
UC San Diego
UC San Diego Previously Published Works

Title

Deriving psychiatric symptom-based biomarkers from multivariate relationships between 
psychophysiological and biochemical measures

Permalink

https://escholarship.org/uc/item/63t3v1h3

Journal

Neuropsychopharmacology, 47(13)

ISSN

0893-133X

Authors

Stout, Daniel M
Simmons, Alan N
Nievergelt, Caroline M
et al.

Publication Date

2022-12-01

DOI

10.1038/s41386-022-01303-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63t3v1h3
https://escholarship.org/uc/item/63t3v1h3#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Deriving psychiatric symptom-based biomarkers from
multivariate relationships between psychophysiological
and biochemical measures
Daniel M. Stout1,2✉, Alan. N. Simmons1,2, Caroline M. Nievergelt1,2, Arpi Minassian1,2, Nilima Biswas3, Adam X. Maihofer2,4,
Victoria B. Risbrough1,2,4 and Dewleen G. Baker1,2,4

This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022, corrected publication
2022

Identification of biomarkers for psychiatric disorders remains very challenging due to substantial symptom heterogeneity and diagnostic
comorbidity, limiting the ability to map symptoms to underlying neurobiology. Dimensional symptom clusters, such as anhedonia,
hyperarousal, etc., are complex and arise due to interactions of a multitude of complex biological relationships. The primary aim of the
current investigation was to use multi-set canonical correlation analysis (mCCA) to derive biomarkers (biochemical, physiological) linked
to dimensional symptoms across the anxiety and depressive spectrum. Active-duty service members (N= 2,592) completed standardized
depression, anxiety and posttraumatic stress questionnaires and several psychophysiological and biochemical assays. Using this
approach, we identified two phenotype associations between distinct physiological and biological phenotypes. One was characterized by
symptoms of dysphoric arousal (anhedonia, anxiety, hypervigilance) which was associated with low blood pressure and startle reactivity.
This finding is in line with previous studies suggesting blunted physiological reactivity is associated with subpopulations endorsing
anxiety with comorbid depressive features. A second phenotype of anxious fatigue (high anxiety and reexperiencing/avoidance
symptoms coupled with fatigue) was associated with elevated blood levels of norepinephrine and the inflammatory marker C-reactive
protein in conjunction with high blood pressure. This second phenotype may describe populations in which inflammation and high
sympathetic outflow might contribute to anxious fatigue. Overall, these findings support the growing consensus that distinct
neuropsychiatric symptom patterns are associated with differential physiological and blood-based biological profiles and highlight the
potential of mCCA to reveal important psychiatric symptom biomarkers from several psychophysiological and biochemical measures.

Neuropsychopharmacology (2022) 47:2252–2260; https://doi.org/10.1038/s41386-022-01303-7

INTRODUCTION
Stress-related neuropsychiatric disorders such as major depressive
disorder (MDD), anxiety disorders, and post-traumatic stress
disorder (PTSD) are common and associated with high levels of
comorbidity and within-disorder heterogeneity [1–3]. High disorder
comorbidity and symptom heterogeneity suggest that approaches
focusing on DSM5 diagnostic categories or on a circumscribed
biomarker set could limit identification of likely complex relation-
ships between clinically heterogeneous neuropsychiatric symptoms
and their underlying biological signatures [4]. This is consistent with
the concept that neuropsychiatric disorders are not distinct
disorders, but instead are comprised of sets of neurobiological
mechanisms across several units of analysis [5–7]. Since it is unlikely
that any single biological mechanism that operates in isolation can
explain the full range of symptoms of a given disorder, there is a
need for development of alternative analytic approaches that
address the dimensional nature of psychiatric symptoms and the
array of neurobiological mechanisms that are likely contributors [8].
Such approaches can help identify sources of heterogeneity within

a disorder or reveal comprehensive phenotype profiles to explain
transdiagnostic symptom patterns. Use of unbiased data-driven
approaches have begun to yield biological signatures of discrete
profiles of stress-related neuropsychiatric symptoms [9–11].
Leverage of multivariate analytic approaches is increasingly

used to identify interrelationships among multiple units of
analysis, including between psychiatric symptoms and biological
markers that univariate approaches are unable to capture [12–14].
One analytic technique that has received renewed interest in
addressing psychiatric and neurobiological heterogeneity in
neuropsychiatric disorders is canonical correlation analysis (CCA)
[15, 16]. CCA a type of multivariate analysis that seeks to extract
multiple sets of latent features called canonical variates (CVs) that
when correlated, represent the maximized linear relationship
between feature sets of variables, and has recently been applied
to neuroimaging measures to identify brain-based dimensions of
neuropsychiatric symptoms [17–20]. It can be expanded to include
multiple feature sets, called multi-set CCA (mCCA), to identify
multivariate patterns between multiple neurobiological modalities
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and psychiatric disorders that a more traditional two-way CCA
would miss [21–23]. mCCA is like other multivariate fusion and
latent variable approaches such as joint-independent components
analysis (jICA), in that they are both data-driven approaches that
do not require specific hypotheses and they both seek to find
latent patterns across two or more variable feature sets [24].
Whereas jICA assumes a linked-relationship between each variable
modality, mCCA is more flexible by allowing both linked and
distinct interrelationships between two or more variables (see Ref.
[23] for a review). However, applying mCCA to investigate stress-
related symptoms is still relatively rare, partly due to the need for
extensive, deep phenotype data sets with adequate power.
The aim of our current investigation was to use mCCA to derive

linked relationships between dimensional stress-related psychia-
tric symptoms, psychophysiological measures and a set of
biochemical assays in a large cohort of active-duty participants
from the Marine Resiliency Study (MRS; N= 2592) [25]. MRS is a
large prospective, longitudinal study of active-duty service
members aimed to identify predictors of risk and resilience to
combat stress. Here we focused on the pre-deployment time point
which had the largest sample size available with three different
features of data including biochemical (e.g., blood, saliva, and
urine bioassays), psychophysiological (e.g., acoustic startle reflex,
fear potentiated startle, blood pressure, heart rate variability), and
questionnaire or interview derived psychiatric symptom data (e.g.,
depression, anxiety, and trauma-related reexperiencing, avoid-
ance, and hypervigilance symptoms). Using these dataset features,
we performed a three-way mCCA to define dimensional
transdiagnostic psychiatric symptom components (See Fig. 1) that
associated with specific biological marker sets.

MATERIALS AND METHODS
Participants
Participants were recruited from infantry battalions deploying to either Iraq
(2008) or Afghanistan (2009–2010). All active-duty members of these
operational units were eligible. There were no exclusion criteria. Women
were not included because female Marines were not part of infantry
battalions at the time of testing (see Table 1 for sample details). A total of
2592 active-duty Marines and accompanying Navy personnel were
enrolled in the pre deployment assessment. Participants missing multiple
data points were removed (n= 88), leaving a total of 2504 for the primary
analyses before preprocessing. Study procedures were approved by the

Fig. 1 Multi-set canonical correlation analysis workflow conducted on the three data features: Biochemical measures (7 variables),
psychophysiology (20 variables), and psychiatric symptoms (57 variables). After preprocessing, a data-reduction step was conducted on
the psychophysiological and psychiatric symptom measures via principle components analysis (PCA). Next, the three features sets were
entered into the mCCA to derive five canonical variates (CVs) for each feature set and for each subject. The first CVs for each feature set are
correlated to form a multi-set canonical correlation (mCC), which represents the maximized linear relationship between the three data feature
sets and can be represented as a correlation table. The remaining mCCs are calculated using the residuals from the prior mCC. Portions of this
figure was created using BioRender.com (San Francisco, CA).

Table 1. Demographic Information and Psychiatric Symptom
Measures.

Variable Mean (SD; Range)

Age 22.80 (3.5; 18.23–47.75)

Months in military 36.32 (34.37; 0–324)

Education

<H.S. 4.3%

H.S. 62.7%

Some College 28.9%

Bachelors 3.5%

Post-graduate 0.5%

Race

African American or Black 4.8%

American Indian or Alaskan Native
American

1.4%

Asian 2.7%

Native Hawaiian or Pacific Islander 1.5%

White 84.4%

Unknown or Not listed 5.2%

Ethnicity

Not Hispanic or Latino 76.3%

Hispanic or Latino 23.2%

Unknown or Not listed 0.5%

Body mass index 25.68 (3.03; 16.23–38.53)

Number of deployments 0.86 (1.10; 0–6)

LEC total score 5.08 (3.24; 0–16)

CAPS-IV total score 15.02 (15.52; 0–101)

BDI-II total score 6.66 (7.79; 0–51)

BAI total score 6.85 (7.96; 0–53)

Note. CAPS-IV Clinician Administered PTSD Scale for DSM-IV, BAI Beck
Anxiety Inventory, BDI-II Beck Depression Inventory II, LEC Life Events
Checklist. LEC total score was based on endorsing whether the event
“happened to me” or “witnessed it”.
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institutional review boards of the Veteran’s Administration San Diego
Healthcare System; the University of California, San Diego; and the Naval
Health Research Center. All participants provided voluntary written
informed consent. Complete MRS methods and demographic information
are described elsewhere [25]. The measures relevant to the present study
are presented here.

Psychiatric measures
PTSD symptoms were assessed with the Clinician-Administered PTSD Scale
for DSM-IV (CAPS-IV) [26] the gold-standard clinical interview assessing for
diagnostic criteria and severity of PTSD. All interviews were conducted by
study personnel trained, certified, and supervised by a licensed psychiatrist
(D.G.B). 13.18% of the sample met criteria for PTSD using partial DSM-IV
PTSD criteria: >0 Cluster B symptom, >1 Cluster C symptoms, and >1
Cluster D symptoms, with minimum frequency ratings of 1 and minimum
intensity ratings of 2 [27]. Depression symptoms were measured with the
Beck Depression Inventory version 2 (BDI-II) [28]: 7.91% of the sample met
criteria for moderate to severe depression (BDI-II score > 19). The BDI-II
measures the presence of depressive symptoms within the past 2 weeks.
Anxiety symptoms were assessed with the Beck Anxiety Inventory (BAI)
[29], a reliable measure of general anxiety symptoms present within the
past week which discriminates between anxiety vs. depressive symptoms
fairly well [30]: 13.74% of the sample endorsed moderate to severe levels
of anxiety (BAI score >15).

Psychophysiological measures
Modulation of acoustic startle reactivity was measured with three separate
tasks. Before testing, each participant is screened for hearing impairment
and fitted with headphones while seated in a comfortable chair facing a
computer monitor. After electrode placement and verification, the
participant completed the following startle tasks: (1) assessment of startle
threshold using acoustic tones, (2) test of modulation of acoustic startle
response while viewing emotional images or anticipating image presenta-
tion, and (3) test for pre-pulse inhibition and startle habituation [31–34].
Details of each task and pre-processing are reported in the Supplementary
Materials. Cardiovascular measures included systolic and diastolic blood
pressure, heart-rate, and heart rate variability (HRV) [35, 36].

Biochemical measures
Peripheral blood, urine, and saliva samples were collected from all
participants. Blood-based assays were C-reactive protein, and
neuropeptide-Y. Saliva-based assays were cortisol, cotinine, and α-
amylase. Spot-urine assays were epinephrine, and norepinephrine [25,
37–39]. See Supplementary Materials for data collection and processing
details.

Analysis
Pre-Processing and data reduction. The pre-processing of the psychophy-
siological and biochemical markers was conducted using standard
procedures (see Supplemental Materials). For the remaining participants
(n= 2504), missing data was imputed using predicted mean matching
multiple imputation by chained equations using the mice package in R
[40]. Missing datapoints for each variable were imputed within its
respective feature set (i.e., missing cortisol value was imputed using
biochemical variables and not psychophysiology or psychiatric symptoms).
Missing datapoints were infrequent: Biochemical variable range: 0–80
missing datapoints; Psychophysiology variable range: 0 – 30; psychiatric
symptoms variable range: 6–12 (see Supplementary Table 1 for details).
Next, psychophysiological non-responders (e.g. no startle response) were
removed (n= 422). Multivariate outliers were additionally removed (n=
58), leaving a final sample n= 2024. Variables were normalized using a
best-model approach via the bestNormalize package in R [41]. Variance
associated with age, battalion cohort, time of day of data collection, and
ethnicity was removed via multiple regression prior to computing the
mCCA. All pre-processing and analyses were conducted in R.

Data-reduction. Data reduction was performed to reduce data dimen-
sionality and orthogonalize variables sets with elevated collinearity prior to
computing the mCCA [15, 18]. The psychophysiological variables (nvar=
20; variance inflation factor [VIF] range=1.06–10.62) and psychiatric
symptoms (nvar= 57; VIF range: 1.07–2.69) were entered into separate
principal component analyses (PCAs) to derive a reduced set of principle
components (PCs) for each feature set. The number of PCs derived was

based upon Horn’s technique [42] using the paran package in R [43]. This
technique compares the PCA eigenvalues to eigen values produced on a
random number of datasets to adjust the sample error-induced inflation.
PCs with adjusted eigenvalues greater than one were kept. For the
psychophysiological feature set, five PCs were derived explaining 72.4% of
the variance. Supplemental Table 2 shows the PCA loadings and names
given to each PC. For the psychiatric symptom feature set, 10 PCs were
derived explaining 52.3% of the variance. Supplementary Table 3 shows
the PCA loadings and names for each component. The five psychophy-
siological PCs and the 10 psychiatric symptom PCs, along with the seven
biochemical variables were then submitted to the mCCA. The biochemical
feature set consisted of only seven variables and had low VIFs (range:
1.00–1.51), therefore data-reduction was not necessary.

Multi-set CCA. To examine the inter-relationships between psychophy-
siology and biochemical feature sets, and psychiatric clinical symptoms, we
computed a multi-set canonical correlation analysis (mCCA) using R:
mcancor via the nscancor package [44]. mCCA is an extension of a two-way
CCA to allow for multiple data-set domains [22, 45]. Like traditional CCA
[46], mCCA identifies linked relationships of canonical variates (CVs), such
that the correlations among the CVs for the multiple domains are linearly
maximized, in this case three data domains. The next set of canonical
variables is found by again maximizing their correlation from the residuals
produced from the prior multi-set canonical correlation, under the
additional constraint that they must be uncorrelated to all previous ones
until reaching the final canonical set (mCC= 5). These constraints are
specified through iterative regression functions for each domain set. To
derive an overall metric for each of the five canonical correlation multisets,
we computed the sum of the three pairwise squared canonical correlations
(R2) for each mCC. This metric indicates the shared variance explained by
each canonical triplet and has a similar interpretation as R2 in multiple
regression [47].

Permutation and bootstrapping
To determine the significance of mCCA correlation, we performed
restricted, or multi-level block, permutation using the “permute” package
in R [48]. We randomly scrambled subjects’ psychophysiological and
biochemical data columns to break the association between subjects’
psychophysiology/biochemical measures with their clinical psychiatric
symptom measures. To reduce potential inflation of significance testing
caused by dependence in datasets [49], we restricted the permutations to
within battalion cohort due to the shared military experience within each
battalion. We re-ran mCCA for 5000 permutations to create a null
distribution of mCCA values. We compared the original mCCA values to
these re-aligned distributions. Any significant mCCA values would have to
be greater than the correlations in the permuted datasets. Permuted P
values were computed by determining the number of permuted canonical
correlation values (mCCperm) that were greater than or equal to the
observed canonical correlation (mCCobs) divided by the number of
permutations: Pperm= (# mCCperm ≥ mCCobs) / 5000. We conducted
permutations for each mCC triplet and each pair-wise CC. To reduce
Type-I error, the permuted P values were corrected using Benjamini-
Hochberg False Discovery Rate (FDR < 0.05). We additionally computed a
bootstrap resampling procedure. We performed 5,000 random resamples
and estimated the means, standard errors, and 95% confidence intervals
for each mCCA value (See Supplementary Table 4 for the bootstrapped
mean mCCs and the standard errors).

RESULTS
Multi-set canonical correlation analysis
A multi-set canonical correlation analysis (mCCA) of psychiatric
symptoms and biological measures revealed four significant
canonical correlations (Table 2). In the remaining sections, we
focus only on the first two mCCs. The first two mCCAs
have moderately robust pairwise CCs, whereas the remaining
mCCs were considerably weaker and potentially not scientifi-
cally meaningful [15]. We present the results for the remaining
mCCs in Supplementary Materials Results and Supplementary
Figs. 1–3.
The first mCC revealed a significant multi-set relationship

between psychiatric symptoms and physiological/biological mea-
sures mCC 1 R2= 0.22, Ppermuted < 0.0002, FDRadjusted < 0.0005.
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Examination of the pairwise relationships between the canonical
variates (CVs) indicated that mCCA 1 was driven predominately by
the relationship between the psychiatric symptoms and psycho-
physiology, CC= 0.46, Ppermuted < 0.0002, FDRadjusted < 0.0002,
CIboot= 0.33–0.46; Fig. 2A. The relationship between psychiatric
symptoms and biochemical CVs was not significant, CC= 0.09,
Ppermuted= 0.99, PFDR= 0.99, CIboot= 0.05–0.15; nor was the
relationship between the psychophysiology and biochemical CVs
significant, CC= 0.05, Ppermuted= 0.99, PFDR= 0.99, CIboot=
0.003–0.09. Examination of the canonical loadings for the first
mCC indicate that the psychiatric symptom CV 1 (Fig. 2B) was
characterized by a cluster of symptoms including dysphoric and
anxious arousal as described by the 5-factor model of CAPS [50]
which includes elevated dysphoric arousal, anxiety, and anhedo-
nia (canonical loadings= 0.66, 0.41, and 0.39, respectively). The
psychophysiology CV 1 (Fig. 3B) was associated with low blood
pressure levels, general startle reactivity, and prepulse inhibition
(canonical loadings= –0.52, –0.40, and –0.32, respectively). These
findings suggest that individuals who reported higher levels of
dysphoric and anxious arousal exhibited both lower blood
pressure and startle reactivity.
The second mCC revealed a significant multi-set relationship

between psychiatric symptoms and biological measures mCC 2
R2= 0.05, Ppermuted < 0.0004 FDRadjusted < 0.0007; Table 2. This
canonical finding was predominately driven by the relationship
between the psychiatric symptoms and biochemical assays (CC=
0.19, Ppermuted= 0.0002, FDRadjusted= 0.0004, CIboot= 0.10–0.26;
Fig. 3A) and between the psychiatric symptoms and the psycho-
physiology measures (CC= 0.11, Ppermuted= 0.004, FDRadjusted=
0.006, CIboot= 0.01–0.12; Fig. 3B). Examination of the canonical
loadings indicate that the psychiatric symptom CV 2 (Fig. 3C left
panel) was characterized by elevated symptom levels of fatigue,
anxiety and by the symptoms of reexperiencing/avoidance
(canonical loadings= 0.71, 0.30, and 0.29, respectively). The
biochemical CV2 (Fig. 3C middle panel) was characterized by
elevated norepinephrine and CRP (canonical loadings= 0.75 and
0.51). The psychophysiology CV 2 (Fig. 3C right panel) was

associated with high blood pressure, and negatively associated
with the low startle threshold PC (i.e. startle less likely when
presented with weak startling stimuli, indicating high startle
threshold) (canonical loadings= 0.87 and –0.48). These findings
indicate that increases in self-reported fatigue, anxiety, and
reexperiencing/avoidance symptoms of intrusive trauma imagery
and avoidance were jointly associated with increases in norepi-
nephrine, CRP levels, blood pressure, and high startle threshold.
These findings remained robust even when not controlling for
variation in age, race/ethnicity, time of day, and battalion cohort
(See Supplementary Table S5).

Pearson correlations
Details for the correlational analysis between the PCs and the
individual variables are reported in the Supplementary Materials.

PC correlations. The largest pairwise-correlation between psy-
chophysiology PCs and psychiatric symptoms was between the
blood pressure PC and the hypervigilance PC, R2= –0.19, p=
7.6 × 10–18, PFDR= 2.0 × 10–16 (See Supplementary Fig. 3), an effect
size lower than that observed in mCCA R1(CC= 0.46). The largest
pairwise-correlation between biochemical and psychiatric systems
was between norepinephrine and the fatigue PC, R2= 0.03, r=
0.18, p= 2.02 × 10–15, which is on par with the biochemical and
psychiatric symptom CC from mCCA R2 (CC= 0.19) (See
Supplementary Fig. 4).

Item-level correlations
Like the correlations computed on the PCs, for mCC1, the
individual psychiatric symptom items (22 items) were low to
moderately correlated with psychophysiology (12 items), rs < 0.12
(range:–0.03–0.12), ps > 0.001 (uncorrected; See Supplementary
Fig. S5). For mCC2, the individual psychiatric symptom items (15
items) were low to moderately correlated with the psychophysiol-
ogy (6 items) and biochemical (2 items) measures that most
defined the PCs underlying mCC2, rs < 0.14 (range: –0.06 to 0.14),
ps > 0.001 (uncorrected; see Supplementary Fig. S6).

Table 2. Multi-set canonical correlation matrices.

Biochemical Psychophysiology Psychiatric symptoms

mCC 1 R2: .22***

Biochemical – 0.05 0.09

Psychophysiology 0.05 – 0.46

Psychiatric symptoms 0.09 0.46*** –

mCC 2 R2: 0.05**

Biochemical – 0.03 0.19

Psychophysiology 0.03 – 0.11

Psychiatric symptoms 0.19*** 0.11** –

mCC 3 R2: 0.03***

Biochemical – 0.07 0.05

Psychophysiology 0.07 – 0.14

Psychiatric symptoms 0.05 0.14*** –

mCC 4 R2: 0.02**

Biochemical – 0.001 0.10

Psychophysiology 0.001 – 0.09

Psychiatric symptoms 0.10** 0.09** –

mCC 5 R2: 0.01*

Biochemical – 0.03 0.05

Psychophysiology 0.03 – 0.04

Psychiatric symptoms 0.05 0.04 –

Note. mCCA = multiset canonical correlation. R= canonical correlation set. *Pperm < 0.05; **Pperm= 0.0004; ***Pperm < 0.0002.
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DISCUSSION
The primary aim of the current investigation was to derive
multivariate biomarkers linked to dimensional symptom measures
of dysphoria, anxiety, fatigue, and trauma-related reexperiencing
and avoidance. We identified linked patterns that characterized
the relationship between these dimensional symptoms and
biological signature sets. We identified a symptom cluster of
dysphoric arousal and anhedonia that was associated with
blunted startle reactivity and low blood pressure, and alterna-
tively, a symptom cluster of fatigue and reexperiencing/avoidance
symptoms associated with elevated norepinephrine and CRP, high
blood pressure and high startle threshold. We also identified two
other weaker but statistically significant relationships between
psychiatric symptoms, psychophysiological, and biochemical
measures (See Supplementary Materials). Using permutation
testing and bootstrapping our results were shown to be reliable
and reproducible. Overall, CCA also offers the potential to identify
robust relationships with larger effect sizes and with stronger
protection against Type 1 errors due to fewer multiple compar-
isons than when using traditional univariate analyses [16, 51]. As
shown in the current investigation, we observed a robust
relationship between psychiatric symptoms and psychophysiology
CV (CC 1= 0.46), whereas the highest univariate correlation was
substantially weaker (r= –0.19). These results provide compelling
support for the utility of the mCCA approach to identify novel and
robust findings in complex multimodal datasets.
Using the mCCA approach, we derived psychiatric symptom

phenotypes that were based on patterns between individual
differences of psychophysiology and psychiatric symptoms. In
other words, the psychiatric dimension of dysphoric arousal
(characterized by anhedonia, dysphoric arousal, and anxiety)
observed in mCC 1 is represented as a mixture of these symptoms

and psychophysiology measures. The psychophysiology dimen-
sion was comprised of blunted measures of arousal, including low
general startle reactivity and low blood pressure. The finding of a
negative relationship between general startle response and low
blood pressure with self-reported arousal may seem counter-
intuitive [52–54]. However, both startle hyporeactivity [55–59] and
low blood pressure [60–62] are documented in individuals with a
history of anxiety, dysphoria, and stress-related neuropsychiatric
symptoms (see Lang et al., 2014 for a review [63]). Epidemiological
studies support a link between low blood pressure and depres-
sion, particularly anhedonia symptoms [64]. In a large cohort (n=
60,799), individuals with comorbid anxiety and depression were
more likely to have low blood pressure than individuals without
these symptoms [65] and high baseline levels of anxiety and
depression predicted low blood pressure 22 years later [62].
Furthermore, low blood pressure is associated with suicidal
ideation [66] and is a risk-factor for late life depression [61]. The
CCA also showed blunted startle associated with dysphoric arousal
and anhedonia. Blunted startle responding can occur after chronic
or long-standing stress [63, 67–69] and in adults endorsing early-
life adversity [59, 70, 71]. In a recent review of psychophysiological
phenotypes across anxiety and mood disorders, blunted heart rate
and startle responses either at baseline or in response to threat is
observed in populations with high chronic distress and depression
symptoms [72]. Blunted psychophysiological reactivity may also
reflect elevated dissociative symptoms in individuals experiencing
chronic traumatic stress symptoms [73, 74]. Pre-deployment
dissociative symptoms were not assessed in this investigation;
therefore, it will be important for future studies to include a
measure of dissociation to determine how it links to multimodal
physiological markers. These previous findings have focused on
traditional diagnostic categories (i.e., Major Depressive Disorder,

Fig. 2 Results of mCC Set 1 reveal a dysphoric arousal phenotype. A Scatterplot depicts the significant pairwise canonical correlation (CC)
between the Psychophysiology canonical variate (CV) and the psychiatric symptom CV. Each dot represents an individual subject’s score as a
function of the relationship between each CV pair. The inset reflects the permutation test (5000 permutations). The vertical dotted line
indicates the exact pairwise canonical correlation value. P values were calculated using restricted permutation testing (Pperm). B For
visualization purposes, univariate Pearson correlations of two examples of top-weighted psychophysiological and psychiatric symptom
variables from mCC 1 are depicted. C Canonical loadings for the psychiatric symptom CV 1. The top three PCs are dysphoric arousal, anxiety,
and anhedonia. C Canonical loadings for the psychophysiology CV 1. The top two PCs are general startle reactivity and blood pressure.
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PTSD), whereas our findings are focused on transdiagnostic
phenotypes. Therefore, direct comparison of our findings to
previous work needs to acknowledge this distinction. However,
these prior findings are thus very much in line with the CCA
identified in the current study that used an unbiased, data-driven
approach across wide range of symptom measures and physio-
logical and peripheral signaling markers. Taken together these
findings suggest that there is a clear subpopulation of individuals
with blunted physiological responses associated with combined
dysphoric arousal and anhedonia, which may suggest specific
mechanisms underlying this symptom pattern. The biological
mechanism(s) for this association is unclear, however there is
some data to suggest an inflexible corticolimbic-response includ-
ing blunted amygdala reactivity or that poor amygdala synchrony
to emotional stimuli contribute to the blunted physiological
reactivity [75, 76] as well as dysregulation of the hypothalamic-
pituitary-adrenal axis and renin-angiotensin systems that influence
blood pressure [65].
We also identified a biomarker associated with anxious fatigue,

high anxiety and reexperiencing/avoidance symptoms—a symp-
tom profile that covaried with elevated norepinephrine and
CRP, elevated blood pressure, and high startle threshold.
Physiologically, autonomic imbalance, such as excess sympathetic

drive, particularly under periods of stress, are known to contribute
to increased blood pressure and inflammation [77–82]. Thus, our
observed relationship between CRP, norepinephrine and blood
pressure levels is not un-expected. The physiologic profile of high
inflammation/sympathetic drive, associated with reexperiencing/
avoidance symptoms and overall high anxiety/fear symptoms in
humans is consistent with previous work, and may be exacerbated
in those with more severe illness [79, 83–85]. These findings are
also in line with descriptions of both high CRP and peripheral
norepinephrine across anxiety and trauma disorders as well as
during chronic stress (e.g. [86–90]) and fatigue [91]. A benefit of
CCA and mCCA is that they can extract multiple components of
latent variable patterns—relationships that exist in a high-
dimensional dataset that would not otherwise be apparent if a
non-latent variable approach was used [47]. The high sympathetic
drive phenotype is a unique linear combination of psychiatric,
biochemical, and psychophysiological variables that is orthogonal
to the phenotype observed in mCC 1.
There are limitations to this study that should be considered.

First, although the CCA approach may allow for detection of
complex relationships, it requires a number of a-priori choices in
model development and interpretation, including definition of the
phenotype and delimitation of the variety and array of biological

Fig. 3 Results of mCC Set 2 reveals an anxious fatigue phenotype. A Scatterplots depict the two significant pairwise canonical correlation
(CC) between the biochemical canonical variate (CV) and the psychiatric symptom CV and the psychophysiological CV and the psychiatric CV.
The insets reflect the permutation tests (5000 permutations). The vertical dotted lines indicate the exact pairwise canonical correlation value. P
values were calculated using restricted permutation testing (Pperm). B For visualization purposes, residualized univariate Pearson correlations
of the top-weighted biochemical, psychophysiological, and psychiatric symptom variables from mCC 2 are depicted. (C) Canonical loadings
for the psychiatric symptom CV 2. The top three PCs are fatigue, anxiety, and reexperiencing/avoidance symptoms. (C) Canonical loadings for
the for the biochemical CV 2. The top two PCs are norepinephrine and C-reactive protein (CRP). C Canonical loadings for the
psychophysiology CV 2. The top two PCs are blood pressure and low startle threshold (Low thresh.).
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and behavioral markers to be included in the analytic model. This
is a feature of most unbiased analytic approaches however, not
just CCA [13]. Related, creation of robust data-driven and latent
psychiatric phenotypes helps address clinical heterogeneity and
aids in linking complex constructs across multiple domains. But
such approaches also raise important questions about interpret-
ability and applications in new datasets [92]. Enhancing the
generalizability and clinical utility of latent variable psychiatric
phenotypes will be a critical step for future investigations. Second,
the sample consisted exclusively of active-duty male Marine/Navy
servicemen and thus is not necessarily generalizable to civilians
and females [93, 94]. Third, this population had good variance in
symptoms and biomarker phenotypes, however it was predomi-
nantly a relatively healthy population, thus other or additional
symptom-marker relationships may be detectable in a more
clinically impaired sample. Fourth, the sample was predominately
White and the results may not generalize to individuals from other
racial groups. Future work will be needed to examine racial and
ethnic differences in multimodal phenotypes since recent work
has found racial differences in phenotypes associated with
neuropsychiatric symptoms [95]. Fifth, another drawback of CCA
is that it is based on the assumption that the relationships
between the features are linear and therefore do not measure
higher-order relationships [15]. Applying kernelized-CCA, other
multivariate/machine learning approaches (e.g., independent
components analysis [ICA], neural nets), or their combination
(mCCA+ ICA, deep CCA) may better identify non-linear relation-
ships between variable sets than CCA alone [9, 21, 96, 97].
However, these limitations are balanced by notable strengths,
including the large sample (N= 2024), the deeply phenotyped
dataset, and the relative physical health of the population—
reducing confounds of comorbid physical illnesses and other
extraneous variables (note all peripheral biomarkers were
controlled for the effects of age, time of assessment, cohort, and
ethnicity).

CONCLUSION
High psychiatric disorder comorbidity and symptom hetero-
geneity suggests that the current diagnostic system is not
capturing the range of patient’s symptom experience, which
may hinder the identification of clinically useful biomarkers to
guide treatment development [2, 98]. Work linking a single
neurobiological measure to a single diagnostic disorder has had
limited clinical utility [99], motivating the field to shift to a
framework where the focus is on dimensional psychiatric
symptoms, not diagnostic categories, and on multiple, not
single, biological markers [5, 11, 100–102]. Clearly, new data-
driven analytic strategies are needed to address the complex
multivariate relationship between psychiatric symptoms
and multiple biological markers [8, 103], with mCCA being
well-suited to handle this challenge [47]. The current
findings support the mission towards a dimensional model of
neuropsychiatric symptoms grounded in neurobiology and
highlight the potential of multivariate statistics to reveal
important psychiatric symptom biomarkers derived from several
psychophysiological and biochemical measures. Future work
will be required to apply this approach with other high-
dimensional datasets that are an inherent part of biological
assays (e.g., neuroimaging, genome, epigenome), and to test
how multimodal biomarkers relate to other measures (e.g.,
trauma history, psychosocial functioning), and to determine
their predictive utility.
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