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1. Introduction 

1.1 Geochemistry of Arsenic Groundwater Contamination 

Arsenic is a naturally occurring metal contaminant that is pervasive in global 

groundwater sources (Fendorf et al., 2010) and commonly found in drinking water supply 

wells (Lombard et al., 2021). Groundwater is a critical source of drinking water for more 

than 2 billion people worldwide (Thomas & Famiglietti, 2015) and the World Health 

Organization (WHO) estimates that more than 200 million people worldwide may have 

chronic arsenic exposure through drinking water at concentrations above the WHO safety 

standard of 10 µg L-1 (Naujokas et al., 2013). Chronic exposure to arsenic can lead to skin 

lesions, cardiovascular diseases, diabetes, and the development of various cancers 

including skin and lung cancers (Magalhães, 2002). Due to its potential to contribute to 

public health hazards and its high frequency of occurrence in drinking water sources, 

arsenic is ranked number one on the Agency for Toxic Substances and Disease Registry 

(ATSDR) substance priority list (Naujokas et al., 2013).  

Arsenic contaminated groundwater generally occurs in locations that are 

characterized as inland or closed basins in arid areas or strongly reduced aquifers derived 

from alluvium (Smedley & Kinniburgh, 2001). Both types of environments have 

groundwater flow that tends to be sluggish and held within poorly flushed aquifers which 

allows arsenic released from the sediments to accumulate. In the United States, the 

southwestern states have been identified as some of the most affected by arsenic 

contamination in groundwater due the arid climate and the presence of both oxidizing and 

reducing subsurface geochemical conditions (Smedley & Kinniburgh, 2001).  
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Geogenic metals contamination of groundwater can occur via weathering of 

bedrock followed by oxidation-reduction (redox) reactions (Ritter et al., 2002). These 

metals include both primary and secondary contaminants, including manganese, that have 

been shown to lead to health effects (Kondakis et al., 1989). Oxyanions, such as uranium 

(U), chromium (Cr), and vanadium (V), are generally more mobile under arid and oxidizing 

conditions, while arsenic (As), iron (Fe), and manganese (Mn) are generally more mobile 

under reducing conditions in their reduced forms as As(III), Fe(II), and Mn(II) (when 

sulfide concentrations are relatively low). Arsenic, and other anion-forming elements can 

be released due to the development of alkaline pH (>8.5) conditions in arid (and generally 

oxidizing) environments resulting from the combined effects of mineral weathering and 

high evaporation rates. Arsenic tends to be less strongly adsorbed to clay mineral surfaces 

as solution pH increases due to being a hydrolyzing metal that forms oxyanions, where the 

deprotonation of coordinated oxygens under alkaline conditions decreases the favorability 

of forming a surface complex on negatively charged mineral binding sites. Due to similar 

geochemical characteristics, the most common trace metal contaminants in groundwaters 

that co-occur with arsenic also tend to be oxyanion forming elements (Cr, As, U, and Se).  

Arsenic occurs in the environment in several oxidation states, but in groundwater 

and most terrestrial systems As is mostly found as one of two inorganic oxyanions: trivalent 

arsenite [As(III)] under predominantly reducing conditions or pentavalent arsenate [As(V)] 

under oxidizing conditions. Arsenic is among the most problematic oxyanion-forming 

elements because of its relatively high mobility over a wide range of redox conditions. 

Under oxidizing conditions, the mono- and di-protonated forms of As(V) (HAsO4
2- and 
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H2AsO4
-) are dominant at low pH (less than about pH 6.9, below the second pKa), whereas 

at highly alkaline conditions (pH>11), AsO4
3- becomes dominant. In contrast, As(III) 

species dominate under reducing, anoxic conditions. As(III) is generally more mobile than 

As(V) due to higher selectivity in its adsorption to aluminum hydroxides and iron 

(oxyhydr)oxides (Goldberg, 1986). In reducing conditions at neutral pH, the uncharged 

As(III) species, H3AsO3
0, dominates; deprotonation of  H3AsO3

0 does not occur until pH is 

greater than 9. 

Arsenic can also be mobilized from the solid phase at large scales when strongly 

reducing conditions developed under neutral conditions. Reducing conditions, often fueled 

by the presence of ample organic carbon, can fuel microbial reductive dissolution of Fe 

(oxyhydr)oxides and Mn oxides, which can lead to the release of previously adsorbed As. 

Arsenic can also be mobilized through direct reduction of As(V) to As(III) by anaerobic 

metals-respiring bacteria (Tufano et al., 2008). Highly reducing conditions can lead to 

accumulation of bicarbonate, a by-product of microbial respiration, which can 

competitively desorb As from aquifer minerals like Fe (oxyhydr)oxides (Schaefer et al., 

2020).  

1.2 Arsenic Contamination in Coachella Valley, California 

Groundwater As contamination is also pervasive throughout California aquifers. 

Over 370 million residents in the state are estimated to be exposed to groundwater 

contaminated with As, nitrate, or hexavalent chromium [Cr(VI)] (Pace et al., 2022). 

Although a grown number of studies have focused on elucidating the mechanisms 

responsible for groundwater arsenic in the Central Valley (e.g., Smith et al., 2018; Ayotte 



4 

 

et al., 2016; Gao et al., 2004), much less is known about the spatial distribution of and 

mechanisms responsible for groundwater arsenic occurrence in the Coachella Valley 

groundwater basin. Coachella Valley is located within the Imperial Valley in southeastern 

California, which is characterized by an arid climate averaging only 6 inches of 

precipitation per year; runoff from surrounding mountains from these infrequent rain 

events serve as the primary source of recharge for the groundwater basin along with direct 

infiltration of irrigation waters. Similar to the Central Valley, agriculture is a major industry 

in the region which employs a large migrant workforce particularly within eastern 

Coachella Valley composed of mostly Mexican immigrants who reside in mobile home 

parks known as polancos which are predominantly dependent upon groundwater accessed 

through private domestic wells.   

The California State Water Resources Control Board (SWRCB) along with several 

other state and federal agencies including the U.S. Geological Survey created the 

Groundwater Ambient Monitoring and Assessment (GAMA) Program in 2020 to establish 

a platform for groundwater monitoring and data repository to inform the public of 

groundwater quality issues in California. In 2021, the SWRCB released the Aquifer Risk 

Map for Domestic and State Small Water Systems, which is an interactive web-based map 

for residents, engineers, and policy makers to identify priority areas for Safe and 

Affordable Drinking Water (SADW) funds based on Safe and Affordable Funding for 

Equity and Resilience (SAFER) program assessments. The interactive map was created to 

fulfill one of the requirements of SB-200 known as the Human Rights to Water Act. This 
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map identifies many areas in California that are at risk of arsenic contamination, including 

Coachella Valley. 

Although a paucity of geochemical research has focused on deciphering 

mechanisms responsible for As release in Coachella Valley groundwater, instances of As 

contamination in the region has been reported in several publicly available white papers 

released by Coachella Valley Water District and non-peer reviewed publications including 

in the popular press. Recently, Coachella Valley’s groundwater quality issues were brought 

to the national spotlight when the U.S. Environmental Protection Agency (USEPA) issued 

a third emergency order on drinking water safety issues to owners of Oasis Mobile Home 

Park (MHP), located on Torres Martinez Tribe's lands in Thermal, California. The 

emergency order required the Park owners, “to provide alternative drinking water, reduce 

the levels of arsenic in the system’s water and monitor the water for contamination” (EPA 

notice, 2019, 2021). Oasis MHP, which houses approximately 1,900 residents, was found 

to have concentrations of As of up to 97 parts per billion (ppb), which is nearly 10 times 

above the federally set maximum contaminant level (MCL) of 10 ppb (EPA notice, 2019). 

Oasis MHP is just one of hundreds of small informal mobile home communities in the area 

that have been located and mapped (unpublished data, Leadership Council for Justice and 

Accountability), many of which provide drinking water to residents through private wells 

that are potentially drawing from contaminated portions of the basin. Although there are 

currently monitoring wells installed in the region, their distribution is sparse and the 

chemistry of water withdrawn by these MHPs is unknown. The U.S. EPA and other 

California and federal agencies only require monitoring and regulating drinking water for 
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sources that serve 15 or more service connections or greater than 25 people (EPA SDWA) 

and recommend testing private water supplies for contamination on a periodic basis every 

1 to 3 years (Ayotte et al., 2015); these private water supplies are otherwise not monitored 

or regulated. And because the polancos generally have less than 15 service connections, 

there is no monitoring of the water quality. In fact, a major reason high drinking water 

arsenic contamination at Oasis Mobile Home Park was detected is because it is a large 

MHP located on tribal lands which therefore has federal (EPA) oversight. Given how 

pervasive small polancos are in this region, there is reason to believe that more 

communities in Eastern Coachella Valley are likely facing similar water quality issues. 

In the 1980s, the environmental justice movement brought attention to the fact that 

communities of different race, ethnic, and socioeconomic backgrounds were disparately 

impacted by environmental pollution. A study that “retooled” the California Community 

Environmental Health Screening Tool (CalEnviroScreen) created by the California Office 

of Environmental Health Hazard Assessment (OEHHA) found that the extent of Latina/o 

presence had the strongest correlation with cumulative pollution burden (Lievanos, 2018). 

Indigenous communities in the U.S. have and continue to face many environmental justice 

issues. When the west was being settled many Indigenous tribes were neglected in 

discussions of water access and design and construction of water infrastructure did not 

include their considerations. This has led to many tribes facing persistent water quality 

issues on their land. Since many migrant latina/o workers live on tribal lands in Eastern 

Coachella Valley, both communities are simultaneously adversely affected by the poor 

water quality. 
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1.3 Inverse Distance Weighting (IDW) 

Spatial distribution of groundwater contamination has been estimated through 

creating maps applying interpolation methods to existing groundwater chemical data 

(Figure S1). A number of spatial interpolation methods can be used to generate a 

continuous surface map using known data points. One of the most used deterministic 

models in spatial interpolation is inverse distance weighting (IDW) method (Lu & Wong, 

2008). It is a commonly applied local spatial interpolation method in geographic 

information science because it is relatively fast, easy to compute, and results are 

straightforward to interpret (Lu & Wong, 2008).  The IDW method is quite straightforward 

and not computationally intensive, and as succinctly stated by Lu & Wong (2008), “the 

general premise of this method is that the attribute values of any given pair of points are 

related to each other, but their similarity is inversely related to the distance between two 

locations…[the] value of an unsampled point is the weighted average of known values 

within the neighborhood, and the weights are inversely related to the distances between the 

prediction location and the sampled locations.”  

Many past studies have applied IDW to describe the spatial distribution of 

groundwater contaminants (e.g., Elumalai et al., 2017; Mirzaei et al., 2016). Nath et al. 

(2018) developed spatial distributions maps of various heavy metal contaminants, 

including arsenic, across a river valley using the IDW approach to estimate the spatial 

variability in the groundwater chemistry. Given these factors, we applied the IDW method 

to describe the magnitude and distribution of groundwater metal contamination in the 

Coachella Valley groundwater basin. 
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1.4 Random Forest Classification (RFC) Modeling 

Random forests “are an ensemble learning method for classification and regression 

that constructs a number of randomized decision trees during the training phase and 

predicts by averaging the results” (Scornet. et al., 2015). Breiman (2001) published a 

groundbreaking study that showed that random forests (RF) are an effective tool in 

prediction. Since its publication, RFs have become a significant data analysis tool that are 

successfully used to solve a variety of practical problems (Scornet et al., 2015). Breiman 

attributes their effectiveness to the fact that the Law of Large Numbers keeps RFs from 

overfitting and the injected randomness makes RFs accurate classifiers and regressors. The 

rising popularity of RF method can be attributed to the fact that it can be applied to a wide 

range of prediction problems and is generally easily parameterized. In addition, the RF 

method is recognized for its accuracy, ability to handle small sample sizes, high-

dimensional feature spaces, and complex data structures (Scornet et al., 2015). 

    Researchers have recently begun using RF methods to identify areas that are likely to 

have high arsenic concentrations in groundwater to create arsenic groundwater prediction 

maps based on publicly available geospatial and subsurface geochemical datasets 

(Podgorski & Berg, 2020; Lopez et al., 2020; Lombard et al., 2021). In these studies, RF 

is used to predict the spatial distribution of groundwater contamination because it has 

proven to have improved predictive power compared to the more commonly used logistic 

or linear regression models, while also being able to identify important explanatory 

variables (Lopez et al., 2020). Using these previous studies as an example, we used RF 

modeling to predict areas in the Coachella Valley groundwater basin that have arsenic 
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concentrations at levels relevant to human health and identify the environmental factors 

important in prediction. 

1.5 Overarching Objective 
In order to investigate the extent of As contamination, as well as Cr and Mn, we 

performed spatial analyses of contaminant data. To investigate where arsenic 

concentrations were at levels relevant to human health, we applied random forest modeling 

using existing geochemical data from the Coachella Valley groundwater basin. Spatial 

interpolation mapping and predictive modeling of As concentrations within Coachella 

Valley has not been performed using these methods. In this study, we aim to highlight areas 

in the region that are most likely impacted by groundwater arsenic contamination 

approaching the MCL. We also use spatial interpolation to map the distribution of potential 

co-contaminants to identify areas that are affected by multiple geogenic groundwater 

contaminants. We hypothesized that 1) the highest concentrations of arsenic would be 

found in the eastern portion of Coachella Valley, the region where Oasis Mobile Home 

Park and many other MHPs are located; 2) Mn contamination would coincide in locations 

with As contamination due to similar geochemical controls on their mobility; and 3) Cr 

groundwater contamination would be in more oxic areas and would not be co-located with 

As and Mn contamination.  

    In order to highlight areas that may be impacted by concentrations of As that can lead to 

chronic exposure, we performed random forest modeling on arsenic and environmental 

data within the Coachella Valley groundwater basin. We did so to have a stronger 

predictive model than that of a spatially interpolated map, and to elucidate which 

geochemical and environmental factors are best predictors of As contamination in the 
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region. We hypothesized 1) RF model results will also highlight the eastern part of the 

region as being at risk of groundwater As contamination approaching the primary MCL 

and 2) soil texture would be a strong predictor of As contamination because fine textured 

soils (i.e. high clay content) can enhance and sustain anoxic conditions that lead to As 

release through reductive dissolution (Fendorf et al., 2010).  

    We chose to create both spatially interpolated inverse distance weighting maps and 

random forest model maps because each provides different information regarding 

distribution of groundwater contamination. The spatially interpolated maps show the 

spatial distribution of metal contaminants and the predicted concentrations across a 

continuous surface. They are relatively easy to create and only require groundwater metal 

concentration data. The random forest model shows areas that are approaching the primary 

MCL of As, specifically by calculating the probability that a location will draw 

groundwater As concentrations above half the primary MCL (5 ppb). The RF map can also 

identify the explanatory environmental factors that best predict locations likely to have As 

contamination. Because of this additional information resulting from RF modeling, it is a 

more complex process that requires many additional datasets that represent potential 

predictive environmental factors.  

 

2.  Material and Methods 

 

2.1 Study Area: Coachella Valley Groundwater Basin 

The Coachella Valley groundwater basin is located in Southern California just 

northwest of the Salton Sea, between 34.1° and 33.3° north latitude and 117.0° and 115.9° 

west longitude, and has a surface area of 1,360 km2 (Figure 1). The climate in Coachella 
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Valley is typical of an arid region in the southwestern United States, with annual 

precipitation averaging about 15 centimeters yr-1 and a wide temperature range throughout 

the year. Groundwater recharge, also typical of arid regions, is primarily from the induced 

recharge of losing streams as well as valley-edge recharge (Thomas & Famiglietti, 2015). 

Between 1936 and 1967, Coachella Valley increased its groundwater withdrawals ten-fold, 

resulting in aquifer elevation declines of up to 1.5 m yr-1 and subsistence of up to 6 mm yr-

1 (Thomas & Famiglietti, 2015). In more recent years, in order to counteract the effects of 

groundwater pumping, Coachella Valley has developed methods for groundwater 

replenishment and introduced Colorado River allocations to use for irrigation (Thomas & 

Famiglietti, 2015). 

There are large socioeconomic disparities between the western and eastern portions 

of Coachella Valley. The western side is well known for its wealthy recreational resorts in 

Palm Springs, Palm Desert, and Indian Wells (Mukhija & Mason, 2014). The western 

region is urbanized and residents receive water through public municipal water systems 

which provide treated, consistent, and safe drinking water. On the other hand, Eastern 

Coachella Valley is an expansive rural and agricultural area mostly populated by low-

income immigrant families (Mukhija & Mason, 2014). Because the eastern portion of the 

valley is more rural with low-density housing, a majority of residents in the eastern region 

obtain their drinking water from private wells that are unregulated and potentially 

untreated. Many treatment options including point of use or consolidation is cost-

prohibitive for communities in Eastern Coachella Valley.  
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Figure 1. Map showing the location of Coachella Valley within the state of California as well as the 

boundaries of the Coachella Valley Groundwater Basin and major cities within the basin. 
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2.2 Inverse Distance Weighting Data Sources 

    Groundwater quality data were obtained from the California State Water Resources 

Control Board, Groundwater Ambient Monitoring and Assessment Program (GAMA) 

(Table S1 ; Figure S1). To construct this database GAMA compiled well-sample data that 

were collected and analyzed to comply with state regulations. Samples were collected from 

wells used for a variety of purposes, including as domestic use, irrigation, and monitoring. 

All water samples were collected from raw groundwater, so measurements represent water 

quality within the aquifer.  

2.3 Inverse Distance Weighting Analyses 

    Inverse distance weighting (IDW) analyses were performed using ArcGIS Pro software 

(2.7.2, ESRI). Groundwater data was drawn from the GAMA dataset and clipped to the 

Coachella Valley Aquifer Region (Figure 1). IDW’s were performed to interpolate 

concentrations of As, Mn, and Cr in the region’s groundwater with samples taken from 343 

wells for all analyses. The GIS software package ArcGIS Pro 2.7.2 was used in conjunction 

with MATLAB to map, query, and analyze the data in this study. Since choosing the 

number of nearest neighbors determines IDW precision (Yao et al., 2013), we compared 

results obtained from a range of closest neighbors (3 to 12), and then performed 5-fold 

cross validation. The number of nearest neighbors used in the IDWs that produced the least 

amount of error was then chosen as the optimal IDW parameters for interpolation; in the 

current study, the optimal number of nearest neighbors was 6.  
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2.4 Random Forest Data Sources and Preprocessing 

We compiled publicly available predictors, or explanatory variables, and 

groundwater arsenic concentrations in Coachella Valley, CA in ArcGIS Pro for RF 

modeling. (Table S1). Groundwater As concentrations were again compiled from the 

GAMA dataset and clipped to the Coachella Valley Aquifer Region as mentioned in the 

methods for IDW interpolation (Figure 1). Like IDW methods, concentrations from a total 

of 343 well locations that had groundwater metals chemistry from 1984 to 2021 were used 

(Figure S1). Groundwater chemical characteristics used included aqueous As, Cr, hardness, 

Fe, Mn, nitrate (as N), sulfate, and pH values. Since chemical concentrations were highly 

variable and contained outliers, all concentrations were log-transformed for statistical 

modeling. Samples that were below detection limit were adjusted to be a random number 

chosen from a uniform distribution between 0 and the chemical detection limit. Since 

individual wells were sampled variable number of times over the study period, the median 

of sample concentrations for each analyte from an individual well was retained. Apart from 

chemistry, other groundwater or well characteristics considered included well location 

(latitude, longitude), well depth, and data source; however, very few wells had well depth 

information (~50%) so this factor was excluded from the final model. There was a 

prevalence of wells with As concentrations reported as less than the MCL, therefore, 

threshold models were developed to estimate the probability of exceeding a concentration 

threshold instead of regression models that estimate concentration values (Lombard et al., 

2021).   
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To create the simplest model, an initial set of 76 potential relevant environmental 

predictor variables was reduced based on consideration of their relative importance and 

potential impact on the accuracy of the random forest models. The final selection of 21 

predictor variables (Table S1) includes soil geochemistry (C horizon bulk density, clay 

content, electrical conductivity, pH, sand content, and soil organic carbon content), well 

depth (both domestic and public top open well depth and bottom open well depth), 

hydrologic landscape (Percent total flat land, relief, minimum elevation, percent sand, 

slope, and aquifer permeability), climate (temperature and precipitation), groundwater 

recharge, and land use. While groundwater chemistry is likely to be an important predictor 

for groundwater As concentrations, we were unable to use the data in our RF models as 

they were only available at well locations and not mapped across the whole region.  

The final 21 predictor variables were used to predict the occurrence of threshold 

exceedances of As in groundwater with random forest classification (RFC) modeling. The 

model input predictor or explanatory variables explain soil geochemistry, well depth, 

hydrologic landscape, climate, groundwater recharge, and land use (Table S1). All 

variables were mapped across the study, compiled within 500 m radius circular buffers 

around the well locations, and either the mean value or majority value of the variable raster 

was taken, depending on if the data was continuous or categorical. GIS processing of 

explanatory variables was performed using ArcGIS Pro 2.7.2. This data was then compiled 

into a large dataframe to use for modeling. 
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2.5 Random Forest Methods 

Using the R computing environment, version 4.1.2, we developed our final RF 

models with the GAMA dataset of As concentrations in Coachella Valley along with our 

chosen 21 predictor variables. We initially set out to develop two RFC models that either 

estimated the probability of As concentrations above the MCL of 10 ppb or above half the 

MCL of 5 ppb. In the end, we were only able to develop a RFC model predicting 

occurrences of As above 5 ppb; our preliminary RFC model with a As concentration 

threshold of 10 ppb was not pursued due to poor model performance metrics likely 

resulting from limited data availability.  

The RFC model was developed using the caret, randomForest, and caTools 

packages. We started by first refining the number of predictor variables with recursive 

feature elimination (RFE) in order to improve model performance and delete uninformative 

predictors that might bias the results (Bahl et al., 2019). The model was further refined by 

tuning, which involved using a training dataset and 10-fold cross validation 10-times 

repeated to produce the most accurate model using accuracy as the metric. The tuning 

consisted of altering the number of variables randomly sampled at each decision tree split 

(mtry hyper-parameter) from 1 to 10 while the number of trees to grow (ntree) was 

maintained at 500.   

Given that the As dataset was imbalanced (less than 10% of samples were above 5 

ppb) we chose to set a new probability threshold for the model that would maintain model 

specificity and total accuracy, while also increasing model sensitivity (Erickson et al., 

2021) . The final model was used to make maps of model estimates within Coachella Valley 
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groundwater basin. A 500 m2 raster grid was created and clipped to the same extent as the 

predictor variables in ArcGIS Pro. As some predictor rasters had grid cells with missing 

data, the RFC model could not calculate estimates in those cells. A majority of missing 

grid values were around the edges of the region and were excluded from the model. The 

model estimates were calculated from the raster files in R using the stats package and 

output with latitude and longitude to be imported into ArcGIS Pro. The maps created show 

the probability of exceeding 5 ppb of As in Coachella Valley groundwater.  

 

3. Results and Discussion 

3.1 Application of Inverse Distance Weighting 

Since the distribution of groundwater contaminants is primarily controlled by 

geochemical heterogeneity, spatial interpolation such as inverse distance weighting is often 

used to estimate groundwater concentrations and provide a comprehensive representation 

of groundwater concentration distribution (Nath et al., 2018). We subjected our sample 

dataset to spatial interpolation using the IDW approach to illustrate the magnitude and 

distribution of metal contamination in the Coachella Valley Aquifer. Using the publicly 

available GAMA dataset, we utilized data from 343 wells in the region to use as 

groundwater samples. The data was spatially interpolated using IDW to generate maps that 

represent the distribution of arsenic, chromium, and manganese in the region at 500 m 

spatial resolution (Figures 2-4).  

Datasets for each chemical of interest were divided into training and testing 

samples, with 20% of data reserved for testing, and then subjected to 5-fold cross 
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validation. To evaluate the error in our interpolated maps, we calculated mean absolute 

error (MAE), root-mean-square error (RMSE), and G-value (G), which can be found in 

Table 1. There was variation in calculated MAE and G between the resulting IDW maps, 

ranging from 1.5-4.0 ppb and -0.5-0.5, respectively. The RMSE was approximately 4.0 

ppb for all interpolated maps. MAE was likely smallest for the As IDW because it is a 

measure of the difference between the predicted value and the actual value, and As 

concentrations in the region were much less variable than Cr and Mn. The G error statistic 

was also best for As, with 1 being a perfect prediction and negative values being worse 

predictions than taking the dataset average. Mn likely had a negative value because 

concentrations in the regions were highly variable and the IDW couldn’t predict well due 

to the limited data in the region. All the contaminates had RMSE around 4.0 ppb, with a 

great model having a value between 0.2 - 0.5, so the IDWs are overall not great predictors 

for contamination in the region but they do show us the general distribution trends for As, 

Cr, and Mn.  

In the raw well data, As concentrations ranged from 0 ppb to 100 ppb, with a 

majority of the samples being under the MCL for As of 10 ppb. Arsenic distribution within 

the IDW output map shows most areas predicted to have groundwater concentrations near 

or above 10 ppb are located within the eastern portion of Coachella Valley (Figure 2). 

There are also hotspots of higher As concentrations predicted along the northern portion of 

the aquifer boundary as seen in the IDW.  

IDW maps show that Cr groundwater distribution generally follows an inverse 

relationship to As concentrations, where areas of high arsenic concentrations have low Cr 
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concentrations and vice versa (Figure 3). This result is consistent with our hypothesis that 

opposing redox conditions favor As versus Cr mobilization within soils and sediments, 

with As predominantly being mobilized in suboxic to mixed redox conditions and Cr 

release being promoted under oxic conditions (Coyte & Vengosh, 2020). Manganese 

groundwater distribution in Coachella Valley also appears to also have an inverse 

relationship with As distribution, in contrast to our hypothesis (Figure 4). Although Mn 

and As are both mobilized under suboxic to anoxic conditions, they may be occurring in 

contrasting areas in our interpolated map because well-depth has been shown to separate 

As versus Mn contamination in wells, with Mn contamination occurring at significantly 

shallower depths than As contamination (Ying et al., 2017).  

 
Table 1. Error statistics for 5-fold cross-validated spatially interpolated IDW maps. Equations for error 

statistics found in supplementary information. 

 

Chemical Mapped MAE RSME G 

Arsenic  1.55 4.05 0.49 

Chromium 3.24 4.45 0.20 

Manganese 4.16 4.58 -0.51 
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Figure 2. Spatially interpolated map using IDW showing groundwater arsenic distribution in Coachella 

Valley, concentrations of arsenic. 

 

 

Figure 3. Spatially interpolated map using IDW showing groundwater chromium distribution in Coachella 

Valley, concentrations of chromium. 
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Figure 4. Spatially interpolated map using IDW showing groundwater manganese distribution in Coachella 

Valley, concentrations of manganese. 
 

 

3.2 Predicting Groundwater Arsenic through Random Forest Modeling 

Although IDW interpolation provides an easily applied method to assess the 

potential distribution of groundwater chemistry, it does not provide information on the 

factors likely controlling arsenic distribution contamination in Coachella Valley. The 

development of a random forest model can both predict high arsenic concentrations in the 

region along with identifying and ranking predictor variables. Here, we explored the 

relationship between groundwater arsenic concentration across Coachella Valley, CA 

using 21 environmental parameters in a RFC modeling approach that has proven high 

accuracy and superiority with imbalance datasets (More & Rana, 2017).  
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We utilized recursive feature elimination (RFE) to reduce the number of predictor 

variables and simplify the model. RFE selected the variables that were most important in 

predicting arsenic above 5 ppb and selected the number of variables that had the best 

accuracy. Using RFE on our model resulted in only selecting 2 variables for our model, 

resulting in an accuracy of 0.9334. Reducing the number of variables in the RFC model 

from 21 to 2 increased total model accuracy from 0.9296 to 0.9346 and increased kappa 

from 0.4618 to 0.4992. 

We continued tuning the model with cross-validation after reducing the number of 

predictor variables. The main tuning parameter for RF models is mtry, or the number of 

explanatory variables evaluated at each decision tree split. After ten-times repeated, 10-

fold cross validation, the optimal mtry value was 1, with an accuracy of 0.9346 and an error 

rate of 7.08% which are great for a RF model of groundwater contamination. After 

optimization, a map was generated which is displayed in Figure 5. The performance of the 

RF model on the test dataset (30% of the data, which was randomly selected while 

maintaining the relative distribution of high and low values) is summarized in the confusion 

matrix in Table 2. The probability threshold cutoff was set at 0.50 when applying the 

randomForest package in R, which may not be suitable for our imbalanced dataset (Luo et 

al., 2019). Not surprisingly, the low prevalence of high values (defined as As 

concentrations greater than 5 ppb) in the dataset caused the model to perform well in areas 

with low values with a specificity of 0.97, but poorly in areas with high values with a 

sensitivity of 0.5.  
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Figure 5. Map of probability of groundwater arsenic concentrations exceeding 5 ppb in Coachella Valley 

groundwater basin, CA, created with RFC modeling.  
 
Table 2. Confusion matrix for RFC model of As arsenic concentrations above 5 ppb in Coachella Valley. 
 

Model Output Value before Thresholding Value after Thresholding 

Measured Arsenic > 5ppb 

Predicted Arsenic > 5ppb 10 20 

Predicted Arsenic < 5ppb 10 0 

Measured Arsenic < 5ppb 

Predicted Arsenic < 5ppb 213 209 

Predicted Arsenic > 5ppb 7 11 

Sensitivity  0.500 1.000 

Specificity  0.968 0.949 
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The imbalanced data included relatively few values above 5 ppb which lead to the 

model making a large number of <5 ppb predictions in its classification predictions since 

there are very few >5 ppb events within the dataset (Yao et al., 2020). To account for the 

influence of our imbalanced data on classification predictions, a new probability threshold 

cutoff was selected to improve our model predictions (Yao et al, 2020). We used receiver 

operating characteristic (ROC) curves to select the best threshold value for our model; a 

threshold value of 0.179 was selected with a specificity of 0.949 and a sensitivity of 1.000. 

Application of this revised threshold value greatly improved the model’s prediction of As 

>5 ppb, as shown in the confusion matrix calculated from the revised model output (Table 

2). The confusion matrix also revealed that there was a decrease in the model’s ability to 

predict As <5 ppb after the threshold adjustment; however, we focused on optimizing 

model predictions of areas with As >5 ppb given the main objective is to identify areas of 

public health concern. To highlight areas where communities may be at risk of arsenic 

exposure from groundwater contamination, it is more important to optimize for true 

positives than false negatives, making the current thresholding appropriate. The new map 

created with the revised ROC determined threshold is provided in Figure 6.  
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Figure 6. Map of RF classification showing locations where groundwater arsenic concentrations are expected 

to exceed 5 ppb in Coachella Valley groundwater basin, CA. Receiver operating characteristic (ROC) curves 

were used to select a model threshold value of 0.179, with a specificity of 0.949 and a sensitivity of 1.000. 
 

 The final 2 predictors selected after applying RFE included land use and soil c-

horizon bulk density (Figure 7). Groundwater arsenic concentrations above 5 ppb were 

negatively correlated with c-horizon bulk density, or where bulk density was low, arsenic 

was high. Bulk density of soils is dependent on factors such as mineral composition, 

organic matter content, and the size of soil grains (Brogowski et al., 2014). It could be that 

the soils with low bulk density have mineral compositions relevant to arsenic mobilization 

and explain this relationship. 
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Land use, particularly whether or not the land was agricultural use, was also an 

influential factor for predicting As contamination above 5 ppb in the model. Historically, 

Coachella Valley was an expansive agricultural area for the state of California, and 

between the years of 1936 and 1967 the aquifer elevation declined with subsidence up to 6 

mm yr-1 (Thomas & Famiglietti, 2015). Smith et al. (2018) reported that overpumping of 

groundwater in the Central Valley led to substantial land subsidence that resulted in the 

increased As mobilization from subsurface sediments within the aquifer. Although 

subsidence in Coachella Valley has been halted because of recent managed aquifer 

recharge efforts, historic overpumping for agricultural use may explain the reason the 

agricultural land use is a strong predictor of arsenic contaminations above 5 ppb in this 

region.  

It was unexpected that no hydrologic landscape predictors were retained in the final 

model after RFE. This is likely due to the low spatial resolution of data available for those 

predictors. Similarly, groundwater chemical composition (e.g., groundwater nitrate, 

sulfate, Mn, and Fe concentrations) is an important predictor of As contamination, 

however, groundwater monitoring both spatially and temporally in the Coachella Valley is 

sparse and data was inconsistently collected for various chemicals. The high level of data 

missingness required us to remove them from the model as predictors. In general, there are 

large gaps in the publicly available hydrologic and geochemical datasets for Coachella 

Valley which greatly constrained the number and type of predictor variables that could be 

included in the RFC model. Nevertheless, this study demonstrates the results of creating a 

RFC model using available data to predict As concentrations above 5 ppb in Coachella 
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Valley, the results of which highlight not only areas that have groundwater approaching 

the As MCL, but also where additional hydrological and geochemical data collection 

efforts should be focused.  

 

 

 
Figure 7. Variable importance plots for RFC of Coachella Valley, CA arsenic concentrations above 5 ppb. 

LANDUSE is land use of natural, urban, or agricultural, and C_BD is the soil C-horizon bulk density. 
 

 

4. Summary and Conclusions 

    Our study utilized random forest classification modeling, a powerful machine learning 

tool, to model available environmental data and visualize the spatial distribution of 

potential As groundwater quality hazard on a regional scale. Our study also applied spatial 

interpolation methods to supplement RFCs which displayed the magnitude and distribution 

of metals contamination in Coachella Valley by creating maps of the spatial distribution of 

other groundwater contaminants in the region. Three IDW maps were created that 

individually show As, Cr, and Mn concentration distributions in the region (Figures 2-4); 

subsequently, a random forest classification model was created to predict spatial 



28 

 

distribution of arsenic concentrations in the region greater than half the As MCL (5 ppb) 

as a potential proxy for regions that have arsenic approaching the primary MCL (Figures 

5-6). Additionally, RF modeling provided a ranking of predictor variables that are best able 

to explain predicted groundwater distribution (Figure 7) which cannot be achieved with 

interpolation methods. 

    The IDW maps supported our hypothesis that groundwater As concentrations would be 

higher in Eastern Coachella Valley, where the Oasis Mobile Home Park and many others 

are located. IDW maps also showed that concentrations of Mn and Cr, two other common 

geogenic groundwater metal contaminants harmful to human health, were inversely related 

to groundwater As concentrations. This result implies that residents confronted with 

groundwater As contamination may be relieved from having to also monitor and treat other 

geogenic metals including Cr and Mn.  

    The RFC model confirmed that groundwater As contamination is found in 

concentrations relevant to human health primarily in eastern Coachella Valley. The best 

predictors for high arsenic concentrations were land use and soil C-horizon bulk density. 

As with any model, a primary limitation of our study was data availability and quality 

(Erickson et al., 2021). Furthermore, the factors and conditions that control arsenic 

mobility can differ significantly between aquifer systems, which prevents the direct 

application of RFC models developed in one region to be applied to another. The RFC 

modeling method, however, can be applied to other aquifers by using publicly available 

predictor variables and groundwater chemical (response variable) data. Nevertheless, the 

RFC model presented in the current study was reasonably accurate at predicting arsenic 
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concentrations above 5 ppb in Coachella Valley and can be used to identify and prioritize 

communities that would benefit from routine water quality monitoring.  

 

5. Future Directions 

There is evidence that the aquifer conditions within the Coachella Valley 

groundwater basin are conducive to arsenic mobilization leading to groundwater 

contamination, yet there is limited spatial and temporal data available on the extent of 

groundwater arsenic contamination in the region. We recommend that extensive 

groundwater quality monitoring should be performed in the region to assess potential 

exposure of residents to groundwater arsenic poisoning, particularly for residents within 

Eastern Coachella Valley, where there is predicted high arsenic concentrations correlated 

with larger percentage of low-income families composed of people of color. The eastern 

portion of the region is also more rural, and there are more residents dependent upon 

unmonitored, potentially untreated, private groundwater wells to supply drinking water. 

Due to the sparse spatial distribution of groundwater monitoring wells, there are likely high 

As concentration hotspots that cannot be identified with the current well network. Instead, 

efforts and funds should be placed into collecting private well chemistry data, particularly 

from wells serving polancos and similarly vulnerable communities. In parallel to 

geochemical assessment of the pervasiveness of As contamination in the region, the public 

health impact of chronic arsenic consumption should be assessed simultaneously, with a 

particular focus on adverse health effects in children.   
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To this end, the RFC model produced in this study highlighting regions with higher 

probability of having arsenic above 5 ppb may be referenced by policy makers and 

researchers to identify where further studies and funding should be dedicated.  
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Supplemental Information  

 

 
 
Figure S1. Map of Coachella Valley showing where our 343 wells were located that were used for random forest modeling and inverse distance 

weighting taken from the California State Water Boards GAMA program. 
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Table S1. Data Sources for IDWs and RFC model. 

 
Variable Description Source 

ARSENIC Groundwater arsenic 

concentration, ug/L 

HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC/  

CHROMIUM Groundwater chromium 

concentration, ug/L 

HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC/  

HARDNESS Groundwater hardness, 

mg/L 

HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC/  

IRON Groundwater iron 

concentration, ug/L 

HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC/  

MANGANESE Groundwater manganese 

concentration, ug/L 

HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC/  

NITRATE Groundwater nitrate (as N) 

concentration, mg/L 

HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC 

/ 

PH Groundwater pH, pH units HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC/  

https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC/
https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC/
https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC/
https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC/
https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC/
https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC
https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC/


 

3
7

  

SULFATE Groundwater sulfate 

concentration, mg/L 

HTTPS://GAMAGROUNDWATER.WATERBOARDS.CA.GOV/GAMA/GAMAMAP/PUBLIC/  

C_BD Soil bulk density, C-

horizon, g/cm3 

https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122  

 

C_CLAY Soil clay content, C-

horizon, weight percent 

https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122  

 

C_EC Soil electrical 

conductivity, C-horizon, σ 

https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122  

 

C_PH Soil pH, C-horizon, pH 

units 

https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122  

 

C_SAND Soil sand content, C-

horizon, weight percent 

https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122  

 

C_SOC Soil organic carbon 

concentration, C-horizon, 

weight percent 

https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122  

 

WellDepth_Dom_ 

TopOpen 

Domestic-supply well 

depth to the top of the 

open interval 

https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d  

WelDepth_Dom_ 

BottomOpen 

 

Domestic-supply well 

depth to the bottom of the 

open interval 

https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d  

https://gamagroundwater.waterboards.ca.gov/GAMA/GAMAMAP/PUBLIC/
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2017.04.0122
https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d
https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d
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WellDepth_Pub_ 

TopOpen 

Public-supply well depth 

to the top of the open 

interval 

https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d  

WellDepth_Pub_ 

BottomOpen 

 

Public-supply well depth 

to the bottom of the open 

interval 

https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d  

 

PFLATTOT Total percent flat land 

(slope less than 1 percent) 

in watershed 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder 

 

RELIEF Maximum elevation in 

watershed minus 

minimum elevation in 

watershed in meters 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder 

 

MINELE Minimum elevation in 

watershed in meters 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder 

 

PSAND Percent sand in soil in 

watershed 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder 

 

SLOPE Slope in percent rise in 

watershed 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder 

 

AQPERM Aquifer permeability class, 

1-7 low to high in 

watershed 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder 

 

HLR Hydrologic landscape 

region identification 

number in watershed 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder 

 

https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d
https://www.sciencebase.gov/catalog/item/5e43efc3e4b0edb47be84c3d
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hlrus.xml#stdorder
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TMEAN Mean temperature, °F https://prism.oregonstate.edu/normals/  

 

PPT Precipitation, in. https://prism.oregonstate.edu/normals/  

 

GW_R Mean annual groundwater 

recharge, BFI 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/rech48grd.xml  

LANDUSE Landuse, numerical 1-3 

for natural, urban, and 

agricultural 

https://databasin.org/datasets/f12a901528c0498ba63ca291b8e6627b/ 

 

 

 

Equations of Error Statistics for IDWs 

 

 
Where yi is the predicted value, xi is the true value, and n is the number of data points. 

 

 
Where n is the number of validation points, pi is the predicted value at point 1, oi is the overserved value at point i. 

 

 
Where n is the number of validation points, pi is the predicted value at point 1, oi is the overserved value at point i, and ō is the sample arithmetic mean. 

https://prism.oregonstate.edu/normals/
https://prism.oregonstate.edu/normals/
https://water.usgs.gov/GIS/metadata/usgswrd/XML/rech48grd.xml
https://databasin.org/datasets/f12a901528c0498ba63ca291b8e6627b/



