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Abstract
We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates,
and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs.
Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10−8), while five of the
21 lead SNPs reach suggestive significance (P < 1 × 10−5) for at least one other macronutrient. While the phenotypes are
genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the
strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease
(rg ≈ 0.15–0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference,
waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1–0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and
0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation
with educational attainment (rg ≈−0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence
of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent
with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.

Introduction

Understanding the relationships between nutrition, lifestyle,
and health is among the highest priorities for public health
[1]. Many aspects of dietary intake have been studied, but
the health impacts of macronutrient composition (i.e. rela-
tive intake from fat, protein, and carbohydrate) have been
especially controversial in the last few decades [2–4].
Despite a lack of robust empirical evidence from rando-
mized trials on the long-term effects of macronutrient
restriction on body weight and health [5–7], dietary
recommendations have shifted from low-fat to low-sugar
and, more recently, lower animal-protein diets [8–13].
Connections between diet and mental health are also
increasingly recognized [14]. Genetic correlation analysis
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allows links between mental health and dietary intake to be
estimated without the need to observe psychiatric measures
and macronutrient intake in the same samples. These links
can then corroborate existing ideas or fuel new hypotheses
about the relationships between diet and mental health.

Previous work has found that diet composition is heri-
table (range h2= 27–70%) [15–17] and may share genetic
components with health and lifestyle [18]. The largest
GWAS on relative intake from protein, fat, and carbohy-
drates (up to N= 91,114) to date has identified three
robustly associated SNPs in or near RARB, FTO, and
FGF21, each of which captures only a miniscule part of trait
heritability (R2 < 0.06%) [19–21]. These results suggest that
diet composition is a genetically complex phenotype that
requires large GWAS sample sizes for robust genetic dis-
covery. However, proper measurement of nutrient intake
requires a long and detailed questionnaire [22]. Therefore,
relatively few large genotyped cohorts have collected this
information, which restricts available GWAS sample sizes.

Here, we perform the largest dietary intake GWAS to
date, using the vast majority of currently available
European-ancestry genotyped diet data. Power calculations
determined a minimum required sample size of N=
141,000 (Supplementary Information 1.3). We nearly triple
the GWAS sample size compared to earlier work [21] to
N= 264,181 for relative intake of protein, carbohydrate,
and fat, increasing the number of robustly associated inde-
pendent loci from three to 18. Furthermore, we report the
first GWAS results for relative sugar intake (N= 230,648),
which is a subcomponent of our carbohydrate phenotype
and captures relative intake of both naturally occurring and
added sugars. The sugar GWAS identifies three additional,
unique lead loci. In our largest dataset, the UK Biobank
(N= 173,253) [23], we also report an auxiliary GWAS for
saturated fat intake, a subcomponent of our fat phenotype,
which we only use for genetic correlation analyses. We also
report phenotypic associations between BMI and macro-
nutrient subtypes (plant vs. animal-protein; saturated vs.
unsaturated fat; natural vs. added sugars).

Biological annotation of our GWAS results indicates that
the brain is the main driver of diet composition’s genetic
signal. Furthermore, we find robust genetic and phenotypic
associations between relative protein intake and poor health,
but no clear pattern of associations of the other macro-
nutrients with health. Finally, we probe the robustness of
these results to possible confounds due to socioeconomic
status and physical activity.

Methods

This article is accompanied by a Supplementary Informa-
tion, which describes further methodological details.

Phenotype definitions, GWAS, quality control, and
meta-analysis

We performed GWAS in European-ancestry individuals for
four dietary composition phenotypes: relative intake of fat,
carbohydrate, and sugar. As an auxiliary analysis, we per-
formed GWAS for relative intake of saturated fat in the
UKB. Discovery analyses were performed in UKB, while
replication analyses were conducted in cohorts from the
Netherlands (Lifelines, RSI/II/III), UK (ALSPAC, Fen-
land), USA (FHS, HRS, GARNET, HIPFX, WHIMS+),
and the international consortia EPIC-InterAct and DietGen
(Supplementary Information 1 and Supplementary Table
1.1). Since DietGen only analyzed fat, protein, and carbo-
hydrate intake (measured by DietGen with intake as a
percentage of total energy intake), our final sample sizes are
Nsugar= 235,391 and Nfat= Nprotein= Ncarbohydrate=
268,922. A study flowchart is presented in Extended Data
Fig. 2, which shows that we used the meta-analysis results
of UKB + replication cohorts throughout our investigations
except for the replication and sensitivity analyses and the
auxiliary GWAS for saturated fat.

Cohorts measured previous-day (UKB) or habitual
(all other cohorts) dietary intake with comprehensive food-
item questionnaires (Supplementary Table 1.2). Phenotype
definitions are described in Supplementary Information 2.
With the exception of DietGen, all cohorts corrected mac-
ronutrient intakes for total energy intake allowing for non-
linear effects, and GWAS was performed according to a
prespecified analysis plan (Supplementary Information 2.6).

Cohort-level quality-control (QC) was performed in
accordance with protocols developed by the GIANT con-
sortium [24] and the Social Science Genetic Association
Consortium (SSGAC, Supplementary Information 3.3).
Filters for participants and SNPs varied by cohort and
cohort sample size. SNP effects were summarized across
cohorts using fixed-effects sample-size-weighted meta-
analyses based on Z-statistics. For the family cohorts
UKB and FHS, we used the median effective sample size as
a weight (Supplementary Information 3.4).

Replication

We assess the credibility of individual SNPs from our dis-
covery GWAS by replicating the associations of its lead
SNPs in our replication GWAS (Supplementary Informa-
tion 4, Supplementary Information 4.1). Our replication
analyses closely followed the procedure outlined in Sup-
plementary Information section 1.8 of Okbay et al. [25]. We
conducted one-sided binomial tests for both the sign con-
cordance of the lead SNPs and the number of lead SNPs
from our discovery GWAS that differ at the P < 0.05
threshold (both with and without Bonferroni correction) in
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the replication GWAS. In addition to conducting binomial
tests, we simulated the expected rate of replication given the
discovery GWAS results, the discovery sample size and the
replication sample size, and we assessed whether these
expected rates matched the observed replication rates. We
used bivariate LD Score regression to examine the com-
parability between the summary statistics from our dis-
covery cohort, the 14 replication cohorts, and DietGen
(Supplementary Table 4.2). We also report the replication
record of a rare variant in DRAM1 discovered by Merino
et al. [21] (Supplementary Table 4.3).

Population stratification

LD Score regression was used to estimate inflation of the
GWAS results due to population stratification (Supple-
mentary Table 5.1). We adjusted the reported standard
errors and P-values of meta-analyzed SNPs for bias due to
population stratification by dividing them by the square root
of the LD Score regression intercept. To identify approxi-
mately independent lead SNPs, we applied the clumping
algorithm in PLINK (parameters r2 > 0.1, P-value < 5 ×
10–8). Supplementary Tables 5.2 and 5.4 report the lead
SNPs and the overlapping loci between phenotypes.

Sensitivity analyses

We performed sensitivity analyses for the two SNPs that
reached genome-wide significance in APOE (rs429358) and
ADH1B (rs1229984, Supplementary Table 5.5). For the
APOE SNP, we assessed its effect size and confidence
interval in a subsample of the UKB aged below 60 years.
For the ADH1B SNP, we assessed its effect size and con-
fidence interval in a subsample of the UKB who report to be
non-drinkers. We tested whether the confidence intervals of
the effect sizes overlap with the confidence intervals in the
meta-analyzed sample.

Biological annotation

All bioinformatics analyses used the results of the combined
meta-analysis (Supplementary Information 6). To annotate
the top GWAS findings, we performed MAGMA [26] gene-
based analysis to test 18,224 genes for association with diet
composition (Bonferroni-corrected P-value threshold=
0.05/18,224). To gain preliminary insights into the likely
functions of the significant MAGMA genes, we queried
them in Gene Network. To gain insights into probable
functional genomic categories and tissues, we estimated
stratified LD Score regressions for the 52 functional geno-
mic regions of the “baseline model”, the 10 broad tissue-
level annotations from Finucane et al. [27], and the 53 fine
tissue-level annotations from GTEx, with Bonferroni-

corrected P-value thresholds= 0.05/53, 0.05/10, 0.05/52,
respectively (Supplementary Tables 6.1–6.3). To annotate
the lead GWAS SNPs, we queried whether they (or SNPs in
LD with them) are associated with gene expression in
relevant GTEx tissues, or in LD with protein-altering SNPs
(Supplementary Tables 6.3–6.6).

Estimation of genome-wide SNP heritability

We used GCTA-GREML [28] and LD Score regression
[29] to estimate the SNP-based heritability of diet compo-
sition (Supplementary Information 8, Supplementary
Table 8.1). We restricted the GCTA analysis to genotyped
SNPs with MAF > 0.01 and a random subset of 30,000
UKB individuals in the UKB, and thereafter drop one
individual in each pair of individuals with a cryptic relat-
edness exceeding 0.025, resulting in N= 28,635. For the
LD Score regression analysis, we used the full meta-
analysis results, HapMap3 SNPs with MAF > 0.01, and LD
estimates from the 1000 Genomes project provided by
Finucane et al. [27].

Genetic correlations between macronutrients

We used bivariate LD Score regression to estimate the
genetic correlations between macronutrients (Supplemen-
tary Information 7).

Polygenic prediction

We assessed the accuracy of polygenic scores of diet
composition in the HRS and RSI validation cohorts and
used LDpred [30] to construct polygenic scores assuming
an underlying infinitesimal model (Supplementary Infor-
mation 9, Supplementary Table 9.1). Since these cohorts are
included in the full meta-analysis, we conducted a new
meta-analysis that excludes the holdout cohort to obtain the
SNP weights. Analyses are restricted to HapMap3 SNPs
with MAF > 0.05, and LD scores were calculated on the
basis of the holdout cohort. Our measure of a score’s pre-
dictive power is the incremental adjusted R2 from adding
the score to a regression of the phenotype on the covariates
sex, birth-year, birth-year squared, and cubed, as well as the
interactions between sex and the three birth-year variables,
and the first ten principal components of the genetic relat-
edness matrix. We bootstrapped 95% percentile confidence
intervals for the incremental R2 estimates with 1000
iterations.

Genetic correlations

We used bivariate LD Score regression to estimate genetic
correlations between: diet composition and various health
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and behavioral phenotypes (Supplementary Information 10,
Supplementary Tables 10.2–10.4). We used the 1000
Genomes LD scores computed by Finucane et al. [27] and
restricted analyses to HapMap3 SNPs with MAF > 0.01.

Phenotypic associations

We examined the phenotypic associations between relative
macronutrient intake and BMI in four large, independent
cohorts from the UK and US (UKB, HRS, FHS, and WHI,
with combined N= 173,165; Supplementary Informa-
tion 11, Supplementary Table 11.1). In the HRS, FHS, and
WHI, we were also able to distinguish animal vs. plant
protein, natural vs. added sugars, and saturated vs. unsatu-
rated fat. In the UKB, only the distinction between saturated
vs. unsaturated fat was available (Supplementary
Table 11.2). We estimated the standardized regression
coefficients obtained from a multiple regression of BMI on
the focal macronutrient, sex, age, educational attainment,
household income (available for all cohorts except FHS),
and the number of dietary measurements. In the UKB, we
performed an additional regression that included a measure
of physical activity. We restricted the samples to individuals
also included in the GWAS. We used Fisher’s Z-transfor-
mation to perform fixed-effects, inverse-variance weighted
meta-analysis of the standardized regression coefficients.
Fisher’s Z-transformation was also used to obtain 95%
confidence intervals.

Results

Phenotype definition

All cohorts used self-report questionnaires containing ≥70
food items. Average intakes were highly similar across
cohorts (Supplementary Table 1.2). Using these self-reports,
we calculated the relative contributions of fat, protein,
carbohydrate, and sugar to total energy intake. When pos-
sible, we excluded individuals on calorie- or macronutrient-
restricted diets (see Supplementary Table 1.3 for all
exclusion criteria).

We do not study total energy intake because it is mainly
determined by body size and physical activity [31], and
because systematic underreporting of total energy intake is
correlated with BMI [32]. We caution that selective
underreporting of macronutrients could be problematic for
the common approach we adopt of studying relative intake,
but there is mixed evidence for this, and its consequences
are poorly understood (Supplementary Information 2.4).

Since macronutrient intake may not scale linearly with
total energy intake, we developed and applied a method that
adjusts for observed non-linear relationships

(Supplementary Information 2.6–2.8, Extended Data
Fig. 1). Consistent with the satiating properties of protein
[33], we find that relative protein intake declines at higher
levels of total energy intake, while relative fat intake
increases, and relative sugar and carbohydrate intake remain
roughly constant (Supplementary Table 2.3).

Main results

GWAS were performed in individuals of European ances-
tries from over 14 population cohorts. Informed consent
was obtained by the cohorts for all participants included in
the analyses. Association statistics underwent rigorous
quality control according to SSGAC guidelines [25, 34, 35],
which included sample-size-dependent quality-control fil-
ters, exclusion of SNPs with too small standard errors or too
large explained phenotypic variance, and visualizations of
summary statistics and allele frequencies (Supplementary
Information 3.3, Supplementary Tables 3.1–3.5). Our dis-
covery sample is the subset of the UKB with survey data on
dietary intake (N= 175,253). The replication phase consists
of a meta-analysis of GWAS summary statistics from 14
additional cohorts that followed our analysis plan (N=
60,138) together with summary statistics from DietGen [20]
(for fat, protein, and carbohydrate, N= 33,531, flowchart in
Extended Data Fig. 2). DietGen [20] assumed a linear
scaling of macronutrients with total energy intake. None-
theless, we included DietGen in our meta-analysis because
the genetic correlations between DietGen and our other
replication cohorts are not significantly different from one at
P < 0.05 (Supplementary Table 4.1).

The discovery stage identified 21 approximately inde-
pendent genome-wide-significant lead SNPs (see Supple-
mentary Information 3.3.5 for a description of the clumping
algorithm): 4 for fat, 5 for protein, 5 for sugar, and 7 for
carbohydrate (Supplementary Table 4.2). These lead SNPs
partially overlap across phenotypes and reside in 14 unique
loci. In the replication stage, all 21 lead SNPs had the
anticipated signs and comparable effect sizes (Extended
Data Fig. 3), and 15 reach statistical significance at P < 0.05
(Supplementary Table 4.2). This empirical replication
record matches or exceeds theoretical predictions that take
into account the statistical winner’s curse, sampling varia-
tion, and statistical power [25] (Supplementary Table 4.1).
In our data, the association between DRAM1 and dietary
intake reported by Merino et al. [21] does not replicate, with
a discordant effect size compared to Merino et al.
(β̂ ¼ �0:028, SE= 0.025 compared to Merino et al.’s
β̂ ¼ 0:122, SE= 0.02 in phenotypic standard deviations per
effect allele, Supplementary Table 4.3).

In order to maximize statistical power, all follow-up
analyses below are based on the combined discovery and
replication samples (N= 235,391–268,922, Supplementary
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Information 5). The quantile–quantile plots exhibit sub-
stantial inflation (λGC= 1.12–1.19, Extended Data Fig. 4).
The estimated intercepts from LD Score (LDSC) regres-
sions [29] suggest that the vast majority of this inflation is
due to polygenic signal, and only a small share is attribu-
table to population stratification (the maximum estimate,
~6%, is for fat and is not statistically distinguishable from
0% at P < 0.05; Supplementary Table 5.1). The number of

approximately independent lead SNPs in the combined
sample is 36 (pairwise r2 < 0.01), including 6 for fat, 7 for
protein, 10 for sugar, and 13 for carbohydrate (Table 1,
Fig. 1). These 36 reside in 21 unique loci (Supplementary
Table 5.4). Fourteen lead SNPs are uniquely associated
with one macronutrient at genome-wide significance (P < ×
10−8), while five of these reach suggestive significance (P <
1 × 10−5) for at least one other macronutrient. The SNP

Table 1 Diet composition lead SNPs.

Top hit in locus for SNPID CHR BP Effect allele Beta P-value Nearest gene

Protein rs780094 2 27,741,237 t 0.018 5.58E-10 GCKR

Sugar rs12713415 2 60,205,134 c −0.019 4.88E-09 AC007100.1

Carbohydrate rs10206338 2 60,209,981 a −0.016 1.52E-08 AC007100.1

Protein rs445551 2 79,697,982 a 0.019 1.49E-08 CTNNA2

Carbohydrate rs10510554 3 25,099,776 t 0.019 2.94E-12 AC133680.1

Protein rs1603978 3 25,108,236 a 0.019 1.35E-10 AC092422.1

Sugar rs7619139 3 25,110,415 a −0.024 4.98E-16 AC092422.1

Carbohydrate rs10433500 3 85,546,798 a 0.016 1.96E-08 CADM2

Protein rs13146907 4 39,425,248 a −0.022 1.24E-14 KLB

Fat rs1229984 4 100,239,319 t 0.098 2.64E-28 ADH1B

Sugar rs13202107 6 51,395,463 a −0.020 1.77E-08 SNORD66

Fat rs57193069 7 1,862,417 a −0.016 1.80E-08 MAD1L1

Carbohydrate rs7012637 8 9,173,209 a 0.017 4.68E-10 AC022784.6

Fat rs7012814 8 9,173,358 a −0.019 1.12E-11 AC022784.6

Sugar rs7012814 8 9,173,358 a 0.019 4.99E-10 AC022784.6

Carbohydrate rs9987289 8 9,183,358 a −0.026 4.64E-08 AC022784.6

Protein rs1461729 8 9,187,242 a 0.032 4.09E-12 AC022784.6

Carbohydrate rs10962121 9 15,702,704 t −0.015 3.40E-08 CCDC171

Carbohydrate rs2472297 15 75,027,880 t −0.018 3.73E-08 CYP1A1

Protein rs55872725 16 53,809,123 t 0.018 2.09E-10 FTO

Sugar rs9972653 16 53,814,363 t −0.020 1.53E-11 FTO

Fat rs9927317 16 53,820,996 c −0.024 4.77E-12 FTO

Carbohydrate rs7190396 16 53,822,502 t 0.018 2.39E-10 FTO

Carbohydrate rs1104608 16 73,912,588 c 0.018 1.74E-10 AC087565.1

Carbohydrate rs36123991 17 44,359,663 t 0.021 8.24E-09 ARL17B

Sugar rs8097672 18 1,839,601 a 0.030 1.54E-12 AP005230.1

Carbohydrate rs8097672 18 1,839,601 a 0.023 1.95E-09 AP005230.1

Sugar rs341228 18 6,395,336 t 0.019 2.72E-09 L3MBTL4

Fat rs429358 19 45,411,941 t 0.024 8.65E-10 APOE

Sugar rs429358 19 45,411,941 t −0.028 2.97E-11 APOE

Carbohydrate rs429358 19 45,411,941 t −0.027 3.49E-12 APOE

Fat rs33988101 19 49,218,111 t −0.029 1.66E-26 MAMSTR

Sugar rs838144 19 49,250,239 t −0.028 8.53E-21 IZUMO1

Carbohydrate rs838144 19 49,250,239 t −0.023 3.26E-17 IZUMO1

Protein rs838133 19 49,259,529 a −0.032 4.52E-26 FGF21

Sugar rs62132802 19 49,270,872 t −0.020 1.07E-08 FGF21

GWAS summary statistics of the 36 diet composition lead SNPs. A total of 21 of these lead SNPs are approximately independent. Supplementary
Table 5.1 reports the effect alleles and summary statistics across all four phenotypes for each individual lead SNP. MAF=minor allele frequency
(weighted average across cohorts). Beta= increase in phenotypic standard deviations per effect allele. All P-values are calculated using standard
errors that have been inflated by the estimated LDSC intercept.
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effect sizes range from 0.015 to 0.098 phenotypic standard
deviations per allele. The phenotypic variance explained per
SNP, expressed in terms of coefficient of determination
(R2), ranged from 0.011% to 0.054%, the same order of
magnitude as the R2’s of the most strongly associated lead
SNPs for other genetically complex traits such as BMI and
educational attainment (Extended Data Fig. 5).

MAGMA [26] gene-based analyses of our GWAS
summary statistics identifies 81 unique genes (Extended
Data Fig. 6 and Supplementary Table 5.5). While the
majority of these genes are near our lead SNPs, MAGMA
also identifies 33 genomic regions harboring 44 unique
genes that are physically distant (>1 Mb) from our
lead SNPs.

Discussion of lead SNPs from combined meta-
analysis

Seven of the 21 lead SNPs had not been (directly or via LD
partners, r2 ≥ 0.6 and distance <250 kb) associated with any
other traits in the NHGRI-EBI GWAS Catalog at the time
of query (September 19, 2017) [36] (Supplementary
Table 5.6). Each of these seven SNPs is located in or near
genes that have not been studied in depth to date.

Five lead SNPs are located in or near genes that have
well characterized biological functions in nutrient metabo-
lism or homeostasis but have not previously been associated
with dietary intake. First, we find that a missense variant in
APOE (rs429358) is associated with fat, sugar,

and carbohydrate, where the allele that decreases Alzhei-
mer’s risk is associated with greater relative fat and lower
relative sugar and carbohydrate intakes. In addition to its
strong association with Alzheimer’s disease [37], APOE is
known to be involved in fatty acid metabolism. We
explored whether the associations in our data may be driven
by sample selection. Specifically, older people with
dementia may be systematically missing from the UKB, and
unaffected elderly people may have different eating habits
than younger people. To test for this possibility, we
examined the subsample of UKB participants aged below
60, where such sample selection should be largely absent.
We find that the association is indeed smaller in this sub-
sample, but the 95% confidence interval of the effect size
overlaps with that of the effect size in the subsample of
UKB participants aged 60 and older (Supplementary
Table 5.7).

Second, a well-known missense variant (rs1229984 in
ADH1B) that limits alcohol metabolism is positively asso-
ciated with fat intake. The association is weaker in a sample
of UKB alcohol abstainers (N= 39,679; Supplementary
Table 5.7), suggesting that it may be partially driven by
substitution of fat for alcohol.

Third, one of the protein lead SNPs (rs13146907) is in
KLB, which codes an essential cofactor to FGF21 [38, 39],
which influences sweet and alcohol taste preference via the
liver-brain-endocrine axis [40–42]. KLB is only associated
with protein in our GWAS and MAGMA analyses, while
FGF21 is strongly associated with all four macronutrients in

Fig. 1 Manhattan plots. The x-axis is SNP chromosomal position; the
y-axis is the SNP P-value on a −log10 scale; the horizontal dashed line
marks the threshold for genome-wide (P= 5 × 10−8) and suggestive

(P= 1 × 10−5) significance; and each approximately independent
(pairwise r2 < 0.1) genome-wide significant association (“lead SNP”)
is marked by a red cross.
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both the GWAS and MAGMA analyses. With MAGMA,
we also identifiedMLXIPL (only for fat), a gene that codes a
transcription factor to FGF21 [43]. This combination of
findings suggests that different genes involved in the same
pathway are important for directing intake of different
macronutrients.

Fourth, an intergenic variant (rs2472297) that has been
linked to higher caffeine consumption [44, 45] is associated
with lower carbohydrate intake. There are various possible
explanations, such as interrelated lifestyle choices pertain-
ing to food and caffeinated drinks.

Fifth, an intronic variant in GCKR (rs780094), a
carbohydrate-metabolism gene, is associated with protein.
The lead SNP is in almost perfect LD (r2= 0.94) with a
missense variant that has been associated with lipid levels
[46] and type 2 diabetes [47].

Bioinformatic analyses

Animal studies indicate that the brain and peripheral organs
interact in directing macronutrient intake [48, 49]. A
question that arises is whether the “periphery”, which
digests and metabolizes macronutrients, plays a larger role
than the brain, for instance by determining how the brain
assigns reward values to macronutrients. (For example, this
is partially the case with alcohol, where mutations that
affect metabolic capacity render alcohol consumption
unpleasant [50, 51].) While individual loci associated with
dietary intake have been studied previously (e.g., [21, 52]),
it is unknown in which tissues the polygenic signal is
enriched. To address this question, we used stratified LDSC
[27, 53] to identify in which tissues diet-composition-
associated SNPs are likely to be expressed (Supplementary
Information 6.1). We performed two stratified LDSC ana-
lyses, which partitioned SNP heritability according to (i) 10
broadly-defined tissues, which were ascertained with LDSC
reference data from chromatin data [54] and (ii) 53 tissues
(including 14 brain regions), as ascertained with LDSC
reference data from sets of Specifically Expressed Genes in
GTEx (known as LDSC-SEG) [53]. To correct for multiple
testing across tissues, we used Bonferroni-adjusted sig-
nificance thresholds for the number of tested tissues (α=
0.05/10 = 0.005 and α= 0.05/53= 9.4 × 10−4, respectively).

We find that the central nervous system explains the
majority of the genetic signal for all macronutrients (for the
regression coefficients; Fig. 2), with the proportions of
explained heritability ranging from 44% (fat and sugar) to
55% (protein). Within the central nervous system, we find
broad involvement of the brain, including (frontal) cortex
(fat and sugar), the basal ganglia (fat), limbic system (fat
and sugar), cerebellum (protein), and hypothalamus and
substantia nigra for fat and protein (and sugar only sug-
gestively after Bonferroni correction). The confidence

intervals for the coefficients overlap across brain regions, so
we cannot draw conclusions about the specificity of brain
regions for intake of particular macronutrients.

For fat, genetic variation related to adrenals and/or pan-
creas tissue is estimated to explain 37% of the heritability.
Because the adrenals play a role in lipid metabolism, and
the pancreas is crucial for digestion, either tissue may
plausibly affect fat intake. We caution, however, that in the
LDSC-SEG analyses of 53 tissues, all non-brain regions had
P-values above 0.05 even before Bonferroni adjustment.

To gain insight into the putative functions of the top
associated loci, we queried the 81 genes identified by the
MAGMA analyses in Gene Network [55], which predicts
Reactome [56] functions for genes (Supplementary Infor-
mation 6.2). In addition to neural functioning (e.g., axon
guidance), we find that the MAGMA genes are predicted to
be involved in growth factor signaling and the immune
system (Supplementary Information 6.6). These results may
imply a more pronounced role for peripheral gene functions
than our stratified LDSC results, which mainly implicated
the brain.

Genetic correlations, heritability estimation, and
polygenic prediction

We estimated pairwise genetic correlations between the
macronutrients with bivariate LDSC [57]. All are statisti-
cally distinguishable from zero at P < 0.05 (except fat and
protein), but also from one and negative one (Supplemen-
tary Information 7.1, Supplementary Information 7). (As we
explain in Supplementary Information 2.8, negative phe-
notypic and genetic correlations are not mechanically

Fig. 2 LD Score partitioning of heritability. Functional partitioning
of the heritability of diet-composition phenotypes with stratified LD
Score regression, where tissues were ascertained by Finucane et al. on
the basis of chromatin data. The panel shows the partial regression
coefficient (τC) from the stratified regression, divided by the LD Score
heritability of the diet-composition phenotype (h2). Error bars depict
95% confidence intervals. The phenotypes are ordered from left to
right (fat, protein, sugar, and carbohydrate), from darker to lighter
shades. Asterisks (*) denote significant deviation from zero after
Bonferroni correction for 10 tissues: * P< 0:05

10 , **P< 0:01
10 , ***

P< 0:001
10 .
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induced by our phenotype definition.) Thus the macro-
nutrients have overlapping but distinct genetic architectures,
consistent with previous work from animal studies showing
distinct biological mechanisms involved in macronutrient-
specific appetites [48].

We calculated GREML [28] estimates of SNP-based
heritability using a random N= 30,000 subsample of con-
ventionally unrelated UKB participants. The estimates
range from 2.1% for protein to 7.9% for carbohydrate
(Extended Data Fig. 7 and Supplementary Table 8.1). Our

estimates are similar to previous estimates [20, 21]. These
heritability estimates might be biased downward due to
phenotypic measurement error (Supplementary Informa-
tion 8.2) and are similar in magnitude to those from other
complex (and also noisily measured) behavioral pheno-
types, such as subjective wellbeing [34] and risk pre-
ferences [35].

We constructed polygenic scores for the macronutrient
intakes by applying LDpred [30] to our GWAS summary
statistics. We assessed the scores’ out-of-sample predictive

Fig. 3 Genetic correlations. Genetic correlations were estimated with bivariate LD Score (LDSC) regression. Error bars show 95% confidence
intervals, while asterisks denote Bonferroni-corrected P-value thresholds (*P/33 < 0.05, ** < 0.01, *** < 0.001), corrected for 33 traits. The
colours represent the different functional domains.
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accuracy in two holdout cohorts: The Health and Retire-
ment Study (N= 2,344) and the Rotterdam Study (N=
3,585). The scores predict the macronutrient intakes with
incremental adjusted R2 ranging between 0.08% (P=
0.088) and 0.71% (P= 9.11 × 10−7; Supplementary
Table 9.1, Extended Data Fig. 8).

Relationships with health, lifestyle, and
socioeconomic status

Using bivariate LDSC [57, 58], we estimated genetic cor-
relations between our diet-composition phenotypes and 19
preselected relevant medical and lifestyle phenotypes for
which well-powered GWAS results were available. We also
included four additional phenotypes for which GWAS
results became available after our study was underway, as
well as Alzheimer’s disease, motivated by the association
we found between APOE and macronutrient intakes, and
nine phenotypes from the psychiatric domain. To control for
multiple testing, we again used Bonferroni-adjusted P-value
thresholds (α= 0.05/33).

Protein exhibits the strongest genetic correlations with
poor health outcomes, including obesity (rg = 0.35, SE=
0.04), type 2 diabetes (rg= 0.45, SE= 0.06), fasting
insulin (rg= 0.41, SE= 0.08), and coronary artery disease
(rg= 0.16, SE= 0.04), as well as BMI (rg = 0.40, SE=
0.04) (Fig. 3, Supplementary Table 10.2). Fat, sugar, and
carbohydrate has negative, non-significant genetic corre-
lations with BMI (rg between −0.06 and −0.02). For
comparison, we estimated phenotypic associations

between diet composition and BMI in four independent
cohorts (combined N= 173,353) and meta-analyzed the
results (Fig. 4). Protein (standardized β̂= 0.090, 95% CI
[0.085, 0.094]) and fat (standardized β̂= 0.069, 95% CI
[0.059, 0.067]) are positively associated with BMI, while
sugar and carbohydrate are negatively associated
with BMI (standardized β̂=−0.082, 95% CI [−0.087,
−0.078]; and −0.084, 95% CI [−0.088, −0.079]
respectively, Supplementary Table 11.1). Thus, the
genetic correlation between protein and BMI stands out as
large relative to the phenotypic correlations. The pheno-
typic association between overall protein intake and BMI
is probably driven by animal protein, which has a positive
correlation with BMI (standardized β̂ ¼ 0:16, 95% CI
[0.15, 0.18]), while plant protein has a negative correla-
tion between BMI (standardized β̂ ¼ �0:07, 95% CI
[−0.08, −0.05]). These protein subtypes were available in
four population cohorts with a total N= 15,347. No such
large differences are found between natural vs. added
sugar and saturated vs. unsaturated fat (Supplementary
Table 11.2, Extended Data Fig. 9).

Despite their relatively weak genetic correlations with
BMI, sugar, and carbohydrate have negative genetic cor-
relations with waist circumference (rg=−0.13, SE= 0.03,
and rg=−0.14, SE= 0.03) and waist-hip ratio (rg=−0.15,
SE= 0.04, and rg=−0.18, SE= 0.04) that are larger in
magnitude and statistically distinguishable from zero at the
5% level. All the macronutrients have negative genetic
correlations with alcohol consumption (rg between −0.61
and −0.11), as expected since alcohol is included in energy

Fig. 4 Phenotypic associations
with body mass index.
Phenotypic associations between
diet composition and body mass
index (BMI) in four independent
cohorts, in terms of standardized
regression coefficients (with
95% confidence intervals).
These coefficients were obtained
from a regression of BMI on the
focal macronutrient and several
covariates (sex, age, educational
attainment, and household
income). FHS Framingham
Heart Study (N= 4,413), HRS
Health and Retirement Study
(N= 2,394), UKB UK Biobank
(N= 158,046), WHI Women’s
Health Initiative (N= 8,628).
The summary estimate was
based on fixed-effects, inverse-
variance-weighted meta-
analysis.
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intake and our phenotype measures are shares of energy
intake (Supplementary Information 2.8).

Next, we computed genetic correlations with indicators
of socioeconomic status [25, 59, 60], which are heritable
[59, 60] and known to be phenotypically associated with
food access, dietary choices, and health [61–65]. We found
that fat is negatively genetically correlated with educational
attainment (rg=−0.13, SE= 0.04). Sugar and carbohydrate
are negatively genetically correlated with the Townsend
deprivation index (rg=−0.23, SE= 0.06 and −0.30, SE=
0.06), which is constructed from the rates of unemployment,
non-ownership of cars and houses, and neighborhood
overcrowding [60, 66], with higher scores indicating more
severe socioeconomic deprivation. These genetic correla-
tions might hint at environmental factors involved in mac-
ronutrient intake, although these relationships might also be
caused by unmeasured, confounding factors.

Finally, we estimate the genetic correlations between diet
composition and physical activity, which has widespread
physical and mental health benefits [67, 68]. In these
genetic correlation analyses, we used unpublished physical
activity GWAS summary statistics from a sample of
research participants from 23andMe (N= 269,189). The
physical activity phenotype is a composite measure based
on self-reported activities from leisure, occupation, and
commuting. We find a negative genetic correlation of
physical activity with fat (rg=−0.32, SE= 0.04) and a
positive genetic correlation with sugar (rg= 0.23, SE=
0.04) and carbohydrate (rg= 0.13, SE= 0.04). The genetic
correlation with protein is positive but not statistically dis-
tinguishable from zero at P < 0.05 (rg = 0.011). In the
psychiatric domain, we find negative genetic correlations
between saturated fat and schizophrenia (rg=−0.13, SE=
0.04) and between carbohydrate and ADHD (rg=−0.19,
SE= 0.04). The negative genetic correlation with schizo-
phrenia contrasts with its known positive phenotypic cor-
relation, as patients with schizophrenia tend to consume
higher amounts of saturated fat [69]. The negative genetic
correlation with ADHD might be related to ADHD’s
responsiveness to dietary intervention [70], or might be
explained by socioeconomic status.

Discussion

The genetic correlations we find between protein and obe-
sity, waist-hip ratio, fasting insulin, type 2 diabetes, HDL
cholesterol, and heart disease, together with the association
we find between the BMI-increasing FTO allele and
increased protein intake, point to an intriguing hypothesis:
relative protein intake may play a role in the etiology of
metabolic dysfunction. This hypothesis coincides with a
growing (but often overlooked [71]) body of evidence that

links protein intake to obesity and insulin resistance [72–
80]. There is some related evidence from randomized trials
with infants, which found a causal relationship between
high-protein baby formula and infant body fat [81]. While
the underlying biological mechanisms are unclear, high
consumption of protein or certain types of amino acids (i.e.,
building blocks of protein) is known to induce insulin
resistance [82–84], rapamycin signaling [77], and growth
factor signaling [85], which might increase metabolic dys-
function and early mortality risk. Indeed, a recent pheno-
typic meta-analysis of prospective observational studies
(pooled N= 154,344) found that low carbohydrate diets,
which restrict carbohydrate in favor of increased animal
protein or fat intake, were robustly associated with
increased mortality [86].

We caution, however, that the strong and consistent links
between protein and poor health outcomes might also be
consistent with alternative explanations. Causation could
run in the reverse direction: overweight individuals may
have higher protein needs or use high-protein diets as a
weight-loss strategy. The associations might also be caused
by other, unmeasured variables such as unhealthy lifestyle
factors or co-consumed ingredients. However, we find that
the phenotypic association between protein and BMI is
robust to controls for educational attainment and household
income. Furthermore, the genetic correlation between pro-
tein and physical activity is statistically indistinguishable
from zero. These findings weigh against socioeconomic
status or physical activity being confounders of the positive
genetic correlation between protein and BMI. In any case,
the consistent associations that we find between protein
intake and poor health warrant further attention.

For sugar, the phenotypic and genetic correlations we
found with BMI and other health outcomes are consistent
with observations from systematic reviews and meta-
analyses of phenotypic relationships. These correlations
may suggest that dietary sugar, beyond its energy content,
does not have negative health effects [87–90], contrary to
some popular beliefs (e.g., [91]). Another possibility is that
exercise offsets negative metabolic effects of high sugar
intake [92, 93]. Those with a higher predisposition to be
physically active may tend to consume more sugar, as sugar
is a metabolically convenient source of energy during
exercise [94] and may enhance endurance [95]. If so, the
positive genetic correlation between sugar and physical
activity might partially explain the lack of genetic correla-
tions between sugar and poor health.

For fat and carbohydrate, we also find no consistent
pattern of genetic and phenotypic associations with poor
metabolic health. Taken together, our results complement
the findings of phenotypic analyses by the multinational
EPIC-PANACEA consortium (pooled N= 373,803), which
found that only calories from protein are associated with
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prospective weight gain [96]. While this finding was con-
sistent across 10 countries, we caution that EPIC-PANA-
CEA’s evidence, like ours, is limited by its reliance on self-
reported eating habits.

Overall, our results show that the relative intake of each
macronutrient has a distinct genetic architecture, and the
pattern of genetic correlations might be suggestive of health
implications beyond total calorie intake. Moreover, our
genetic correlation and bioinformatics analyses suggest a
number of novel hypotheses regarding the causes and
consequences of dietary intake that can be explored in
future work.
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