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Abstract

Programming Wireless Networks of Embedded Systems

(WNES) is notoriously difficult and tedious. To simplify

WNES programming, we propose Declarative Resource Nam-

ing (DRN) to program WNES as a whole (i.e., macropro-

gramming) instead of several networked entities. DRN al-

lows programmers to declaratively describe a set of de-

sired resources by their run-time properties and to map this

set to a variable. Using DRN, resource accesses are sim-

plified to completely network-transparent accesses of vari-

ables. DRN provides both individual and group accesses to

the desired set. Group accesses (i.e., parallel accesses) re-

duce total access time and energy consumption because of

possible in-network processing. Additionally, we can asso-

ciate each set with tuning parameters (e.g., timeout, energy

budget) to bound access time or to tune resource consump-

tion.

1 Introduction

WNES consists of a massive number of resource-

constraint wireless nodes which are likely deployed in hos-

tile dynamic environments. Unlike traditional networks,

WNES is property-centric as nodes of interest in WNES

are defined by node properties at run-time rather than by

node ids. These characteristics pose two major research

challenges to the design of WNES programming.

1. How to reprogram the network after deployment?

2. How to efficiently and easily describe the WNES ap-

plications?

It is possible that we may need to reprogram the WNES

after deployment because we may find a better algorithm to

perform the task or simply because we want to assign other

tasks to the network. Given that WNES may be deployed

in hostile dynamic environments, we may not be able to

physically reach the nodes. Therefore, it is necessary that

we can remotely program these unattended nodes. In ad-

dition, given the massive number of the unattended nodes,

it is practically impossible to manually configure or repro-

gram each node individually for every application. Systems

based on code migration are preferable because programs

can be propagated to target nodes without human interven-

tion. Examples of such systems include Smart Messages

[3], SensorWare [4], and Mate [15]. However, reprogram-

ming the netwok is not our focus in this paper.

This paper focuses on how to efficiently and easily

describe the WNES applications. To simplify WNES

programming, we propose Declarative Resource Naming

(DRN) to program WNES as a whole (i.e., macroprogram-

ming) instead of several networked entities. DRN allows

programmers to declaratively describe a set of desired re-

sources by their run-time properties and to map this set to

a variable. Using DRN, resource accesses are simplified to

completely network-transparent accesses of variables. DRN

provides both individual and group accesses to the desired

set. Group accesses (i.e., parallel accesses) reduce total ac-

cess time and energy consumption because of possible in-

network processing. Additionally, we can associate each

set with tuning parameters (e.g., timeout, energy budget) to

bound access time or to tune resource consumption.

2 What is the right abstraction?

Traditionally, there are two programming styles in com-

puter literature: declarative and imperative. Declarative

programming fully abstracts out all algorithmic details.

Programmers only specify what they want rather than how

to algorithmically obtain the results. The translator and op-

timizer will somehow fill in the algorithms for program-

mers. Automatic generation of algorithmic details can be

efficient for simple and specific tasks (e.g., database) but

questionable for others. Examples of such an approach in-

clude TAG [16] and COUGAR [1] Despite its simplicity,
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declarative programming is not a panacea for every WNES

application. Imperative programming is more appropriate

for complex tasks whereby efficient algorithmic details are

not obvious (or not simple to automatically generate).

Declarative and imperative programming work well in

their domain and complement one another. Integration of

declarative constraints and imperative constructs can form a

powerful programming paradigm suitable for both domains.

In this paper, we propose that such integration is possible if

the declarative abstraction is applied only to some parts of

the program.

In general, potential targets for abstraction are parts

which are unrelated to the core algorithms, common to ap-

plications, and tedious for programmers. To identify the ab-

stractable parts, basic understandings of WNES programs

are required. Typically, programs are collections of opera-

tions on variables and resources. Given that variables are

more frequently accessed, programming languages provide

much more simple way to access variables than that to ac-

cess resources.

Unsurprisingly, traditional resource accesses are more

tedious, especially in networked systems whereby there ex-

ists a distinction between local and remote resources. Re-

sources are normally bound to nodes which are known pri-

ori. Therefore, node ids are traditionally required parts for

specifying the remote resources of interest. If the node ids

are not known, resource discovery is needed. As a result,

programmers are required to work on several programming

details (e.g., networking, resource discovering, resource ac-

cessing)

WNES programming is even more tedious because the

resources of interest are specified by their property at run-

time rather than node ids. For example, we may want to ac-

cess sensors at the hill where temperature is more than 30.

Resource discovery in WNES becomes necessary and com-

mon rather than optional. The resource property is highly

dynamic because the environment is hostile and volatile.

Temperature can drop below 30 at any moment. Some re-

source bindings (i.e., mappings) may have to be invalidated

because the bound resources may not match the desired

property any more. Even if the resource property may not

change, bound resources may not be accessible because of

network dynamics (e.g., node mobility). WNES programs

are required to detect changes, to invalidate bindings, to

discover equivalent resources, and to bind the new discov-

ered resources. Given that the above events are frequent

in WNES,these resource handlings (e.g., discovering, ac-

cessing, rebinding, and networking) are tedious to program-

mers. Therefore, the resource-related parts of the WNES

program are reasonable choices for our declarative abstrac-

tion.

3 Declarative Resource Naming

To simplify the programming tasks for WNES, we pro-

pose a scheme to program the WNES as a unit. Particularly,

we consider WNES a single abstract machine. All resources

are on the same machine in our model, even though they

are physically scattered around. Given this single machine

model, there is no notion of networking, being remote, or

being local.

3.1 Resource Variable

WNES programming can be simplified by making a re-

source access appear as simple as a variable access. We pro-

pose resource variables (i.e., variables which are mapped

and referred to actual resources). For example, one can

write a program to read a light sensor and to control a cam-

era as follows.

Resource R, X;

printf("light intensity=%f", R->light);

X->camera=off;

In the above example, The resource variableR contains a

light sensor and the resource variable X contains a camera.

To read the light intensity, we can simply refer to R� >

light. Similarly, the programmers can turn the camera off

by assigning off to X� > amera. Programmers do not

have to provide any algorithmic detail of resource controls

and operations.

3.2 Declarative Constraint

However, one may wonder to which exactly physical

nodes (or resources) these variables (R and X) are bound.

Rather than specify the node ids for binding, the program-

mers can declaratively specify the desired property of the

target resources using a boolean expression. For example,

we can specify that R will be bound to nodes within the

forest with temperature greater than 30. We also allow user-

defined boolean functions (e.g., function a()) in our expres-

sion. Such a flexible expression is generally powerful and

sufficient for various complex conditions.

Resource R = <location == within(forest) &&

temperature > 30>

Resource X = <a(b,c)!=0>

3.3 Resource Access

Given that more than one resource can match a given

expression, a resource variable is semantically referred to a

set of matched resources rather than a single one. Therefore,
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mechanisms for accessing each element (resource) in the

set are required. We propose two approaches for accessing

multiple matched resources: individual and group.

� Individual Access. Each element in a set can be re-

ferred using an iterator (similar to an iterator in C++

standard template library). The iterator enables se-

quential and selective accesses of resources. For ex-

ample, one can sequentially read the light intensity of

each resource in the set R as follows.

Resource R;

Iterator i;

foreach i in R {

printf("light intensity = %f\n", i->light);

}

However, the sequential readings cannot represent a

snapshot of the desired target because the delay in

accessing the whole set sequentially can be signifi-

cant. In particular, the total delay is essentially the

summation of all individual access time. Nevertheless,

this individual approach is still useful, especially when

only some elements in the set are accessed.

� Group Access. Conversely, in approach, all resources

in the set are simultaneously accessed. This parallel

access can be specified using a direct reference to the

resource variable as follows.

Resource R;

printf("light intensity=%f", R->light);

Therefore, the total delay using this parallel approach

is reduced to the longest delay of an access. The

parallel approach does not only reduce the total ac-

cess time but also provide a much better snapshot of

the desired target. Additionally, unlike the sequential

approach, this parallel approach exposes an opportu-

nity for the underlying system to perform in-network

processing (e.g., data aggregation) which can signif-

icantly reduce the overall energy consumption of the

system [12, 8, 9, 14, 11, 16]. An example of data ag-

gregation functions is max(A) whereby the maximum

element in A is returned.

Resource R;

printf("max light intensity = %f",

max(R->light));

Ideally, the system spends energy only on delivering

that max element, not on the others. This ideal de-

livery can be practically approximated by in-network

suppressing the elements whose value are less than that

of the previously seen elements of the same access.

The mentioned suppression will be ineffective or even

impossible if the resources are accessed in sequence

rather than in parallel.

3.4 Resource Binding

Our model supports two binding types: dynamic and

static.

� Dynamic Binding. In our paradigm, programmers do

not have to write the code for maintaining the binding

between the physical resources and the resource vari-

ables. Given that the resource property is constantly

changing, the rebinding of the set of matched resources

are frequent and tedious. For example, the set of re-

sources R at time t
1

can be completely different from

the set of resources R at time t
2

.

Resource R = <expression1>

Time t1 = get_time();

x=Count(R);

...

Time t2 = get_time();

y=Count(R);

/* Normally, x != y */

Programmers simply provide the declarative expres-

sion which are associated with the resource variable to

describe the resources of interest. In general, a refer-

ence to a resource variable implies a resource access.

Our strong semantic of a resource access strictly en-

forces that the access is always performed only on the

resource which matches the declarative expression at

the time of access. Changes in the set of matched

resources do not need attentions from programmers.

However, this strict semantic could incur significant

overhead and excessive energy consumption for en-

suring that this reactive binding is up to date. There-

fore, we propose options or tuning knobs for trading

off strong semantics for energy savings. For example,

programmers can slightly relax the semantic by allow-

ing the access if the resource was bound in the last t

seconds.

Resource R = <expression,

last_bound_time > now-t>

Furthermore, programmers can even specify an energy

budget to bound the energy consumption of a resource

access.

Resource R = <expression,

energy_budget = 100>

Other tuning knobs are currently under investigation.
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� Static Binding. Although the above dynamic binding

of resources seems reasonable, one can notice that

there are situations in which dynamic bindings may

not be appropriate. Specifically, we may want to

access the previously matched resources which are no

longer matched. For example, we may have turned on

cameras in the area A. However, after a period of time,

we may want to turn them off but some cameras have

been moved out of the area. If the area A is included

in our declarative expression, those moved cameras

will no longer match the expression. As a result, we

may not be able to turn off the moved cameras directly

using the resource variable.

A naive solution to the above problem is to rely on the

underlying system. For example, we could declare a

new resource variable using a usual expression with an

additional timing condition.

Resource R = <expression1>;

Time t1 = get_time();

....

Resource X = <expression1 && time == t1>;

As long as we know the time of the matching, we

can always describe the desired set of resource. Simi-

larly, the underlying system could provide the function

last() which returns the previous set of the matched

resources.

Resource R = <expression1>;

Resource X = last(R);

However, both solutions incur excessive overhead as

they require the system to maintain all changes of a

set at all time.

An alternative solution is to provide explicit instruc-

tions for memorizing the matched resources. We

propose two explicit mechanisms: the static resource

and the iterator.

Using the static resource, we can specify which re-

sources are statically bound. The static resource will

not be rebound in any circumstances. Therefore, we

can maintain any set of resources even though they are

no longer match the expression.

Resource R1;

Static Resource R2=R1;

/* R1 changes over time but R2 does not*/

However, the static resource is intended for memoriz-

ing the entire set of matched resources. To memorize

only one resource, an iterator is more appropriate. The

value of an iterator does not automatically changed

without an explicit assignment.

Iterator i1 = R1->first_element;

3.5 Access Timeout

Regardless of the binding type, there is no guarantee

that every resource access in WNES will succeed. Unfortu-

nately, resource access time in WNES is unbound and fail-

ures are common mainly because of network dynamics. In

general, unbound access time and failures cannot be eas-

ily differentiated from one another, given that there is no

response in both cases 1 Timeout is usually a common tech-

nique for handling such problems. Therefore, we propose

associating a resource variable with an access timeout. On

every access, the access time is monitored. Once the time

is out, an exception is raised (similar to Java exceptions).

It is necessary that programmers explicitly specify how to

handle the timeout expression.

Resource R = <expression1, timeout = 10>

Iterator i = R->first_element;

try {

printf("light intensity = %f", i->light);

} catch(TimeoutException) {

printf("can’t access the light sensor");

}

4 Related Work

WNES programming has begun to receive attention dur-

ing the last few years. However, our work has been in-

formed and influenced by a variety of other research efforts,

which we now describe.

Our work is mostly influenced by Spatial Programming

(SP) [10, 2] and Spatial View [13]. DRN, Spatial View, and

SP share a vision of programming WNES as a unit, simpli-

fying resource accesses as variable accesses, exposing the

space property to the programmers, hiding network details,

and supporting imperative programming. However, SP sup-

ports only sequential resource accesses whereas DRN sup-

ports both sequential and parallel accesses. Accessing re-

sources in parallel can significantly reduce the total access

time and the overall energy consumption (by enabling in-

network processing). Additionally, SP is purely imperative

programming but DRN is a hybrid between declarative pro-

gramming and imperative programming. Unlike the DRN

binding, the SP binding is, by default, static. Even though

dynamic binding in SP is provided as an option, rebinding

1This problem is similar to that of TCP. Packet loss and unbound acknowledge-

ment delay are handled using timeout.
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has to be explicitly instructed by programmers. As opposed

to SP, the DRN binding is, by default, dynamic whereas the

static binding is an option. The emphasis on dynamic bind-

ings of DRN is also similar to that of Spatial View. Like SP,

Spatial View does not provide parallel accesses and declar-

ative abstraction.

Given that variables can be considered memory re-

sources, mapping other resources into variables of DRN is

similar to memory-mapped files. However, DRN does have

to handle dynamic mappings and frequent access failures

whereas the memory-mapped file does not.

The abstract region [17, 18] work focuses on a wider def-

inition of space. Specifically, space in the abstract regions

can be physical or logical. For example, the logical space

can be defined by the number of hops in communication.

This example indicates that, unlike our work, the abstract

region does not intend to hide the networking details from

programmers. In addition, the space is simply an applicable

attribute (albeit a very useful one) for our declarative de-

scription of resources. Therefore, the space is hardly con-

sidered the focus of our work.

Nevertheless, our work has been influenced by directed

diffusion [12, 8] and LEACH [9], especially the energy sav-

ings gained by processing data in the network. Despite this

influence on our parallel access, DRN is also similar to dif-

fusion in several ways. Specifically, DRN and diffusion are

hybrid programming, given that diffusion APIs [5] require

declarative data description for publication and subscrip-

tion. Furthermore, this data-centric paradigm of diffusion

effectively hides significant networking details (from pro-

grammers) which is one of several DRN features. However,

unlike diffusion, DRN focuses on resource naming rather

than data naming.

Programming WNES as a unit has also been explored

earlier by several research efforts including TAG [16] and

COUGAR [1]. While the above efforts propose pro-

gramming WNES as a database, we propose programming

WNES as a single abstract machine.

There exist several research efforts on a hybrid of declar-

ative programming and imperative programming. Exam-

ples of such efforts include embedded SQL [6] and con-

straint imperative programming [7]. In embedded SQL,

SQL is mainly used for database accessing whereas imper-

ative programming is used for data processing. In a sense,

resources in DRN is analogous to the database in embedded

SQL whereby declarative accesses are appropriate. In con-

straint imperative programming, variables are constrained

with conditions about their eligible value. Given that con-

ditions are declaratively described, our resource variables

are similar to their constrained variables. Despite the men-

tioned similarity, DRN, embedded SQL, and constraint im-

perative programming target different problems, platforms,

and environments. Specifically, embedded SQL is designed

for data processing on conventional databases whereas con-

straint imperative programming is designed for solution

searching on traditional systems. In contrast, DRN targets

resource naming on highly dynamic WNES.

5 Conclusions and Future Work

We believe that, to efficiently develop WNES applica-

tions, appropriate programming abstractions are neccessary.

DRN is such an abstraction which integrates declarative

constraints with imperative constructs to form a power-

ful programming paradigm suitable for macroprogramming

WNES. In the future, we intend to further explore the de-

sign space of DRN as well as to complete our implemen-

tation of a DRN run-time library. Our target platform is

Smart Messages (SM) which runs on IPAQs communicat-

ing with 802.11 radios. SM is appropriate in a sense that

SM supports program migration which is necessary for re-

programming the network. Undoubtedly, there are other

reprogrammable platforms such as SensorWare and Mate.

However, we select SM mainly because the library can be

implemented in a well known language (i.e., Java). Never-

theless, given network transparency, our abstraction is in-

dependent of the underlying platforms. As a result, it is

possible to macroprogram other wired or wireless networks

using our approach.

References

[1] Philippe Bonnet, Johannes Gehrke, Tobias Mayr, and

Praveen Seshadri. Query processing in a device

database system. Technical Report TR99-1775, Cor-

nell University, October 1999.

[2] Cristian Borcea, Chalermek Intanagonwiwat, Porlin

Kang, Ulrich Kremer, and Liviu Iftode. Spatial pro-

gramming using smart messages: Design and im-

plementation. In Proceedings of the 24th Interna-

tional Conference on Distributed Computing Systems

(ICDCS 2004), Tokyo, Japan, March 2004.

[3] Cristian Borcea, Deepa Iyer, Porlin Kang, Akhilesh

Saxena, and Liviu Iftode. Cooperative Computing for

Distributed Embedded Systems. In Proceedings of the

22nd International Conference on Distributed Com-

puting Systems (ICDCS), pages 227–236, July 2002.

[4] A. Boulis, C.Han, and M. Srivastava. Design and

implementation of a framework for efficient and pro-

grammable sensor networks. In Proceedings of the

First International Conference on Mobile Systems,

Applications, and Services (Mobisys 2003), pages

187–200, San Francisco, CA, May 2003.

[5] Dan Coffin, Dan Van Hook, Ramesh Govindan, John

Heidemann, and Fabio Silva. Network routing appli-

5



cation programmer’s interface (api) and walk through

8.0. Technical Report 01-741, USC/ISI, March 2001.

[6] Oracle Corporation. Pro*c/c++ precompiler program-

mer’s guide release 9.2, 2002.

[7] Martin Grabmuller. Constraint Imperative Program-

ming. Diploma Thesis, Technische Universitat Berlin,

2003.

[8] John Heidemann, Fabio Silva, Chalermek In-

tanagonwiwat, Ramesh Govindan, Deborah Estrin,

and Deepak Ganesan. Building efficient wireless sen-

sor networks with low-level naming. In Proceedings

of the ACM Symposium on Operating Systems Princi-

ples, Banff, Canada, October 2001.

[9] Wendi Rabiner Heinzelman, Anantha Chandrakasan,

and Hari Balakrishnan. Energy-efficient communica-

tion protocol for wireless microsensor networks. In

Proceedings of the Hawaii International Conference

on System Sciences, Maui, Hawaii, January 2000.

[10] Liviu Iftode, Cristian Borcea, Andrzej Kochut,

Chalermek Intanagonwiwat, and Ulrich Kremer. Pro-

gramming computers embedded in the physical world.

In Proceedings of the 9th IEEE International Work-

shop on Future Trends of Distributed Computing Sys-

tems (FTDCS), San Juan, Puerto Rico, May 2003.

[11] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh

Govindan, and John Heidemann. Impact of network

density on data aggregation in wireless sensor net-

works. In Proceedings of the International Conference

on Distributed Computing Systems, Vienna, Austria,

July 2002. IEEE.

[12] Chalermek Intanagonwiwat, Ramesh Govindan, and

Deborah Estrin. Directed diffusion: A scalable and ro-

bust communication paradigm for sensor networks. In

Proceedings of the Sixth Annual ACM/IEEE Interna-

tional Conference on Mobile Computing and Network-

ing (Mobicom’2000), Boston, Massachusetts, August

2000.

[13] Ulrich Kremer, Liviu Iftode, Jerry Hom, and Yang Ni.

Spatial Views: Iterative Spatial Programming for Net-

works of Embedded Systems. Technical Report DCS-

TR-493, Rutgers University, June 2002.

[14] Bhaskar Krishnamachari, Deborah Estrin, and

Stephen B. Wicker. The impact of data aggregation

in wireless sensor networks. In DEBS’02, pages

575–578, Vienna, Austria, July 2002.

[15] P. Levis and D. Culler. A tiny virtual machine for sen-

sor networks. In Proceedings of the ACM Conference

on Architectural Support for Programming Languages

and Operating Systems (APLOS), October 2002.

[16] Samuel Madden, Michael Franklin, Joseph Heller-

stein, and Wei Hong. TAG: a Tiny AGgregation Ser-

vice for Ad-Hoc Sensor Networks. In Proceedings of

the 5th Symposium on Operating Systems Design and

Implementation (OSDI). To Appear., December 2002.

[17] Matt Welsh. Exposing resource tradeoffs in region-

based communication abstractions for sensor net-

works. In Proceedings of the 2nd ACM Workshop on

Hot Topics in Networks (HotNets-II), November 2003.

[18] Matt Welsh and Geoff Mainland. Programming sensor

networks using abstract regions. In Proceedings of the

First USENIX/ACM Symposium on Networked Sys-

tems Design and Implementation (NSDI 2004), March

2004.

6




