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ABSTRACT OF THE DISSERTATION

Thermal and Power Estimation and Reliability Management for Commercial Multi-Core
Processors

by

Jinwei Zhang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2023

Dr. Sheldon X-D Tan, Chairperson

Power, thermal and related reliability issues are among the major limiting factors for to-

day’s high performance multi-core processors. This is especially true after the breakdown of the

so-called Dennard scaling, since power density starts to increase as IC technology advances. To

enhance reliability, researchers have proposed many power/thermal regulation or dynamic man-

agement methods, including clock gating, power gating, dynamic voltage and frequency scaling

(DVFS), and task migration. In this thesis, we present our findings to address the challenges of

post-silicon power and thermal characterization, and dynamic thermal managements for lifetime

reliabilities. We first address the problem of accurate full-chip power and thermal map estimation

for commercial off-the-shelf multi-core processors. The novel scheme is developed to generate

the true 2D power density maps based on the thermal measurements of the processor with back-

side cooling and facilitated with an advanced infrared (IR) thermal imaging system. the proposed

method achieves both higher resolution and considerable speedup than a recently proposed state-of-

art method. Then the second, we propose a novel approach for the real-time estimation of chip-level

spatial power maps for commercial TPU chips based on a machine-learning technique for the first

viii



time. In detail, we achieve estimating the spatial power for commercial TPUs from the hyperpa-

rameters of the neural networks (workloads) that are deployed on the TPUs in real-time. Thirdly,

processors operating with heat sink cooling remains a challenging problem due to the difficulty in

direct measurement. We build an FEM model to reconstruct the full-chip thermal maps for commer-

cial processors while they are under heat sinks. Lastly, based on the spatial power characterization,

we propose a new dynamic thermal and reliability management framework via task mapping and

migration to improve the thermal performance and lifetime reliability of commercial multi-core pro-

cessors. Compared to the existing works, the new approach is the first to optimize VLSI reliabilities

by exploring workload-dependent power hot spots. The advantages of the proposed method over

the Linux baseline task mapping and the temperature-based mapping method are demonstrated and

validated on real commercial processors.
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Chapter 1

Introduction

1.1 Post-Silicon Full-Chip Power Map Modeling

Power, thermal and related reliability issues are among the major limiting factors for to-

day’s high performance multi-core processors. This is especially true after the breakdown of the so-

called Dennard scaling, since power density starts to increase as IC technology advances [EBSA+12,

Tay13]. To enhance reliability, researchers have proposed many power/thermal regulation or dy-

namic management methods, including clock gating, power gating, dynamic voltage and frequency

scaling (DVFS), and task migration [BM01, HV14, LTHW15, WMT+16].

However, one important aspect of those works depends on how to correctly estimate the

full-chip temperature map. Currently, the on-chip temperature is mainly obtained by performing the

thermal analysis based on the run-time functional unit (or component-wise) power estimation of the

processor. Estimating component power inputs, however, still remains challenging for commercial

off-the-shelf microprocessors.
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To obtain accurate on-chip temperature, we need to look at two important aspects of

this problem: the accurate estimation of the input power and the accurate calculation of on-chip

temperature from the thermal model and the input power.

Traditional power estimation methods focus on the functional unit (component-wise or

core-wise) power estimation based on the measured temperature and total power [JM01, IM03,

WJY+07, DNR13]. But those methods require understanding of the architecture details and func-

tional units of each chip and many approaches are still ad-hoc, involving manual turning. At the

same time, post-silicon full-chip power (density) map estimation is also important for power verifi-

cation and package design. Power map is a 2D spatial distribution of heat dissipation in an IC chip.

This problem was also coined as the inverse thermal map to power map problem as temperature can

be more easily measured either directly or indirectly. Many approaches have been investigated in the

past [WFMS09, CNR10, PSSK13, NWR13, BBVB16, RDB18a]. Most of the proposed methods

tried to frame the problem as a nonlinear optimization problem (deterministically or statistically)

once the thermal models are known. However, those methods do not work for general off-the-shelf

commercial multi-core processors where only core-level power can be obtained [RDB18a]. Many

of those only work for specialized silicon such as FPGAs [CNR10, PSSK13, NWR13, RDB18a].

In addition, they suffer from high computing cost and measurement noise although some mitigation

techniques have been proposed such as using AC power [NWR13]. Recently, a new heat source

identification method based on the measured temperature and 2D spatial Laplace transformation

was proposed for general commercial multi-core processors [SZA+19], but this is not enough for

full-chip power or thermal characterization.
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Once we know the power inputs, thermal models are needed to compute the temperature

outputs. Many power-based thermal models have been proposed including equivalent thermal RC

networks [LVRW95, GW02], architecture level thermal modeling speed up [LLJ+06, LTPT09],

finite difference based methods, such as HotSpot [HGV+06], and finite element based methods

(FEM) [GJK+08].

Most existing power modeling methods and related thermal models, however, do not work

well for commercial multi-core processors as mentioned before. It is even more challenging for

modeling of commercial multi-core processors running in the normal working environment with

heat sink cooling as it is difficult to directly measure the temperature of the chip’s surface. On

the other hand, we notice that commercial multi-core processors have many on-chip sensors, for

instance, the Intel i7-8650U has one sensor for each core. One can leverage those sensor readings

to validate the proposed thermal models. However, the exact locations of these temperature sensors

are generally not known, neither provided by the processor’s manufacturer.

The obtained full-chip power maps and thermal maps are instrumental for many applica-

tions. For instance, once power density maps are obtained, component power can be easily obtained

by area integration over the chip layout. The estimated power map also provides many insights into

power consumption of different modules, cores and uncore blocks in a microprocessor. Addition-

ally, the power map and thermal maps obtained in real-time can be instrumental in exploring many

power/thermal management techniques with various package and cooling solutions.

To mitigate the aforementioned problems, in this work, first, we try to obtain the full-chip

power density map from the measured thermal maps/images of the commercial multi-core micro-

processor when heat sink is removed. Second, we provide a new methodology to accurately estimate

3



the thermal map and hot spots of commercial multi-core processors running in the normal working

environment with heat sink cooling. The obtained full-chip power and thermal maps under normal

heat sink cooling can provide many insightful hot spot information, which can’t be obtained by

physical sensors and will enable new applications for dynamic thermal/power/reliability manage-

ment.

1.1.1 Contributions

The specific contributions of Chapter 2 are as follows:

• First, different than all the existing power estimation methods, the new method, based on the

first principle of heat transfer, performs a much more efficient 2D spatial Laplace operation

on a given thermal map to obtain the so-called raw power density map. This consists of both

positive and negative values due to the steady-state nature and boundary conditions of the

microprocessors. We study two motivation cases to provide many insights into the relation-

ship between raw power density maps and real power density maps. Our work is enabled by

an advanced thermal measuring platform with a high-precision thermal camera and a cool-

ing system installed on the back side of the CPU. This allows us to take explicit temperature

images (thermal maps) of CPU die while the CPU is under load.

• Then based on the total power of the microprocessor obtained using an online CPU moni-

toring tool, we develop a novel scheme to generate the true positive-only power density map

from the measured raw power density map. At the same time, we develop a novel method

to compute effective thermal conductivity of the microprocessor die, which is an important

parameter for the subsequent thermal modeling.
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• To validate the power density map and the estimated actual effective thermal conductivity of

the microprocessors, we construct a thermal model with COMSOL Multiphysics [Mul14].

The model mimics the real experimental setup (without heat sink), with the same boundary

conditions used in the IR imaging system. We use the thermal measurements when CPU is in

idle status to determine the boundary conditions of the thermal simulation model. Then we

use FEM method to compute the thermal map based on the estimated power density map to

ensure the computed thermal maps match the measured thermal maps using the FEM method.

• Numerical results show that the proposed power map estimation method is not only more than

100× faster but also more fine-grained than the state-of-art blind power identification (BPI)

method [RDB18a].

Experimental results on an Intel i7-8650U 4-core processor with back side cooling tech-

nique demonstrate 96% similarity (2D correlation) between the measured thermal maps and the

computed thermal maps, which are computed using the estimated power maps and accurately built

FEM thermal model.

Chapter 2 is organized as follows. Section 2.1 reviews the existing relevant work. Sec-

tion 2.2 shows the power modeling framework and IR thermography setup used in this study. Sec-

tion 2.3 presents the proposed power density map estimation method and the effective thermal con-

ductivity estimation method. Section 2.4 presents the experimental results and comparisons with

the current state-of-art method. Section 2.5 summarizes the work of this chapter.
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1.2 Full-Chip Power Map Modeling for TPUs

With the continuing trend of rapid integration and technology scaling, today’s high-performance

processors have become more thermally constrained than ever before. An increase in temperature

has been shown to exponentially degrade the reliability of the semiconductor chips [ITR03], and

hence has become one of the leading concerns in the industry today. To address this trend, runtime

power and thermal control schemes are being implemented in most, if not all new generations of

processors and are crucial in any modern processor [EBSA+12, Tay13]. However, these control

schemes require accurate real-time thermal information, and essentially the power information, ide-

ally the spatial power density map of the entire chip area, in order to be effective [KSH+06, KCS12].

On-chip temperature sensors alone cannot provide the full-chip temperature information since the

number of sensors that are typically available is very limited due to their high area and power over-

heads [SZZ+20b]. Furthermore, power characterization for commercial tensor processors (TPUs)

is rarely studied and reported.

To obtain precise thermal and power control, we need to look at two important aspects of

this problem: the accurate estimation of the on-chip power and the accurate calculation of temper-

ature from the thermal model and the on-chip power inputs. Traditional power estimation methods

focus on the functional unit (component-wise or core-wise) power estimation based on the mea-

sured temperature and total power [JM01, IM03, WJY+07, DNR13]. But those methods require an

understanding of the architectural details and functional units of each chip and many approaches are

still ad-hoc, involving manual turning. At the same time, post-silicon (no prior layout information

is needed) spatial power map estimation from thermal information has been widely studied. This

problem was also coined as the inverse thermal map to power map problem as the temperature can
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be more easily measured either directly or indirectly. Many approaches have been investigated in the

past [WFMS09, CNR10, PSSK13, NWR13, BBVB16, RDB18a]. Most of the proposed methods

tried to frame the problem as a nonlinear optimization problem (deterministically or statistically)

once the thermal models are known. However, those methods do not work for general off-the-shelf

commercial processors where only core-level power can be obtained [RDB18a]. Many of those

methods only work for specialized silicon such as FPGAs [CNR10, PSSK13, NWR13, RDB18a].

Recently, new spatial power map estimation methods based on the measured spatial temperature,

2D spatial Laplace transformation, and processor’s performance monitors were proposed for gen-

eral commercial multicore processors [ZSO+21]. Specifically, the machine-learning based power

source hot spot estimation [SZZ+20b] and full chip thermal map estimation [SZAT21] have been

proposed. Those methods estimate the hot spot or the full chip thermal maps based on the real-time

on-chip performance information such as Intel’s Performance Counting Monitor (IPCM) [Int].

However, these methods can hardly be applied to TPUs (like the Google Coral M.2 TPU

used in this paper) as there is no real-time utilization information such as IPCM from the TPU chips.

As a result, the existing full-chip power map estimation methods cannot be applied to commercial

TPUs.

In Chapter 3, we try to address the aforementioned issues and propose a novel machine-

learning based approach to estimate the full-chip power density distribution of commercial TPU

chips.
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1.2.1 Contributions

The key contributions of this chapter are as follows:

• We developed a generalized full-chip power map estimation method that is based on the hy-

perparameters of the TPU’s workloads (i.e., neural networks inferencing on the TPU), without

the knowledge of TPU’s performance monitors or supply power.

• We treat the full-chip power density map estimation problem as an image generation problem,

where the input features are given number of hyperparameters and TPU resource information

(generated by the TPU compiler). We propose to use the Conditional Generative Adversarial

Networks (CGAN) to generate such power map images from the given features.

• Experimental results show that the predictions of power maps are quite accurate, with the

RMSE of only 4.98mW/mm2, or 2.6% of the full-scale error. The speed of deploying the

proposed approach on an Intel Core i7-8650U is as fast as 6.9ms, which is suitable for real-

time estimation.

Chapter 3 is organized as follows. Section 3.1 shows the power modeling framework and

IR thermography setup used in this study. Section 3.2 models the spatial power from the workload

features that are available in real time. Section 3.3 describes the architecture of the proposed CGAN-

based neural net model for power map estimation. Section 3.4 presents the experimental results and

comparisons. Section 3.5 summarizes the work of this chapter.

1.3 Thermal Characterization Under Heat Sink Cooling

Most existing power modeling methods and related thermal models, however, do not work

well for commercial multi-core processors as mentioned before. It is even more challenging for
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modeling of commercial multi-core processors running in the normal working environment with

heat sink cooling as it is difficult to directly measure the temperature of the chip’s surface. On

the other hand, we notice that commercial multi-core processors have many on-chip sensors, for

instance, the Intel i7-8650U has one sensor for each core. One can leverage those sensor readings

to validate the proposed thermal models. However, the exact locations of these temperature sensors

are generally not known, neither provided by the processor’s manufacturer.

To mitigate the aforementioned problems, in Chapter 4, first, we try to obtain the full-

chip power density map from the measured thermal maps/images of the commercial multi-core

microprocessor when heat sink is removed. Second, we provide a new methodology to accurately

estimate the thermal map and hot spots of commercial multi-core processors running in the nor-

mal working environment with heat sink cooling. The obtained full-chip power and thermal maps

under normal heat sink cooling can provide many insightful hot spot information, which can’t be

obtained by physical sensors and will enable new applications for dynamic thermal/power/reliability

management.

1.3.1 Contributions

In this chapter, we aim to address the aforementioned issues with the novel contributions

summarized below:

• To develop the thermal models with heat sink cooling, we first try to identify the exact loca-

tions of on-chip sensors of commercial multi-core processors based on the correlation analysis

of measured thermal map traces and on-chip sensor readings for the first time.
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• Next, we construct the second thermal model with COMSOL Multiphysics that mimics the

real set up of multi-core processors with heat sinks under real working conditions. The model

is validated by ensuring that the computed thermal maps using the estimated power density

maps match the temperature values obtained from the real sensors of the chip with heat sink.

We also manage to keep power maps consistent for both the back cooling and heat sink

cooling to minimize the leakage impacts on power.

• Numerical results show that the proposed power map estimation method is not only more than

100× faster but also more fine-grained than the state-of-art blind power identification (BPI)

method [RDB18a].

Experiments were conducted on an Intel i7-8650U 4-core processor by taking advan-

tage of the power maps obtained in Chapter 2. In detail, FEM simulations with COMSOL Multi-

physics [Mul14] were implemented based on such estimated power maps and the accurately built

FEM thermal model with heat sink that imitates the real setup. Results show that under the real

working condition with heat sink obscured, the average absolute error is only 2.2◦C over a 56◦C

dynamic temperature range and about 3.9% percentage error between the computed thermal maps

and the real thermal maps at the sensor locations.

Chapter 4 is organized as follows. Section 4.1 describes the new method to identify the

locations of physical thermal sensors of commercial off-the-shelf processors. Section 4.2 presents

the FEM architecture that imitates the real working situation when processor is under the heat sink.

Section 4.3 details how to ensure the power maps obtained with back-side cooling match the power

maps with heat sink cooling. Section 4.4 describes the proposed FEM thermal model with heat sink
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can be applied to different workloads once it has been built. Section 4.5 presents the experimental

results. Section 4.6 summarizes the work of this chapter.

1.4 Thermal and Reliability Management Considering Hot Spots

Power density increases with technology scaling, which can cause severe thermal and re-

liability problems in high performance multi-core systems [EBSA+12]. Temperature and power

has significant impacts on all major long-term reliability effects such as electro-migration (EM)

for interconnects, bias-temperature-instability (BTI) and hot-carrier-injection (HCI) for CMOS de-

vices [AvE+14]. As a result, many research works have been investigated to find efficient methods

to improve both system performance and reliability via dynamic thermal/reliability management

(DTM/DRM) methods, which control the thermal and reliability behavior of multi-core systems by

online control such as task migration strategies [CRW07, GMQ10, LFQ12, LTHW15, PMJH20].

However, existing DTM techniques either using DVFS or task migration are highly de-

pendent on the on-chip location-fixed temperature sensors. Due to high design overheads, currently

only a limited number of on-chip digital temperature sensors (DTS) can be allocated on a silicon

chip. A recent study shows that the number of hot spots on a typical commercial processor far

exceeds the amount of embedded sensors [SZZ+20b]. Consequently, thermal and reliability man-

agement algorithms that solely depend on the sensors become insufficient for modern multi-core

systems, as power and thermal hot spots distinguish within cores under different workloads while

having the same sensing temperature.
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Figure 1.1: Measured temperature of a hot spot versus the nearest sensor reading

Fig. 1.1 shows a significant temperature difference1 between a hot spot and the nearest

sensor location on an Intel Core i7 quad-core processor under the SPLASH-2 workload radiosity

(only displaying the quad-core area). Therefore, as the reliability of a core is mainly determined

by the thermal hot spots, temperature per-core information alone is insufficient for DTM/DRM

techniques. On the other hand, recent studies [RDB18a, ZSJT20] show that one can identify the

power density distribution of a multi-core processor with advanced thermal characterization.

Based on this observation, in this article, we introduce a new efficient and scalable task

mapping algorithm for the thermal and reliability management for commercial multi-core pro-

cessors via machine learning based modeling for power density at the true hot spots2. Our work

is facilitated by an advanced thermal imaging system for measuring the spatial temperature across

the full processor. Once temperature maps are measured, one can obtain the power density maps

(the corresponding heat sources or hot spots) through the thermal-to-power technique using thermal

measurements [ZSJT20]. After that, we build a learning-based model for power density at the major

hot spots in cores. We remark that the power or hot spot identification for commercial multi-core
1Temperatures are measured with a calibrated thermal imaging system (see Section 5.3.1).
2In the paper, hot spot is designated for power density hot spot instead of the traditional thermal hot spot. Power

density hot spots are a superset of thermal hot spots and can be viewed as the potential thermal hot spots in general.
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processors under different workloads can also be carried out on chips with heat sink cooling in

practical work settings [ZSO+21].

1.4.1 Contributions

The following summarizes key contributions of this chapter.

• First, we show that the existing task mapping techniques, which solely depend on per-core

sensor temperature, may lead to subpar quality solution for chip reliability as the true hot

spots of cores can be stressed unevenly.

• Second, based on this observation, we employ a fast, run-time accurate machine learning

model to estimate the exact spatial hot spots from the given workloads. With this, we propose

a scalable and efficient task mapping approach to optimize the reliability of the multi-core

system.

• Third, compared to existing works, the new task mapping approach is the first one to ex-

plore the workload-dependent power hot spots and its advantages over the existing Linux task

scheduling method and temperature-based method, and has been demonstrated, validated on

real commercial multi-core processors. Experiments on a real Intel Core i7 quad-core pro-

cessor executing PARSEC-3.0 and SPLASH-2 benchmarks show that, compared to the Linux

baseline, the core and hot spot temperature can be reduced by 1.15∼1.31◦C. In addition, Hot-

Trim can improve the chip’s EM, NBTI and HCI related reliability by 30.2%, 7.0% and 31.1%

respectively compared to Linux baseline without any performance degradation. Furthermore,

it improves EM and HCI related reliability by 29.6% and 19.6% while further reduces the
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temperature by half a degree compared to the conventional temperature-based mapping tech-

nique.

This paper is organized as follows: Section 5.1 reviews some related works. Section 5.2

discusses three major reliability effects and their models used in this work. Section 5.3 presents the

thermal imaging system setup and a motivation example for this work. Section 5.4 introduces the

proposed hot-spot-aware task migration method. Section 5.5 presents the results and comparisons

on a real Intel i7 quad-core processor. Section 5.6 summarizes the work of this chapter.

1.5 Organization of This Thesis

The rest of this thesis is organized as follows. Chapters 2 and chapter 3 describes the post-

silicon full-chip power modeling approach for commercial multi-core processors and commercial

TPU chips, respectively. Chapter 4 introduces the full-chip thermal modeling method while the

multi-core processor is obscured by a heat sink. Chapter 5 elaborates a dynamic thermal and lifetime

reliability management method for commercial multi-core processors. Each chapter begins with

related work review or motivation, followed by details of the work and experimental results, and

ends with a chapter-specific summary, and the corresponding published paper is indicated in the

summary. Finally, chapter 6 summarizes the overall thesis.
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Chapter 2

Post-Silicon Full-Chip Power Map

Modeling

2.1 Related Work and Motivation

Post-silicon power modeling is concerned with finding the powers of functional blocks

or power density maps of a whole chip under various workloads. A few existing works have pro-

posed to estimate the component power and the total power of a real microprocessor [JM01, IM03,

WJY+07, DNR13]. One idea is to tune each component unit power until the summation matches

with the total power that is measured experimentally [JM01, IM03]. The main difficulty of those

approaches, however, is that searching for component unit power values still remains an ad-hoc

approach, which almost always involves manual tuning. Wu et al. [WJY+07] tried to mitigate

this problem by performing linear regression with K-means method to identify the unique power

track patterns from the running programs. Dev et al. [DNR13] frames the problem as constrained
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optimization problem once the thermal models are obtained from finite element simulation and

measurement. Recently an recurrent-neural-network (RNN) based approach has been proposed to

quickly estimate the thermal and power hotspots based on the system performance metrics such as

Intel’s performance counter monitor (IPCM) [SZA+19].

At the same time, many post-silicon full-chip power map estimation works have been

proposed [WFMS09, CNR10, PSSK13, NWR13, BBVB16, RDB18b]. Most of those proposed

methods tried to frame the inverse thermal to power problem as the nonlinear optimization problems

as follows:

min||M · p− t||2 (2.1)

where M represents the steady-state power to temperature map matrix, which is dependent on the

specific thermal models used. p is a vector that gives the power density at a set of discrete die loca-

tions. t is a vector of the measured or calculated temperatures at the same locations of corresponding

power signals. M can be directly measured from the FPGAs [CNR10, PSSK13, NWR13, RDB18b]

or by using some approximation methods such as the power blurring method [WFMS09], or by

using pre-defined parameterized analytic forms for a special 3D IC chip along with a parameter

regression method [BBVB16]. Reda et al. [RDB18b] shows the power estimation for commercial

multi-core processors. However, it can only deliver core-wise power information based on total

power and core-wise thermal sensor measurement.

Paek et al. [PSSK13] added some statistical spins into this problem by computing the

maximum likelihood of power p given a condition of the thermal map t. But it requires an accurate

thermal model, i.e. using HotSpot [HGV+06] for simulation results to start with for the required

accuracy. The author indeed tested the method on a real FPGA chip, but they only achieve 90.7%
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accuracy on average. This shows the difficulty in building accurate thermal models for real silicon

chips.

In summary, first of all, the existing methods do not work well for off-the shelf com-

mercial multi-core processors as many of them only work for specialized silicon such as FP-

GAs [CNR10, PSSK13, NWR13, RDB18b] or special 3D chips [BBVB16]. Second, they suffer

from large computing costs as they try to solve nonlinear optimization problems shown in (2.1).

Some of those methods also require special regulation items [WFMS09] or scaling or permutations

for matrix M [RDB18b] during the optimization to enforce some physics laws, which will lead to

more computational costs.

On the other hand, recent study show that the relative power density map can be easily

obtained by 2D spatial Laplace transformation of measured or calculated temperature maps based

on the first principle of heat conduction [SZA+19, SZZ+20b]. However, there exist several major

differences between this work and the published work. Firstly, this work targets a different set of

problems: finding the true 2D power density maps of multi-core processors, validating the results

via thermal measurements and applying the power maps for thermal map estimation with different

cooling configurations and different workloads. The proposed techniques will bring much more

useful applications.

Second, the previous two works simply applied Laplace method to obtain the power maps

from the thermal maps. However, such power maps, called raw power maps, are not physical power

density maps since the raw power maps have negative values as shown in Fig. 2.3. Furthermore, the

prior works mainly identify a few major heat source locations by locating the local maxima from the

raw power maps, whereas this work tries to estimate power density values (W·mm−2) quantitatively
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across the full chip. With the full-chip power map, one can further perform the full-chip thermal

map estimation for different heat sink cooling configurations. To the best of the authors’ knowledge,

this is a novel thermal modeling capability achieved for the first time.

2.2 The Power Map Modeling Setup

In this section we briefly outline the framework of the proposed approach, thermal imag-

ing system, and necessary data collection from the commercial multi-core processor.

2.2.1 The Power Density Modeling Framework

Power map (surface power density distribution) has tight relationship with the tempera-

ture distribution, the Laplace transform of temperature and the thermal conductivity. Our proposed

approach involves two kinds of data. The first dataset is the thermal maps of CPU measured through

a high-precision thermal camera, which senses the infrared emissions from CPU surface and trans-

forms them into images of temperature distribution. The second is the total CPU power consumption

over time, which can be obtained through the processor’s Performance Counter Monitor (PCM).

For real processors, as we do not know the exact power density distribution, to verify

the estimated power density maps, we compare their corresponding thermal maps. The idea is to

build a thermal simulation framework, which mimics the real experimental setup of the chip in the

thermal imaging system with similar thermal boundary conditions and thermal structures. Hence,

the verification flow of the real chip can be summarized as follows:
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1. Obtain sufficient number of estimated power maps based on the proposed method. The exper-

imental measurements should include an idle status, meaning CPU has extremely low power,

which will be used to set boundary conditions.

2. Build an FEM thermal simulation model that mimics the real structure of the processor die in

the thermal imaging system.

3. Substitute the estimated thermal conductivity κ as well as the estimated power map into ther-

mal simulation model as parameters and inputs.

4. Examine similarities between the computed thermal maps and the experimentally measured

thermal maps. Higher degree of identity indicates higher precision of power map estimation,

vice versa.

Fig. 2.1(a) illustrates the power modeling flow of the proposed power density map estima-

tion model and evaluates the accuracy of the estimations based on the ideal cases. Fig. 2.1(b) shows

the power inference flow from data resources to the estimated results for real processors during the

run-time.

2.2.2 Thermal Imaging System

High precision and resolution of thermal map measurements are critical to the estimation

results. One thermal imaging method proposed in [AH15] maximized the explicitness of thermal

maps by directly exposing the top surface of CPU die to the camera, while ensuring the CPU’s nor-

mal thermal condition by cooling it from the back side of the motherboard. Massive heat generated
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(a)

(b)

Figure 2.1: Framework overview: (a) power modeling flow; (b) power inference flow
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Figure 2.2: Thermal imaging system

from CPU flows downwards through the motherboard into the cooling system, and is dissipated by

the quickly circulating coolant.

This work adopts the thermal imaging method proposed in [AH15] where the coolant

flow does not contact the chip directly. It uses a Peltier device (electrothermal devices) with soft

thermal pads stacked together between the liquid pipe and the back side of motherboard. Further,

we take advantage of a high-precision thermal camera installed closely over the CPU die, as shown

in Fig. 2.2. The model of our thermal camera is FLIR A325SC (240×320px images with 16 bit

precision and 60 Hz capturing rate). Thanks to a close-up lens, the camera makes temperature

difference 50mK clearly visible within as small as 50µm/px.

We remark that another thermal imaging system was proposed for power map estimation

for commercial processors in [DNR13]. The system uses a transparent silicon window over the

surface of the chip and pumps the liquid oil to flow through the window to remove heat from the

chip surface directly. After this, FEM method is used to model the setup and generate the power-to-

thermal transfer matrix R. Such front-cooling techniques typically require more delicate setup, post
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imaging processing and more complicated thermal modeling as the oil based liquid cooling affects

the thermal images directly.

2.3 New Power Density Map Estimation Method

In this section, we present our new method to estimate the full-chip power density from the

real multi-core processors. We start with a simple example, which leads to an important observation

for the proposed power map estimation method. Then we will present the approach to compute

the thermal conductivity of the real chip, which is a critical parameter for thermal modeling and

validation.

2.3.1 Proposed Power Density Map Based on Laplace Operation

Recently Sadiqbatcha et al. [SZZ+20b] proposed an idea of identifying power sources

from thermal maps using Laplace transformation. The work starts from the fundamental heat diffu-

sion equation (2.2), which gives the relationship between temperature and heat generation:

ρCP
∂T

∂t
−∇(κ∇T ) = g (2.2)

where T is temperature (K), ρ is the mass density of the material (kg · m−3), CP is the mass heat

capacity (J · kg−1 · K−1), κ is the thermal conductivity (W · m−1 · K−1) and g is the spatial heat

energy generation (W ·m−3).

When CPU runs into steady state, the transient term can be ignored and equation (2.2) can

be simplified as:

− κ∇2T = gT (x, y) (2.3)
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where ∇2 is the Laplace operator. From the simplified heat equation (2.3), we can see that the

negative spatial Laplacian of the temperature distribution across the die is proportional to the spatial

heat generation, i.e., the underlining heat-sources gT (x, y), called the raw power map.

This paper distinguishes from the prior work in the way this paper finds the true 2D

power density maps (p(x, y), W · mm−2) of multi-core processors and validates the results via

thermal measurements. Specifically, [SZZ+20b] simply applied Laplace method to obtain the

power maps from the thermal maps. However, such power maps, called raw power maps, are not

physical power density maps as they contain negative values. Negative values are clearly shown

in Fig. 2.3. They cannot be explained by CPU power distribution since CPU power will never

be negative. Furthermore, the prior work mainly identifies a few major heat source locations by

locating the local maxima from the raw power maps without solving for the physical parameter

of thermal conductivity κ. However, this paper quantitatively estimates the power density values

(W ·mm−2) across the full chip as well as the thermal conductivity κ of the chip die. This means

we are able to learn the spatially continuous heat sources and their actual power densities.

Figure 2.3: A negative-Laplacian map (raw power map) example of experimental thermal measure-
ments in 3D view
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(a) (b)

Figure 2.4: Simple ideal cases: (a) homogeneous heat source in orange region with total power 3W;
(b) linear heat source in orange region (10×2mm), with areal power density 0.05(x−2) W ·mm−2,
x ∈ [2, 12] and total is 5W.

In order to closely study the relationship between the Laplace transform of temperature

and the CPU power distribution, we build a simple ideal case in COMSOL Multiphysics heat

transfer tool [Mul14]. This structure contains a rectangular base whose geometric dimension is

10×15×0.5mm, and a 4×4×0.5mm heat source block embedded in the base, whose total power is

set at 3W (0.1875W ·mm−2) and homogeneous in space (Fig. 2.4(a)). The geometries can be flexi-

ble, we set it to approximately match the general size of CPU die and core. The κ of the material of

the structure in this case is 400W · m−1 · K−1. For the boundary conditions, a convective heat flux

set at 1000W ·m−2K−1 is applied to the bottom surface. This convective heat flux mimics the heat

dissipation through bottom surface. Ambient temperature is set to room temperature 297K.

As shown in Fig. 2.4(a), it is obvious that the high-rising portion of negative-Laplacian

map reflects the area of active power density. Furthermore, we observe that integration of negative-
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Laplacian map over all the area (pixels) is always zero, no matter how the power setting or geometry

changes. The reason is that the thermal map we obtained comes from steady state of the CPU with

specific thermal boundary conditions. This means that power generation and power dissipation are

balanced in such equilibrium state. The negative power density value actually stands for more power

dissipation than generation at the specific location due to thermal transfer and convection process at

the boundaries. Where positive value means the opposite. For the very positive high-rising portion,

which means the heat generation is significantly larger than the dissipation, typically indicates the

hotspots of the chip.

In another example, we have an ideal linear heat source, whose power density increases

linearly along the x-axis with total power 5W. Fig. 2.4(b) illustrates the location of power source,

power setting and its corresponding negative-Laplacian map. We can observe that the negative-

Laplacian in such rectangular power region shows an important linear trend as well, while the sur-

rounding region is negative.

Based on the observations from these examples, we can see that the positive part of the

negative-Laplacian map are the region where most of the real power densities are located. In this

two simple cases, they cover the 100% real power density distribution. As a result, we can just use

the positive part of the negative-Laplacian map to represent the estimated power map. Though the

actual values of power map in those region are yet to be determined, which will be answered in the

following section by calculating the accurate thermal conductivity κ.
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2.3.2 Estimation of Real Thermal Conductivity

Modern microprocessor die is usually as thin as 0.5mm or below. Thus thermal charac-

teristics along z-axis can be viewed as homogeneous. Power density distribution is only important

on the surface x-y plane.

In reality, heat density is a combination of CPU power and heat dissipation by heat sink.

Assume the thickness of CPU die is ∆z, p(x, y) stands for surface power density (W · mm−2) at

location (x, y) and pd(x, y) denotes heat dissipated locally. Heat density can be expressed as:

gT (x, y) =
p(x, y)− pd(x, y)

∆z
(2.4)

Then for location (x, y), (2.3) can be rewritten as:

− κ∇2T (x, y) =
p(x, y)− pd(x, y)

∆z
(2.5)

Considering the entire chip, integrate both sides on the whole die area,

− κ
∫
∇2T (x, y)dxdy =

∫
p(x, y)− pd(x, y)

∆z
dxdy (2.6)

Suppose P is total CPU power, and Pd is total heat dissipation (mainly through convective heat

flux), (2.6) can be further written as:

− κ
∫
∇2T (x, y)dxdy =

P − Pd
∆z

(2.7)

At steady state P should be equal to Pd. This infers the integration on the right hand side of

(2.7) would give zero total heat, as CPU power is balanced with heat removal. It also implies

the integrated Laplacian should be zero. In fact, this zero result has been observed both in our

experiments and aforementioned simulation. Based on the discussion in the previous sub-section,
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(2.7) can be approximated as:

− κ
∫
SP

∇2T (x, y)dxdy ≈ P

∆z
(2.8)

κ ≈ P/∆z

−
∫
SP
∇2T (x, y)dxdy

(2.9)

where SP indicates area where negative-Laplacian of temperature is positive. Since die thickness

∆z is constant, once negative-Laplacian map is obtained from temperature image, the equivalent

thermal conductivity κ can be obtained. It basically means that the proportional factor κ can be

acquired from dividing total power by thickness and by areal integration of the positive parts of

negative-Laplacian. Having this κ, CPU power density map becomes straightforward, which is

expressed as:

p(x, y) =


κ∆z[−∇2T (x, y)], −∇2T (x, y) > 0

0, −∇2T (x, y) ≤ 0

(2.10)

Using the above equations to estimate the power map for the homogeneous heat source

example and the linear heat source example, the results are shown in Fig. 2.5. Fig. 2.5(c) and

Fig. 2.5(d) are the estimated power densities for the two cases, while Fig. 2.5(a) and Fig. 2.5(b) are

the corresponding original power density maps. As we can see, some spikes exist at corners in the

estimation results due to numerical noise.

To compare the similarity of the two power maps, we introduce 2D correlation coefficient,

or simply correlation to evaluate the similarity between the real power map and the estimated power

map, which is defined as

r =

∑
m

∑
n

(
Amn −A

) (
Bmn −B

)
√(∑

m

∑
n

(
Amn −A

)2)(∑
m

∑
n

(
Bmn −B

)2) (2.11)

27



(a) (b)

(c) (d)

Figure 2.5: Comparison between estimated power density maps and exact ones for simple ideal
examples. (a) and (b) are original power density maps for homogeneous heat source and linear heat
source, respectively; (c) and (d) are the corresponding estimated power density maps of (a) and (b).

where A and B are mean of all entries in A and B, respectively. r is a scalar between 0 and 1,

the more it approaches 1 the more they look alike. For the above two examples, the correlations

of the first and second example are 0.977 and 0.973 respectively. In addition, RMSE of estimated

power map on the active powered region is 0.005W ·mm−2 and 0.015W ·mm−2 respectively for the

two cases as well. As a result, we can see that the proposed power map estimation method is quite

accurate.

The thermal conductivity κ of silicon is about 130W ·m−1 ·K−1, copper is about 400W ·

m−1 ·K−1. Due to the mixture of silicon, copper and some other materials in real die, the overall κ

could be somewhere around 130∼400W · m−1 · K−1. The material in the motivation examples in
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simulation has κ of 400W ·m−1 ·K−1. In our case, the estimated κ by the proposed method is about

417W ·m−1 · K−1, about 5% error for the estimation.

One may wonder why the estimation error is 5% for κ based on those ideal simulation

cases. There are several reasons. The first is the non-zero thickness of the chip hence the thermal

distribution is not perfectly homogeneous along the vertical z-axis of chip die. The second reason

is the nature of finite-element method, meaning elements are not infinitely-fine on the object. We

can see some glitches on the power map surface. The side surfaces are not absolutely vertical

but with a small angle from the vertical plane. Ideally, the sides should be absolutely vertical.

Thirdly, a very small part of the low powered area that only has slight power density (e.g., smaller

than 3 ∼ 5% of the average power) are computed as zero power because of ignoring the negative

values in the raw power map. In reality, the above mentioned extremely low powered area may

still show negative Laplacian values due to the heat diffusion behavior, such as vertical diffusion

within the chip. To look at the error more closely, we repeat the trials with reduced thickness and

the finest mesh structure in FEM in COMSOL for several ideal cases. The κ estimation error could

be improved to within ±1% for ideal homogeneous heat sources (square or rectangle shaped, etc.),

and 0∼3% for the ideal linear heat source case. Further from this observation, the error is workload

dependent due to the aforementioned third reason. As we see, the error is different for ideal cases.

One consideration is the linear heat source case has more errors happening at the border of heat

source, where there is a small part of places at the border with positive power are still shown as

negative values in the simulation setup and hence are zeroed out. In another words, the proposed κ

approximation method is not perfect but is a reasonable estimation.
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Therefore, we have verified the approach of estimating the power map in simulations.

Moreover, the estimated power density maps sufficiently match the original power setting. We

further note that the estimation error for κ can be smaller or equal to 5% from the simple ideal

cases. However, it is difficult to know the true accuracy since we do not know the actual κ for the

commercial chips.

2.3.3 Thermal Conductivity Estimation for Real Chip Die Area

Another important parameter for the thermal model is the thermal conductivity of the

chip. Based on the power map model derived in Sec. 2.3.2, we show in this section how to estimate

the equivalent thermal conductivity κ of the die from the measurement of thermal maps.

For our work, the total power of CPU is also needed. Intel Performance Counter Monitor

(PCM) provides users a software interface that estimates the internal resource utilization of the

latest Intel core processors. One metric of the PCM dataset is CPU energy consumption between

two accesses. To ensure precision, power data has to be synchronized with the thermal maps. As

mentioned in the system setup, if the capturing frequency of infrared camera is f , PCM data should

be recorded in this same frequency. Suppose the CPU energy along discretized time points is series

E, then total power P = E/∆t is also a time series, and ∆t = 1/f .

One thermal map is related to one raw power map, and it will result in one κ value. Dif-

ferent thermal maps may result in different κ values. A reasonable κ should be a constant despite

different workloads and time. In this work, estimating κ accurately is important to the thermal char-

acterization for that the FEM thermal model depends on the κ parameter. It is also important to

power map estimations due to the proportional factor, as seen in equation (3.1). And the accuracy
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Figure 2.6: Estimated thermal conductivity of die area with respect to multiple workloads in time
domain

of κ depends on the accuracy of thermal imaging measurements. Therefore, we have analyzed a

sufficient amount of imaging samples regarding various workloads to obtain an optimal κ expecta-

tion. In this work, we execute eight workloads of different kinds and capture over 14000 thermal

maps for each workload. The workloads are gimp, aobench, phpbench, cachebench, tinymembench,

build-gcc, compress-7zip and cyclictest, respectively. The resulted κ with respect to different work-

loads along time line are plotted in Fig. 2.6. See from the traces, κ comes out quite constant and

for half of the workloads and there is an obvious overlap, which is expected. On the other hand,

it is observed that the mean κ of workloads tinymembench, phpbench, aobench and build-gcc are

measured 160, 164, 165 and 180W · m−1 · K−1, which have slightly large deviation compared to

other workloads. In our experiment, the workloads are selected such that: (a) they contain steady

states during the execution since this work focus on the steady state power and thermal estimations;

(b) they invoke enough power to generate measurable heat and infrared emissions so that the in-

frared camera captures the chip’s spatial temperature efficiently. As seen in the results, the κ seems

workload dependent. Possible reasons are that the top surface temperature does not perfectly follow
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the temperature inside the chip as the material is not perfectly homogeneous, as a result, the error is

dependent on workloads and the thermal measurement error. Some glitches exist in κ due to CPU

changing power levels thus not running in steady state. During those times, temperature transient

term (ρCP ∂T∂t ) cannot be ignored. Furthermore, the global arithmetic mean of κ is 174W·m−1 ·K−1.

We define this κ as the estimated equivalent thermal conductivity of CPU die.

In theory, κ is related to the whole system (die + FR4 (Circuit Board) base + motherboard

+ cooling pads). However, the die has much greater thermal conductivity than the FR4 base below

it, which allows us to separate the die out of the system when computing κ. For instance, if the FR4

base and motherboard were metal or silicon with the same κ as the die, then we can’t treat the chip

as a thin piece anymore. The chip and boards should be treated as a homogenous object. Thanks to

the fact that die has far greater κ than its base, we can approximate the κ=174W ·m−1 · K−1 as the

κ of silicon die. However, the resulting κ is higher than that of the pure silicon. This could come

from the fact the metal layers inside of the die and the metal protection covering the surface of the

die increases the overall κ.

2.3.4 FEM Model Architecture to Imitate Real Experiment Setup

In this subsection, we present the FEM thermal model that computes (reconstructs) the

thermal map for the test setup with bare chip and back cooling of the processor and a novel approach

to validate the results.

Once we obtain the estimated power density maps and equivalent thermal conductivity

κ of the CPU die, we then start to build a heat transfer structure that mimics the real experiment

setup. Fig. 2.7 illustrates the structure created using COMSOL Multiphysics which matches the
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Figure 2.7: Thermal structure created to imitate the real experiment setup.

real CPU package geometry. Geometries of Intel i7-8650U are acquired from the open resource

from WikiChip organization [Wik]. The CPU package dimension is 42×24×1.3mm, thickness of

base circuit board is 0.8mm. There are two pieces of dies soldered on the base board, the CPU die,

which is the object we will study, has dimension 14×9×0.5mm. In our model, material of the CPU

die and package base board are initialized with silicon and FR4, respectively. However, thermal

conductivity of die part (silicon) is set to the computed κ, i.e. κ = 174W · m−1 · K−1 in our case.

A convective heat flux is applied to the bottom surface of the package base board, which simulates

the heat flow from CPU package through motherboard to the cooling system, as indicated by the

arrows at bottom in Fig. 2.7. The convective heat flux rate and thermal conductivity of base board

will be determined as boundary conditions in the next.

For the FEM thermal simulation, we also need to know the correct thermal boundary

conditions of the die. One idea is to explore the idle status of CPU (its boundary conditions are

the same of the CPU under other workloads) as it is easy to extract the power map in this status.

Specifically, since the idle status has extremely low power, power map is pre-known as almost

zero, except for very few places that have slight power. Majority of CPU appears to be approaching

ambient temperature, spatial temperature appears relatively flat. At the beginning, simulated thermal
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Figure 2.8: Setting proper boundary conditions for thermal simulation model using measurements
of CPU’s idle status

map according to the estimated idle power map has the same trend with the measured thermal map,

whereas the amplitude and the range have a little discrepancy. This will guide us how to adjust

the thermal conductivity of package base board and bottom convective heat flux rate such that the

simulated thermal map matches the measured thermal map as much as possible for idle status, as

shown in Fig. 2.8.

The boundary conditions for the FEM model are determined systematically and method-

ologically. Geometry dimensions are known and thermal conductivity of chip die has been calcu-

lated. We first feed the estimated idle power map to FEM and manually adjust the temperature of the

bottom interface of the base board at somewhere around 30◦C, making the FEM simulated thermal

map to mirror the measured thermal map, as Fig. 2.8 shows. It needs a couple simple trials, once

the simulated thermal map of the idle status mirrors the measured thermal map, temperature of base

board bottom interface is then set and fixed. The idle power map has extremely low power across

the chip only except for a corner area thus it is the best choice for setting the interface temperature.
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Then we prepare an estimated power map of an arbitrary active workload at an arbitrary steady state

during runtime. We feed that power map to the FEM model and adjust the thermal conductivity of

base board again, making the temperature range of the simulated thermal map equal to that range of

measured thermal map. This is because the thermal conductivity has a scaling effect to the tempera-

ture range. Finally, adjust the heat flux rate at the interface such that the max temperature equal the

measured max temperature. Note that this is one-time action for all, meaning these parameters

are fixed in later tests for various workloads, including their various steady states of runtime.

For the setup with heat sink, the physical parameters are computed in a similar way. The difference

is the usage of equation (4.3) to compute the heat transfer coefficient or heat flux from heatsink to

ambient. In our simulations we found that these one-time calibrated parameters perform well for all

the data samples. We found that the convective heat flux rate is about 600W ·m−2 ·K−1 and thermal

conductivity of base board is about 6W ·m−1 · K−1.

Note that this FEM thermal model is built to validate the accuracy of estimated power

maps. As mentioned before, since the exact power map cannot be directly measured, we take an

indirect method to to validate it by comparing the measured thermal maps to the FEM computed

thermal maps. The power map accuracy results are described in details in Sec. 2.4.1.

2.4 Experimental Results and Discussions

In this section, we will present the results with the experiment of Intel i7-8650U in two

stages, which has 4 CPU cores, and an integrated GPU. First, we present the estimated power

map results for the 4-core processor and validate the estimated power density maps by finite ele-

ment based thermal simulation with no heat sink using COMSOL Multiphysics as discussed ear-
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lier [Mul14]. Then we compare it against a recently proposed power map estimation method [RDB18a].

In the next chapter, we presented the accurate thermal models for estimating full-chip thermal maps

when the processor works in real situation under heat sinks.

2.4.1 Power Map Estimation and Comparison Results

Figure 2.9: The power map estimation results, from first to last row are experiment measured ther-
mal maps, estimated power maps in 3D view, and simulation generated thermal maps, respectively.
Each column is related to one workload at one steady state.

We have firstly examined sufficiently large amount of data samples that relate to various

steady states when with back side cooling. For most data samples, the estimated power maps are

able to reconstruct the thermal maps that are almost identical to the measured thermal maps, with

average similarities over 96%. Besides, the average absolute error for thermal maps reconstructed

by estimated power maps and FEM model is 1.3◦C. Fig. 2.9 lists four typical samples of the power

map estimation results. The first row are the experiment measured thermal maps, the second row
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Figure 2.10: Comparison of the estimated power maps between the BPI (27×41 resolution) and
the proposed method for three benchmarks (cachebench, phpbench and cyclictest) with respect to a
specific time step during their full execution, respectively.

are the estimated power maps in 3D view, and the last row are thermal maps generated by FEM

thermal simulation in the back-side cooling scenario.

As mentioned in the related works in Sec. 2.1, Reda et al. [RDB18a] proposed a general

blind power identification, called BPI method for power maps from thermal measurements. For fair

comparison, we utilize the open source code of BPI implemented in Matlab program [RB18] with

our thermal measurements and compare it with the proposed method, which is also implemented

in Matlab. We choose arbitrary steady-state time steps of workloads (cachebench, phpbench and

cyclictest) as the target of power map estimation. Fig. 2.10 left-hand side illustrates the power maps
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Table 2.1: Computational cost comparison for power map estimation

BPI Proposed

Map Resolution

(pixel by pixel)

13 × 20 19 × 29 27 × 41 190 × 290

Time Per Single

Power Map (ms)

39 277 740 7.5

under 27× 41 resolution estimated by the BPI method, and the right-hand side illustrates the power

maps under 190 × 290 resolution estimated by our method. It is apparent that the power patterns of

the proposed power maps actually match the powered blocks in the power maps estimated through

BPI. The total integrated power over the power maps equal to each other as well. The powered

blocks may have excessive power density because of pixilation. In one word, the proposed method

provides a more fine-grained estimation than the BPI method.

Furthermore, the proposed method is more efficient than the BPI method, as shown in

Table 2.1. For BPI method to achieve high-resolution power maps, the size of required response

matrices will grow exponentially as the resolution increases. Actually achieving resolution beyond

27 × 41 becomes challenging due to excessive computational costs of the underlying optimization.

Note that we used Matlab tool to perform the computation on an Intel i7-8750H 2.2 GHz PC. As

we can see, the proposed method is much more efficient even with higher resolution, which is

essentially the resolution of the thermal image.

Fig. 2.11 further illustrates the power density distribution (Fig. 2.11(b)) projected on the

processor die floor-plan (Fig. 2.11(a)) at an example steady state. Intel i7-8650U processor has a
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(a) (b) (c)

Figure 2.11: (a) Intel i7-8650U processor die floor-plan [Wik]; (b) an estimated power density map;
(c) projection of power density map onto the processor die floor-plan.

Table 2.2: Estimated power example for processor component (i7-8650U)

Component Power Component Power

System Agent 0.70W Ring/Interconnect 1.78W

GPU 0.59W L3 cache 0.53W

Core#1 2.22W Core#2 2.36W

Core#3 2.27W Core#4 2.51W
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system agent (including an image processing unit, a display engine and an I/O bus), a GPU module

on the side and four cores in the middle. As we observe, the four cores consume the major power,

whereas the system agent and GPU module consume low power at such steady state (Fig. 2.11(c)).

We can see that power pattern aligns with the arrangement of cores and Ring/Interconnect quite

well. We obtain the component power by power density integration for the component, which are

presented in Table 2.2.

2.5 Summary

In this chapter, we address the problem of accurate full-chip power and thermal map

estimation for commercial off-the-shelf multi-core processors. Processors operating with heat sink

cooling remains a challenging problem due to the difficulty in direct measurement. We first propose

an accurate full-chip steady-state power density map estimation method for commercial multi-core

microprocessors. The new method consists of a few steps.

First, 2D spatial Laplace operation is performed on the measured thermal maps (images)

without heat sink to obtain the so-called raw power maps. Then, a novel scheme is developed to

generate the true power density maps from the raw power density maps. The new approach is based

on thermal measurements of the processor with back-side cooling using an advanced infrared (IR)

thermal imaging system. FEM thermal model constructed in COMSOL Multiphysics is used to

validate the estimated power density maps and thermal conductivity.

Experiments on an Intel i7-8650U 4-core processor with back cooling shows 96% similar-

ity (2D correlation) between the measured thermal maps and the thermal maps reconstructed from

the estimated power maps, with 1.3◦C average absolute error. Furthermore, the proposed power map
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estimation method achieves higher resolution and at least 100× speedup than a recently proposed

state-of-art Blind Power Identification method. This work is published in [ZSO+21].

41



Chapter 3

Power Estimation for Commercial TPUs

3.1 Power Map Estimation Framework

A brief overview of the proposed approach will be presented in this section, along with a

description of the thermal setup used for collecting the necessary data from a commercial off-the-

shelf TPU chip while it is under the workload.

3.1.1 Estimation Flow Overview

The proposed approach involves three engineering phases. First, we obtain full-chip

power map measurements across the TPU with both high accuracy and resolution by implementing

a state-of-the-art thermal-to-power technique. Second, we propose to take advantages of the hyper-

parameters of the NN workloads that inferences on the TPU as the model’s input features, and the

outputs are power maps across the TPU immediately. Last but not least, the new model employs a

special Generative Adversarial Network architecture called Conditional GAN or CGAN to train the

online power characterization model.
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Figure 3.1: Framework and data acquisition flow

The CGAN-based power model requires two chunks of data for the training procedure,

one is the off-line measured power maps when TPU is under load, which are used as targets when

training the model. The other is a set of hyperparameters extracted from the NN workloads to be

executed on TPU. It should be noted that those hyperparameters can be extracted either online or

prior to the workload execution. Once the model is trained, we can use it for online TPU power

inferencing. Fig. 3.1 illustrates the framework and data acquisition flow of the proposed approach.

The first and the second phase, including every step shown in Fig. 3.1 will be described in detail in

the next section. The third phase will be explained in Section 3.3.
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(a) (b)

Figure 3.2: (a) Thermal Imaging system setup (b) TPU chip under-test, Coral M.2 TPU module.
TPU module is shown in the blue box.

3.1.2 Thermal IR Imaging System

The proposed machine-learning based approach relies on proper data acquisition of the

chip-level spatial power information from the TPU under workloads for the model’s training and

testing procedure. Directly measuring the power maps of TPU chips is not achievable. To address

this issue, we indirectly measure the full-chip power map through a thermal-to-power approach

proposed in [ZSJT20]. This thermal-to-power approach has both high precision and resolution. It

calculates the full-chip spatial power density maps from the spatial temperature maps measured

when the processor is under a thermal steady state. The approach basically takes advantage of

the high correlation between heat source distribution and the 2D Laplacian transformation of the

temperature of the chip surface.

The thermal-to-power approach requires accurate measurements of chip surface temper-

ature maps. Hence, we have a built-in advanced infrared (IR) thermal imaging system, as shown
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in Fig. 3.2. In order to expose the TPU chip to the IR camera, we have removed the stainless steel

cover on top of the TPU. It should be noted that in our test case, the TPU module requires no ex-

ternal cooling kits, such as heat sinks, to ensure proper thermal conditions for the TPU to work.

However, for some other TPU modules that come with heat sinks, after removing the heat sinks, the

TPU module can be cooled with a widely used back-side liquid cooling technique [AH15] to ensure

proper thermal operating conditions. The back-side liquid cooling approach features a thermoelec-

tric (Peltier) device mounted on the PCB directly beneath the processor module allowing it to be

cooled from underneath. This leaves the front side of the processor fully exposed to the IR camera

without any interference layer in between.

Product information and specs of our IR thermal imaging system are described as follows.

The IR camera used in this setup is a FLIR A325sc which supports a maximum imaging resolution

of 320 × 240 pixels (px) with 16-bits of precision per px, and a maximum capturing frequency of

60Hz. The IR sensor is factory calibrated for accuracy across the temperature range of −20◦C to

120◦C, and resolves the IR spectral range of 7.5µm to 13µm. A high-resolution microscope lens is

used to achieve the spatial resolution of 25µm per px.

3.2 Data Preparation and Feature Selection

In this work, we model the spatial power from the workload features that are available in

real time. Like any other regression model, the machine-learning model architecture we deploy is a

supervised learning model, for which the proper data set is ultimately important. As previously men-

tioned, the data required for training the learning-based model involves measuring the offline power

maps across the TPU full-chip and collecting the hyperparameters of NN workloads running on the
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TPU module. It should be marked that each individual workload has a unique hyperparameters-

powermap data pair, which serves as a unique training data point. Google Coral Edge TPU has 3

different frequencies, 500MHz, 250MHz, and 125MHz. Our workload mainly runs in 500MHz. In

this section, the detailed process of acquiring the necessary data is presented.

3.2.1 Offline Power Map Acquisition

There have been various post-silicon approaches transforming thermal distribution to

power distribution [WFMS09, CNR10, PSSK13, NWR13, BBVB16, RDB18b, ZSJT20]. Among

those [SZZ+20b, ZSJT20] suits for our study case best, giving it calculates spatially continuous

and relatively precise power maps from thermal maps with high efficiency, which is suitable for

real-time inferences.

Considering the steady state 2D spatial thermal distribution of the processor as T (x, y),

where (x, y) is the coordinates of the thermal map. Power map can be approximated as [ZSJT20]:

p(x, y) ≈


k[−∇2T (x, y)], −∇2T (x, y) > 0

0, −∇2T (x, y) ≤ 0

(3.1)

with

k = κ∆z (3.2)

where p(x, y) stands for the spatial power map (density, Watt/area), κ and ∆z for thermal conduc-

tivity and chip thickness, which are constants. And ∇2T (x, y) is the 2D Laplacian of temperature.

The coefficient k is expressed by:

k = κ∆z ≈ P

−
∫
SP
∇2T (x, y)dxdy

(3.3)
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where SP indicates the area where the negative-Laplacian term of temperature [−∇2T (x, y)] is

positive. The negative-Laplacian term reflects the pattern of spatial power distribution. In this

work, we call k the thermal-to-power coefficient. It can be calculated by the thermal measurement

of idle status Tidle(x, y) combined with standby total power consumption Pidle provided by the

official specification. Once we have Tidle(x, y) and Pidle, we can substitute them for equation (3.3)

to obtain k. After k is obtained, power maps under any workloads can be acquired straightforwardly

through equation (3.1) from thermal measurements.

As we see, one special requirement of this method is that it needs the processor to be

under thermal steady-states when calculating its power maps from thermal measurements. Hence,

to satisfy this requirement, we have the TPU module run each workload for sufficiently long (e.g. 2

minutes per workload) to stabilize its temperature. Multiple thermal images are captured after the

TPU reaches a steady state corresponding to that workload. Once the steady-state thermal images

are obtained, they will be processed to calculate an averaged power map for that workload as the

estimation target of that data point. It should be noted that the proposed learning-based power

model does not require any waiting during deployment since the proposed model needs no thermal

measurements for power estimations. As an example, Fig. 3.3(a) shows an averaged steady-state

thermal image for MobileNet-V2-224-1.0 network, which is a widely used image-classification

model available on TensorFlow [A+15]. Fig. 3.3(b) further illustrates the resulting TPU power

map. In order to automate the measuring procedure, we arranged a sequence of workloads for the

TPU module, and in the meantime, the IR camera is synchronized with the TPU for each workload’s

running period.
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Figure 3.3: (a) Thermal image and (b) power map of TPU for MobileNet-V2-224-1.0 network.

The size of the TPU module is about 5.06 × 4.94mm. And it only occupies partial cam-

era’s 320×240px field of view. We crop the chip area out of the photo and then calculate the power

map. Thermal noise is a big problem when we need to calculate the Laplacian. Although the noise

is small relative to the temperature, its Laplacian can be locally larger than the Laplacian of temper-

ature, overshadowing useful information. An effective method to extract information is the discrete

cosine transform (DCT) [ANR74]. The majority of the information is contained in low-frequency

coefficients of DCT. Therefore, we transform the heatmaps into the spatial frequency domain by

2D DCT, keeping the low-frequency coefficients, and then transform them back. This reduces some

resolution but allows us to analyze the spatial distribution of power.

3.2.2 Feature Selection Considering TPU Workloads

For neural networks such as TPU’s workloads, power distribution is an immediate re-

flection of hardware resource utility invoked by the neural networks executing on the TPU. TPU
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hardware resources that the network demands are tightly related to the network model architec-

ture, size, operations, etc. Hence, we are able to characterize TPU’s power from the workloads’

hyperparameters such as operation type, count and workload size, etc.

In this work, we divide the network’s hyperparameters as features into two groups, called

the overall features and operational statistics. Neural network models that are coded to run on CPU

need to be compiled to a TPU readable version. In our study, EdgeTPU Compiler [Edg] is employed

to transform a CPU version network model to a TPU version. On the one hand, the overall features

such as model size and memory usage are recorded through the process. On the other hand, we

collect statistical information for the type and count of operations indicated by the network in the

meantime. We mark that for different TPUs different tools may be involved, however, those network

information should always be reachable. Today’s world has a vast number of neural networks and

hundreds of kinds of operations. To find the most popular operational features of network models,

we explored a number of the most popular and widely used open-source deep neural network models

from TensorFlow. The selection of models will be explained in more detail in Section 3.4. Table 3.1

shows the 31 features selected for the network workloads.

3.3 CGAN-Based Estimation Model

3.3.1 Review of CGAN

As a machine-learning problem, our purpose is to generate the on-chip power image from

the workload features. Generative Adversarial Network (GAN) can be a competitive choice [GPAM+14].
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Table 3.1: Selected Workload Features (Coral M.2 TPU, Google Edge)

Overall

image shape pooling mode onchip mem rem num op tpu

width multiplier model size offchip mem used num op cpu

depth multiplier onchip mem used total op cnt infer time

Operational Statistics

add full connect pad reduce max

avg pool 2d l2 norm quant relu

concat max pool 2d reshape strslc

conv2d mean sft max hard swish

depconv2d mul sub

GAN has two contrary networks, generator G and discriminator D. G is trying to map an

input vector to an output image, while D attempts to tell if an image comes from the real data or G.

They will be trained simultaneously and keep trying to optimize themselves to fool/expose others.

At last, when the generated image is close enough to the ground truth, the generator should have

become a mastered projector, and the discriminator can never tell the difference between a fake and

a real image.

Original GAN is used to produce new images within the range of existing image distri-

bution and the generator is fed by noise. As a variant, Conditional GAN (CGAN) also give some

labels to the generator, so it can map features to corresponding images [MO14]. Based on CGAN,

we no longer use random noise because we expect to give a unique power distribution with one

certain feature vector.
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Figure 3.4: Architecture of CGAN model

Sometimes it can be tough to train the GAN model because of the gradient vanishing. We

can introduce Wasserstein Distance instead of the conventional JS-Divergence to measure the sim-

ilarity between the distributions of real and fake images [ACB17]. This modification can stabilize

the training process and reduce the frequency of collapses.

3.3.2 Proposed CGAN-Based Power Estimation Framework

The framework of our hyper-parameter to power map model is shown in Fig. 3.4. The

input condition x is a 1x31 vector, which will be given to both the generatorG and the discriminator

D. The generator learns how to map it to the correct power map image y, and produce G(x). Then

D accepts y or G(x) alternatively with the condition x, score a degree D(x, y) or D(x,G(x)) how

confident the given power map y or G(x) is true. Our goal is to maximize D(x, y) and minimize
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D(x,G(x)) over all (x, y) pairs in the training set. We can write down the objective function to

minimize as:

lossD =E(x,y)[D(x,G(x))−D(x, y)]+

λgpEx̂[(||∇x̂D(x̂, x)||2 − 1)2]

(3.4)

Here E(x,y) is the expectations over the (x,y) pairs in the training set. Also, we introduce

an extra gradient penalty term, so that the discriminator has the 1-Lipschitz continuity [ACB17]. x̂

is the interpolation between G(x) and y, and λgp is the weight.

For the generator, we want to maximizeD(x,G(x)) and minimize the L2 loss ||y −G(x)||2.

The generator has nothing to do with the real power map y, so there is no D(x, y) term. The loss

function is:

lossG = E(x,y)[−D(x,G(x)) + λL2 · ||y −G(x)||2] (3.5)

The architecture and parameters of the generator and discriminator networks are shown

in Table 3.2.

First, the generator transforms the input condition vector into an image by a fully con-

nected layer and a reshape operation. After that, there are 6 transposed convolutional layers to

finally produce a 256×256px power map. The discriminator is a conventional convolutional classi-

fier that has a similar but reversed structure with the generator, and goes from a 256× 256px image

to only one real number as the output.
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Table 3.2: Architecture and Parameters

Generator

Layer Kernel #Output Activation

FC - 8192 Leaky ReLU

Reshape - 4x4x512 -

Conv trans 5x5 8x8x512 Leaky ReLU

Conv trans 5x5 16x16x512 Leaky ReLU

Conv trans 5x5 32x32x256 Leaky ReLU

Conv trans 5x5 64x64x128 Leaky ReLU

Conv trans 5x5 128x128x64 Leaky ReLU

Conv trans 5x5 256x256x1 -

Discriminator

Layer Kernel #Output Activation

Conv 5x5 128x128x64 Leaky ReLU

Conv 5x5 64x64x128 Leaky ReLU

Conv 5x5 32x32x256 Leaky ReLU

Conv 5x5 16x16x512 Leaky ReLU

Conv 5x5 8x8x512 Leaky ReLU

Conv 5x5 4x4x512 Leaky ReLU

Conv 5x5 2x2x512 Leaky ReLU

FC - 512 Leaky ReLU

(+Cond) FC - 256 Leaky ReLU

FC - 1 -
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3.4 Experimental Results and Discussions

In this section, we demonstrate the experimental results of the proposed approach in two

folds. On the one hand, we convince that the power maps obtained through the thermal-to-power

way are sufficiently reliable. On the other hand, we show that the online inferencing of power maps

by the proposed CGAN-based model is computationally efficient and technically sound.

3.4.1 Validation of the Total Power Consumption

As discussed in Section 3.2.1, directly measuring the spatial power distribution of the TPU

is not realistic, we have implemented one of the state-of-the-art methods that compute spatial power

maps from the thermal measurements. The question is that whether those inter-mediately obtained

power maps are sufficiently reliable in our test case. Fortunately, Coral has open-sourced a few but

limited data for total power measurements. Hence, we are able to compare our estimated total power

with the manufacturer’s provided total power measurements, to see how well they match. The more

they match, the more convincing they are. To our knowledge, this indirect way is the best way for

validating the power maps in our case.

The estimated total power is simply an integration from the estimated spatial power maps.

Coral M.2 TPU module’s official specification has released 7 power measurement data points, per-

taining to two different workloads under three different operation frequencies, respectively, plus an

idle power measurement. Power under idle status is officially indicated by a range between 0.375

and 0.400W. In our work, we take the central value 0.3875W as its golden idle power. Then

combine that with the thermal maps captured under idle status to calculate the thermal-to-power
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Table 3.3: Total Power Comparison

Workloads Total Power 500 MHz 250 MHz 125 MHz

MobileNet V2
Real 1.4 W 0.9 W 0.6 W

Est. 1.42 W 0.92 W 0.60 W

Inception V3
Real 0.7 W 0.6 W 0.5 W

Est. 0.69 W 0.58 W 0.50 W

coefficient k. Then we use it to calculate the power maps for the same two workloads at those three

different frequencies, and further their total power.

By combining two models and three operating frequencies, Table 3.3 lists the six golden

total power data points, which are provided from the official specification, with our estimated total

power consumption. As we can see, all of the estimated total power data points mirror the real power

measurements remarkably well. Given that one decimal point precision is available in official power

data, the root-mean-squared-error of total power estimation is only 0.0147W, and the percentage

error is within 2%.

3.4.2 Power Map Estimation Accuracy

The dataset consists of a number of well-known neural network models for image recog-

nition, such as EfficientNet, InceptionResNet, MobileNet, etc. By varying their architectural hyper-

parameters, many of their variants were generated and added to the dataset. The final dataset has

7066 data points (networks) in total, where 6359 points are randomly selected for training and 707

points for testing. All networks are executed with the TPU at the nominal frequency 500MHz.
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Figure 3.5: Measured power maps (row #1), estimated power maps (row #2), and error maps (row
#3). The numbers in the first row indicate the Power Density RMSE | Average Power Density (unit:
mW/mm2). And numbers in the second row indicate the Total Power Percentage Error | Total
Power (unit: W).
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After the training process, the generator of the CGAN model is able to estimate the power

map with the input hyperparameters. To characterize its accuracy, we calculate the root-mean-

squared error (RMSE) over each pixel between the generated power map and the measured power

map.

In our dataset, the power density ranges from 0 to 189.34mW/mm2. The averaged RMSE

of the power map estimation on the test set is 4.98mW/mm2 with a standard deviation of only

2.53mW/mm2. The results are quite accurate considering the data range. Fig. 3.5 compares the

estimated and the measured power maps with some examples from the test set. It should be noted

that the right-most column shows the worst estimation on the test set, which is about 10% percentage

error on the total power. It can be seen that the CGAN-based model has learned the contour of real

power remarkably well.

The power map can also be used to calculate the total power by simply integrating the

power density over the power map. The mean error of the total power is 0.0968W. Considering that

the average total power is 1.375W on the test set, these estimations of total power are sufficiently

accurate as well.

3.4.3 Computational Efficiency

Training procedure normally takes a few to a dozen hours to complete. Once the generator

is well-trained, it can be deployed for real-time power prediction. The average inference time we

measured in our experiments is 6.9ms, with Intel Core i7-10710U as the host board and the Coral

Edge TPU. This low latency ensures the effectiveness of real-time power estimation. On the one

hand, most of the models on the TPU have a single inference time of well over 6.9ms (they take

dozens or even hundreds of milliseconds). On the other hand, TPUs do not switch deployed neural
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networks frequently, and those applications themselves that switch the neural networks generally

take more time. As a result, the proposed model is sufficiently rapid to keep up with the TPU.

3.5 Summary

In this chapter, we propose a novel approach for the real-time estimation of chip-level

spatial power maps for commercial Google Coral M.2 TPU chips based on a machine-learning

technique for the first time. The new method can enable the development of more robust runtime

power and thermal control schemes to take advantage of spatial power information such as hot spots

that are otherwise not available. Different from the existing commercial multi-core processors in

which real-time performance-related utilization information is available, the TPU from Google does

not have such information.

To mitigate this problem, we propose to use features that are related to the workloads

of running different deep neural networks (DNN) such as the hyperparameters of DNN and TPU

resource information generated by the TPU compiler. The new approach involves the offline acqui-

sition of accurate spatial and temporal temperature maps captured from an external infrared thermal

imaging camera under nominal working conditions of a chip. To build the dynamic power den-

sity map model, we apply generative adversarial networks (GAN) based on the workload-related

features.

Our study shows that the estimated total powers match the manufacturer’s total power

measurements extremely well. Experimental results further show that the predictions of power

maps are quite accurate, with the RMSE of only 4.98mW/mm2, or 2.6% of the full-scale error.
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The speed of deploying the proposed approach on an Intel Core i7-10710U is as fast as 6.9ms,

which is suitable for real-time estimation. This work is published in [LZJ+23].
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Chapter 4

Full-Chip Thermal Characterization

With Heat Sink Cooling

4.1 Identify Exact Locations of On-Chip Thermal Sensors

Typically, each core of the commercial multi-core processor contains at least one thermal

sensor. However, the exact locations of these sensors are not disclosed by the chip vendors or

developers publicly.

The exact location of those thermal sensors are needed to be known in order to model

the full-chip thermal map which is obscured by the heat sink. In this section, we present our novel

method to identify the exact locations of those thermal sensors, which serves as a basis for the

following sections.

Thermal sensor values are accessible in the runtime through online CPU tool PCM. In

order to locate the embedded thermal sensors, one way is to measure the temperature image of the
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chip without heat sink and find the pixel location that matches the sensor value. However, there are

two obstacles. The chip’s top surface temperature measured by the thermal imaging system is lower

than the internal temperature measured by the sensors. Besides, the difference between externally

and internally measured temperatures is unknown.

To address this issues, we propose a correlation-based method to identify the exact sensor

locations. First, we capture a series of temperature images of the chip without heat sink while it

is running under workloads. Workloads activate different cores and heat up different places of the

chip earlier or later, which enable all the sensors to have different temperature records along the

timeline. To be more specific, if the recording time is sufficiently long, each different location

of the chip will show distinct time curve of temperature measurements. Then we divide each of

the measured temperature images into 5×5 pixel square blocks, let the average temperature of this

square be the temperature of this location. One pixel is 50µm wide thus the resolution is 250 ×

250µm block. This resolution is fine enough considering the chip size. We mark the location of

each block and trace their temperature along the time from all the measured temperature images.

After collecting the temperature series of each pixel block, each series is compared against the

sensor values. Although externally measured temperatures are lower than sensor values, tendency

of both variations will be the same, meaning the external temperature rises or falls as the internal

temperature does. Therefore, the temperature series on the exact sensor location will have the

highest correlation with the sensor values. Linear correlation is applied, which is defined as

corr(Tm, Ts) =
E
[
(Tm − Tm)(Ts − Ts)

]
σ(Tm)σ(Ts)

(4.1)

where Tm and Ts are the temperatures measured by thermal system and sensors, respectively. Tm

and Ts denote the mean and σ(Tm) and σ(Tm) denote the standard deviations.
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Figure 4.1: The correlation between pixel blocks and sensor values of each core. In each correlation
map the pixel block that has the highest correlation to the core sensor measurement is marked in
green dots, which infers to the on-chip sensor location.

Correlation maps in Fig. 4.1 illustrate the correlation between the temperatures of pixel

blocks and sensor values of each core. Pixel block having the highest correlation in each correlation

map, marked as a green dot, indicates where the on-chip sensor location is identified.

Furthermore, the identified sensor locations for all cores are illustrated in Fig. 4.2 as small

colored squares, where the black rectangles outline the core regions. The chip layout is sourced from

the open source Wikichip Organization [Wik]. When overlapping and aligning the cores we can see

that the sensor locations identified in all the cores have quite good consistency.
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Figure 4.2: The sensor locations of CPU cores are identified in colored squares on an Intel i7-8650U
quad-core processor [Wik].

4.2 FEM Thermal Modeling With Heat Sink

We have elaborated on the FEM architecture that imitates the bare chip and back cooling

situation in Sec. 2.3.4. As we know, under real working situation, the back side liquid cooling

is replaced by the top side heat sink cooling (either passive or active heat sink). The processor

on device setup without and with heat sink is shown in Fig. 4.3. Fig. 4.4(a) illustrates the FEM

structure of the processor setup and Fig. 4.4(b) illustrates the FEM structure of processor area in a

3D transparent view when it is covered by a fin-shaped heat sink, where the dimensions of the heat

sink strictly follow the object in the experiment. Compared to the previous one, this FEM model

replaces the back side heat transfer with heat transfer through the fin-shaped heat sink.

We know that the computed thermal map cannot be compared against the exact thermal

map since the chip is obscured by heat sink and not measurable through thermal imaging system.

However, the results can still be validated in a sense if the computed temperatures on thermal sensor
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Figure 4.3: Processor without heat sink (left) and with heat sink (right)

(a) (b)

Figure 4.4: (a) Thermal structure created to imitate the real experiment setup (without heat sink);
(b) transparent view of processor area when with heat sink mounted on.
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locations match the real on-chip sensor measurements. We compute the thermal maps by FEM based

thermal simulation using COMSOL Multiphysics. The FEM thermal model architecture basically

consists of four major components to simulate the real device setup - motherboard, processor base

board, processor die itself and the heat sink. We remark that the model can be customized to any

setup such as adding heat spreaders or using more sophisticated heat sinks.

Ambient temperature and the convective heat transfer rate of the heat sink to ambient are

critical environment information for the FEM thermal model. To find out these parameters, we again

include the temperature measurements of processor’s idle status with heat sink in our analysis. The

heat transfer per unit surface through convection can be expressed as:

q = hCAdT (4.2)

where q is the heat transferred per unit time (W), which can be approximate as the processor power.

A denotes the surface area of heat sink (m2), hC denotes the convective heat transfer coefficient

(W ·m2 ·◦ C−1) and dT is the temperature difference between the heat sink and ambient. We use

the processor power and average sensor temperature when the processor is in idle status and under

workloads to compute hC according to:

pidle = hCAdTidle

pwkld = hCAdTwkld

pwkld − pidle = hCA(Twkld − Tidle)

(4.3)

The average processor power when all cores are under workload pwkld and in idle status

pidle are about 10.5W and 0.6W, and the corresponding average sensor temperature are Twkld =

100◦C and Twkld = 44◦C, respectively. The surface of heat sink is measured as 60cm2. Hence the
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Figure 4.5: The computed temperature of processor with heat sink under idle status. The small red
boxes mark the on-chip thermal sensor locations.

convective heat transfer coefficient hC is acquired as 29.5W ·m2 ·◦ C−1. As before, the ambient TA

around the heat sink can be obtained using idle status by adjusting the ambient in FEM simulation

such that the simulated sensor location values match the real sensor values for idle status. Fig. 4.5

shows the computed thermal map of idle status under heat sink, in which the computed sensor

location temperatures match the real sensor measurements well when ambient is 33◦C (306K).

Therefore, the FEM thermal model for the processor setup with heat sink mounted is properly built.

4.3 Ensuring the Same Power Density Maps for Both Cooling Condi-

tions

One important aspect of our thermal modeling methodology is that we need to ensure that

the power density maps obtained with back cooling and the one with heat sink cooling should be

keep as the same as possible. We remark that this is required only for building the thermal models

for the chip with heat sinks. Once the model is built, it can be used for different workloads with

total different power maps.

This requires the processor to run a series of workloads without heat sink first, and then

run the same workloads with heat sink on and with the same CPU core scheduling. Under this
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Figure 4.6: Thermal sensor values when processor uses the back-side liquid cooling with respect to
workloads

condition, we can claim the power distributions will remain the same for both with and without heat

sink, even though the thermal sensor data varies.

In our study, single-threaded and multi-threaded workloads from Phoronix Test Suite are

used. For the setup with and without heat sink, single-threaded workloads such as aobench and

cachebench are forced to run with the same core mapping by setting the workload’s CPU affinity.

Multi-threaded workloads such as compress-7zip and cyclictest do not need forced core mapping

since all cores are utilized and same scheduling. Thermal sensor values of some time-segments of

workloads are shown in Fig. 4.6 and Fig. 4.7 for back-side cooling and heat sink cooling, respec-

tively. The relatively high (100◦C) or low (80-90◦C) temperature indicates the corresponding core

is in busy or idle working status. As we can see, for aobench and cachebench on both cooling setups

the sensor of busy core reaches 100◦C, which is the thermal spec temperature, whereas the other

three cores are about 10◦C cooler. And for compress-7zip and cyclictest, all sensor temperatures are

near the maximum values.
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Figure 4.7: Thermal sensor values when processor is mounted with heat sink with respect to work-
loads

Figure 4.8: Total processor power with back-side liquid cooling and with heat sink during the time
line
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Furthermore, we ensure both of the cooling techniques - with back-side cooling or with

top-side heat sink have similar or close cooling capability, so that the total power is the same for both

cooling solutions and CPU can work under similar thermal conditions in both scenarios. As a result,

the amount of leakage current would also be similar or close in both scenarios. Our study shows

that the leakage distribution difference will not significantly affect the consistency of power maps

in the two cooling scenarios under this condition. DVFS conditions are also kept in nominal status,

meaning no unexpected frequency kick-down by over heat (actually we only require the DVFS

are same in both cooling setups). The corresponding total power consumptions of both cooling

scenarios during the time line are plotted in Fig. 4.8, where we can see two power traces follow

almost identical trend, despite very slight variations.

4.4 Application for Different Workloads

The proposed thermal model with heat sink can be applied to different workloads once

it has been built as the thermal model is workload-independent in theory. The only thing is that

one has to obtain the accurate power maps for the workloads first. For different workloads, one

way is to go through the same power map characterization process using thermal imaging system as

we discussed in this paper and ensure that the back cooling has the same cooling capability as the

heat sink cooking in the sense of total power. However, this is laborious as we need to ensure the

running settings (task-to-core mapping, DVFS) are same. Estimating accurate power density map

or map series for commercial multi-core processors for different workloads is a difficult problem.

The proposed thermal map to power map based power map characterization can still be used as the

tool to collect the data to train the machine-learning based model based on the real-time utilization
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Figure 4.9: Full-chip thermal maps of processor under real working conditions with heat sink
mounted on with respect to various workloads

metrics such as on chip Intel’s Performance Counting Monitor [Int], DVFS setting and task-to-core

assignment and scheduling. We believe this will bring huge online real-time thermal modeling

and monitoring capability which is not available for today’s commercial multi-core processors.

Recent studies show that one can built very accurate data-driven deep neural network model to map

from IPCM to full-chip thermal maps in real-time [SZZ+20a] which is assisted by back cooling

and infrared imaging system. As a result, we can extend that technique for full-chip power map

estimation so that there is no need to go through the same power map characterization process

tediously. Instead, we can perform real-time thermal map estimation for commercial multi-core

processors under heat sinks. But this can be our future work and is not the focus of this submission.

4.5 Thermal Map Results Under Real Working Conditions

In this subsection, we will firstly present the reconstructed thermal map results from our

FEM model created with COMSOL Multiphysics for this commercial multi-core processor under-

neath the heat sink cooling. We have examined various steady states for both single-threaded and

multi-threaded workloads to compare the computed temperature at sensor locations under the heat

sink against the real sensor measurements. Full-chip processor heat maps for certain typical power

scenarios of workloads are illustrated in Fig. 4.9. Temperatures extracted from those computed heat
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Table 4.1: FEM computed temperature at sensor locations VS. real sensor values with heat sink

Workloads
Sensor0 Sensor1 Sensor2 Sensor3

location location location location

idle
Real 43.8 44.3 44.9 42.2

Computed 43.9 44.0 43.9 43.5

cachebench #1
Real 100.0 89.5 91.5 89.0

Computed 100.6 89.3 90.2 88.5

cachebench #2
Real 89.0 100.0 89.0 90.3

Computed 88.8 100.5 87.1 90.4

aobench
Real 88.2 86.0 100.0 86.0

Computed 89.8 86.1 100.2 87.6

phpbench
Real 87.0 84.0 100.0 85.2

Computed 90.7 86.7 103.6 88.4

cyclictest
Real 99.9 98.2 99.8 98.0

Computed 101.6 101.5 100.8 101.6

compress-7zip
Real 99.9 99.5 98.3 100.0

Computed 99.4 99.6 98.8 99.1

maps are compared against real sensor measurements and listed in Table 4.1. In the test, the estima-

tion error varies with respect to the workloads. From the results listed in Table 4.1 we observed that

compress-7zip has the best accuracy (0.5◦C average error), whereas phpbench has the largest error

which is shifted up by about (3.3◦C) in such thermal steady state. In the time axis, the maximum

absolute error for phpbench and cyclictest in the worst scenario is between 3∼4◦C.

To analyze the estimated temperature in the time axis, we utilize HotSpot [HGV+06]

to compute the temperature at sensor locations. Power maps can be obtained from the thermal
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images in the time axis. We tried to perform the true transient analysis in HotSpot based on the

power map stream we obtained. However, we found that the true transient analysis in HotSpot

takes a prohibitive amount of time in our test cases and hence is not feasible. Reasons are the

large map dimension and relatively long sampling interval. Specifically, HotSpot’s typical sampling

interval is 3.3µs, whereas in this work has 0.016 ms (60Hz). It takes about two minutes to compute

one single time step even when shrinking the map area by 50 times. Changing the sampling time

(3.3µs) in HotSpot to match the real sampling time (0.016 ms) does not help the simulation because

of the underlying mechanism of HotSpot. However, the steady state computation by HotSpot is

much faster. As a result, we perform the pseudo-transient analysis in which the temperature series

of consecutive steady states in time are computed instead. So in this work, we only present and

compare the pseudo-transient analysis results.

For each steady state, power maps corresponding to that steady state are averaged to one

map sample and fed into HotSpot. For instance, in Fig. 4.10(a) the time steps from 2792 to 4308

is one steady state and time steps from 4358 to 5488 is another steady state, and one averaged

power map for each steady state is fed to HotSpot. Hence, we can form the temperature series of

consecutive steady states in the time axis. One detail is that we implement the 64 by 64 grid model

in HotSpot to compute the thermal maps first and later interpolate them back to the original image

dimension.

Fig. 4.10 shows the temperature computations at the sensor locations compared to the real

sensor readings under heat sink with respect to cachebench and phpbench in a certain time duration.

The phpbench is followed by idle from the time step 14540. The maximum absolute error for

steady states only for cachebench is 1.98◦C, and for phpbench is 3.7◦C. The average absolute errors
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(a) cachebench

(b) phpbench

Figure 4.10: Comparison between the HotSpot computed steady state temperature at sensor loca-
tions and the real sensor readings for (a) cachebench and (b) phpbench in a time duration

73



over the time axis across four sensor locations are 0.78◦C and 2.5◦C for these two benchmarks,

respectively. Note that phpbench has the worst error among the workloads we tested. The results

from HotSpot and COMSOL are quite similar.

We remark that the error is calculated based on the measured temperature at the sensor

locations because this is the only measured information we can have. But we believe the estimated

errors based on the sensor locations are good error indicators for the entire thermal map estimation.

As we observe, temperatures track the real trend for all the workloads quite well. One explanation

of the error may be due to the leakage difference or the κ error as we discussed in the previous

section.

Finally, the average absolute estimation error using COMSOL turns out 2.2◦C for the

steady states across all sensor locations over all the workloads, in which only one averaged sample

is counted for each steady state. In this way the error won’t be biased by the length of idle status or

other steady states. We also noticed that for some of the workloads the hottest spot is located away

from the sensor locations and can be 3◦C higher than the nearest sensor measurement even though

only 2mm away. Such difference is heat-sink-related. Our measurements also show that when

the device runs with back-side cooling and with the processor exposed to air, the underestimated

hot spot temperature can be 6-7◦C higher than the nearest sensor. The thermal spec power of the

processor in our study is 15W, however, the difference between the hottest spot and sensor may

reach a higher value as processor power goes higher. This observation raises the importance of

complete heat maps rather than thermal sensor values of limited locations.
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4.6 Summary

In this chapter, we present our accurate thermal model for real multi-core processors with

heat sink and the validation method. We first show how to identify the locations of physical thermal

sensors of commercial off-the-shelf processors, whose sensor locations are usually not available

publicly.

Then in this work we creates a high-fidelity FEM thermal model with heat sink and recon-

structs the full-chip thermal maps while the heat sink is on. Third, we ensuring that power maps are

similar under back cooling and heat sink cooling settings. Lastly, thermal maps are reconstructed by

the FEM thermal model using those power maps, and the reconstructed thermal maps are verified

by the matching between the on-chip thermal sensor readings and the corresponding elements of

thermal maps.

Under heat sink cooling, the average absolute error is 2.2◦C over a 56◦C temperature

range and about 3.9% error between the computed and the real thermal maps at the sensor locations.

This work is published in [ZSO+21].
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Chapter 5

Thermal and Reliability Management

Considering Hot Spots

5.1 Related Work

Khdr et al. [KES+14] introduces a multi-objective DTM method that aims to efficiently

avoid thermal threshold violation and at the same time keeps the temperature balanced between

cores based on the core temperature. It Derives a regression-based distributed temperature predic-

tion model and a centralized task allocation model, it stops tasks that potentially cause overheating

or imbalance of the cores, and resumes the tasks once there are available cores. Das et al. [DSM+14]

develops a DTM technique that takes advantage of both the thermal profile within (intra) and across

(inter) applications based on Q-learning, which learns the relationship between the task allocation,

dynamic voltage/frequency scaling (DVFS) and device aging / mean-time-to-failure (MTTF). Lu et

al. [LTB15] presents a task allocation method based on the core and router temperatures and pre-
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dicts near-future temperature that assists the DTM. Their algorithm updates the prediction models

after each allocation based on Q-learning. Q-learning-based control techniques are often subject to

fast rising learning spaces as the states and actions of systems expand. Iranfar et al. [ISKAK15] pro-

posed a machine learning or ML-based power/thermal management approach that uses a heuristic

to limit the learning space by assigning a specific set of available actions to each existing state. A re-

cent state-of-the-art DVFS technique enables scaling down of the management cycle to microsecond

time scale and achieves fast per-core DVFS [ZGL+20], which significantly reduces the power con-

sumption across cores. Recently [ZSG+20] proposes a deep reinforcement learning based method

to allocate the tasks based on the hot spot power rather than temperature information, which infers

the power information has great potential to be used to improve the system and thermal performance

of the chip.

5.2 Reliability Models

In this section, we briefly review the three major VLSI reliability effects: the electro-

migration (EM) for interconnects, the negative biased temperature instability (NBTI) and hot carrier

injection (HCI) for MOSFET devices and their calculation models. We note that the proposed

method can consider other failure effects as well. The three failure effects are the dominant aging

effects in the VLSI systems as EM will cause the power grid network to be time-varying and changes

the voltage drop over time. NBTI and HCI can lead to the threshold voltage shift such may cause

failure to signal transition and timing. In addition, calculations for the aging and lifetime due to

EM and NBTI are implemented through an open source tool – LifeSim [RRC+18], which we will

explain in detail in Section 5.5.
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5.2.1 EM Model

The currently employed method of predicting the time to failure regarding the EM effect is

based on a physics-based EM analysis method [HYST14, TTK+19]. It comprehensively models the

EM effect considering the void nucleation phase and growth phase during which the wire resistance

starts to change. Specifically, the void nucleation time can be expressed as:

tnuc ≈ τ∗e
EV
kT e

fvΩ
kT (σres +

eZρl

4Ω
j)In{

eZρl
4Ω j

σres + eZρl
4Ω j − σcrit

} (5.1)

with τ∗ = l2

D0
e
ED
kT

kT
ΩB . Here, EV and ED are the activation energy of vacancy formation and

diffusion, fv is the ratio of volumes occupied by vacancy and lattice atom, σres and σcrit are the

residual stress and critical stress. Ω is the atomic volume, l is the wire segment length, eZ is

effective charge of the migrating atoms, j is current density, T is temperature, and ρ is the wire

electrical resistivity.

At the system level, to model the current density, we follow the similar formula used in

the RAMP [SABR04] and the work in [DK96], which can be related to the switching probability of

the line, α, as

j =
CVdd
WH

× f × α (5.2)

where C, W and H are the capacitance, width, and thickness, respectively of the line and f is the

clock frequency.

Once the void is formed in the wire it starts to grow and the wire resistance increases over

the time. The drift velocity of the void edge is expressed as:

θ =
D

kT
eZρj (5.3)
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Further, kinetics of the wire resistance change with respect to the growth time is approximated

as [HYST14]:

∆r(tgrow) = θtgrow

[
ρTa

hTa(2H +W )
− ρCu
HW

]
(5.4)

where ρTa and ρCu are the resistivity of the barrier material and copper, W is the line width, H

is the copper thickness and hTa is the barrier layer thickness. The growth time is calculated for a

given resistance percentage change threshold (such as 10%). The final time-to-failure due to EM

effects is determined by adding the nucleation time and the void growth time together.

5.2.2 NBTI Model

Negative biased temperature instability (NBTI) occurs when negative biased voltage is

applied to the gate of a PMOS transistor, the presence of holes in the channel causes Si-H bonds to

break at the interface between the gate oxide and the channel, causing positive traps in the interface,

which increase Vth [KYM+99]. The reaction rate mainly depends on the temperature T and the

supply voltage Vdd. The model of lifetime reliability due to NBTI we use is based on the work by

Srinivasan et al. [SABR05]. MTTF due to NBTI at a temperature T, is given by:

MTTF ∝ [(ln(
A

1 + 2e
B
kt

)− ln(
A

1 + 2e
B
kt

− C))× T

e
−D
kt

]
1
β (5.5)

where A, B, C, D, and β are fitting parameters using the published NBTI failure data [ZLS+04],

and k is the Boltzmann constant. Based on the model in [SABR05], the values we use are A =

1.6328, B = 0.07377, C = 0.01, D = −0.06852, and β = 0.3.
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5.2.3 HCI Model

Hot carrier injection (HCI) refer to the high energetic carriers, which is the result of high

electric fields in the drain region of a transistor, are injected into the gate oxide. These carriers

form interface states and eventually result in performance degradation (increase of Vth) in the tran-

sistor under stress [TYMH95]. The equation below evaluates the HCI-induced threshold voltage

increase [OT12].

∆Vth(α, T, Vdd, t) = Ahci · u(Vdd) · v(T ) ·
√
α · f · t (5.6)

with

u(Vdd) = e
(
Vdd−Vth

E1
)
, v(T ) = e(−Ea

kT
) (5.7)

where t stands for operation time, α is activity factor and f is core frequency. In addition, tox is the

oxide thickness, and E1 depends on the device specifications, temperature, and Vdd. Further, Ahci

is a technology-dependent constant and activation energy Ea is considered a positive constant.

5.2.4 Summary of Reliability Models

In summary, EM causes the power grid network to be time-varying and changes the volt-

age drop over time. NBTI and HCI lead to the threshold voltage shift such that may cause failure to

signal transition and timing. In this work, we set the failure criterion to be 10%, i.e. 10% wire resis-

tance change due to EM and 10% change of threshold voltage due to NBTI and HCI are considered

end of lifetime.
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5.3 Observation and Motivation

The analysis, measurements and implementations of this work are all based on real sys-

tems. The reason is measuring from a real processor when it is executing workloads is more precise

and has more realistic meaning than from computer simulators. Secondly, open-source computer

simulators hardly include the ready-to-use architecture resources for the latest off-the-shelf proces-

sors.

5.3.1 Thermography System Setup

In order to acquire precise thermal and power information within the core, a proper mea-

surement system for spatial temperature is critical. To this end, we have adopted the thermography

measuring system proposed in [AH15]. This setup features a thermoelectric device mounted on the

other side of the motherboard right beneath the processor allowing it to be cooled from underneath,

as opposed to heat sinks drawing heat upwards. This setup leaves the front side of the processor

fully exposed to the infrared camera without any interference layer in-between, as shown in Fig. 5.1.

An adjustable DC power supply is used to control the heat flow through the thermoelectric

device so that the operating conditions can be matched to the baseline cooling unit (stock heat-sink)

using the calibration method discussed in [AH15]. Unlike the traditional flowing-oil-based front-

cooling methods [DNR13], no decoupling procedures are required in this setup. The thermal image

capturing rate can reach as high as 60 frames per second.
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Figure 5.1: Infrared thermography system

5.3.2 A Glance of Hot Spots

As thermal sensor measurements alone cannot provide the information how cores are

stressed spatially, there is a remarkable room for improvement compared with existing state-of-art

DTM/DRM approaches. We first illustrate how the cores can be stressed in various ways that the

sensors cannot tell. Then the idea of optimization over the existing techniques will be described at

a high level in this section.

Fig. 5.2 shows the measured spatial temperature (Intel Core-i7 quad-core) when it is under

a workload (Splash-2 benchmark radiosity). It reveals that the temperature between a true hot

spot and the nearest sensor can be quite different. When there are many cores under workloads,

temperature sensors are likely to measure the same or similar temperature even though cores are

under different workloads being stressed in different patterns. We measured the temperatures in the

time axis by the embedded sensors, shown as Fig. 5.3(a). It is obvious that temperatures across
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Figure 5.2: Measured temperature of a hot spot versus the nearest sensor reading

all sensors, at least two or three, are often very close during the runtime. Note that the precision

of sensors is only integer. Moreover, as shown in Fig. 5.3(b), when four workloads (lu cb, vips,

blackscholes and freqmine) are running on the four cores respectively, the temperatures at sensor

locations measured by the imaging system are 93.5, 93.6, 94.0 and 93.5◦C, where the difference is

quite small.

We remark that the thermal hot spots are always the power density hot spots or the heat-

source hot spots. But this is not true the other way around as shown in a recent study [SZZ+20b].

Heat-source hot spots can be viewed as potential thermal hot spots or their spatial distributions,

which can be activated by specific workload. The hot spots from heat sources or power sources can

provide more useful, especially critical information about the true thermal hot spot distributions for

real commercial multi-core processors, which is the motivation in this work to use power density

hot spots. In the sequel, for the sake of simplicity, hot spot simply means power density hot spot

and power or power pattern means the power density or power density pattern.
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Figure 5.3: (a) On-chip sensor readings (one sensor per core). (b) Measured temperature at the
sensor locations (blue dots).

We calculate the core’s power patterns of various PARSEC-3.0 and Splash-2 workloads

and some typical patterns are shown in Fig. 5.4 as examples, respectively. There are three primary

hot spot locations observed in the core. Some workloads have higher and sharper power peaks than

others, while other workloads show more even power distribution. Consequently, utilization of the

hardware resources, reflected by the power density at hot spots, indicates the different stresses of

the silicon chip. Hence, there is a considerable potential for task migration operations to optimize

the thermal and reliability performance by utilizing the hot spot power information.

For illustration, the typical power density measured at the hot spots with respect to work-

loads are listed in Table 5.1, where the three primary hot spots are named as HS1, HS2 and HS3 are

listed. It should be noted that the applications may contain both serial and parallel threads, and the

power density values listed in Table 5.1 are averaged values through the thermal-to-power calcula-

tion when the applications run into a thermal steady state, hence the parallel phase (also dominant
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(a) radiosity (b) streamcluster (c) x264

(d) ferret (e) raytrace (f) canneal

Figure 5.4: Power patterns of PARSEC-3.0 and Splash-2 benchmark workloads on a real Intel Core-
i7 processor at the core scale (within the core).
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Table 5.1: Average Power Density (W/mm2) at Hot Spots for Various Workloads

Workload HS1 Power HS2 Power HS3 Power

blackscholes 1.04 1.56 1.82

bodytrack 0.92 1.40 1.82

fluidanimate 0.75 1.3 1.8

streamcluster 0.52 1.06 1.57

dedup 0.75 1.0 1.56

facesim 0.75 1.0 1.56

swaptions 0.52 1.0 1.53

lu cb 0.52 1.0 1.52

freqmine 0.52 0.91 1.38

radiosity 0.72 1.1 1.37

vips 0.26 1.0 1.3

radix 0.52 1.0 1.2

ferret 0.52 0.65 0.9

canneal 0.39 0.63 0.6

raytrace 0.56 1.08 1.15

x264 0.82 0.26 0.75

fft 0.5 0.9 1.3

ocean cp 0.26 1.0 1.43

volrend 0.78 1.0 1.3
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phase) of the application is considered in this table. The measuring workflow can be implemented

on other chips as well.

5.4 Proposed Hotspot-Aware Task Allocation Framework

In this section, we will describe the overall workflow for the proposed task allocation

algorithm. The framework consists of two major components – (1) a detector model detecting the

power density of the primary hot spots and (2) a management controller that collects the power

information of those hot spots of all the cores and controls the allocation of threads. For the sake of

comparison, we will not interfere with the DVFS policy of the system.

5.4.1 Learning-Based Hot Spot Modeling and Detection

One important aspect of the proposed method is to know which hot spot locations are

active or invoked by the workload in a core in real-time. This can be achieved by using deep

neural networks. We estimate the power density at the hot spots of the off-the-shelf multi-core

processors during real-time from the online utilization metrics. Specifically, we implement a deep

neural network (DNN) as a supervised learning model which can estimate the power densities at hot

spots in cores from the underlying real-time resource utilization information.

In our implementation, we take advantage of a multi-layer perception (MLP) network

with two fully connected layers and a dropout layer for hot spot power density detection (Fig. 5.5).

The input data for the network’s training and inference is obtained from Intel’s Performance Counter

Monitor (IPCM) [Int], IPCM provides the system-level utilization metrics that we will be utilizing

in this work. For non-Intel chips, the equivalent performance monitors can be used (i.e. AMD
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Figure 5.5: Power detector network architecture

uProf [AMD]). IPCM provides the real-time processor package and core-wise performance metrics

such as frequency, energy, instruction per cycle, cache hit, read/write rate, etc., as well as the sensed

temperature from the embedded sensors. The Intel chip used in this study, i.e. Core i7-8650U, has 4

cores and each core supports 2 threads with Intel’s hyperthreading technology. Table 5.2 shows the

complete list of IPCM performance metrics from both the package and core-wise (or thread-wise)

domains that are used in this work. We note that the IPCM-based full-chip thermal map modeling

method has been proposed recently [SZAT21]. There are 30 metrics corresponding to the whole

package domain, and 16 metrics for each core thread. Considering that hyperthreads may happen

on this chip, when measuring the training data we disabled the hyperthreading option, having one

core only execute one thread at a time instead of two. In this way, we make sure the externally

captured thermal images are matched for the thread executed in the core. Otherwise, the thermal

images and the following calculated power densities would be a contribution of two separate threads
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Table 5.2: High-level Performance Metrics (Intel PCM)

Package Core

Exec Read C1res% Exec c0res%

IPC Write C2res% IPC c1res%

Freq INST C3res% Freq C3res%

AFreq ACYC C6res% Afreq C6res%

L3Miss Time C7res% L3Miss C7res%

L2Miss PhysIPC C8res% L2Miss Tsens

L3Hit PhysIPC% C9res% L3Hit

L2Hit INSTnom C10res% L2Hit

L3MPI INSTnom% Energy(J) L3MPI

L2MPI C0res% Tsens L2MPI

running concurrently on the same core due to the hyperthreading function. Once the NN model is

trained it can be used in a thread-wise manner as one core’s power is a combination by two threads.

In total, the input vector contains 46 IPCM metrics for the core-wise (or thread-wise) hot spot power

density detection neural network. In our later experiments, we limit one core to execute only one

thread in order to reach easier software implementation of the algorithm in the user space, which

will not lose the validity of the algorithm.

Output data of the network are the power densities at the identified primary hot spots of

the core in real-time. In our case, the output dimension is three due to three identified hot spots.

Note that the name of the workload is not a factor in the power detector network. We obtain the
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core’s hot spot power densities by deploying a recently proposed thermal-to-power transformation

approach [SZZ+20b]. The corresponding thermal imaging measurements are collected at the same

time when the processor is under workload. IPCM tool is launched also at the same time when the

processor is under workloads, data of the performance counter metrics is sampled at the same fre-

quency and synchronized to the thermal image capturing. Then, spatial power patterns are calculated

through thermal measurements and power densities at the primary hot spots are extracted [ZSJT20].

Finally, IPCM metric vectors serve as inputs and power densities of hot spots per core serve as

targets for the learning-based network. We measured 7200 thermal images with the highest camera

frequency (60 Hz) and the synchronized IPCM metric vectors corresponding to each workload ap-

plication, where 20 applications from PARSEC-3.0 and SPLASH-2 are measured for the network

training and test procedure. In our study, we observed that the power patterns of all the work-

loads are steady during almost their entire execution time except for a slight instant fluctuation at

the beginning. Moreover, the same workload demonstrates the same power pattern across different

cores when executing on multiple cores parallelly. This convention actually shrinks the complex-

ity of model learning and makes the network easy to train and use. We will present the inference

(detection) accuracy of the online power density detector in the results section (Section 5.5).

5.4.2 Task Management Controller

The task management controller collects power information of hot spots, maintains the

core and task status, and allocate incoming or ongoing tasks. We define the following concepts for

a clear description.
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Task Queue: Incoming tasks/applications are put in a queue following the first-in-first-out

(FIFO) order. It is assumed there is no priority order among them since the priority is not related to

this study.

Parallelism Count: The number of parallelisms is usually determined by the user space.

To generalize the new algorithm for tasks running with multiple parallel threads, each element

in the task queue contains the name of task and the number of parallel threads it asks for. In

our implementation, the task will be assigned with as many available cores as the user-determined

parallelism count by setting the task’s CPU affinity, where CPU affinity means a list of cores the

task can run on. Note that we only set/update the task’s CPU affinity in every management cycle

instead of assigning the underlying specific threads to the specific cores. The order of threads is

maintained by the task itself and the functionality is guaranteed.

Core Status: Cores have two status, either available or busy.

Waiting Parallelism Queue: For an incoming multi-threaded task that requests multiple

cores for parallel execution, the number of available cores may be less than the number it requests

for. Then all the available cores are assigned to the task and the excessive number of parallelisms

requested is put in the waiting parallelism queue till other cores become available.

Management Cycle: Threads of tasks are migrated among cores every management cycle,

δt, e.g. 1∼5 seconds.

Sampling Interval: Every sampling interval, e.g. 100∼1000 milliseconds, the manage-

ment controller updates the core, task, and hot spot status that it maintains, and allocates the queued

task to cores immediately once there are available cores detected.
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Figure 5.6: Example of task queue, waiting thread queue and the initial instant mapping.

Fig. 5.6 illustrates an example of the task queue, waiting thread queue, instant mapping

and the corresponding power pattern on a quad-core processor. In this example, task 1 first occupies

two cores, then task 2 occupies one core. Task 3 requesting for two cores is only mapped to one

core given only one core left available. Task 3’s another thread request is held in the waiting thread

queue for the next available core. In our example, the processor layout follows a central symmetric

pattern.

It should be noted that to reduce the complexity of interfering with the OS scheduler in

this work, the management controller checks the status at each sampling interval from the user space

rather than the kernel space of the OS. In the future, once the technique has been built into the OS

kernel, the model does not need to check the status using the interval manner anymore, it should

know those events immediately instead. We also comment that the power detector model does not

need to calculate the hot spot power density all the time. As discussed, power pattern of the same

task is quite steady on the time axis. Hence, the hot spot power information can be sampled, stored
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Figure 5.7: Task management workflow.

and reused. If an unknown task comes, the detector model will wake up for a short period of time

intermittently and obtain an averaged hot spot power data for that task. In this way, the computation

cost by the power detector model is much shrunk.

Fig. 5.7 presents the workflow of the management controller. At the top, the model ac-

cesses the multi-core system information it needs, including the core status, queue status and hot

spot powers. In each information sampling cycle, it first checks if there are available cores. When
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yes, it then checks the waiting thread queue to see if the ongoing task needs more cores. It always

allocates the waiting thread before the next task unless the waiting threads queue is empty (i.e.

FIFO). When available cores are not enough for an incoming task from the task queue, the task will

be mapped to all the available cores and registered to the waiting thread queue for future available

cores.

In every management cycle, the controller migrates the ongoing tasks from cores to cores

according to the proposed mapping algorithm, which will be discussed in the next subsection. Af-

terward, the controller updates the system status it maintains.

5.4.3 Proposed Mapping Control Algorithm

As we already observe that the power (density) at the hot spots can vary considerably de-

pending on the specific workloads. The higher power peaking at the hot spot, the more severe threat

to the core’s reliability. And the longer time the hot spot has been stressed, the lower reliability,

too. Therefore, we develop a heuristic mapping algorithm that allocates tasks such that the average

power peaking at the hot spots is mitigated. The mapping algorithm deals with two scenarios, one

is migrating the ongoing tasks among cores, and the other is mapping the waiting threads or an

incoming task to the available cores.

Migrate the Tasks

Suppose the processor has M cores where each core has H primary hot spots. And the

current task map corresponding to the ongoingN (N ≤M ) tasks is noted as [tsk1,1, .., tski,m, .., tskN,M ],

where tski,m means the ith task running on the mth core and can be None if no task runs on that

core. One task may run on multiple cores. Power at all H hot spots of a core activated by the task
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tski is noted as Ptsk,i = [p1, .., pj , .., pH ]i, where pj means the power at the jth hot spot activated

by tski.

Algorithm 1 Task Migration in A Management Cycle
Input: M cores, N ongoing tasks, H hot spots per core, current task map and performance counter

metrics (IPCM)
Output: New task map newMap

1: curMap← [tsk1,1, .., tski,m, .., tskN,M ]

2: for i = 1 to N do
3: Ptsk,i ← [p1, .., pj , .., pH ]i = Net(IPCM(tski,m))
4: Pmaxtsk,i ← max(Ptsk,i)

5: hwsttsk,i ← argmax(Ptsk,i), 1 ≤ hwsttsk,i ≤ H
6: end for
7: maxPwrs← [Pmaxtsk,1, .., P

max
tsk,i , .., P

max
tsk,N ]

8: wstHSs← [hwsttsk,1, .., h
wst
tsk,i, .., h

wst
tsk,N ]

9: sortedTsk ← argsorttsk(maxPwrs, reverse = true)
10: Sort wstHSs by the same order to match the tasks in sortedTsk

11: Initialize Cores← set{1, 2, ..,M}
12: Initialize newMap← [None1, .., Nonem, .., NoneM ]∗

13: for i = 1 to N do
14: tski ← sortedTsk[i]
15: h← wstHSs[i]
16: Pc,h ← [p(c,1)[h], .., p(c,m)[h], .., p(c,M)[h]]
17: prefCoreLst← argsortc(Pc,h)
18: Initialize mappedCorestsk,i ← set{ }
19: for core in prefCoreLst do
20: if core in Cores then
21: add core to mappedCorestsk,i for tski
22: remove core from Cores
23: end if
24: end for
25: Update newMap← mappedCorestsk,i
26: end for
27: Use newMap for task migration operation

The proposed task migration algorithm is elaborated in Algorithm 1. We firstly estimate

the power at hot spots activated by every running task (line 2-3) through the machine learning-

based power detector. And find the maximum power Pmaxtsk,i of hot spots (line 4) and the worst hot
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Table 5.3: Exemplary Ordering of Tasks and Cores and Migration

Task Order Worst Hot Spot Preferred Cores Mapped Cores

1) Tsk 1 HS3: 1.8 W/mm2 1, 3, 0, 2 1, 3

2) Tsk 3 HS2: 1.4 W/mm2 1, 0, 2, 3 0

3) Tsk 2 HS3: 1.2 W/mm2 1, 3, 0, 2 2

spot hwsttsk,i (line 5) activated by that task. Then we sort the tasks by how stressful they are by the

maximum power of hot spots they activate (line 7-9). The task having a higher maximum power

of hot spots is considered more stressful. If two tasks stimulate the same maximum power (not

necessarily on the same hot spot), then compare their second highest hot spot power, and so on so

forth. For example, according to the data shown in Table 5.1, blackscholes should be ordered ahead

of bodytrack, then fluidanimate.

Then, similarly, for each task the cores are ordered from the most preferred to least pre-

ferred (prefCoreLst) with respect to that task (line 13-17). Here, h indicates the worst hot spot

that will be stressed by this task most and p(c,m)[h] denotes the accumulated power (energy) at the

hot spot h of the core m. Line 19-24 map the task based on the order of its preferred cores. The

task which is more stressful is taken care of earlier as having higher priority to pick the preferred

cores than the less stressful tasks. If some preferred cores are already scheduled for other tasks in

this management cycle, then these cores will be skipped for this task.

Once the new task map has been obtained, the task management controller migrates the

tasks for this cycle. Following the example in Fig. 5.6, Table 5.3 shows the order of the tasks, the
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Figure 5.8: Task migration in a management cycle.

order of their preferred cores and the newly mapped cores, respectively. Fig. 5.8 further illustrates

the resulted mapping diagram for the management cycle.

Map the Waiting Threads

This is similar to migrating the tasks. Locate the hot spot the targeted task will stress

most and order the cores by accumulated hot spot power at that location. For example, if we are to

allocate threads of canneal, then the cores should be ordered by their HS2 power in the management

cycle because HS2 is the worst hot spot stimulated by canneal. Following the example shown in

Fig. 5.6, Fig. 5.9 shows mapping a waiting thread of task 3 to the best available core, core 1, when

core 0,1 and 2 become available simultaneously.
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Figure 5.9: Example of mapping a waiting thread to the available cores.

5.5 Experimental Results and Discussions

In this section, we present the results for the proposed hotspot-aware task control method,

Hot-Trim, for thermal and reliability management of multi-core processors. We implement and

validate our method on a commercial Intel i7-8650U processor that features 4 CPU cores with

PARSEC-3.0 and SPLASH-2 benchmark workloads [Bie11, WOT+95] (we write the benchmark

workloads as tasks to be brief in this paper).

First, we present the performance of the power density detector neural network. We mea-

sured 7200 thermal images with the highest camera frequency (60 Hz) and the synchronized IPCM

metric vectors corresponding to each workload application, where 20 applications from PARSEC-

3.0 and SPLASH-2 are measured for the network training (80% data) and test procedure (20%

data). 20% of training data is used for validation during the training procedure. Fig. 5.10 shows
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Figure 5.10: Power density detector neural network learning curves.

the training loss and validation loss during the training procedure of 150 epochs. We mark that the

specific configuration of the MLP network (# of nodes, # of layers, etc.) is not an exact science.

In this work, we used one hidden layer with 75 nodes and a dropout layer with a 0.5 ratio between

the input and output layers, and the learning rate is 0.0005. We did not observe overfitting on the

trained network model. Fig. 5.11 illustrates the comparison between the estimated power density

and the measured power density traces at the identified hot spots, where the estimated power density

is obtained from the learning-based power density detector neural network and the measured power

density is obtained through the thermal-to-power method [SZZ+20b, ZSJT20]. As we can see, the

estimated power traces align quite well with the real measured power traces. It should be noted that

in the training procedure, thermal and IPCM data is obtained with the highest camera frequency.

Whereas in the following management experiments, the cycle period is chosen as 2 seconds and

IPCM sampling interval is 200 milliseconds. In our experiments, we observe that the power pattern

of the running task usually takes only 200∼300 milliseconds to become steady after launching, as

examples shown in Fig. 5.11. The migration and sampling frequencies are relatively low but suf-

ficient. In this work, we obtain the power density estimation from the IPCM once at the end of
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Figure 5.11: Power density (W/mm2) V.S. time steps (60 Hz) for workloads. Estimated power
density compared to the measured power density at the identified hot spots.

every management cycle, i.e. before the next migration, and average the power density estimations

after every management cycle of the task and average between cores if running on multiple cores.

The computation overhead is reasonably low such that the online inference time is less than 100 µs

and the overall computational time regarding the whole Algorithm 1 in one management cycle is

between 300∼400 µs. We will present more details in the next subsection.

Second, we compare the performance of the proposed Hot-Trim with existing mapping

methods. In this work, we compare three methods, i.e. Linux baseline mapping, temperature-based

mapping and the proposed Hot-Trim mapping in terms of runtime performance, thermal behavior

and the three critical reliabilities as mentioned earlier. Specifically, the Linux baseline mapping

means when allocating the tasks, tasks will be launched without assigning the CPU core affinities.
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We let the OS scheduler choose the CPU cores automatically to execute the tasks. For temperature-

based mapping, we implement the most popular greed-based mapping policy such that the task

is always mapped or migrated to the coolest core based on the thermal measurements of on-chip

sensors. If there are multiple tasks executing on multiple cores, the tasks executing on the hot cores

will be migrated to the cooler cores. Each mapping method will be deployed to execute the same

series of tasks. In the meantime, performance counter metrics and thermal images of the full chip

will be captured to investigate the runtime performance, thermal behavior and reliabilities. To make

sure the comparison is comprehensive, we have gone through a few different experiment scenarios.

5.5.1 Comparison in System Performance

First, we start by investigating whether the proposed method degrades the runtime per-

formance and how it compares to the Linux baseline, in other words, whether the total execution

time is prolonged. If it degrades the original performance seriously then there would be no sense

to propose more. The Linux kernel version on the test processor is 5.0.9-301.fc30.x86, and the OS

distribution is Fedora 30. Note that in this work we only deploy the task mapping policy but not the

DVFS scheduling, instead, we let the OS handle the DVFS as it normally does. Firstly, we compose

diverse task series that contain various numbers and types of tasks. Each element in the task series

is presented as (task name, # of threads needed). We also deploy two different input dataset size,

Large and Native for the tasks in the PARSEC-3.0 and SPLASH-2 benchmarks. The user time of

tasks with Large input size usually lasts for about a few seconds to half a minute, and with Native

input size lasts for a few minutes.

In our implementation, we deploy python scripts for the high-level control algorithm and

machine learning-based power detector and use batch scripts (bash shell) for direct task mapping
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Table 5.4: Test Cases of Task Series

Test Cases Task Series Input Size

Case 1

[(ferret, 4), (streamcluster, 2), (canneal, 2),

(raytrace, 2), (bodytrack, 1), (lu cb, 2),

(radix,2), (dedup, 2), (fft, 2), (vips, 1),

(facesim, 2), (freqmine,1), (fluidanimate, 2),

(bodytrack, 2), (ferret, 4)]

Large

Case 2
[(freqmine, 2), (blackscholes, 1), (dedup, 1),

(canneal, 2), (radix, 2)]

Native

Case 3
[(vips, 2), (blackscholes, 1), (dedup, 1),

(radix, 1)]

Native

and migration operations. The tasks and number of parallel threads are randomly chosen and the

series of tasks in our test cases are listed in Table 5.4. The management cycle period is chosen

as 2 seconds while the processor status and IPCM sampling interval are 200 milliseconds. Since

we inspect the total execution time of a series of tasks, there will be no idle time for any core.

This means once a task is complete on a core(s), this core(s) will be assigned with the next task

immediately unless all the tasks in the queue are finished.

In order to make a fair comparison, each run must be launched under the same initial

thermal condition. The chip is totally cooled to the initial temperature (about 30◦C) before the next
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run. And test cases are run many times to minimize the effects of random factors, such as ambient

airflow or on-chip data caching. Please note that the cooling efficiency is forced constant all the time

during the experiment. Back-side liquid circulation is at a constant flow rate, besides, the thermal-

electric device which transfers heat from the motherboard downwards to the liquid circulation is

kept at constant power at 62 Watts.

As shown in Table 5.5, the proposed technique will not degrade the system performance.

Actually, the average execution time of the whole series of tasks is slightly decreased by 1.4∼4.1%.

It is interesting that one or two of the slow runs under Linux are considerably longer than the average

time, which we are not sure about the reason. However, the execution time by Hot-Trim is quite

stable. As mentioned in Section 5.4.2, incoming tasks are launched following a first-in-first-out

(FIFO) order assumed by the series (task queue). When conducting the experiment under Linux

default mapping, the task execution order is still determined by the FIFO. Essentially, we use a

python script to launch the task one after one once there are available cores or previous tasks are

done. Task is launched without setting its CPU affinity, hence the core assignment is decided by

Linux. In this way, we could maximize the identity of other factors but only leave the mapping

decisions to be different when comparing with temperature-based and the proposed algorithm. It

is also more realistic that different tasks randomly come in the time axis than launching them all

together. Hence, the task order or thread order is not within the scale of this study. The execution

time (min, max, and average) listed in Table 5.5 pertains to the variation of a single run of the series

of tasks.

On the other hand, the Hot-Trim task mapping algorithm reduces the average core tem-

perature by about 1.21 ∼ 1.31◦C degrees and the temperature is constantly lower for all test cases
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Table 5.5: Linux V.S. Hot-Trim: Performance and Temperature

Test Case Total Execution Time (seconds) Avg. Core Temperature (◦C)

Linux Hot-Trim

Avg dt (%) Linux Hot-Trim Reduction (dT)

Min Max Avg Min Max Avg

Case 1 58.16 62.18 61.03 56.15 61.17 59.84 -2.0% 85.98 84.67 -1.31

Case 2 321.6 358.7 341.1 318.6 333.7 327.2 -4.1% 92.10 90.89 -1.21

Case 3 163.3 165.3 164.0 158.3 163.4 161.7 -1.4% 86.39 85.13 -1.26

compared to Linux baseline as shown in Table 5.5. It should be noted that the temperature reduc-

tions are all measured from the thermography system. Temperature at the truly identified hot spots

reflects the same trend between the two mapping ways. We measured that the maximum temperature

at the identified hot spots for different mapping methods is very similar (at around 95◦C). However,

the high-temperature duration and temperature spatial distribution vary. The average temperature at

the worst hot spot HS3 of each individual core is around 1.5∼2 degrees higher than its average core

temperature.

We note that the new task mapping method has no obvious effect on suppressing peak

temperature in this study. The main reason is that the maximum temperature at the identified hot

spots is determined by some heavy tasks such as blackscholes, bodytrack and fluidanimate regard-

less of which core they are assigned to as all the cores are homogeneous. As a result, as long as

they are executed in the experiments, we will observe the similar maximum temperature regardless

of the mapping method used.
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5.5.2 Thermal and Reliability Improvement

This subsection compares the thermal behavior and VLSI reliabilities regarding EM,

NBTI, and HCI among the three mapping methods. In this experiment, under each mapping method,

a series of randomly chosen tasks are released one after one with random intervals between releas-

ing two tasks in the timeline to mimic task allocations in real processors. To make a fair comparison

and minimize the effects of random factors, the tasks are chosen in a pseudo-random way as well

as the release intervals. In this way, all three mapping techniques will deal with identical workloads

and identical arrival times of the workloads. To be simple and without losing the generality, we

release 30 randomly chosen tasks one after one intermittently. The time interval (∆t) between re-

leasing two consecutive tasks satisfy a uniform distribution ∆t ∼ U(4, 12) seconds. The minimum

and maximum interval are 4 and 12 seconds, respectively. This testing scenario is called Case 4.

To further minimize the effects of random factors, the same series of tasks are executed under every

mapping technique many times and each run starts under the same initial thermal condition.

Fig. 5.12 compares the temperature at the identified hot spot location HS3 with respect

to each core under the three mapping techniques when releasing tasks with interval distribution

∆t ∼ U(4, 12). In our case, HS3 is the most stressed one of the three identified primary hot

spots. LB, TB, and HT are briefed for Linux baseline, temperature-based and Hot-Trim mapping,

respectively. It can be observed from the plots that most of the time the temperature trend under

HT is more similar to TB compared with LB. Mean of the temperature curves shown in Fig. 5.12

at the HS3 for each core are compared in Table 5.6. Thermal performance under Hot-Trim is

obviously better than Linux baseline across all cores and is 1.15◦C lower on average in this test
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Figure 5.12: Temperature at the identified true hot spot location HS3 for each core under three
mapping techniques (Case 4).
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Table 5.6: Mean of Temperature over Time at the Worst Stressed Hot Spot Location HS3 of Each
Core

Alg. Core 0 Core 1 Core 2 Core 3 Max Avg

Case 4

LB 80.81 80.79 77.43 79.18 80.81 79.55

TB 78.77 79.32 79.11 78.58 79.32 78.94

HT 79.18 79.43 76.37 78.62 79.43 78.40

Case 5

LB 70.18 65.08 69.64 65.96 70.18 67.72

TB 66.98 67.52 66.92 67.24 67.52 67.16

HT 66.76 67.93 64.81 66.71 67.93 66.55

case. Under temperature-based mapping, temperature is quite balanced across all cores, which is

expected. Though, its average temperature is still higher than Hot-Trim.

Core frequencies under the three mapping policies are shown in Fig. 5.13. In the experi-

ment case, core frequencies show similar amplitude where the cores operate at around 1∼1.2 GHz

while under load and gate to near-zero frequency while they are idle. Frequency throttling seems

not to show observable differences among the three mapping methods while the cores are under

load. We remark that the system DVFS governor remains untouched during the experiments, hence

changes in the frequency pattern for all cores are naturally governed by the system DVFS gover-

107



0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 0

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 1

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 2

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 3

(a) LB

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 0

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 1

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 2

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 3

(b) TB

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 0

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 1

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 2

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5
Core 3

(c) HT

Figure 5.13: Core frequencies (GHz) V.S. time steps when processor under different mapping poli-
cies: (a) Linux baseline (b) Temperature-based (c) Hot-Trim. Red lines are the mean lines of each
frequency series (Case 4).
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nor, and different mapping methods are treated constantly. It can be observed that the similar core

utilization does not necessarily give similar lifetime reliability. A good example is that the aver-

aged frequency of core 1, 2, and 3 under Linux baseline mapping are very close (about 0.62 GHz,

Fig. 5.13(a)), however, their lifetime reliabilities vary much more, which we will describe in detail

later. This is reasonable because cores can have hot spots stressed differently by executing different

tasks.

Although temperature does not distinguish much between temperature-based and Hot-

Trim mapping, VLSI reliability performances distinguish quite significantly. When implementing

analytical models to calculate reliability effects and MTTF, we take advantage of an existing tool

called LifeSim [RRC+18]. LifeSim is a lifetime reliability simulator that offers a module named

Reliability Management Unit (RMU). It calculates MTTF by EM and NBTI effects for many-core

systems. For the sake of convenience, we take advantage of the RMU module by feeding our

real experiment data, such as core frequency and hot spot temperature to characterize the reliability

performance. In the meantime we create another script based on equation (5.6,5.7) when calculating

MTTF due to HCI, where we treat Ahci, u(Vdd), α and Ea as simple constants.

As a result, EM-related MTTF is illustrated as Fig. 5.14(a). Blue, red and yellow bars

stand for Linux baseline (LB), temperature-based (TB ) and the proposed Hot-Trim mapping (HT),

respectively. The y-axis is normalized such that the shortest MTTF among all cores under Linux

baseline mapping is 10 years. It can be seen that the EM-related MTTF under temperature-based

mapping is significantly shorter than Hot-Trim in terms of both average and processor overall. The

right-most bar labeled as Processor indicates that the MTTF of the entire processor is determined

by the minimum MTTF among all the cores. Core 0 is the most stressed under temperature-based
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Figure 5.14: Normalized MTTF considering (a) EM, (b) NBTI and (c) HCI reliability effects re-
garding test case 4 where task release intervals satisfy ∆t ∼ U(4, 12).
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mapping whereas core 2 is the most stressed under Linux baseline and Hot-trim. Hot-Trim stresses

the cores much more evenly and leads to the longest average and overall MTTF. In detail, Hot-Trim

is 30.2% longer than Linux baseline and 29.6% longer than temperature-based mapping in terms of

processor overall lifetime, which are very significant.

MTTF due to NBTI is shown in Fig. 5.14(b). NBTI behavior is quite close between

temperature-based and Hot-Trim since the temperature is close between the two mappings, as we

know that NBTI is primarily dependent on temperature. The overall MTTF under Hot-Trim is only

less than 1% shorter than temperature-based mapping, and 7.0% longer than the Linux baseline.

HCI-related MTTF has a similar pattern to the EM-related MTTF, as shown in Fig. 5.14(c). Specif-

ically, Hot-Trim is 31.1% longer than the Linux baseline and 19.6% longer than the temperature-

based technique in terms of overall lifetime.

As for the migration energy overhead, thanks to Intel’s Performance Monitor, we mea-

sured the entire real processor energy consumption executing the series of tasks as 2106.8, 2129.9

and 2118.5 Joules under Linux baseline, Temperature-based and Hot-Trim mapping, respectively.

Therefore, the energy variation caused by the algorithm and task migration operations is merely

marginal. In our method, the management cycle in the experiment is chosen as 2 seconds and CPU

performance sampling interval is 200 milliseconds. We also implemented 1 second per manage-

ment cycle and 100 milliseconds per sampling interval and found no measurable difference in the

results. The resulting algorithm works quite well for running all the benchmarks. In general, one

should reasonably choose the length of management cycle and sampling interval depending on the

user cases when applying the proposed algorithm. Moreover, due to the estimation error of hot spot

power densities and the granularity of management, the lifetimes (Fig. 5.14 and 5.15) indeed show
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Figure 5.15: Normalized MTTF considering (a) EM, (b) NBTI and (c) HCI reliability effects re-
garding test case 5 where task release intervals satisfy ∆t ∼ U(10, 20).

some imbalances between different cores. Ideally, the VLSI lifetime reliabilities should be perfectly

balanced if the hot spot power densities were perfectly estimated.

We present more results through test case 5 to deliver an insight on the change of task

release interval (∆t). The only difference in the settings of test case 5 compared to test case 4 is

that the distribution of pseudo-random task release intervals is changed to ∆t ∼ U(10, 20) seconds.

This means fewer cores will be busy at the same time as the arrival of tasks are slower. The mean of

temperature traces of the dominant hot spot HS3 for the cores are shown in Table 5.6. Further, the

reliability performances are presented in Fig. 5.15(a), 5.15(b) and 5.15(c).
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Moreover, proactive dynamic thermal management (PDTM) can be our future research

work. The temperature at the identified hot spots can be proactively predicted because the real-

time power information at those hot spots can be accurately estimated from Intel’s Performance

Counter Monitors (Section 5.4.1). With the predicted temperature in advance, we can apply a more

comprehensive thermal and reliability management model [FLWZ17, CL20].

5.6 Summary

This work proposes a new dynamic thermal and reliability management framework via

task mapping and migration to improve thermal performance and reliability of commercial multi-

core processors considering workload-dependent thermal hot spot stress. The new method is mo-

tivated by the observation that different workloads activate different spatial power and thermal hot

spots within each core of processors. Existing run-time thermal management, which is based on

on-chip location-fixed thermal sensor information, can lead to suboptimal management solutions as

the temperatures provided by those sensors may not be the true hot spots.

The new method, called Hot-Trim, utilizes a machine learning-based approach to charac-

terize the power density hot spots across each core, then a new task mapping/migration scheme is

developed based on the hot spot stresses. Compared to existing works, the new approach is the first

to optimize VLSI reliabilities by exploring workload-dependent power hot spots. The advantages

of the proposed method over the Linux baseline task mapping and the temperature-based mapping

method are demonstrated and validated on real commercial chips.

Experiments on a real Intel Core i7 quad-core processor executing PARSEC-3.0 and

SPLASH-2 benchmarks show that, compared to the existing Linux scheduler, core and hot spot
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temperature can be lowered by 1.15∼1.31◦C. In addition, Hot-Trim can improve the chip’s EM,

NBTI and HCI related reliability by 30.2%, 7.0% and 31.1% respectively compared to Linux base-

line without any performance degradation. Furthermore, it improves EM and HCI related reliability

by 29.6% and 19.6% respectively, and at the same time even further reduces the temperature by

half a degree compared to the conventional temperature-based mapping technique. This work is

published in [ZST22, ZSG+20].
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Chapter 6

Conclusions

In this article, we reviewed the culmination of our work and shared our contributions to the

areas of pre-silicon IC reliability analysis, post-silicon power estimation, and a novel hotspot-aware

task allocation method.

6.1 Post-Silicon Full-Chip Power Map Modeling

In Chapter 2, we have proposed accurate full chip steady-state power density and thermal

map estimation methods for commercial multi-core microprocessors operating under normal con-

ditions with heat sink cooling. The proposed thermal to power map recovery method, based on the

first principle of heat transfer, is very efficient and fast, which in contrast with existing nonlinear

optimization based methods. Once accurate power density map was estimated and validated with

FEM thermal models for back cooling using the IR thermography setup, we proposed a method to

build accurate thermal models for commercial processors under heat sink cooling. The methodol-

ogy is validated by the on-chip sensor reading of the chip once their exact locations are estimated.
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Experimental results on a Intel i7-8650U 4-core processor with back side cooling have shown that

average absolute error of the computed thermal maps compared to the measured thermal maps is

around 1.3◦C. Furthermore, the computed thermal maps and the measured thermal maps have 96%

similarity (2D correlation). Furthermore, we compared the proposed power map estimation method

with a state-of-art Blind Power Identification (BPI) method. The proposed method is at least 100×

faster and higher resolution than the BPI method.

Regarding the future work, the proposed method can actually handle transient powers if

the input thermal maps become time series maps. The resulting power maps will be time series

maps. For different workloads, we need to characterize them in the back-cooling situations via ther-

mal imaging system as we did in this work first. Then we can compute their thermal maps. However,

for the real-time and on-line applications, we can’t do the off-line thermal-imaging characterization

for each individual workload. Machine learning based power map estimation can be applied such

as using deep neural networks (DNN) as the methods demonstrated in our machine learning based

full-chip thermal map estimation method [SZZ+20a, SZAT21].

6.2 Power Estimation for Commercial TPUs

In Chapter 3, we have proposed a machine-learning-based approach for real-time estima-

tion of full-chip power maps for commercial Google Coral M.2 TPU chips for the first time. The

new method focuses on the DNN inference applications on the TPU and apply workload-related

features such as the hyperparameters of the DNN networks and TPU resource information gener-

ated by TPU compilers as the input of the deep neural network models. To build the dynamic power

density map model, we applied generative adversarial networks (GAN) to model the power den-
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sity map based on the selected workload-dependent features. Our study showed that the estimated

total powers match the manufacturer’s total power measurements extremely well. Experimental re-

sults further showed that the predictions of power maps are quite accurate, with the RMSE of only

4.98mW/mm2, or 2.6% of the full-scale error. The speed of deploying the proposed approach on

an Intel Core i7-10710U is as fast as 6.9ms, which is suitable for real-time estimation.

6.3 Full-Chip Thermal Characterization With Heat Sink Cooling

In Chapter 4, we have proposed a novel full-chip steady-state thermal map estimation and

characterization approach for the commercial multi-core processors when they run under heat sink

cooling, which cannot be directly measured by thermal imaging systems. Additionally, experimen-

tal results show 2.2◦C average absolute error over a 56 degrees temperature range under heat sink,

which indicates about 3.9% error between the computed heat maps and the real thermal maps.

6.4 Thermal and Reliability Management Considering Hot Spots

In Chapter 5, we have proposed a new hot-spot-aware task mapping scheme named Hot-

Trim to improve the reliability and thermal performance of commercial multi-core processors with-

out degrading the system execution performance. Our method is motivated by the observation that

the power density hot spots in cores and their reliability in a multi-core processor are workload

dependent and thus can be exploited to improve the reliability of the system. Experiments on a real

Intel Core i7 quad-core processor executing PARSEC-3.0 and SPLASH-2 benchmarks show that

the core and hot spot temperature can be even reduced by 1.15∼1.31◦C. Hot-Trim can improve the

chip’s EM, NBTI and HCI related reliability by 30.2%, 7.0% and 31.1% respectively compared to
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Linux baseline without any performance degradation. Furthermore, it improves EM and HCI related

reliability by 29.6% and 19.6% while further reduces the temperature by half a degree compared to

the conventional temperature-based mapping technique, proving that temperature per-core sensing

may not lead to the optimal reliability management solution.
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