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Abstract: Approximately 0.7% of infants are born with congenital cytomegalovirus (CMV), making it
the most common congenital infection. About 1 in 5 congenitally infected babies will suffer long-term
sequelae, including sensorineural deafness, intellectual disability, and epilepsy. CMV infection is
highly species-dependent, and the rhesus CMV (RhCMV) infection of rhesus monkey fetuses is the
only animal model that replicates essential features of congenital CMV (cCMV) infection in humans,
including placental transmission, fetal disease, and fetal loss. Using experimental data from RhCMV
seronegative rhesus macaques inoculated with RhCMV in the late first to early second trimesters of
pregnancy, we built and calibrated a mathematical model for the placental transmission of CMV. The
model was then used to study the effect of the timing of inoculation, maternal immune suppression,
and hyper-immune globulin infusion on the risk of placental transmission in the context of primary
and reactivated chronic maternal CMV infection.

Keywords: cytomegalovirus; placental transmission; rhesus macaques

1. Introduction

Cytomegalovirus, or CMV, is the most common cause of congenital infection in hu-
mans and results in significant childhood morbidity. Congenital CMV (cCMV) occurs in
0.7% of all pregnancies [1] and is a major cause of childhood hearing loss and neurode-
velopmental delay. In 2000, the Institute of Medicine prioritized the development of a
CMV vaccine as its highest concern [2]. Despite numerous vaccine candidates undergoing
clinical trials, none have thus far achieved the required efficacy levels for licensing. Conse-
quently, there exists an immediate need to comprehend the factors governing transmission
to facilitate vaccine development and passive immunization strategies. It is crucial to note
that CMV infections are species-specific, resulting in pathology specific to each species.
Only non-human primate (NHP) CMV models have been able to accurately replicate the
neurological deficits observed in cCMV [3]. The rhesus macaque CMV (RhCMV) model has
been instrumental in revealing the critical roles of maternal CD4+ T cells and pre-existing
antibodies in preventing fetal transmission and associated diseases [3,4]. Previously, we
utilized secondary statistical analysis to identify antibody variables that predicted the
efficacy of the gB/MF59 vaccine in humans [5]. However, gaining an understanding of
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the immune mechanisms capable of preventing CMV transmission and cCMV required
meticulously designed studies. The complexity of employing logistically intricate experi-
mental NHP models such as RhCMV to investigate the determinants of cCMV transmission
and disease presented a substantial challenge in our quest to understand and develop
effective therapies for preventing this disease. The study of primary RhCMV infection
during pregnancy proved especially formidable, given that RhCMV is prevalent in rhesus
colonies. Stringent measures had to be implemented to house seronegative animals in
separate housing areas for such investigations. In our pursuit of a deeper understanding
of these and other experimental findings, we developed a mechanistic model for RhCMV
transmission from mother to fetus. This model was calibrated using data from our experi-
mental studies involving primary RhCMV infection in seronegative rhesus dams, which, to
the best of our knowledge, encompassed the largest RhCMV challenge experiment ever
conducted in immunocompetent seronegative rhesus dams.

There have been a number of published mathematical models of within-host CMV
infection [6–9]. However, none of these prior studies directly addressed the modeling of
the CMV transmission process from maternal blood across the placenta to the fetus. Our
particular interest lay in the development of a model capable of estimating the probability
of placental transmission using solely maternal viral load measurements. Furthermore,
we aimed to employ this model for simulating therapeutic interventions at preventing
congenital infection, thus providing valuable insights for vaccine development.

In this study, we developed a mathematical model to investigate CMV transmission
to explore the impact of maternal immunity, placental factors, and immune interventions
such as CD4+ T cell depletion or hyperimmune globulin (HIG) therapy on the number of
transmitted viruses, the timing of infection, and the overall risk of congenital infection in
the fetus. Our transmission model generated predictions that aligned with experimental
results and clinical trial observations, offering a concise explanation for how the risk of
transmission was influenced by the timing of primary infection and providing testable
hypotheses. We firmly believe that this model can contribute to the future design of studies
related to human CMV (HCMV) and aid in optimizing intervention experiments in NHPs
to maximize the utility of limited sample sizes.

2. Materials and Methods
2.1. Experimental Procedure

The model was calibrated using data obtained from primary RhCMV infection of
rhesus macaque dams [3,4]. In these experiments, pregnant RhCMV seronegative rhesus
macaques were categorized into two groups: an immunocompetent group (n = 15) and an
immune-suppressed group (n = 9). The immune-suppressed group underwent CD4+ T cell
depletion through anti-CD4 monoclonal antibody infusion before inoculation. Macaques in
both groups received RhCMV infection through intravenous injection. The inoculation with
RhCMV was administered to both groups during the late first to early second trimester
of pregnancy. Subsequently, RhCMV viral loads in maternal plasma and amniotic fluid
were regularly monitored over time using quantitative PCR (qPCR). The lower limit of
detection for the qPCR assay was set to 1–10 copies of RhCMV DNA in each PCR reaction.
To reduce the risk of false positives from inadvertent contamination, when the qPCR
results approached this lower limit of detection, PCR reactions were deemed positive
if at least 2 out of 6 replicates in the plasma or 2 out of 12 replicates in the amniotic
fluid showed positive results. Consequently, six out of fifteen immunocompetent animals
displayed detectable RhCMV DNA in their amniotic fluid [3]. All nine CD4+ T-cell-
depleted animals exhibited detectable RhCMV DNA in their amniotic fluid, signifying
100% placental transmission [3,4]. The experimental measurements are depicted in Figure 1.
It is worth noting that five data points for the control dams (145-97, 174-97, 369-09, GM04,
and HD79) have been previously published in [4], and three data points for the CD4+
T-cell-depleted dams (223-98, 251-05, 273-98) can be found in [3]. The data for the remaining
dams were derived from new experiments.
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Figure 1. Plasma RhCMV viral loads in two groups of infected rhesus macaques (immunocompetent
and CD4+ T-cell-depleted).

2.2. Model Structure

In our study, we modeled CMV dynamics in three key compartments: the dam,
placenta, and fetus. Within the maternal compartment, we depicted complex interactions
involving the virus, immune cells, and cells within the maternal bloodstream using a system
of ordinary differential equations (ODEs). This maternal compartment is interconnected
with the placental compartment, where we emulated the transmission of CMV from mother
to fetus employing a diffusion process with decay. The placental compartment, in turn, is
linked to the fetal compartment as it serves as the primary source of the virus entering the
fetus. Within the fetal compartment, we focused on virus entry and progression within
the fetus, employing stochastic models to account for the inherent uncertainties associated
with smaller populations.

2.2.1. Maternal Compartment

We employed a model originally developed for CMV infection in kidney transplant
recipients undergoing immune suppression therapy [6] to describe immune and viral dy-
namics in the dam. This model expanded upon the conventional virus dynamics model [10]
by introducing an additional term that controlled the degree of immune suppression. The
structural representation of this model is depicted in Figure 2, and it was expressed as a
system of ODEs:
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dV/dt = nδRI − cV − f kRSV,

dE/dt = (1− εS)

(
λE

(
1− E

e

)
E + ρV

)
,

dRI/dt = kRSV − δRI − (1− εS)mERI + α0RL − κRI ,

dRS/dt = λ

(
1− RS

rS

)
RS − kRSV,

dRL/dt = λ

(
1− RL

rL

)
RL + κRI .

(1)

Figure 2. Schematic diagram of key processes in the model of HCMV infection.

In the system of ODEs (1), V denotes viral load (free virus) per µL-blood; E denotes
virus-specific immune effector cells per µL-blood; and RI , RS, and RL denote actively
infected, susceptible cells, and latently infected cells per µL-blood, respectively. A de-
scription of all model parameters is given in Table 1. Since we used the original paper’s
parameter for initial guesses, our fitted values are within a reasonable range. Note that the
original paper [6] delves into pertinent clinical measurements in Section 3, while Section 4
is dedicated to the approximation of the parameters.

The steady-state analysis is algebraically complicated because of the many nonlin-
earities, including three logistic growth functions; hence, here we provide a heuristic
argument. Assuming reasonable parameter values, we can derive several insights about
equilibrium states and consequently deduce the existence of a solitary biologically relevant
and stable equilibrium state. The trivial equilibrium state, where all variables equals zero
in Equation (1), is inherently unstable. Once an infection takes root, in the ODE system,
eradication becomes implausible due to the self-regeneration of latent cells, labeled as
RL. This mandates the consideration of a non-zero solution—one that remains bounded.
Under the assumption that the rates of reversion for RS and RL (λ = 1 · 10−3) are notably
lower than the growth rate of E(ρ = 5)—a plausible conjecture given their variance of
three orders of magnitude—the virus is inherently curbed from surging infinitely. This
restraint arises from the controlled escalation of effector cells E at a rate of ρV, effectively
maintaining a leash on the progression of RI (and, by extension, V) through its regulation
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by E. Given the instability of the trivial equilibrium state and the boundedness of the
alternative solution, it means that the bounded solution must be stable, which is also shown
in the original paper [6].

Table 1. System of ordinary differential equation model parameter estimates.Note that “IC” stands
for “immunocompetent” and “CD4+ Depl” stands for “CD4+ T-cell-depleted”.

Param Description IC CD4+ Depl Units Ref [6]

ρ Virion-induced immune response 2 3 cells/(virions · day) 5
n Productivity of infected cell 6 · 101 6 · 101 cells/µL-blood 5 · 101

δ Rate of viral-induced cell death 1.75 2.5 · 10−1 day−1 2 · 10−1

c Rate of viral clearance 1.5 · 10−1 2.8 · 10−1 day−1 3 · 10−1

k Infection rate constant 2.6 · 10−4 4.5 · 10−4 µL/(virions · day) 1 · 10−4

m Immune-induced cell lysis 8.3 · 10−2 3.2 · 10−3 µL/(cells · day) 1 · 10−1

α0 Exit and reactivation rate for monocytes 1.7 · 10−2 1 · 10−1 µL/(cells · day) 2 · 10−1

κ Rate of latency 5.5 · 10−1 1.4 · 10−3 µL/(cells · day) 2 · 10−3

λE Homeostatic replenishment of immune cells 3.1 · 10−4 4.5 · 10−4 day−1 4 · 10−2

λ Cell replenishment rate 1 · 10−3 7.1 · 10−4 day−1 1 · 10−3

e CMV-specific effector cell term 18 4 cells/µL-blood 9
εS Level of immune suppression 0 9.9 · 10−1 - 0
f Number of infecting virions per cell 1.4 1 · 10−1 - 1

rS Equilibrium level of susceptible cells 5.2 · 102 6 · 102 cells/µL-blood 4 · 102

rL Equilibrium level of latent T cells 7 · 10−2 7 · 10−2 cells/µL-blood 4 · 10−2

tH Half-life of virions during antiviral treatment 2 2 days 2
tD Doubling time of the virions 1.5 1.5 days 1.5
Ẽ Equilibrium level of CMV-specific effector cells 10 10 cells/µL-blood 10
Ṽ Equilibrium level of virions 2 · 10−2 2 · 10−2 virions/µL-blood 2 · 10−2

2.2.2. Placental Compartment

We modeled the transmission of CMV across the placenta as a diffusion process
with decay. While physical diffusion might not serve as a precise physical model for
CMV in the placenta, we considered it as a phenomenological representation intended to
capture the overall dynamics of placental transmission at a coarse-grained level. Similar
partial differential equation (PDE) models have demonstrated their capability to accurately
represent the dynamics of HIV passage through the urogenital mucosal epithelium [11]. For
simplicity, we assumed homogeneous dynamics in the radial directions and represented
diffusion through the placenta depth-wise as a 1D diffusion process, extending from the
maternal blood lake to fetal circulation. This approach yielded:

∂Q
∂t

= D
∂Q2

∂x2 − µQ. (2)

with boundary conditions:
Q = 0, x = 0, t ≥ 0, (3)

Q = V(t), x = l, t ≥ 0, (4)

and initial condition:
Q = 0, 0 < x < l, t = 0. (5)

Here, Q denotes the concentration of CMV. Constant D denotes the diffusion coeffi-
cient. Constant µ denotes the death rate of the CMV. V(t) refers to the maternal viral load
estimated by piecewise cubic hermite interpolating polynomial (PCHIP) or ODE model fits.
The boundary conditions assume that the virus concentration at the maternal–placental
interface is the same as the viral concentration in maternal blood and that once a virus
crosses the placenta into the fetus it is carried away rapidly by the fetal blood flow.
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With simplified versions of these boundary conditions, such as assuming a constant
maternal viral concentration or approximating it with a simple polynomial, Equations (2)
through (5) could be solved analytically using Fourier series to derive a closed-form
solution. This analytical solution played a crucial role in verifying the accuracy of numerical
simulations, particularly when dealing with more intricate maternal viral load dynamics.

The number of viruses that enter the fetus, denoted by C, is estimated by:

C =
∫ T

0
D

∂Q
∂x

∣∣∣∣
x=0

G(t)dt, (6)

where G(t) refers to the growth curve of the placenta throughout pregnancy. Here we
assume that G(t) has the form of a logistic curve in the range where we have data points
and has a linear expression that connects to the origin in early pregnancy:

G(t) =

{
a

1+e−(b(t−c)) , if t > 40;

g · t, if 0 ≤ t ≤ 40
(7)

By treating the viral flux

λ(t) := D
∂Q
∂x

(0, t)G(t) (8)

as the rate for an inhomogeneous Poisson point process, we can obtain the time that each
virus arrives in the fetal compartment.

2.2.3. Fetal Compartment

We modeled the arrival and subsequent fate of each CMV virion that entered the fetus
utilizing a stochastic process. This approach allowed us to accurately depict the dynamics
of small populations. For the purpose of our modeling, we assumed a constant number of
susceptible cells, as we specifically focused on early infection dynamics in the fetus. After
the virus entered a susceptible cell, we considered two stochastic models for the subsequent
dynamics, one that included latent viral infection stages and one that did not:

Model 1: Susceptible cell with latent stage:

S + V −→ L with c1 = βSV,

L −→ φ with c2 = d,

L −→ I with c3 = α,

I −→ φ with c4 = d,

I −→ I + V with c5 = ω,

V −→ φ with c6 = γ.

(9)

Model 1 corresponds to a target-cell limitation model given in [12], which has a reproductive
number R0 given by:

R0 =
βS0ω

cd(1 + γ
α )

= 1.02. (10)

Model 2: Susceptible cell without latent stage:

S + V −→ I with c1 = βSV,

I −→ φ with c2 = d,

I −→ I + V with c3 = ω,

V −→ φ with c4 = γ.

(11)
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Model 2 corresponds to a target infection virus model given in [13], which has a reproduc-
tive number R0 given by:

R0 =
βS0ω

cd(1 + βS0
c )

(12)

Viral latency only occurs in some cell types, including myeloid cells. Since the initial
transmission event in the model is via the blood, and the first cells infected may be myeloid
cells, we assume that both life cycles (Model 1 and Model 2) are possible. For each virion,
we selected between Model 1 and Model 2 based on the following procedure: We assumed a
ratio of r : (1− r) between the susceptible cells that enter the latent stage and the susceptible
cells that become infected cells. Then, we drew a uniform random variable s from the range
0 to 1. If s < r, we implemented Model 1 as defined in Equation (9). Conversely, if s > r,
we implemented Model 2 as defined in Equation (11) (in our sample runs, we used r = 0.5
as the ratio). Since we assumed that the number of susceptible cells remained constant
throughout the period of interest, we did not account for the production and death of
susceptible cells. Specifically, S was set to S0, and thus βS = βS0 remained a constant value
of 0.0012 (virions·day)−1. The true value of R0 is highly uncertain, and we also performed
sensitivity analysis where we explored scenarios in which each virion exclusively adhered
to either Model 1 or Model 2 (as detailed in Section 3.5).

Upon determining the arrival time of each virus, we employed the Gillespie algo-
rithm [14] to simulate viral dynamics within the fetus. We defined a fetus as infected
once the viral load exceeded a predetermined threshold. By repeatedly conducting these
simulations, we derived a distribution for the time of infection and the probability of
transplacental transmission.

2.3. Model Calibration
2.3.1. Maternal Compartment

We used the parameters for HCMV infection given in Kepler et al [6] as initial guesses
but kept half-life of virions (tH), equilibrium level of CMV-specific effector cells (Ẽ), and
equilibrium level of virions (Ṽ) fixed. Justification for these parameter values with respect
to clinical measurements and approximations used can be found in [6]. In addition, the
initial value for the ODE fit used was V(0) = 1 · 10−4, E(0) = 0, RI(0) = 0, RS(0) = 400,
RL(0) = 0 per µL of blood. When we performed parameter estimation for immunocompe-
tent rhesus macaques, we set level of immune suppression (εS) to 0.

The remaining parameters for the system of ordinary differential equations were
estimated via nonlinear mixed-effects regression, as implemented in the Monolix software
(version 2020R2, Lixoft) [15]. Monolix uses stochastic approximation expectation maxi-
mization (SAEM) to perform parameter estimation [16] and can accommodate the use of
viral loads below the limit of detection (left censoring). Population parameter estimates
for both the immunocompetent and CD4+ T-cell-depleted groups described in the ODE
system (1) are summarized in Table 1. As expected, the fitted values for rhesus macaques
are not identical to those estimated for humans but also do not deviate excessively. We also
present the interpolation and ODE fits for maternal viral loads in Figures 3 and 4.
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Figure 3. PCHIP interpolations for immunocompetent RhCMV seronegative rhesus macaque dams
following primary RhCMV infection.

Figure 4. Fits from the system of ordinary differential equations for CD4+ T-cell-depleted RhCMV
seronegative rhesus macaque dams following primary RhCMV infection. See fit diagnosis in
Appendix A.

2.3.2. Placental Compartment

We first estimated the growth curve for the placenta given by Equation (7). Using the
data from [17] for pregnant rhesus macaques, we fitted a logistic function to obtain Figure 5
with a = 132,434, b = 0.028, c = 90, and g = 667.
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Figure 5. Growth function G(t) for placenta surface area over time with data from [17] (shown as
points). The dotted line connects the first fitted value and the origin using linear interpolation.

For boundary conditions on the maternal–placental interface, we needed to estimate a
continuous function from discrete experimental measures of viral loads over time. As all
immunocompetent rhesus macaques survived until fetal tissue harvests via hysterotomy,
we fitted the experimental measures directly using piecewise cubic hermite interpolating
polynomial (PCHIP) interpolation [18]. Unlike the more commonly used cubic spline
interpolation, PCHIP avoids overshooting and can accurately connect the flat regions
without creating artificial oscillations. For CD4+ T-cell-depleted rhesus macaques, 5 out
of 9 were euthanized at peak viremia due to disseminated RhCMV; thus, we needed
to extrapolate using the ODE model (1) proposed by [6] to obtain a smooth trajectory
for each animal. In addition to individual maternal viral dynamics, population fits for
immunocompetent and CD4+ T-cell-depleted dam groups were obtained using (1) with a
nonlinear mixed effects model.

For the partial differential Equation (2), we used the diffusion coefficient of HIV
through stroma as our D [11], and we include a sensitivity analysis in Section 3.5. We
observed from the experimental data that all fetal infections occurred within 2–4 weeks after
the dams were infected with RhCMV. Using this finding, we approximated the distance l
that the virus needs to travel. The diffusion coefficient determines the time it takes a solute
to diffuse a given distance in a medium:

t ≈ l2

2 · D .

Then we have:
l ≈
√

2 · t · D ≈ 0.6 mm.

We also calibrated µ in (2) using the experimental data such that the probability of placental
RhCMV transmission for immunocompetent rhesus macaques using stochastic simulation
is between 30% to 40%, and we obtained µ = 1 (day)−1.

2.3.3. Fetal Compartment

For the stochastic simulation of the fate of CMV arrivals in the fetus given by Equations (9)
and (11), all parameters are from [12] and are shown in Table 2.
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Table 2. Stochastic simulation parameter estimates.

Parameter Description Value Units Ref

S0 Initial susceptible cell population 4 · 108 cells [12]
L0 Initial latently infected cell population 1 cells [12]
I0 Initial infected cell population 0 cells [12]
V0 Initial viral population 0 virions [12]
γ Death rate of susceptible cells 1/4.5 cells/day [12]
β Rate of new infected cell 3 · 10−12 1/(virions·cells·day) [12]
α Lag (days) between cell infection and viral growth 1 day [12]
d Death rate of infected cells 0.77 cells/day [12]
ω New viruses per infected cell per day 1600 1/(virions·day) [12]
c Natural decay of virus 2 virion/day [12]

We treated the viral flux at the placental–fetal boundary as an arrival rate of new virus
particles into the fetus. By treating the arrivals as an inhomogeneous Poisson process,
we obtained the arrival times for each virus. Figure 6 shows the viral flux functions and
simulated arrival times corresponding to population fits of immunocompetent and CD4+
T-cell-depleted rhesus macaques.

Figure 6. Inhomogeneous Poisson sampling from the viral flux. Note that the y-axis scaling for each
plot is different. The dotted lines represent plasma RhCMV viral loads.

2.4. Probability of Transplacental Transmission

CMV is not a very infectious virus [8], and the ratio of infectious virions to genomes in
HCMV is believed to be in the range of 1:150 to 1:1000 [19]. We defined a fetus to be infected
when the number of virions crossing the placenta exceeds a threshold M and calibrated
this threshold for infection with experimental data so that the primary infection rate during
the first trimester was approximately 40% for immunocompetent rhesus macaques and
≥99% for the CD4 T-cell depleted rhesus macaques. We found M = 500 copies.

Our simulations revealed that once this threshold was exceeded, the spontaneous
clearance of the virus became highly improbable. To account for the uncertainty in this esti-
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mate, we also examined various threshold values and present the results of this sensitivity
analysis in Figure 7.

Next, we estimated the time to transmission. We first estimated the the probability p
that a single replicating virus, passing through the placenta, would result in a sustained
infection directly from stochastic simulations.

With initial values S0 = 4 · 108, L0 = 0, I0 = 0, V0 = 1, we ran the Gillespie algorithm
106 times with two stopping criteria:

1. No more viruses, latent cells, or infected cells are left (no persistent infection);
2. Virus count has reached M copies (persistent infection).

We obtained p = 0.08%. Then, if we consider that every virus can cause persistent
infection independently, we can estimate the probability of infection if N viruses travel
through the placenta as:

P = 1− (1− p)N . (13)

As a result, we obtained a cumulative probability over time by calculating the number
of viruses using (8):

P(t) = 1− (1− p)N(t), N(t) =
∫ t

0
λ(τ)dτ. (14)

This is a heuristic estimate since there can be multiple lineages from different founder
viruses growing at the same time, which could reduce the time to infection.

Figure 7. Sensitivity analysis for threshold M, ratio r, and diffusion coefficient D for stochastic
simulation.



Viruses 2023, 15, 2040 12 of 25

3. Simulation Results
3.1. Immune Suppression Increases the Likelihood of Placental Transmission

Maternal CD4+ T cells played a pivotal role in preventing severe cCMV disease, as
demonstrated in the RhCMV placental transmission model [3], as well as in humans [20].
Our model echoed these findings, underscoring how the extent of immune suppression
significantly influenced the likelihood of transplacental transmission. In our analysis of ex-
perimental data, we observed that the CD4+ T cell-depleted group of rhesus macaque dams
exhibited notably higher plasma viral loads. Consequently, this resulted in a higher number
of viruses entering the fetus during pregnancy. As anticipated, this led to an increased
probability of transplacental transmission within the CD4+ T cell-depleted dam group.

In Figure 8, our calibrated model illustrates that the probability of RhCMV transpla-
cental transmission in immunocompetent rhesus macaque dams was estimated to be 35%,
while the probability of RhCMV transplacental transmission in CD4+ T cell-depleted rhesus
macaque dams was predicted to be 100%.

Figure 8. Probability of transplacental transmission of RhCMV following primary infection of
immunocompetent and CD4+ T-cell-depleted dams. The blue line represents the result using the
immunocompetent dam population fit as maternal viral dynamics. The gray dashed line represents
each individual immunocompetent rhesus macaque. The red line refers to the result using the CD4+
T-cell-depleted macaque dam population fit to the system of ordinary differential equations for
maternal viral dynamics. The gray dashed–dotted line refers to each individual CD4+ T-cell-depleted
rhesus macaque. Graph generated taking M = 500 copies and using (13).

3.2. Inoculation in Different Trimesters

In humans, it has been observed that the risk of cCMV following primary infection
is 30–40% in the first and second trimesters but rises to 40–70% in the third trimester [21].
We observed this same phenomenon in our model simulation when we shifted the time
of viral inoculation. Maternal infections during 0 ≤ t < 55 days, 55 ≤ t < 110 days, and
t ≥ 110 days correspond to the first, second, and third trimester in the rhesus macaque
model (term 165± 10 days); for modeling purposes, 166 days was used [17]. The model
indicated that the increase in risk during later trimesters could be attributed to placental
growth, which induced a larger viral flux at the placenta–fetus boundary. Consequently, this
led to a correspondingly higher probability of transplacental transmission, as illustrated in
Figures 9 and 10. Note that the model can predict outcomes for infection at any gestational
age as noted by the smooth curve in Figures 9 and 10. The trimester risk predictions were
averaged over the smoothed curves. In addition to the placental considerations, other
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maternal adaptations that could potentially influence the model encompass alterations in
the concentration of immune effector cells within the maternal system, as well as changes in
the count of susceptible cells for fetal infection. Drawing insights from [22], it emerges that
the overall count of CD8+ cells—integral components of the effector T cell population within
the maternal ODE model—undergoes minimal fluctuations. For the fetus, we assumed that
the number of susceptible cells is effectively unlimited in the early stages of viral infection,
so changes in total number of susceptible cells over fetal growth would not change model
predictions. While we cannot rule out that other developmental changes, such as changes
in the immune milieu, also play a role [23], the model provided a parsimonious explanation
and suggests placental growth as a contributing factor to transmission risk.

Figure 9. Probability of transplacental transmission of primary RhCMV infections during different
trimesters of pregnancy in immunocompetent dams. The maternal dynamics come from the popula-
tion fits of the immunocompetent group of rhesus macaques with starting time t = 0 days (primary
infection 1st trimester), time t = 55 days (primary infection 2nd trimester), and t = 110 days (primary
infection 3rd trimester). Graph generated taking threshold M = 500 copies.

Figure 10. Probability of transplacental RhCMV transmission after primary maternal infections
during different trimesters of pregnancy in CD4+ T-cell-depleted RhCMV seronegative dams. All
rhesus macaques are infected 14 days post-inoculation since there are over M = 500 copies of viruses
that cross the placenta in the same day.
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3.3. Prevention of cCMV Infection with Hyperimmune Globulin Following Primary
Maternal Infection

Postinfection hyperimmune globulin (HIG) infusion was shown to reduce rates of
transplacental HCMV transmission in several nonrandomized small-scale clinical trials [24,25]
and case-controlled studies [26,27]. However, in a large-scale, randomized, placebo-
controlled trial [28], the use of HIG after primary maternal CMV infection showed no
efficacy.

We extended (14) to evaluate the utility of HIG infusion at different times following
primary maternal CMV infection at preventing cCMV infection:

P(t) = 1− (1− p)N(t), N(t) =
∫ t

0
λ(τ)H(τ)dτ,

H(τ) =

{
1, if τ < Tinfusion

(1− εeff), if τ ≥ Tinfusion

(15)

In the above equation, Tinfusion refers to the time of HIG infusion, and εeff refers to the
assumed effectiveness of HIG treatment. This simple model assumes that HIG maintains
the same efficacy for all time and thus overestimates the utility in the real world, where
HIG concentrations in plasma would diminish between infusions. The reduction in pre-
dicted risk of fetal CMV infection with different time and effectiveness of HIG infusion
for immunocompetent and CD4+ T-cell-depleted immune suppressed hosts is shown in
Tables 3 and 4, respectively. Our simulations indicated that HIG infusion for immunocom-
petent hosts had limited utility if administered later than two weeks following maternal
infection. Moreover, HIG infusion would need to be highly effective, approaching 100%,
to effectively prevent infection, particularly in CD4 T cell-depleted animals. Given that
maternal CMV infection often presents as asymptomatic, diagnosis relies on seroconver-
sion, which typically takes at least two weeks. This suggests that HIG delivery based on
serologic diagnosis may not be sufficient to prevent transplacental CMV transmission.

Table 3. Probability of transplacental transmission with HIG treatment for immunocompetent group.

HIG Infusion Day Tinfusion Effectiveness εeff = 100% Effectiveness εeff = 75% Effectiveness εeff = 50%

Not Treated 35% 35% 35%
Day 21 27% 30% 32%
Day 14 16% 22% 27%
Day 7 4% 14% 22%

Table 4. Probability of transplacental transmission with HIG treatment for the CD4+ T-cell-depleted
group.

HIG Infusion Day Tinfusion Effectiveness εeff = 100% Effectiveness εeff = 75% Effectiveness εeff = 50%

Not Treated 100% 100% 100%
Day 21 99% 99% 100%
Day 14 86% 96% 99%
Day 7 32% 87% 97%

3.4. Primary and Reactivated Chronic Maternal RhCMV Infection

It is difficult to study the reactivation of chronic infection in an experimental setting in
immunocompetent animals; thus, we ran simulations using our mathematical model to fill
in this gap in knowledge. We simulated reactivated chronic maternal RhCMV infection
by running the system of ODEs in (1) for an extended period until the viral dynamics ap-
proached equilibrium. We then compared the transmission probabilities between primary
and reactivated chronic infections in Figures 11 and 12. For both immunocompetent and
CD4+ T-cell-depleted rhesus macaques, the risk of cCMV following primary maternal in-
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fection significantly exceeded that of reactivated chronic infection, indicating the important
role preexisting immunity to CMV plays in suppressing transmission.

Figure 11. Probability of transplacental transmission of reactivated chronic RhCMV infections during
different trimesters of pregnancy. The maternal dynamics come from the equilibrium values of the
population fits of immunocompetent groups of rhesus macaques. Graph generated taking threshold
M = 500 copies. The blue dashed line refers to immunocompetent dams with reactivated chronic
infection. The blue solid line refers to immunocompetent dams that are infected during the first
trimester of pregnancy.

3.5. Sensitivity Analysis

For sensitivity analysis of the stochastic simulation, we show in Figure 7 the effect of
ratio r for viruses in the fetus with and without a latent stage, the threshold M defining
fetal infection, and the diffusion coefficient D for virus in the placenta. As shown, a higher
threshold M gives a lower infection rate at delivery. In addition, we observed that the
infection rate is lower at delivery if the proportion of viruses that enter the latent stage is
higher. This observation corresponds to our R0 calculation from (10) and (12).
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Figure 12. Probability of transplacental transmission of reactivated chronic maternal RhCMV infec-
tions during different trimesters of pregnancy. The maternal dynamics come from the equilibrium
values of the population fits of CD4+ T-cell-depleted rhesus macaques. Graph generated taking
threshold M = 500 copies. The red dashed line refers to CD4+ T-cell-depleted dams with reactivated
chronic infection. The red solid line refers to CD4+ T-cell-depleted dams that are infected during the
first trimester of pregnancy.

4. Discussion

The determinants of cCMV transmission are challenging to study experimentally, as
only the rhesus model recapitulates the features of human cCMV transplacental transmis-
sion and fetal neurological disease. NHP experiments are labor-intensive and hence need
to be designed to maximize the generation of new knowledge. This is even more true for
studying transmission in primary infection—since RhCMV is endemic in primate colonies.
Thus, measures are taken, such as housing seronegative animals in separated areas and
avoiding mixing with conventional colony animals, which adds to the cost and complexity
of such studies. For these reasons, the cohort of RhCMV seronegative dams used to cali-
brate the model is likely the largest such cohort ever studied in a challenge experiment. The
mathematical model for the transplacental transmission of CMV we describe here can serve
as an in silico experimental system, facilitating the generation and identification of the most
promising hypotheses and therapeutic interventions for validation in RhCMV experiments.

Our mathematical model for transplacental transmission considers CMV dynamics
in the dam, the placenta, and the fetus. Each of these three physical compartments has its
own unique characteristics that require a different mathematical framework to adequately
represent. We also describe how we link the dynamics across physical compartments by
careful consideration of conditions at the boundaries. Finally, we consider the simple fact
that the placenta is growing throughout pregnancy and incorporate this growth curve
into the model framework. A surprising hypothesis generated from our model is that the
increase in transmission rates across different trimesters observed in human studies can be
parsimoniously explained as a consequence of the surface area of the placenta at the time
of peak viral load. Of course, many other physiological changes occurring in the mother,
placenta, and fetus over pregnancy may also affect transmission risk, such as changes in
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concentration of immune effector cells in the mother, transplacental trafficking of IgG vs.
IgM, or change in number of cells susceptible to CMV infection in the developing fetus. We
are only reporting that models can be useful for hypothesis generation—in this case, the
novel hypothesis that placental growth itself could be an unsuspected determinant of the
transmission risk across different stages of pregnancy.

We then calibrated the model using data from RhCMV experiments that compared
the risks of transplacental RhCMV transmission for immunocompetent and CD4+ T-cell-
depleted hosts. These experiments collected longitudinal measurements of the viral load in
maternal plasma and amniotic fluid, allowing us to also estimate the time of transmission
in cases where the fetus was infected. Using the calibrated model, we then simulated the
dynamics of transplacental RhCMV transmission in several scenarios and compared the
risks of transmission with reactivated chronic versus primary maternal infection, with
primary infection at different stages of pregnancy, and with immune suppression prior
to inoculation or immune augmentation by HIG infusion following primary maternal
infection. For each scenario, the model predicts the probability of infection, as well as the
most likely time window for congenital infection to occur, and an estimate of the number
of potential founder viruses that cross the placenta.

It is natural to consider the extent to which the rhesus model is applicable to human
pregnancies. A comparison of rhesus macaque and human development is provided in [29],
and the authors conclude that key developmental processes are fundamentally conserved
among humans and monkeys, although the timing of when these events occur is obviously
different given the divergence of their body sizes and gestation periods. One limitation of
the rhesus model is that the intravenous route of infection is different from the mucosal
route from which humans acquire CMV. This is unavoidable as CMV is not very infectious,
and mucosal infection routes lead to variable and low-level viremia. Also, because of the
low efficiency of mucosal infection, a much larger cohort of seronegative dams would
be needed. While direct inoculation is not ideal, it is the best feasible design available
and leads to similar pathologies in the infected fetuses as observed in human congenital
infections [30].

The mathematical model and the in silico simulation of transplacental transmission
is a highly simplified representation of a complex biological system [31,32], and there
are several limitations. The most serious limitation is that several of the parameters
are estimated from the literature based on different experimental contexts—for example,
studies in humans rather than rhesus macaques. The models may also be uncertain
because the biology is at present poorly characterized—for example, the CMV life cycle
in the fetus. We have attempted to mitigate these shortcomings by performing sensitivity
analyses for parameters where there is most uncertainty. These parameter estimates will
improve over time as experiments are refined—for example, our collaborators have now
developed rhesus placental organoid model systems that can be studied, and we are
currently analyzing the detailed immune profiling data of the immunocompetent dams
described in this manuscript. Finally, the predicted risk of transplacental transmission from
reactivated chronic RhCMV infection is not based on experimental data but a model for
chronic infection based on long-run values after acute infection. However, we believe that
the modeling framework captures the major determinants of RhCMV transmission and
can recapitulate experimental and clinical observations. For example, the model predicts
that the number of transmitted founder viruses is typically small, consistent with studies
of viral genomics in infected fetuses [33]. The model also predicts that delayed infusion of
HIG more than 2 weeks after the primary maternal infection has little effect in preventing
cCMV transmission among immunocompetent hosts, consistent with the negative results of
a recent clinical trial [34] where expectant mothers infected before 23 weeks’ gestation were
given monthly HIG infusions starting from serologic diagnosis of primary CMV infection
based on low avidity CMV-specific IgG responses, which take at least 2 weeks to develop.

While we were privileged to work with such extensive data from a challenging and
highly translational primate model system, our framework can benefit from (1) better
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characterization of the maternal CMV-specific innate and adaptive immune responses,
so we can more accurately model viral control; (2) concentration of maternal anti-CMV
antibodies from transplacental transfer in the fetus; and (3) calibration of the model using
measurement of placental viral loads at the time of near-term fetal tissue collection by
hysterotomy. With additional experimental data, the model can be extended to include
more mechanistic hypotheses, for example to model the effect of vaccination or specific
immune mechanisms that serve as barriers to transplacental transmission that are currently
represented by a simple linear decay. Similarly, the simple diffusion model would benefit
from direct measurement of CMV phenomenological diffusion rates in placental tissue
rather than using estimates from an HIV model, and more accurate models of placental
anatomy. Hence, we believe that this model provides an encompassing framework for
future mechanistic models that will be useful for understanding, developing, and mitigating
risk in clinical trials of interventions to prevent cCMV infection.
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Appendix A. Curve Fitting Metrics

In this section, we provide a comprehensive analysis of the model fit for CD4+ T-cell-
depleted dams using Monolix, as depicted in Figure 4.

https://github.com/yishu0524/CMV_placental-transmission
https://github.com/yishu0524/CMV_placental-transmission
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Figure A1. Observation vs. prediction scatter plot.

In Figure A1, we present an observation versus prediction scatter plot, offering an
intuitive visualization of how well the model’s predictions align with actual observations.

Figure A2. Scatter plot of residuals; PWRES: population-weighted residuals; IWRES: individual-
weighted residuals.
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Figure A2 displays a scatter plot of residuals, providing insight into the distribution
of the differences between observed and predicted values. This representation aids in
identifying potential patterns or trends in the model’s prediction errors.

Figure A3. Distribution of residuals. IWRES: individual-weighted residuals; NPDE: normalized
prediction distribution errors.

In Figure A3, we present the distribution of residuals, enabling a detailed exploration
of the errors’ statistical properties. This analysis helps in identifying potential biases or
discrepancies in the model’s predictions.

Figure A4. Visual predictive check.
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Figure A4 shows the visual predictive check (VPC), which evaluates the accuracy of
structural, variability, and covariate models in a straightforward manner. It compares simu-
lations from the model of interest with actual data, focusing on both the central trend and
variability across an independent variable, usually time. The method combines structural
and statistical models, calculating quantiles from empirical data grouped into intervals.

This assessment aims to compare empirical percentiles with theoretical percentiles
and check how closely they align with each other. Empirical percentiles are calculated
from observed data, either for each time value or grouped in adjacent time intervals
(bins). Default percentiles (10th, 50th, and 90th) appear as green lines, summarizing the
data distribution. Theoretical percentiles result from simulated data using the model of
interest and the original dataset’s design (dosing, timing, samples). Multiple Monte Carlo
simulations yielded these percentiles across the same bins as empirical data. Prediction
intervals for each percentile are estimated from all simulations and shown as colored areas
(pink for the 50th percentile, blue for the 10th and 90th percentiles). The prediction interval
level is 95%.

As shown in Figure A4, observed percentiles align closely with predicted percentiles
and fall within corresponding prediction intervals.

Appendix B. Analytical Solution to Diffusion Equation with Varying
Boundary Conditions

Here, we solve the diffusion equation in 1D with time-varying boundary conditions.
As long as the clearance rate µ and diffusion coefficient D are constants, the partial

differential equation given below has an analytical solution.

∂Q
∂t

= D
∂Q2

∂x2 − µQ. (A1)

with boundary conditions:

c = c1(t), x = 0, t ≥ 0, (A2)

c = Vm(t), x = l, t ≥ 0, (A3)

and initial condition:
c = f (x), 0 < x < l, t = 0. (A4)

A change in variable q = Qeµt turns (A1) into the following form:

∂q
∂t

= D
∂q2

∂x2 (A5)

with boundary conditions:

q = c1(t)eµt = b1(t), x = 0, t ≥ 0, (A6)

q = Vm(t)eµt = b2(t), x = l, t ≥ 0, (A7)

and initial condition:
q = f (x), 0 < x < l, t = 0. (A8)

We assume the solution to be of the partitioned form:

q(x, t) = s(x, t) + v(x, t)

so that we have
st + vt = Dsxx + Dvxx. (A9)
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Translating the boundary/initial conditions gives:

s(x, 0) + v(x, 0) = f (x),

s(0, t) + v(0, t) = b1(t),

s(l, t) + v(l, t) = b2(t).

We assume s(x, t) to be linear in x but time-dependent, so the general form of s(x, t) is:

s(x, t) = a(t)x + b(t), (A10)

and
sxx = 0.

Hence, with boundary conditions s(0, t) and s(l, t) we get:

b(t) = b1(t),

a(t)L + b(t) = b2(t),

a(t) =
b2(t)− b1(t)

l
.

Plugging the above into (A10) gives

s(x, t) =
b2(t)− b1(t)

l
x + b1(t).

From (A9) and sxx = 0, we get:
vt = Dvxx − st.

We solve the homogeneous equation first:

vt = Dvxx

with boundary conditions:
v(0, t) = 0, v(l, t) = 0.

Using the Ansatz:
v(x, t) = X(x)T(t),

We obtain the separation of variables:

1
D

T′

T
=

X′′

X
= −m2.

Moreover, the ordinary differential equation for X(x) is given by:

X′′ + m2X = 0, X = c1 cos mx + c2 sin mx,

with boundary conditions:

c1 = 0,

m =
nπ

l
, n = 1, 2, 3....,

Xn(x) = sin
(nπx

l

)
.

Now, we solve the non-homogeneous partial differential equation:

vt = Dvxx − st,
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with boundary/initial conditions:

v(0, t) = 0, v(l, t) = 0,

v(x, 0) = f (x)− s(x, 0).

Assume the solution to be of the form:

v(x, t) =
+∞

∑
n=1

Tn(t)Xn(x);

st =
b′2(t)− b′1(t)

l
x + b′1(t) = −

+∞

∑
n=1

Qn(t)Xn(x);

Qn(t) = −
∫ l

0 stXn(x)dx∫ l
0 Xn(x)Xn(x)dx

.

Our solution must obey the original equation, so we have:

∂

∂t

+∞

∑
n=1

Tn(t)Xn(x) = D
∂2

∂t2

[
+∞

∑
n=1

Tn(t)Xn(x)

]

+
+∞

∑
n=1

Qn(t)Xn(x).

We also know that:
X′′n (x) = −m2Xn(x).

Therefore, the following equations hold:

+∞

∑
n=1

T′n(t)Xn(x) =
+∞

∑
n=1
−Dm2Tn(t)Xn(x) +

+∞

∑
n=1

Qn(t)Xn(x),

and
+∞

∑
n=1

[T′n(t) + Dm2Tn(t)]Xn(x)] =
+∞

∑
n=1

Qn(t)Xn(x).

So that:
T′n(t) + Dm2Tn(t) = Qn(t)

Solve with an integration factor to:

Tn(t) = e−Dm2t
∫ t

0
eDm2τQn(τ)dτ + Cne−Dm2t

Using the initial condition:

v(x, 0) = f (x)− s(x, 0) =
+∞

∑
n=1

Tn(0)Xn(x) =
+∞

∑
n=1

CnXn(x),

we obtain

Cn =

∫ l
0 [ f (x)− s(x, 0)]Xn(x)dx∫ l

0 Xn(x)Xn(x)dx
.
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