour Dice Score

LA Views
LV cavity 0.94 ± 0.05
LV myocardium 0.83 ± 0.06
RV cavity 0.91 ± 0.12
RV myocardium 0.54 ± 0.13

SA View
LV cavity 0.94 ± 0.08
LV myocardium 0.83 ± 0.07
RV cavity 0.91 ± 0.06
RV myocardium 0.60 ± 0.12

Dices scores are reported as mean ± standard deviation. LA: long axis; SA: short axis; LV: left ventricular; RV: right
ventricular.
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Table 1.9. MAE between manually and automatically generated shape models in the test set based on projection
distance.

MAE (mm) ED ES

Global 1.9 ± 0.5 2.1 ± 0.7
Region

LV Endocardium 1.6 ± 0.7 1.8 ± 1.0
RV Endocardium 1.8 ± 0.5 2.1 ± 0.5
Septum 1.3 ± 0.4 1.4 ± 0.5
Epicardium 2.2 ± 0.8 2.5 ± 1.0
MV 4.6 ± 0.5 5.6 ± 0.7
AV 5.2 ± 0.1 5.4 ± 0.3
TV 3.6 ± 0.6 3.9 ± 0.5
PV 3.1 ± 0.3 3.0 ± 0.3

Numerical data are reported as mean ± standard deviation. MAE: mean absolute error; ED: end-diastole; ES:
end-systole; LV: left ventricular; RV: right ventricular; MV: mitral valve; AV: aortic valve; TV: tricuspid valve; PV:
pulmonary valve.
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Table 1.10. Average global ventricular measurements for manually and automatically generated shape models in
the test set as well as differences and correlations.

Measure Manual Cases Automated Cases Difference R2 p-value

LV EDV (mL) 119 ± 36 114 ± 37 -5 ± 10 (-4%) 0.93 <0.05
LV ESV (mL) 62 ± 24 64 ± 23 2 ± 9 (3%) 0.85 0.26
LV SV (mL) 57 ± 16 50 ± 18 -7 ± 8 (-12%) 0.82 <0.01
LV EF (%) 48 ± 7 44 ± 7 -5 ± 6 (-9%) 0.45 <0.01
LV Mass (g) 111 ± 33 118 ± 37 8 ± 12 (7%) 0.89 <0.01
RV EDV (mL) 197 ± 51 191 ± 54 -6 ± 17 (-3%) 0.90 0.07
RV ESV (mL) 121 ± 37 114 ± 36 -7 ± 13 (-6%) 0.88 <0.01
RV SV (mL) 76 ± 23 77 ± 29 1 ± 15 (1%) 0.76 0.67
RV EF (%) 39 ± 7 40 ± 10 1 ± 7 (3%) 0.55 0.39
RV Mass (g) 53 ± 24 54 ± 25 0.2 ± 7 (0.4%) 0.93 0.83

Numerical data are reported as mean ± standard deviation. Differences between the manual and automated cases
were assessed using paired-sample t-tests. LV: left ventricular; RV: right ventricular; EDV: end-diastolic volume;
ESV: end-systolic volume; SV: stroke volume; EF: ejection fraction.
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Table 1.11. Occurrence of manual overrides for landmark localization predictions when using the automated
pipeline for a subset of the test set (n=6 internal cases, n=6 external cases).

Landmark Manual Overrides

AV Inserts 16 of 48 (33%)
PV Inserts 16 of 48 (33%)
MV Inserts 8 of 96 (8%)
RV Inserts 0 of 148 (0%)
LV Apex 0 of 12 (0%)
Total 40 of 352 (11.4%)

Occurrences are reported as count (percentage). AV: aortic valve; PV: pulmonary valve; MV: mitral valve; RV: right
ventricular; LV left ventricular.
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Figure 1.2. Flow-diagram of internal and external datasets used to train, validate, and test the automated cardiac
shape modeling pipeline. Cases from the training/validation set were used to optimize each step of the automated
pipeline, while cases from the test set were used to evaluate the generalizability of the automated pipeline.
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Figure 1.3. Representative anatomical landmark localization predictions for the 3CH, 4CH, RVOT, and SA views.
3CH: three-chamber; 4CH: four-chamber; RVOT: right ventricular outflow tract; SA: short axis; RV: right ventricular;
MV: mitral valve; AV: aortic valve; TV: tricuspid valve; PV: pulmonary valve.
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Figure 1.4. Representative myocardial image segmentation predictions for the 2CH LT, 2CH RT, 3CH, 4CH, RVOT
and SA views. 2CH LT: two-chamber left; 2CH RT: two-chamber right; 3CH: three-chamber; 4CH: four-chamber;
RVOT: right ventricular outflow tract; SA: short axis.
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Figure 1.5. Representative output of the automated cardiac shape modeling pipeline. Extracted contour points
for the LV endocardium (green), RV endocardium (yellow), epicardium (cyan), and septum (red) and anatomical
landmark points for the MV (blue), AV (green), TV (purple), and PV (red) are shown on corresponding views
(outside). The contour points and anatomical landmark points were then fit to a biventricular subdivision surface
template mesh resulting in a patient-specific biventricular shape model (center) with surfaces for the LV endocardium
(green), RV endocardium (blue), and epicardium (maroon). 2CH LT: two-chamber left; 2CH RT: two-chamber right;
3CH: three-chamber; 4CH: four-chamber; RVOT: right ventricular outflow tract; SA: short axis; LV: left ventricular;
RV: right ventricular; MV: mitral valve; AV: aortic valve; TV: tricuspid valve; PV: pulmonary valve.
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Figure 1.6. Average inward (blue) and outward (red) Euclidian projection distances between manually and
automatically generated shape models in the test set. The range of the color bar accounts for 99% of the observed
errors. ED: end-diastole; ES: end-systole.
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Figure 1.7. A) Regression plots showing the correlation between global ventricular measurements for manually
and automatically generated shape models in the test set. B) Bland-Altman plots comparing the correlation of
global ventricular measurements for manually and automatically generated shape models in the test set. LV: left
ventricular; RV: right ventricular; EDV: end-diastolic volume; ESV: end-systolic volume; SV: stroke volume; EF:
ejection fraction.
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Figure 1.8. Z-score difference between manually and automatically generated shape models in the test set projected
onto an ED/ES shape atlas constructed from shape models in the training/validation set. Bars show the average
absolute difference in Z-score, and error bars show the standard deviation. ED: end-diastole; ES: end-systole.
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Chapter 2

Biventricular Shape Modes Discriminate
Pulmonary Valve Replacement in Tetral-
ogy of Fallot Better Than Imaging Indices

2.1 Abstract

Current indications for pulmonary valve replacement (PVR) in repaired tetralogy of

Fallot (rTOF) rely on cardiovascular magnetic resonance (CMR) image-based indices but are

inconsistently applied, lead to mixed outcomes, and remain debated. This study aimed to

test the hypothesis that specific markers of biventricular shape may discriminate differences

between rTOF patients who did and did not require subsequent PVR better than standard imaging

indices. In this cross-sectional retrospective study, biventricular shape models were customized

to CMR images from 84 rTOF patients. A statistical atlas of end-diastolic shape was constructed

using principal component analysis. Multivariate regression was used to quantify shape mode

and imaging index associations with subsequent intervention status (PVR, n=48 vs. No-PVR,

n=36), while accounting for confounders. Clustering analysis was used to test the ability of

the most significant shape modes and imaging indices to discriminate PVR status as evaluated

by a Matthews correlation coefficient (MCC). Geometric strain analysis was also conducted

to assess shape mode associations with systolic function. PVR status correlated significantly

with shape modes associated with right ventricular (RV) apical dilation and left ventricular (LV)
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dilation (p<0.01), RV basal bulging and LV conicity (p<0.05), and pulmonary valve dilation

(p<0.01). PVR status also correlated significantly with RV ejection fraction (p<0.05) and

correlated marginally with LV end-systolic volume index (p<0.07). Shape modes discriminated

subsequent PVR better than standard imaging indices (MCC=0.49 and MCC=0.28, respectively)

and were significantly associated with RV and LV radial systolic strain. Biventricular shape

modes discriminated differences between patients who did and did not require subsequent

PVR better than standard imaging indices in current use. These regional features of cardiac

morphology may provide insight into adaptive vs. maladaptive types of structural remodeling

and point toward an improved quantitative, patient-specific assessment tool for clinical use.

2.2 Background

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease (CHD)

accounting for about 7-10% of all congenital cardiac malformations [1]. Current twenty-five-year

mortality rates are ≤ 5%, but long-term sequelae in adult survivors with repaired tetralogy of

Fallot (rTOF) lead to an acceleration in mortality thereafter [18]. Common late consequences of

repair include residual pulmonary regurgitation (PR) and chronic right ventricular (RV) volume

overload, which in turn are associated with exercise intolerance, arrhythmia, RV and/or left

ventricular (LV) dysfunction, and a higher risk of sudden cardiac death [84, 85]. The main

strategy for preserving RV function relies on timely surgical or transcatheter pulmonary valve

replacement (PVR), which has been shown to alleviate symptoms, normalize RV volumes,

and improve RV function [86, 87]. However, there continues to be disparity in the indications

and timing for PVR [88, 89, 90], which must strike a balance between being performed early

enough to prevent irreversible adverse remodeling but late enough to reduce the number of

re-interventions and potential surgical complications [29].

Current indications for PVR rely on cardiovascular magnetic resonance (CMR) imaging,

which is the gold standard for evaluation of RV volumes, severity of PR, and RV function [37, 38].
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The American College of Cardiology / American Heart Association, the Canadian Cardiovascular

Society, and the European Society of Cardiology provide recommendations on indications for

performing PVR [32, 31, 30]; though, they are largely qualitative in nature, recommending

intervention in cases of moderate to severe RV dysfunction and/or moderate to severe RV

enlargement. Quantitative indications for intervention are based on global measures of cardiac

mass and volume [91, 92], e.g. RV end-diastolic volume index (EDVi) >160mL/m2 and/or RV

end-systolic volume index (ESVi) >80ml/m2, but these thresholds are subject to institutional

bias and lead to mixed outcomes, leaving the subject up for debate [93]. While these indications

have been guided by several CMR-based imaging studies, the wealth of morphological and

functional information available in CMR images has been under-utilized, not taking into account

three-dimensional, regional analysis of geometry and function.

Several studies have shown that bulging of the RV outflow tract, dilation of the RV apex,

dilation of the pulmonary valve annulus, and a more circular tricuspid valve are associated with

adverse remodeling in rTOF, specifically in the presence of chronic PR [94, 95]. Other studies

of RV remodeling in rTOF have shown that a decrease in RV free wall curvature is associated

with a decrease in regional RV function as measured by a lower area strain [96]. However, these

prognostic markers are not captured by global measures of ventricular function or used in current

clinical decision-making to indicate intervention.

The current study employed a statistical atlas-based approach to condense morphological

data from CMR imaging into quantitative, interpretable markers of regional biventricular shape.

These atlas-based biomarkers were assessed in their ability to discriminate differences in shape

between patients who required subsequent PVR and those who did not, and the performance of

these novel biomarkers was compared with standard imaging indices. The aim was to discover

specific markers of cardiac morphology that could discriminate differences in adverse remodeling

within the rTOF population, regarding referral for subsequent PVR, better than standard imaging

indices.
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2.3 Methods

2.3.1 Study Population

CMR images and associated clinical data from 84 rTOF patients were obtained retrospec-

tively from the Cardiac Atlas Project (CAP) database [59]. The CAP is a worldwide consortium

that facilitates clinical data sharing and development of computational methods for analysis

of cardiac structure and function across several CHD cohorts (https://www.cardiacatlas.org).

Deidentified datasets employed in this study were contributed from two clinical centers (Rady

Children’s Hospital, San Diego, CA, US and The Center for Advanced Magnetic Resonance

Imaging, Auckland, NZ) with approval from local institutional review boards via waiver of

informed consent (UCSD IRB 201138 and HDEC 16/STH/248, respectively). Patients were

divided into two groups, one in which patients were referred for PVR following imaging (PVR,

n=48) and one in which patients were not referred for PVR following imaging (No-PVR, n=36),

within a four-year period. Patients with previous PVR were excluded from the study. Patients

with significant tricuspid regurgitation or only mild pulmonary insufficiency (PR fraction <20%)

by CMR were also excluded, such that the patients included in the study demonstrated an RV

volume overload phenotype due strictly to moderate to severe PR. Out of the forty-eight patients

included in the PVR cohort, twenty-six of them were symptomatic. The most common symp-

toms were tiredness, shortness of breath, and exercise intolerance, and in some cases, symptoms

included chest pain or palpitations. While essentially all rTOF patients have a right bundle

branch block (RBBB) pattern, none of the subjects in this study had significant degrees of atrial

or ventricular ectopy or atrioventricular conduction disturbance. The decision to perform PVR

at Rady Children’s Hospital was largely based on the criteria outlined by Tal Geva [93], which

includes thresholds for RV EDVi, RV ESVi, and RV and LV ejection fraction (EF), where the

number of criteria that need to be met are reduced if the subject is symptomatic. The decision to

perform PVR at The Center for Advanced Magnetic Resonance Imaging was based on the same

threshold for RV EDVi as the Tal Geva criteria [93], significantly reduced RV and LV EF, and
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considerations for the presence of symptoms. Summary characteristics of the study participants

grouped by PVR status are shown in Table 2.1. Study participants from The Center for Advanced

Magnetic Resonance Imaging were on average ten years older and included proportionally more

female subjects than study participants from Rady Children’s Hospital. Participants from each

of these centers were unequally represented in each clinical group contributing to significant

differences in age and sex between these groups. Quantitative data regarding the degree of

pulmonary valve stenosis were available for study participants from Rady Children’s Hospital

San Diego. In this cohort, 90% of the patients demonstrated mild pulmonary valve stenosis as

defined by a pulmonary valve peak gradient of less than 36 mmHg on an echo six months within

the CMR exam date. In addition, based on clinical notes, none of the study participants from

The Center for Advanced Magnetic Resonance Imaging had severe pulmonary valve stenosis.

2.3.2 CMR Image Acquisition and Analysis

Each patient underwent functional CMR examination within the scope of standard clinical

practice. CMR images were acquired using 1.5T MRI scanners, including Siemens Avanto

(Siemens Medical Systems) and GE Discovery (GE Healthcare Systems). Two-dimensional

cine images were acquired using steady-state free procession imaging and were prospectively or

retrospectively gated during breath-hold. Short-axis slices were obtained parallel to the tricuspid

annulus plane, spanning both ventricles from apex to base. Long-axis slices were obtained

through all valve annuli in standard 4-chamber, 2-chamber, LV outflow tract, and RV outflow

tract views. Typical imaging parameters included: repetition time 24-32ms; echo time 1.1-1.5ms;

flip angle 70-80°; field of view 200-300mm x 200-300mm; spatial resolution 0.59-1.75mm ×

0.59-1.75mm x 4-6mm; and number of time frames 20-35.

Contours were drawn manually at end-diastole (ED) and end-systole (ES) on both short-

axis and long-axis cine slices using Segment (Medviso). Papillary muscles were excluded

from the endocardial contour segmentation. Mitral and tricuspid valve landmark points were

defined from the intersection of the left and right atrial and ventricular contours delineated on the
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4-chamber and 2-chamber long-axis images. Aortic valve landmark points were defined from

the LV outflow tract images, and pulmonary valve landmark points were defined from the RV

outflow tract images. When aortic and pulmonary leaflets were not visible, boundary points were

defined by the change in appearance of the myocardial and vessel wall.

Antegrade and retrograde pulmonary flow measurements were obtained from two-

dimensional phase-contrast (PC) imaging using commercially available software, including

Argus Flow (Siemens Healthineers) and cvi42 (Circle Cardiovascular Imaging). PC analysis

of antegrade and retrograde flows in the main artery was performed on a plane just below the

pulmonary artery bifurcation and perpendicular to the axis of the pulmonary artery. Typical

imaging parameters included: repetition time 4.8-5.0ms; echo time 2.3-3.0ms; flip angle 15-30°;

field of view 169-315mm x 300-420mm; spatial resolution 1.4-2.0mm x 1.4-2.0mm x 5-8mm;

temporal resolution 37-41ms; and acceleration factor 3. Scouts were used to set the velocity

encoding.

CMR image analysis was performed by a senior researcher with more than ten years of

cardiac image analysis experience. The expert analyst was blinded regarding the patient’s PVR

status.

2.3.3 Biventricular Shape Analysis

A biventricular subdivision surface template mesh was constructed including the LV

endocardium, RV endocardium, epicardium, and all four valves as described previously [61].

The template mesh was automatically customized to each patient while correcting for breath-hold

slice misregistration using an iterative registration algorithm. Valve locations were customized

to the manual landmark points via landmark registration, and surfaces were customized to the

manual contours via diffeomorphic non-rigid registration. Standard imaging indices, including

LV and RV volumes and masses at ED and ES, were calculated by numerical integration of mesh

volumes, which has previously shown good agreement with slice summation of manual contours

[61, 47].
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To build a biventricular atlas of ED shape, patient-specific ED surface points were first

aligned to population mean ED surface points by a rigid registration. Following the alignment,

principal component analysis (PCA) was used to evaluate the distribution of shape variation

across the rTOF cohort. PCA is an unsupervised dimensional reduction technique that, in

this case, condenses cardiac shape features into statistical Z-scores represented as orthogonal

components (modes), ranked by the amount of shape variance they explain in the population,

that quantify degrees of patient-specific shape difference from the population mean.

2.3.4 Shape Mode Subset Selection

A subset of biventricular shape modes was chosen from the rTOF atlas to create a feature

set with the same number of variables as standard imaging indices calculated (10 variables).

Modes that cumulatively explained greater than 95% of the variation in shape in the rTOF

cohort were ranked for predicting PVR status using chi-square tests, which is a commonly

used technique for univariate feature ranking for classification. The 10 modes with the highest

predictive importance score were retained for multivariate associations with PVR status.

2.3.5 Multivariate Associations with PVR Status

Multivariate regression models were constructed to quantify imaging index and biven-

tricular shape associations with PVR status, while accounting for confounders. Sex, type of

repair, time after repair, and body surface area (BSA) were included in the models to control

for differences that exist in these characteristics between the PVR and No-PVR cohorts. When

testing associations with imaging indices, the response variable was each imaging index. In these

models, PVR status, sex, and type of repair were included as categorical predictors, and time

after repair was included as a continuous predictor. When testing associations with biventricular

shape, the response variable was the morphometric score for each shape mode. In these models,

PVR status, sex, and type of repair were included as categorical predictors, and time after repair

and BSA were included as continuous predictors. Imaging indices and shape modes that had the
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most significant associations with PVR status after accounting for confounders were retained for

clustering to discriminate PVR status.

2.3.6 Clustering Analysis to Discriminate PVR Status

K-means clustering, an unsupervised clustering method, was employed to characterize

the discriminatory power of imaging indices and biventricular shape (minimum two variables

required in each feature set). Patients were divided into two clusters using the cosine distance

metric to ignore the absolute sizes of measurements and only consider their relative sizes. The

ability of imaging indices and shape modes to discriminate the PVR and No-PVR cohorts in

these clusters was assessed through a matching matrix. The Matthews correlation coefficient

(MCC) was used to measure the quality of clinical classification, which has been shown to be

more reliable than accuracy and F1 score [97].

2.3.7 Geometric Strain Analysis

Geometric strain analysis was conducted to assess if differences in imaging indices and

biventricular shape that are associated with PVR status are also associated with differences

in systolic function. Longitudinal strain (LS), circumferential strain (CS), and radial strain

(RS), which represent longitudinal shortening, shortening along the circular perimeter, and

thickening of the wall, respectively, were calculated from geometric arc length changes between

ED and ES using the Cauchy strain formula and have shown good agreement with myocardial

strains calculated from myocardial tagging [98, 99]. LS and CS were calculated from the model

mesh, and RS was calculated using a modified version of the centerline method [100] using the

intersection between short-axis slices and the model mesh. The interventricular septum was

included in the calculation for LV systolic strain. Univariate regression models were applied

to quantify the association between LV and RV systolic strains and imaging indices and shape

modes associated with PVR status.

52



2.3.8 Statistical Analysis

Statistical analysis was carried out using the SciPy Python library (https://www.scipy.org).

Summary characteristics for the two groups are reported as mean ± standard deviation or as

median (interquartile range), depending on the distribution, for continuous variables and as

frequency for categorical variables. Normality was tested using Shapiro-Wilks. Differences

between the two groups were tested using unpaired two-sample t-tests or Wilcoxon rank-sum

tests, depending on the distribution, for continuous variables and Pearson’s chi-squared tests for

categorical variables. All variables were normalized before regression and k-means clustering.

Statistical associations in the regression analyses are denoted by p-values with a significance

level of 0.05.

2.4 Results

2.4.1 Standard Imaging Index Features

Models were successfully customized to manual contours and landmark points for all

patients. Ventricular volumes and masses were calculated by numerical integration of mesh

volumes, and PR volumes were calculated from PC imaging. Together these measurements con-

stituted the feature set of standard imaging indices used in subsequent analyses. Measurements

were indexed to BSA. Summary imaging indices for the PVR and No-PVR cohorts are shown in

Table 2.2.

2.4.2 Biventricular Shape Features

PCA on anatomically co-registered models of 84 rTOF patient hearts yielded a statistical

shape atlas comprised of 83 orthogonal components (modes). The percent of shape variance

explained by each mode and cumulatively for the first 35 modes is shown in Figure 2.1a. The

first 30 modes explained greater than 95% of the shape variation in the population and were

ranked for predicting PVR using chi-square tests. PVR status predictor ranks and importance
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scores for the first 30 modes are shown in Figure 2.1b. The 10 modes with the highest predictive

importance score are labeled and constituted the set of biventricular shape features used in

subsequent analyses, equal to the number of standard imaging indices calculated.

2.4.3 Imaging Indices and Shape Modes Associated with PVR Status

Multivariate regression models were constructed to quantify imaging index and biven-

tricular shape associations with PVR status while accounting for confounders including sex,

type of repair, time after repair, and BSA. Summary results of imaging index and shape mode

associations with PVR status are shown in Table 2.3.

In the feature set of standard imaging indices, RV EF was significantly associated with

PVR status, in which patients in the PVR cohort had lower RV EF than patients in the No-PVR

cohort (Table 2.2). LV ESVi was the next most highly associated with PVR status, in which

patients in the PVR cohort had higher LV ESVi than patients in the No-PVR cohort (Table 2.2).

RV EF and LV ESVi were retained for clustering analysis from the imaging index feature set to

meet the minimum two variables required.

In the set of biventricular shape features, three shape modes were significantly associated

with PVR status: ED4, ED6, and ED25. Shape changes along each of these modes are shown in

Figure 2.2 in addition to Z-scores for the PVR and No-PVR cohorts. ED4 appears to be a specific

marker of opposing RV apical dilation and LV dilation; ED6 appears to be a specific marker

of RV basal bulging and LV conicity; and ED25 appears to be a specific marker of pulmonary

valve dilation. Patients in the PVR cohort demonstrated increased RV basal bulging, LV dilation,

LV conicity, and pulmonary valve dilation, while patients in the No-PVR cohort demonstrated

increased RV apical dilation. ED4, ED6, and ED25 were retained for clustering analysis from

the shape mode feature set.

54



2.4.4 Performance of Imaging Indices and Shape Modes in Discriminat-
ing PVR Status

K-means clustering was employed to assess the ability of imaging indices and biven-

tricular shape to discriminate between patients in the PVR and No-PVR cohorts. The results

of the clustering analysis for each subset of features are shown in Figure 2.3a. The number

of patients in the PVR and No-PVR cohorts in each cluster for each subset of features are

shown in Figure 2.3b. From these results, a matching matrix was constructed and the MCC was

calculated to assess the performance of clinical classification for each subset of features as shown

in Figure 2.3c, in which the predicted class was taken to be the dominant cohort in each cluster.

The subset of shape modes discriminated patients in the PVR and No-PVR cohorts with much

greater performance than the subset of standard imaging indices (MCC=0.49 and MCC=0.28,

respectively).

2.4.5 Imaging Indices and Shape Modes Associated with Geometric
Strain

Geometric strain analysis was used to assess if differences in imaging indices and

biventricular shape that are associated with PVR status are also associated with differences

in systolic function. Summary systolic strains for the PVR and No-PVR cohorts are shown

in Figure 2.4a. RV and LV RS were highly significantly associated with PVR status after

accounting for confounders. For imaging indices, univariate regression analysis revelated that

RV EF was highly significantly associated with LV LS, RV LS, LV CS, and RV CS (p<0.0001)

and significantly associated with LV RS (p<0.05), where increased RV EF was associated with

increased systolic strains. For shape modes, univariate regression analysis revealed that ED4 was

highly significantly associated with RV RS as shown in Figure 2.4b. ED6 and ED25 were also

significantly associated with RV RS and LV RS, respectively (p<0.05). A more positive ED6

and ED25 Z-score was associated with increased RV RS and decreased LV RS, respectively, and

vice versa.
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2.5 Discussion

Adverse RV remodeling in rTOF has been well juxtaposed with RV morphology in

reference healthy populations [101, 102, 103]; differences in RV remodeling within the rTOF

population and how they determine referral for subsequent PVR, however, are not well charac-

terized. In this cross-sectional retrospective study, an atlas-based biventricular shape analysis

framework was used to quantify specific, regional shape differences associated with PVR status

and compared with standard imaging indices in their ability to discriminate patients who did and

did not undergo PVR.

2.5.1 Standard Imaging Index Features

Current guidelines [91, 92, 93] recommend PVR in rTOF if progressive RV dilation

results in RV EDVi >160mL/m2 and/or RV ESVi >80mL/m2; however, significant associations

between these indices and subsequent PVR were not found. Interestingly, the degree of PR was

also not significantly associated with PVR status, suggesting that the presence of volume overload

alone was more important than current assessment of severity. This agrees with studies showing

a compensatory increase in RV RS in response to PR and RV volume overload [104, 105]. RV EF

and LV ESVi had the highest associations with PVR status, although RV EF was the only imaging

index with significant associations with PVR status. This was not unexpected as diminishing RV

EF usually accompanies fairly rapid PVR (within a few weeks). These imaging indices were

identified as preoperative risk factors for adverse outcomes post-PVR in the INDICATOR cohort

study [33, 106], suggesting that these indices are not only associated with subsequent PVR but

also are important determinants of long-term outcome.

2.5.2 Biventricular Shape Features

Through biventricular shape analysis and geometric strain analysis, the present study

shows that patients in the PVR cohort demonstrated increased RV basal bulging and pulmonary
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valve dilation, which was associated with reduced RV and LV RS, while patients in the No-PVR

cohort demonstrated increased RV apical dilation, which was associated with increased RV RS.

These specific, regional features of shape all contribute to RV dilation, but are not distinguished

when relying solely on global ventricular measurements alone. While these shape changes

agree with previously characterized features of adverse remodeling in the rTOF population as

a whole [94, 95, 96], this study suggests that RV basal bulging may be a form of maladaptive

remodeling that leads to RV dysfunction (as in the PVR cohort), while RV apical dilation may

be a form of adaptive remodeling that preserves RV function (as in the No-PVR cohort). Several

studies have proposed mechanisms by which RV basal bulging may lead to RV dysfunction.

One study found that increased RV basal bulging correlated with increased RV vorticity and

that these changes in flow could induce abnormal fibrosis in these regions [49]. Another study

found that RV basal bulging correlated with increased diastolic force parameters that resulted

in decreased RV function [107]. Patients in the PVR cohort also demonstrated increased LV

dilation and conicity, which have independently been shown to lead to LV dysfunction in patients

with acute myocardial infarction [108]. This is also an important long-term follow-up issue for

rTOF patients [109, 110].

By clustering analysis, biventricular shape modes discriminated PVR status better than

standard imaging indices, despite the fact that these indices are currently the cornerstone of

clinical evaluation for PVR. The clustering analysis was also repeated with the same imaging

index and biventricular shape features with only patients that were asymptomatic (Figure 2.5).

The performance of the biventricular shape features in discriminating PVR status improved

slightly (MCC=0.51), while the performance of the imaging indices in discriminating PVR status

decreased (MCC=0.22). A matching matrix was also constructed where the predicted class

was taken to be patients that did or did not meet criteria for PVR based on a single standard

to avoid institutional bias regarding the decision to perform PVR and the actual class was

taken to be whether or not the patient underwent PVR (Figure 2.6). In this case, the set of

criteria outlined by Tal Geva [93] was employed, while specifically only accounting for RV
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EDVi, RV ESVi, and RV and LV EF thresholds and the presence of symptoms. The overall

performance of these criteria in discriminating patients in the PVR and No-PVR cohorts was

lower than biventricular shape features (MCC=0.23). Upon closer inspection, these criteria

were highly sensitive in discriminating referral for PVR (sensitivity=0.94) but not very specific

(specificity=0.22), while biventricular shape features were not as sensitive in discriminating

referral for PVR (sensitivity=0.69) but much more specific (specificity=0.81).

2.5.3 Study Limitations

Owing to the retrospective nature of this study, the clinical data available were het-

erogenous and limited in clinical indicators such as exercise capacity, rhythm disturbances, and

functional scores. In the future, prospective studies should be conducted to assess biventric-

ular shape mode relationships with differences in objective measures of outcome before and

after PVR, rather than the decision to perform PVR itself, and supervised machine learning

methods, such as decision trees or support vector machines, should be employed to fine-tune

thresholds for atlas-based biomarkers that can serve as indications for PVR and give the desired

specificity or sensitivity to maximize patient benefit. Another limitation of this study was the

use of cross-sectional data. The temporal evolution of biventricular shape markers should be

evaluated in longitudinal studies to get a better understanding of the time history of ventricular

remodeling and how this relates to optimal timing of PVR. Finally, data employed in the study

were contributed from multiple centers leading to selection bias that was unequally represented

in each group. While confounders were accounted for, future analyses would benefit from an age

and sex-matched comparison conducted at a single center.

2.6 Conclusions

Specific biventricular shape modes in rTOF were able to discriminate differences between

patients who did and did not require subsequent PVR better than standard imaging indices. These

shape modes quantify regional features of cardiac morphology that may provide insight into
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adaptive vs. maladaptive types of structural remodeling that may be overlooked when relying

solely on standard imaging indices alone. Routine clinical assessment of patients with rTOF using

an atlas-based analysis of shape and function may reveal adverse effects of pathophysiologies

over time, reduce qualitative observer and institutional measurement biases, and improve timing

of interventions and patient prognosis.
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Table 2.1. Summary characteristics grouped by PVR status.

Characteristic PVR (n=48) No-PVR (n=36) p-value

Sex (m/f) 35/13 17/19 0.016
Type of Repair: 0.003

Transannular Patch 35 30
Valve-Sparing 2 6
Conduit 11 0

Age at Repair (y) 0.3 (0.3-0.8) 1 (1-4) <0.001
Age at CMR (y) 12 (9-16) 20 (16-33) <0.001
Age at PVR (y) 14 (11-17) -
Time After Repair to CMR (y) 12 (9-16) 19 (15-26) <0.001
Time After CMR to PVR (y) 0.9 (0.3-1.8) -
Height (cm) 156 (135-165) 163 (157-167) 0.006
Weight (kg) 49±23 62±18 0.008
BSA (m2) 1.4±0.4 1.7±0.3 0.002

Normally distributed data are reported as mean ± standard deviation or as median (interquartile range) otherwise.
BSA: body surface area; CMR: cardiovascular magnetic resonance; PVR: pulmonary valve replacement.
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Table 2.2. Summary imaging indices grouped by PVR status.

Imaging Index PVR (n=48) No-PVR (n=36) p-value

LV EDVi (mL/m2) 79±15 79±15 0.923
LV ESVi (mL/m2) 43±9 41±10 0.341
LV EF (%) 46±6 48±6 0.057
LV Mi (g/m2) 75±11 72±14 0.341
RV EDVi (mL/m2) 140±22 138±32 0.723
RV ESVi (mL/m2) 87±17 80±23 0.110
RV EF (%) 37±6 42±7 0.001
RV Mi (g/m2) 42±9 39±7 0.080
PRVi (mL/m2) 27±12 30±17 0.363
PRF (%) 41±10 40±11 0.611

Data are reported as mean ± standard deviation. EDVi: end-diastolic volume index; EF: ejection fraction; ESVi:
end-systolic volume index; LV: left ventricular; Mi: mass index; PRF: pulmonary regurgitant fraction; PRVi:
pulmonary regurgitant volume index; RV: right ventricular.
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Table 2.3. Summary results for imaging index and shape mode associations with PVR status after accounting for
sex, type of repair, time after repair, and BSA.

Imaging Index p-value Shape Mode p-value

RV EF 0.043 ED4 0.002
LV ESVi 0.065 ED25 0.003
RV Mi 0.065 ED6 0.022
PRVi 0.113 ED20 0.115

LV EF 0.155 ED3 0.281
LV EDVi 0.226 ED19 0.337

LV Mi 0.376 ED8 0.593
RV ESVi 0.497 ED13 0.594
RV EDVi 0.667 ED11 0.695

PRF 0.837 ED12 0.704

Features in bold have significant associations with PVR status and were retained for clustering analysis. *LV ESVi
was also retained for clustering analysis to meet the minimum two variables required for the imaging index feature
set. EDVi: end-diastolic volume index; EF: ejection fraction; ESVi: end-systolic volume index; LV: left ventricular;
Mi: mass index; PRF: pulmonary regurgitant fraction; PRVi: pulmonary regurgitant volume index; RV: right
ventricular.
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Figure 2.1. Shape mode subset selection from the rTOF atlas. A) Shape variance explained (%) per mode
(shaded bars) and cumulatively (solid line). B) PVR status predictor rank and importance score for modes that
explained greater than 95% of shape variation in the population. Labeled shape modes were retained for multivariate
associations with PVR status.
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Figure 2.2. Shape modes that have significant associations with PVR status. Box plots show mean (red line), 95%
confidence intervals of the mean (pink shaded bar), and one standard deviation of the mean (blue shaded bar) for
Z-scores (gray circles). Models show mean ED shape plus two standard deviations (top) and minus two standard
deviations (bottom) for each mode. The LV endocardial surface, RV endocardial surface, and epicardial surface are
shown in green, purple, and maroon, respectively. The mitral, tricuspid, aortic, and pulmonary valves are shown in
cyan, pink, yellow, and green, respectively. LV: left ventricular; PV: pulmonary valve; RV: right ventricular.
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Figure 2.3. Summary clustering results depicting the ability of imaging indices (top) and shape modes (bottom) to
discriminate PVR status. A) K-means clustering using features with the most significant associations with PVR
status with two clusters (blue squares: cluster 1; red triangles: cluster 2; filled: PVR; open: No-PVR). B) Number of
patients in the PVR (dark gray bars) and No-PVR (light gray bars) cohorts in each cluster. C) Matching matrix and
MCC performance metric for classifying patients by PVR status. EF: ejection fraction; ESVi: end-systolic volume
index; LV: left ventricular; MCC: Matthews correlation coefficient; RV: right ventricular.
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Figure 2.4. Geometric strain analysis. A) Summary systolic strains (%) grouped by PVR status (PVR: dark gray
bars; No-PVR: light gray bars). Data are reported as mean ± standard error. Systolic CS and LS are conventionally
negative, but their absolute values are shown for simpler interpretation. Systolic strains that have significant
associations with PVR status after accounting for sex, type of repair, time after repair, and BSA are denoted with
symbols (*p<0.05; **p<0.01). B) Univariate regression model between RV RS (%) and ED4 (black circles: PVR;
black squares: No-PVR; red solid line: linear fit; red dotted lines: 95% confidence bounds; p<0.01; r=0.33). LV: left
ventricular; RS: radial strain; RV: right ventricular.
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Figure 2.5. Summary clustering results depicting the ability of imaging indices (top) and shape modes (bottom) to
discriminate PVR status for asymptomatic patients. A) K-means clustering using features with the most significant
associations with PVR status with two clusters (blue squares: cluster 1; red triangles: cluster 2; filled: PVR; open:
No-PVR). B) Number of patients in the PVR (dark gray bars) and No-PVR (light gray bars) cohorts in each cluster.
C) Matching matrix and MCC performance metric for classifying patients by PVR status. EF: ejection fraction;
ESVi: end-systolic volume index; LV: left ventricular; MCC: Matthews correlation coefficient; RV: right ventricular.
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Figure 2.6. Matching matrix and MCC performance metric for classifying patients by PVR status based on volume
and functional criteria outlined by Tal Geva.
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Chapter 3

An Atlas-Based Analysis of Biventricular
Mechanics in Tetralogy of Fallot

3.1 Abstract

The current study proposes an efficient strategy for exploiting the statistical power of

cardiac atlases to investigate whether clinically significant variations in ventricular shape are

sufficient to explain corresponding differences in ventricular wall motion directly, or if they are

indirect markers of altered myocardial mechanical properties. This study was conducted in a

cohort of patients with repaired tetralogy of Fallot (rTOF) that face long-term right ventricular

(RV) and/or left ventricular (LV) dysfunction as a consequence of adverse remodeling. Features

of biventricular end-diastolic (ED) shape associated with RV apical dilation, LV dilation, RV

basal bulging, and LV conicity correlated with components of systolic wall motion (SWM) that

contribute most to differences in global systolic function. A finite element analysis of systolic

biventricular mechanics was employed to assess the effect of perturbations in these ED shape

modes on corresponding components of SWM. Perturbations to ED shape modes and myocardial

contractility explained observed variation in SWM to varying degrees. In some cases, shape

markers were partial determinants of systolic function and, in other cases, they were indirect

markers for altered myocardial mechanical properties. Patients with rTOF may benefit from

an atlas-based analysis of biventricular mechanics to improve prognosis and gain mechanistic

insight into underlying myocardial pathophysiology.
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3.2 Background

While shape, wall motion, and hemodynamics are important indicators of regional

ventricular wall mechanics, they form an incomplete picture. Regional stresses and strains are

more direct and sensitive indicators of regional myocardial mechanics because they are related

via intrinsic myocardial material properties, such as active myofiber contractility and passive

stiffness [111, 112, 113]. Several groups have demonstrated the feasibility of patient-specific

biomechanical modeling [114, 115], though this depends on accurate measures of myocardial

anatomy, hemodynamics, activation patterns, and wall motion to identify unknown mechanical

properties, and still requires material assumptions that cannot be measured in vivo. Patient-

specific models of biomechanics are also highly nonlinear, and consequently, their solutions can

significantly amplify measurement uncertainties.

The use of statistical shape modeling to characterize major features of ventricular shape

and wall motion at the population-level has been insightful for better understanding many

cardiac pathologies including several congenital heart diseases. By identifying major modes of

variation in biventricular shape and wall motion in various patient cohorts, many groups have

observed statistically significant relationships between ventricular shape modes and ventricular

function or clinical outcomes [39, 41, 44, 61, 47]. These analyses, however, do not establish

causal relationships between shape and function or outcomes. When statistical shape models

are integrated with cardiac biomechanics models, however, mechanistic relationships between

observable features of cardiac shape, function, and intrinsic myocardial mechanical properties

can be tested further, which may be important for understanding and predicting ventricular

remodeling. This is particularly relevant in patients with repaired tetralogy of Fallot (rTOF)

that face long-term, adverse right ventricular (RV) and/or left ventricular (LV) remodeling as a

consequence of surgical repair [37, 110, 33, 116].

The current study proposes an efficient strategy for exploiting the statistical power of

cardiac atlases to investigate the extent to which clinically significant variations in ventricular
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shape explain corresponding differences in ventricular function directly or whether they are

indirect markers of altered myocardial mechanical properties. Patient-specific relationships be-

tween end-diastolic shape and systolic wall motion were assessed for consistency with properties

representative of the cohort mean and, in the case of deviations, were explored for their ability to

explain differences in clinical outcomes. Specifically, in a rTOF patient cohort, we tested the

hypothesis that shape variations can be direct determinants of variations in systolic function, but

may also be indirect markers of altered myocardial mechanical properties that could help stratify

clinical outcomes in rTOF.

3.3 Methods

3.3.1 Study Population and Geometry Fitting

A previously identified cohort of 84 rTOF patients was employed in this study [52]. Car-

diovascular magnetic resonance (CMR) images and associated clinical data for this cohort were

retrospectively collected from the Cardiac Atlas Project database (https://www.cardiacatlas.org)

[59]. Deidentified datasets were contributed from two clinical centers (Rady Children’s Hospital,

San Diego, CA, US and The Center for Advanced Magnetic Resonance Imaging, Auckland, NZ)

with approval from local institutional review boards via waiver of informed consent (UCSD IRB

201138 and HDEC 16/STH/248, respectively). All patients underwent standard-of-care CMR

examination, and CMR images were acquired using 1.5T MRI scanners, including Siemens

Avanto (Siemens Medical Systems) and GE Discovery (GE Healthcare Systems), as described

previously [52]. Three-dimensional, patient-specific geometric models were customized to a

biventricular subdivision surface template mesh using manually drawn contours at end-diastole

(ED) and end-systole (ES) in Segment (Medviso) along with manually annotated anatomical

landmarks, as described previously [52].
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3.3.2 Atlas-Based Analysis of Systolic Wall Motion

A statistical atlas of systolic wall motion (SWM) was generated from the patient-specific

geometric models at ED and ES. Patient-specific surface points at ED and ES were first aligned to

population mean ED surface points by a rigid registration using a Procrustes alignment. A vector

field of SWM was then computed between ED and ES for each patient. Principal component

analysis (PCA) was then used to evaluate the distribution of SWM across the rTOF cohort.

3.3.3 Sensitivity of Biventricular Function to Systolic Wall Motion

The effects of the first ten SWM modes on LV and RV function were analyzed by varying

individual modes and computing corresponding LV and RV ejection fractions (EFs). For each

SWM mode, wall motion displacements were calculated for Z-scores between -2 and 2 in steps

of 0.5 and were added to the mean ED shape of the rTOF cohort to yield an ES shape. The mean

ED model volumes and computed ES model volumes were used to calculate EFs for each score

along each mode. The sensitivity of changes in LV and RV EF to changes along an individual

SWM mode was then computed using linear regression.

3.3.4 Association of End-Diastolic Shape with Systolic Wall Motion

Associations between ED shape modes and SWM modes were assessed via univariate

regression analysis. ED shape modes were taken from an ED shape atlas previously derived

from the same cohort of rTOF patients [52]. ED shape modes that were previously found to

be significantly associated with differences in prognosis were correlated with the five SWM

modes that had the greatest effect on combined LV/RV function. ED shape modes that had

significant correlations with systolic wall motion modes were perturbed in a finite element (FE)

mechanics framework to assess the degree to which shape markers are direct determinants of

systolic function.
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3.3.5 Finite Element Analysis of Biventricular Biomechanics

Biomechanics simulations were performed using biventricular, cubic-Hermite FE meshes

generated from the ED shape atlas. A compressible, nonlinearly elastic, transversely isotropic

constitutive model was used to define the passive material properties of the myocardium in the

fiber direction (a, a f , b, b f ) [117, 118]. Mesh fiber directions were assigned using a rule-based

approximation, where fibers were defined relative to the circumferential direction in the LV

and RV epicardium as -60° and -25°, respectively, and in the LV and RV endocardium as 60°

and 0°, respectively [119]. In order to define a physiologically realistic transmural gradient,

fiber directions were linearly interpolated from epicardium to endocardium. Active contraction

of the myocardium was governed by a transversely isotropic active tension model, where the

transverse direction active force was specified to be 70% of the fiber direction active force.

An unloaded, stress-free reference geometry for each simulation was approximated using a

previously described iterative, inflation-deflation algorithm [119], with convergence criteria

defined as a change in computed ED volumes between successive iterations of less than 2%.

Pressure boundary conditions were applied normal to the endocardial surfaces using average LV

and RV ED and ES catheterization pressures from rTOF patients with available clinical data.

The average LV and RV EDPs were 1.05 kPa and 0.95 kPa, respectively, and the average LV and

RV ESPs were 11 kPa and 5.15 kPa, respectively. Additionally, nodal boundary conditions were

implemented to constrain epicardial longitudinal and circumferential dis-placement at the valve

planes.

Mean passive material properties were approximated by estimating the reference geome-

try for the mean ED shape. Material constants, b and b f , were taken from previously reported

values from human subjects with heart failure [115], while material constants, a and a f , were

estimated by altering these parameters until the FE-computed ED model volumes at mean ED

pressure matched the atlas mean ED model volumes. The material anisotropy ratio of a to a f was

maintained so that only a single parameter was estimated. Mean active material properties were

73



approximated by linearly increasing the active tension developed in the myocardium until the

FE-computed ES model volumes at mean ES pressure matched the atlas mean ES model volumes.

These mean passive and active material properties were then used in additional FE simulations

with perturbations of ED geometry corresponding to Z-scores of ±2 for tested ED shape modes.

The computed ED and ES mesh geometries for each shape perturbation were sampled on the

endocardial and epicardial surfaces in order to compute wall motion displacements, which were

then projected onto the SWM atlas to compute Z-scores for corresponding SWM modes of

interest. SWM mode Z-scores from FE-computed models were compared with those predicted

from linear regression models fit to patient data. All FE analysis was performed in Continuity 6

(https://www.continuity.ucsd.edu), a problem-solving environment for multiscale biomechanics

and electrophysiology.

3.3.6 Statistical Analysis

Statistical analysis was carried out using the SciPy Python library (https://www.scipy.org).

Statistical associations in the regression analysis are denoted by p-values with a significance

level of 0.05. A Bonferroni correction was used to adjust the significance level to correct for

multiple comparisons.

3.4 Results

3.4.1 Atlas of Systolic Wall Motion and Associations with End-Diastolic
Shape

An atlas of SWM was constructed from a cohort of 84 rTOF patients. The first ten SWM

modes explained approximately 70% of the variation in the study population (Figure 3.1a), and

their effects on LV and RV function were analyzed (Figure 3.1b). ED shape modes that were

previously found to be significantly associated with differences in prognosis in rTOF correlated

with SWM modes that had the greatest effect on combined LV/RV function (Figure 3.1c).

ED4, which is a specific marker of opposing RV apical dilation and LV dilation, was
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significantly correlated with SWM7, which appears to be a specific marker of displacement

around the RV base, RV apex, and the entire LV free wall (Figure 3.2a). ED6, which is a specific

marker of RV basal bulging and LV conicity, was significantly correlated with SWM8, which

appears to be a specific marker of displacement around the posterior RV base, LV base, and LV

apex (Figure 3.2b). These ED shape modes were perturbed in a FE model to assess the degree to

which shape differences are direct determinants of observed changes in SWM.

3.4.2 Finite Element Analysis of Biventricular Biomechanics

Parameterization of the material properties of the mean FE-computed model resulted

in an average absolute error compared with the mean atlas model of 1.06 mm and 1.44 mm at

ED and ES, respectively, both of which are within voxel resolution of the original CMR images

used to make the patient-specific geometric models (0.6-1.75 mm). The estimated mean passive

material properties are shown in Table 3.1, where the approximated stiffness of the RV was twice

that of the LV. The mean peak active tension developed in the myocardium was estimated to be

164 kPa in both the LV and RV. A summary of global volume and functional measurements for

the mean FE-computed model and atlas model are shown in Table 3.2. Overall, the FE-computed

model measurements demonstrate good agreement with the atlas model measurements. Lastly,

the resulting SWM Z-scores for the mean FE-computed model were compared to those for

the mean atlas model, which are zero by definition, for the first five SWM modes (Figure 3.3).

Overall, the Z-score differences between the FE-computed model and atlas model are within an

acceptable range.

FE simulations with perturbed ED shapes were executed with mean material properties,

and their deformed ES shapes were computed (Figure 3.4). The FE-computed change in LV and

RV EF were -5.3% and -0.2%, respectively, along the shape change in ED4 and 3.2% and 3.1%,

respectively, along the shape change in ED6. The predicted change in LV and RV EF, based on

the correlations between ED shape and SWM and the observed effect on EF (Figure 3.1), were

-2.8% and -3.0%, respectively along the shape change in ED4 and -3.4% and -2.0%, respectively,
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along the shape change in ED6.

The SWM Z-scores for the FE-computed ED shape perturbations were computed and

compared with those predicted from linear regression models fit to patient data. For the correla-

tion between ED4 and SWM7 (Figure 3.5a), the FE-computed slope was -0.12 compared to -0.32

in the patient data. For the correlation between ED6 and SWM8 (Figure 3.5b), the FE-computed

slope was 0.02 compared to -0.29 in the patient data. For FE-computed models that did not match

the predicted SWM, the model contractility was adjusted to produce a better match. For both

ED4 and ED6, a more negative Z-score was associated with increased contractility (Figure 3.6a

and Figure 3.6b, respectively).

3.5 Discussion

Patients with rTOF are at risk of developing RV and LV dysfunction as a consequence

of adverse ventricular remodeling. While statistical shape modeling has been used to identify

features of ventricular remodeling that are associated with function in the rTOF population,

it was not clear whether shape features are direct determinants of systolic function. In this

study, cardiac biomechanics models were integrated with statistical shape models to test whether

clinically significant variations in ventricular shape explain corresponding differences in systolic

function or if they are indirect markers of altered myocardial mechanical properties, or both.

3.5.1 Shape Determinants of Biventricular Function

By correlation analysis, previously identified biventricular ED shape modes that had

significant associations with differences in prognosis of patients with rTOF were also significantly

correlated with the components of SWM that contributed most to differences in LV and RV

EF. Specifically, greater RV apical dilation and less LV dilation were associated with greater

systolic displacements near the RV base and apex and the entire LV free wall, and greater RV

basal bulging and higher LV conicity were associated with greater systolic displacements around

the posterior RV base and the LV base and apex. The mechanisms of these shape-function
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relationships were tested using FE models in which observed shape mode differences were

simulated without changes in material properties or boundary conditions.

In the case of RV apical dilation and LV dilation, differences in the shape alone partially

explained observed differences in systolic function. In terms of global functional metrics, less

RV apical dilation and greater LV dilation accounted for more than the expected decrease in LV

EF (-5.3% vs. -2.8%) but none of the expected decrease in RV EF (-0.2% vs. -3.0%). In terms

of regional measures of SWM, differences in the shape alone explained 38% of the variation

in wall motion. Assuming that the remaining correlation could be explained by differences in

myocardial material properties, we observed that greater RV apical dilation and less LV dilation

were associated with increased contractility. Therefore, greater RV apical dilation may be a

surrogate for increased RV basal and apical contractility that may also serve as a compensatory

mechanism to prevent LV dilation and preserve LV function. This mechanism may explain why

patients with rTOF that had greater RV apical dilation and less LV dilation tended to have better

prognoses [52].

In the case of RV basal bulging and LV conicity, differences in shape alone explained

the opposite change in systolic function. In terms of global functional metrics, less RV basal

bulging and lower LV conicity led to an increase in LV and RV EF (3.2% and 3.1%, respectively)

rather than an expected decrease in LV and RV EF (-3.4% and -2.0%, respectively). In terms

of regional measures of SWM, changing shape alone produced a slope that was the opposite

sign as that of the regression model. When altering myocardial contractility to better match

the ED shape and SWM relationship, greater RV basal bulging and higher LV conicity were

associated with increased contractility. In order to address this discrepancy, RV basal bulging and

LV conicity shape mode scores were correlated with patient-specific LV and RV EFs, providing

insight into how these shape changes effect overall differences in global function rather than

changes in global function along a specific component of SWM. Through this analysis, less

RV basal bulging and lower LV conicity were correlated with higher LV and RV EF. Overall,

these results suggest that while RV basal bulging and LV conicity may be surrogate measures
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for increased contractility in the RV posterior base and LV apex and base, the gain of function

in these regions is overshadowed by the loss of function in other regions associated with shape

itself. This mechanism may explain why patients with rTOF that had less RV basal bulging and

lower LV conicity had better outcomes [52].

3.5.2 Limitations

There were several simplifications that were employed in our FE analysis of biventricular

mechanics. Material properties were assumed to be homogeneous throughout different regions of

the heart including the entire RV and the entire LV, rather than including more specific regional

heterogeneities that could be the result of scarring or fibrosis in areas with surgical incisions. The

myocardial fiber architecture employed was also simplified using a rule-based approximation

with a linear transmural gradient rather than using more realistic properties. This was primarily

due to the lack of information on ventricular fiber architecture in a representative rTOF patient.

Differences in hemodynamics between patients that might have also contributed to variation in

shape and SWM were not considered due to the limited clinical availability of this data. Lastly,

the FE models employed did not include boundary conditions representative of interactions with

the pericardium, atria, and great vessels or include fluid-structure interactions.

3.6 Conclusions

In this study, statistical shape models were integrated with cardiac biomechanics models

to further investigate the degree to which clinically significant shape markers are determinants

of systolic function in a cohort of patients with rTOF. In FE simulations of systolic mechanics,

variations in ED shape explained differences in SWM to varying degrees. Variation in RV apical

dilation and LV dilation partially explained differences in SWM, while variation in RV basal

bulging and LV conicity explained the opposite change in SWM. Specifically, greater RV apical

dilation and less LV dilation were associated with increased RV basal and apical contractility

and may be important determinants of improved function in rTOF. Overall, patients with rTOF
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may benefit from an atlas-based analysis of biventricular mechanics that can provide insight into

mechanisms of pathophysiology and aid long-term clinical management.
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Table 3.1. Estimated mean passive material properties for finite element computed model.

Region a (kPa) a f (kPa) b (–) b f (–)

LV 1.197 0.8925 9.726 15.779
RV 2.394 1.785 9.726 15.779
Base 11.97 8.925 9.726 15.779

LV: left ventricular; RV: right ventricular.
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Table 3.2. Comparison of mean FE-computed model and atlas model volumes and EFs.

Measure Atlas Model FE-Computed Model

LV EDV (mL) 78.3 77.9
LV ESV (mL) 38.8 39.7
RV EDV (mL) 153.4 153.3
RV ESV (mL) 89.2 87.9

LV EF (%) 50.5 49.0
RV EF (%) 41.9 42.7

LV: left ventricular; RV: right ventricular; EDV: end-diastolic volume; ESV: end-systolic volume; EF: ejection
fraction.
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Figure 3.1. A) Variance explained (%) per SWM mode. B) Magnitude of the sensitivity of LV EF (green), RV
EF (blue), and combined LV/RV EF (grey) to variations in SWM modes (pp/SD). SWM modes were ranked from
greatest to least effect on combined LV/RV EF. C) Correlations between clinically significant ED shape modes
and SWM modes that had the greatest effect on combined LV/RV EF. Symbols indicate statistical significance
(**p<0.01). EF: ejection fraction; ED: end-diastolic; SWM: systolic wall motion.
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Figure 3.2. Summary morphological characteristics for associations between ED shape and SWM, (A) ED4 ∝

SWM7 and (B) ED6 ∝ SWM8. For ED shape modes, the LV endocardial surface, RV endocardial surface, and
epicardial surface are shown in green, blue, and maroon, respectively, and the mitral, tricuspid, aortic, and pulmonary
valves are shown in cyan, pink, yellow, and green, respectively. For SWM modes, the LV and RV free walls are
shown and are colored based on the systolic displacement relative to the mean, inward (blue) and outward (red). ED:
end-diastolic; LV: left ventricular; RV: right ventricular; SWM: systolic wall motion.
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Figure 3.3. Difference between mean FE-computed model (blue bar) and atlas model (black line) SWM Z-scores.
SWM: systolic wall motion.
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Figure 3.4. FE-computed ED shape perturbations with corresponding deformed ES shapes. Computed LV and RV
EFs for each shape perturbation are also shown. For all models, the LV endocardial surface, RV endocardial surface,
and epicardial surface are shown in green, blue, and maroon, respectively, and the mitral, tricuspid, aortic, and
pulmonary valves are shown in cyan, pink, yellow, and green, respectively. EF: ejection fraction; ED: end-diastolic;
ES: end-systolic; LV: left ventricular; RV: right ventricular.
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Figure 3.5. Comparison of predicted (black circles) and FE-computed (red line and circles) SWM Z-scores for
shape perturbations along (A) ED4 ∝ SWM7 and (B) ED6 ∝ SWM8 using mean material properties. Significant
ED shape mode and SWM mode correlations from patient data (blue circles) are represented as linear regression
models with the fit (blue line) and 95% confidence intervals (blue shaded area). ED: end-diastolic; SWM: systolic
wall motion.
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Figure 3.6. FE-computed changes in SWM Z-scores for shape perturbations along (A) ED4 ∝ SWM7 and (B) ED6
∝ SWM8 with altered contractility (yellow line and circles) overlaid on Figure 3.5. The direction of ED shape
variation associated with increased contractility is also shown. ED: end-diastolic; SWM: systolic wall motion.
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Chapter 4

Conclusion

4.1 Summary

In this dissertation, we employed machine learning to enhance the throughput of cardiac

shape modeling and demonstrated its use for the computational analysis of biventricular shape

and mechanics in tetralogy of Fallot (TOF) to discover atlas-based biomarkers that can aid

clinical prognosis and provide insight into the mechanisms of adverse ventricular remodeling

and corresponding ventricular dysfunction.

In Chapter 1, we used deep learning to automate all of the major steps involved in

constructing, three-dimensional biventricular shape models from raw cardiovascular magnetic

resonance (CMR) image datasets. We developed the automated cardiac shape modeling pipeline

as a series of five steps for view classification, slice selection, phase selection, anatomical

landmark localization, and myocardial image segmentation to (1) allow the user to understand

the purpose of each step rather than the pipeline appearing as a black box and (2) give the

user the ability to make manual corrections at each step if necessary. We demonstrated this

fully automated approach in a multi-institutional, international cohort of patients with repaired

tetralogy of Fallot (rTOF, n=123), a patient population with particularly challenging anatomy.

Overall, the automated pipeline performed well on an independent, multi-institutional test set

that included a variety of CMR scanners, including several models that were not included in

the training data. With this new automated pipeline, a single cardiac shape model can be made
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in approximately 5 minutes, compared to the 60-90 minutes it would take an expert analyst

to do so manually. To our knowledge, this is the first fully automated, end-to-end pipeline

that can robustly create shape models for the challenging anatomies present in rTOF. With this

approach, we can greatly reduce the manual input required to create shape models enabling the

rapid analysis of largescale datasets and the potential to deploy statistical atlas-based analyses in

point-of-care clinical settings.

In Chapter 2, we used statistical shape modeling to condense the wealth of morphological

data from CMR imaging into quantitative, interpretable markers of regional biventricular shape

in a rTOF patient cohort (n=84). Our aim was to discover atlas-based biomarkers that could

characterize salient differences in adverse ventricular remodeling and aid clinical prognosis.

Specifically, we tested the hypothesis that distinct markers of biventricular shape may discrim-

inate differences between rTOF patients who did and did not require subsequent pulmonary

valve replacement (PVR) better than standard imaging indices. We found three shape modes

that were significantly associated with PVR status that were specific markers of opposing right

ventricular (RV) apical dilation and left ventricular (LV) dilation, RV basal bulging and LV

conicity, and pulmonary valve dilation. Patients in the PVR cohort demonstrated increased RV

basal bulging and pulmonary valve dilation, which was associated with reduced RV and LV

radial strain, while patients in the No-PVR cohort demonstrated increased RV apical dilation,

which was associated with increased RV radial strain. We also found that these biventricular

shape modes discriminated PVR status better than standard imaging indices, despite the fact

that these indices are currently the cornerstone of clinical evaluation for PVR. Overall, these

regional features of cardiac morphology may provide insight into adaptive vs. maladaptive types

of structural remodeling and point toward an improved quantitative, patient-specific assessment

tool for clinical use.

In Chapter 3, we used finite element models of biventricular biomechanics to investigate

the extent to which clinically significant variations in ventricular shape discovered in Chapter 2,

explain corresponding differences in ventricular function. Specifically, we tested the hypothesis
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that shape variations can be direct determinants of variations in systolic function, but may also

be indirect markers of altered myocardial mechanical properties that could help stratify clinical

outcomes in rTOF. Prior to testing mechanistic relationships between features of cardiac shape,

function, and intrinsic myocardial mechanical properties, we identified significant correlations

between biventricular shape modes discovered in Chapter 2 and components of systolic wall

motion that contributed most to differences in LV and RV ejection fraction. Upon examining

these relationships in a finite element mechanics framework, we found that variations in shape

explained differences in systolic function to varying degrees. In the case of RV apical dilation

and LV dilation, we found that differences in the shape alone partially explained observed

differences in systolic function, and after altering myocardial material properties, we found that

greater RV apical dilation and less LV dilation were associated with increased RV basal and

apical contractility. Given these results, we hypothesize that greater RV apical dilation may be

a surrogate for increased RV basal and apical contractility that may serve as a compensatory

mechanism to prevent LV dilation and preserve LV function; this mechanism may explain why

patients with rTOF that had greater RV apical dilation and less LV dilation tended to have better

prognoses. Overall, patients with rTOF may benefit from an atlas-based analysis of biventricular

mechanics that can provide mechanistic insight into underlying myocardial pathophysiology and

aid long-term clinical management.

4.2 Future Work

While this dissertation has made several advancements regarding the computational

analysis of biventricular shape and mechanics for the discovery of clinically significant atlas-

based biomarkers in rTOF, future work is imperative for the successful implementation of atlas-

based analyses in the clinic to have real impact on patient management and outcomes. In the

clinical translational process, there are typically two types of studies that are performed to validate

new technologies and discoveries, retrospective and prospective, that can be performed either
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cross-sectionally or longitudinally. The studies presented in this dissertation were retrospective

in nature and, as a consequence, the clinical data available were heterogeneous and limited in

clinical indicators such as exercise capacity, rhythm disturbances, and functional scores. In

the future, prospective studies should be conducted that standardize the acquisition of these

indicators before and after PVR with routine intervals of follow-up. This would be particularly

useful for quantifying atlas-based biomarker relationships with differences in objective measures

of outcome before and after PVR, rather than the decision to perform PVR itself. Additionally,

the studies presented in this dissertation were cross-sectional in nature. In the future, longitudinal

studies should be conducted to evaluate the temporal evolution of atlas-based biomarkers to get a

better understanding of the time history of ventricular remodeling and how this relates to the

optimal timing of PVR. By performing prospective and longitudinal studies, the atlas-based

biomarkers discovered in this dissertation can be further evaluated regarding their sensitivity

as indicators for the decision and timing of PVR and to assess long-term outcome. Only after

assessing the effectiveness of atlas-based biomarkers for risk stratification in these additional

studies can atlas-based analyses and their discoveries be subject to FDA approval and integrated

with the clinical gold standard of care.

Additionally, the work presented in this dissertation primarily focused on developing a

framework for the computational analysis of shape-function relationships in rTOF, but there are

several other factors that are important to consider in order to get a comprehensive understanding

of disease pathophysiology. One set of these factors include patient factors such as genetic mark-

ers, sex, and surgical history. Future work can explore atlas-based biomarker relationships with

these patient factors to gain insight into whether a given individual may have a predisposition

for a certain disease phenotype. This can in turn be used to guide early clinical management

from the time of birth to surgical repair and establish an appropriate frequency for follow-up

visits thereafter. In addition to patient factors, there are other physiological phenomenon that

are pertinent in rTOF that the work presented in this dissertation did not examine including the

contribution of variations in electrophysiology, scarring, and hemodynamics. Future work can
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extend the computational modeling efforts outlined in this dissertation to include electromechan-

ical coupling and a coupled hemodynamic model in the finite element analysis framework to

get a better understanding of how differences in activation patterns or RV pressures might affect

LV/RV ventricular interactions and function.

Finally, continual effort should be made to aggregate additional imaging and clinical

datasets to increase the statistical power of atlas-based analyses and better represent variation

in the rTOF population. Future studies should employ the automated cardiac shape model-

ing pipeline presented in this dissertation to analyze large patient cohorts from burgeoning

collaborations with the SCMR registry, UK Biobank, INDICATOR study, etc. that have on

the order of 500-1,000 patient datasets each. With this transition towards big-data population

studies, future efforts should also be made to scale data storage and analysis techniques ac-

cordingly. This includes continual development of the Cardiac Atlas Project (CAP) database

(https://capchd.ucsd.edu) and eventual hosting on the American Heart Association Precision

Medicine Platform (https://precision.heart.org). Future development should ensure that the

database is easy to credential and access and dynamic to allow for new clinical data types to

be stored as they are acquired. When fully developed, the CAP database will facilitate collab-

orative atlas-based analyses of cardiac shape and mechanics among normal and pathological

patient populations in addition to TOF and other congenital heart diseases, between clinicians

and researchers. Along with infrastructure developments, future efforts should also focus on

parallelizing solvers used for finite element analysis and machine learning techniques to allow

them to be deployed on cloud-based computing platforms for optimal big data analysis.

4.3 Final Remarks

Altogether the work presented in this dissertation lays the groundwork for the compu-

tational analysis of biventricular shape and mechanics in rTOF and demonstrates the utility of

atlas-based analyses in identifying more specific markers of adverse ventricular remodeling
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that can supplement clinical decision making and provide insight into mechanisms underlying

myocardial pathophysiology. In addition, this dissertation presents a fully automated, end-to-end

pipeline for cardiac shape modeling that can be used to extend the atlas-based analyses presented

herein to larger patient cohorts in order to further test and validate the atlas-based biomarkers

discovered in this work. Ultimately, this precision medicine-based approach has great potential

to serve as a valuable clinical tool that can improve diagnosis, prognosis, and treatment of

individuals with TOF and other cardiac diseases.
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