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Cerebrovascular disease is associated with 
Alzheimer’s plasma biomarker concentrations 
in adults with Down syndrome
Natalie C. Edwards,1,2,3 Patrick J. Lao,1,2 Mohamad J. Alshikho,1,2 Olivia M. Ericsson,1,2

Batool Rizvi,4 Melissa E. Petersen,5 Sid O’Bryant,5 Lisi Flores Aguilar,6 Sabrina Simoes,1,2

Mark Mapstone,7 Dana L. Tudorascu,8 Shorena Janelidze,9 Oskar Hansson,9,10

Benjamin L. Handen,8 Bradley T. Christian,11 Joseph H. Lee,1,2 Florence Lai,12

H. Diana Rosas,12,13 Shahid Zaman,14 Ira T. Lott,15 Michael A. Yassa,4,16

Alzheimer’s Biomarkers Consortium–Down Syndrome (ABC-DS) Investigators, 
José Gutierrez,2 Donna M. Wilcock,17,18,19 Elizabeth Head6 and Adam M. Brickman1,2

By age 40 years, over 90% of adults with Down syndrome have Alzheimer’s disease pathology and most progress to dementia. Despite 
having few systemic vascular risk factors, individuals with Down syndrome have elevated cerebrovascular disease markers that track 
with the clinical progression of Alzheimer’s disease, suggesting a role of cerebrovascular disease that is hypothesized to be mediated by 
inflammatory factors. This study examined the pathways through which small vessel cerebrovascular disease contributes to 
Alzheimer’s disease-related pathophysiology and neurodegeneration in adults with Down syndrome. One hundred eighty-five parti-
cipants from the Alzheimer’s Biomarkers Consortium–Down Syndrome [mean (SD) age = 45.2 (9.3) years] with available MRI and 
plasma biomarker data were included in this study. White matter hyperintensity (WMH) volumes were derived from T2-weighted 
fluid-attenuated inversion recovery MRI scans, and plasma biomarker concentrations of amyloid beta 42/40, phosphorylated tau 
217, astrocytosis (glial fibrillary acidic protein) and neurodegeneration (neurofilament light chain) were measured with ultrasensitive 
immunoassays. We examined the bivariate relationships of WMH, amyloid beta 42/40, phosphorylated tau 217 and glial fibrillary 
acidic protein with age-residualized neurofilament light chain across Alzheimer’s disease diagnostic groups. A series of mediation 
and path analyses examined statistical pathways linking WMH and Alzheimer’s disease pathophysiology to promote neurodegenera-
tion in the total sample and groups stratified by clinical diagnosis. There was a direct and indirect bidirectional effect through the glial 
fibrillary acidic protein of WMH on phosphorylated tau 217 concentration, which was associated with neurofilament light chain con-
centration in the entire sample. Amongst cognitively stable participants, WMH was directly and indirectly, through glial fibrillary 
acidic protein, associated with phosphorylated tau 217 concentration, and in those with mild cognitive impairment, there was a direct 
effect of WMH on phosphorylated tau 217 and neurofilament light chain concentrations. There were no associations of WMH with 
biomarker concentrations among those diagnosed with dementia. The findings from this cross-sectional study suggest that among in-
dividuals with Down syndrome, cerebrovascular disease promotes neurodegeneration by increasing astrocytosis and tau pathophysi-
ology in the presymptomatic phases of Alzheimer’s disease, but future studies will need to confirm these associations with longitudinal 
data. This work joins an emerging literature that implicates cerebrovascular disease and its interface with neuroinflammation as a core 
pathological feature of Alzheimer’s disease in adults with Down syndrome.
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Graphical Abstract

Introduction
Virtually all individuals with Down syndrome develop 
Alzheimer’s disease pathology, including abnormal amyloid- 

beta (Aβ) plaques and tau neurofibrillary tangles, by the age 
of 40 years,1,2 and most develop dementia by the age of 60.3

Down syndrome is considered a genetic form of Alzheimer’s 
disease,4 and pathogenesis is attributable to the triplication 
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of chromosome 21, which contains the amyloid precursor 
protein (APP) coding gene.5 Models of Alzheimer’s disease 
progression in both late-onset and genetic forms emphasize 
the role of Aβ in initiating tau pathology and subsequent 
neurodegeneration, sometimes referred to as the ‘ATN 
framework’.6 While there is general support for this patho-
physiological cascade,6,7 there is increasing evidence that 
additional pathways may promote Alzheimer’s disease 
pathogenesis and progression.8

Cerebrovascular disease contributes to the risk and course 
of clinical Alzheimer’s disease and increases the likelihood of 
developing dementia.9,10 Neuroimaging biomarkers for 
small vessel cerebrovascular disease, including white matter 
hyperintensities (WMH), are associated with neurodegen-
eration, indexed by Alzheimer’s disease-related patterns of 
cortical atrophy and fluid biomarker concentrations.11-13

Despite consistent observations of its occurrence and contri-
butions to clinical outcomes in people with Alzheimer’s dis-
ease, cerebrovascular disease is generally considered a 
common comorbidity with Alzheimer’s disease that is not a 
hallmark characteristic.6

Populations at genetic risk provide insight into the extent 
to which cerebrovascular disease represents a ‘core feature’ 
of Alzheimer’s disease. Among community-dwelling older 
adults, those carrying the APOE ɛ4 allele, the strongest gen-
etic risk factor for late-onset Alzheimer’s disease, have great-
er degrees of cerebrovascular disease than non-ɛ4 carriers.14

Despite their younger age and relatively low vascular risk 
factor profiles, individuals with autosomal dominant, fully 
penetrant mutations for Alzheimer’s disease have increased 
WMH volumes up to 20 years prior to expected symptom 
onset compared with individuals without genetic mutations 
for Alzheimer’s disease but who are at similar risk for inher-
iting the mutation.13 Such changes account for more vari-
ance in cognition than do other Alzheimer’s disease 
biomarkers.15 Similarly, individuals with Down syndrome 
generally have lower degrees of vascular risk compared 
with neurotypical adults and seem to be protected against de-
veloping hypertension,16-18 yet there is neuroimaging evi-
dence of cerebrovascular disease that increases with the 
clinical progression of Alzheimer’s disease19 that we hy-
pothesize is mediated by inflammation and/or upstream gen-
etic factors.

Evidence from late-onset and genetic forms of Alzheimer’s 
disease suggests that cerebrovascular pathology is indeed 
a prominent feature of Alzheimer’s disease that cannot 
be attributable solely to exposure to vascular risk factors, 
but whether cerebrovascular disease promotes primary 
Alzheimer’s disease pathophysiological progression remains 
unclear. Reports of associations between cerebrovascular 
disease and Alzheimer’s disease biomarkers are mixed, 
with some showing codependency20 and others not.21,22 In 
an animal model of WMH, we found that white matter dam-
age induced by transient hypoperfusion promotes tau hyper-
phosphorylation, but it is unclear what factors mediate this 
effect.12

Emerging work suggests the critical role of neuroinflam-
mation, mainly manifesting as a change in microglia 
morphology,23-26 astrocytosis27-29 and inflammatory med-
iators,30 in Alzheimer’s disease pathogenesis and course, 
with emerging evidence of intimate crosstalk between in-
flammatory processes and the brain’s vasculature.31 In 
adults with Down syndrome, MRI markers of cerebrovas-
cular disease are associated with proteomic patterns reflect-
ive of inflammation earlier in the disease and with patterns 
reflective of neurodegeneration later in the disease.32 Glial 
fibrillary acidic protein (GFAP) is a cytoskeletal protein 
found in astrocytes, released during astrogliosis, and can 
be measured reliably in cerebrospinal and blood compart-
ments as a surrogate measure of astrocytosis.33-36 Plasma 
and cerebrospinal fluid (CSF) GFAP concentration is ele-
vated in people with and at risk for Alzheimer’s disease37-39

and appears to mediate the relationship between Aβ and tau 
pathology.40,41 In adults with Down syndrome, plasma 
GFAP concentration discriminates between individuals who 
are asymptomatic and those diagnosed with Alzheimer’s dis-
ease.42 Further, GFAP levels are strongly correlated with in-
dicators of Aβ and tau pathology, neurodegeneration and 
clinical progression of Alzheimer’s disease in adults with 
Down syndrome.42-44

In the current study, we examined the association between 
WMH, as a marker of small vessel cerebrovascular disease, 
and Alzheimer’s disease plasma biomarker concentrations, 
including Aβ40/Aβ42, phosphorylated tau 217 (p-tau217) 
and GFAP, with neurofilament light chain (NfL) across dis-
ease stages in adults with Down syndrome. Because astrocy-
tosis (i) is prominent around blood vessels in Alzheimer’s 
disease45; (ii) induced cerebral hypoperfusion, a characteris-
tic of Down syndrome46; increases the number of 
GFAP-positive astrocytes47; and (iii) is an early disease fea-
ture of Alzheimer’s disease,48 we used a series of mediation 
and path analyses applied to cross-sectional data to test 
our hypothesis that cerebrovascular disease gives rise to 
tau pathology and ultimately neurodegeneration via astrocy-
tosis across different Alzheimer’s disease stages in adults 
with Down syndrome.

Materials and methods
Participants and participant diagnosis
Participants came from the Alzheimer’s Biomarkers 
Consortium–Down Syndrome (ABC-DS), a multisite, obser-
vational study designed to examine biomarker, clinical and 
genetic correlates of and contributors to Alzheimer’s disease 
among adults with Down syndrome.49 The sample included 
185 individuals with trisomy 21 from the Neurodegeneration 
in Aging Down Syndrome (NiAD; U01 AG051406) and 
Biomarkers of Alzheimer’s Disease in Adults with Down 
Syndrome (ADDS; U01 AG051412), both of which are now 
contained within ABC-DS. For the current study, participants 
with available MRI data and derived plasma biomarkers of 
interest were selected for analysis. One hundred thirty-eight 
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participants characterized as cognitively stable, 24 patients 
with mild cognitive impairment (MCI), 16 patients with 
Alzheimer’s disease dementia (Down syndrome–Alzheimer’s 
disease) and 8 with diagnoses that were ‘unable to be deter-
mined’ were included. Diagnoses were based on a consensus 
conference that reviewed available neuropsychological and 
clinical data, as described previously in detail.49 In short, clin-
ical experts in the assessment and diagnosis of Alzheimer’s dis-
ease in Down syndrome performed a standardized clinical 
evaluation of each participant, which considered functional 
abilities and health history. Participants were then assigned 
one of four Alzheimer’s disease-related diagnoses (i.e. cogni-
tively stable, MCI, Down syndrome–Alzheimer’s disease, un-
able to be determined).

Magnetic resonance imaging
MRI scans were acquired at ADDS and NiAD participating 
sites. NiAD sites acquired 2D T2-weighted fluid-attenuated 
inversion recovery (FLAIR) scan [repetition time (TR)/echo 
time (TE)/inversion time (TI) = 5000/386/1800 ms, voxel 
size = 0.4 × 0.4 × 0.9mm3] and ADDS sites acquired 3D 
T2-weighted FLAIR scan (TR/TE/TI = 4800/119/1473 ms, 
voxel size = 0.9 × 0.9 × 0.5mm3).

White matter hyperintensity volume was quantitated with 
in-house software. Briefly, FLAIR images were reconstructed 
to a uniform matrix of 256 × 256 × 256 with a voxel size of 
1 mm3. The images were reoriented to standard anatomical 
space (MNI152), skull stripped and bias field corrected.50,51

The images were processed through a customized module de-
signed to extract percentile thresholds from the intensity 
histogram of each image automatically.52,53 Next, a white 
matter segment was created using the convolutional neural 
networks tool.54 Two specific percentile thresholds were 
computed: one for the transition between dark and bright 
voxel intensity and another for the transition between bright 

and brightest voxel intensity. These thresholds initialized a 
Gaussian mixture model (GMM) and expectation–maxi-
mization algorithm55 within the white matter segment of 
the FLAIR images, using two components to represent hy-
perintense and non-hyperintense voxels.

Following the computation of percentile thresholds, we 
calculated the inter-percentile range (IPR) between these va-
lues and introduced a relaxed threshold of 10 to account for 
variations in FLAIR image quality. This adjustment was 
made by applying a multiplicative factor to the IPR.

Finally, probability distribution maps were generated to 
represent the segmented WMH within the FLAIR images. 
The Roberts edge detection function56 was applied to the 
probability distribution maps, ensuring the removal of any 
non-white matter voxels from the brain’s contour. The la-
belled voxels were added together and multiplied by voxel 
dimensions to calculate the total WMH volume in cubic 
centimetre. Figure 1 displays the voxel-wise frequencies of 
WMH across all participants.

Plasma samples and analysis

Plasma Aβ42, Aβ40, p-tau217, NfL and GFAP concentrations 
were derived for each participant from plasma samples as pre-
viously described.43 Plasma samples were shipped to the 
University of North Texas where Aβ42, Aβ40 and NfL con-
centrations were quantified with single molecule array 
(Simoa) assays (Quanterix). We calculated the ratio of Aβ42 
to Aβ40 as the biomarker for amyloid pathology.57 Plasma 
samples from the same group of participants were shipped 
to Lund University for quantification of p-tau217 and GFAP 
concentrations. The p-tau217 concentration was assayed ac-
cording to the published protocols using immunoassay on a 
Meso Scale Discovery platform developed by Lilly Research 
Laboratories as previously described.44,58 GFAP concentra-
tion was quantified using Simoa assays (Quanterix). We 

Figure 1 Frequency map of white matter hyperintensities in adults with Down syndrome. A voxel-wise frequency map of WMH was 
created by summing voxels labelled across all 185 individual 3D and dividing by 185. Each voxel’s value represents the proportion of times it was 
labelled as a WMH across the 185 masks from low frequency (light blue) to high frequency (dark blue).
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calculated age-residualized values for NfL concentration 
values, our primary dependent variable, because the patho-
physiological progression of Alzheimer’s disease among indi-
viduals with Down syndrome is strongly age-dependent.1,2

This age dependency may induce epiphenomenological rela-
tionships among Alzheimer’s disease-related variables when 
conducting cross-sectional analyses due to their shared associ-
ation with age. On the other hand, statistical adjustment for 
age may obscure important associations among factors whose 
variance is strongly age-dependent. Therefore, we chose to op-
erationalize neurodegeneration as age-residualized NfL in the 
subsequent analyses.

Statistical analysis

Association of biomarkers with neurodegeneration. We exam-
ined the association of WMH and each Alzheimer’s-related 
biomarker concentration with age-residualized NfL in the 
entire sample and stratified by diagnosis with bivariate 
Pearson correlations. Participants with an undetermined 
diagnosis were not included in any analyses stratified by 
diagnosis.

Mediation analyses. We conducted a series of causal medi-
ation analyses in the entire sample informed by the observed 
bivariate associations. We used the ‘mediation’ package in 
R59 to examine whether (i) GFAP mediates the relationship 
between WMH volume and p-tau217 concentration; 
(ii) whether p-tau217 concentration mediates the relationship 
between WMH volume and NfL concentration; and (iii) 
whether p-tau217 concentration mediates the relationship 
between GFAP and NfL concentrations. To probe direction-
ality, we ran models in which the hypothesized predictor and 
mediator were switched. The average causal mediation effect 
(ACME), the portion of the direct effect on the outcome that 
is attributable to the mediator’s effect and the corresponding 
P-value were extracted from each mediation model.

Path analysis. We tested our a priori hypothesis of patho-
physiological cascade that is initiated by cerebrovascular dis-
ease with a path analysis in the combined sample and in 
groups stratified by Alzheimer’s disease-related diagnosis. 
Notably, path analysis, while still based on principles of 

correlation, can be used to test alternative models to under-
stand the most likely direction and possible causal relation-
ships among cross-sectional data.60 For stratified analyses, 
we removed the participants with clinical diagnoses that 
were unable to be determined; however, data from these par-
ticipants were included in the analyses with the combined 
sample, which did not consider diagnosis explicitly. The 
path analysis tested the effect of WMH on downstream neu-
rodegeneration (i.e. age-residualized NfL concentrations) via 
GFAP and p-tau217. The paths were estimated using the ‘la-
vaan’ package in R,61 which established the direct and indir-
ect effects among biomarkers, and the model was fit using the 
sem() function. All analyses were adjusted for research site. In 
a post hoc analysis, we examined a model in which age was 
formally examined as a driver of pathological accumulation.

Results
Sample characteristics across diagnostic groups are reported 
in Table 1. Cognitively stable participants and those with an 
undetermined diagnostic status were younger than those 
with MCI and Down syndrome–Alzheimer’s disease, and a 
smaller proportion of women was diagnosed with MCI 
than other groups. There were no differences in reported his-
tory of hypertension, hypotension, Type 1 or 2 diabetes or 
hypercholesterolaemia (Table 1).

We confirmed strong associations between age and 
Alzheimer’s disease biomarker concentrations, apart from 
Aβ42/40: GFAP, r = 0.612 (0.513, 0.695), P < 0.0001; 
NfL, r = 0.523 (0.409, 0.62), P < 0.0001; P-tau217, r =  
0.379 (0.248, 0.496), P < 0.0001; Aβ42/40, r = 0.107 
(−0.036, 0.248), P = 0.147.

Associations of plasma biomarkers 
and WMH with age-residualized NfL 
concentration across diagnostic 
groups
Table 2 displays the associations of plasma biomarkers and 
WMH volume with age-residualized NfL concentration. 

Table 1 Sample characteristics by diagnostic group

Cognitively 
stable MCI

Down syndrome– 
Alzheimer’s disease Undetermined

Whole 
sample

Test 
statistic P-value

n 137 24 16 8 185
Demographic
Age, mean (SD) years 43 (9.1) 51 (5.8) 54.5 (6) 48.4 (8.8) 45.2 (9.3) F = 27.05 <0.001
Women, n (%) 64 (47) 4 (17) 9 (56) 4 (50) 81 (44) χ2 = 8.7 0.003
Vascular risk factors
Hypertension, n (%) 3 (2) 0 (0) 0 (0) 0 (0) 3 (2) χ2 = 4.1 0.26
Hypotension, n (%) 3 (2) 1 (4) 0 (0) 0 (0) 4 (2) χ2  = 3.5 0.32
Type 1 diabetes, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Type 2 diabetes, n (%) 2 (2) 0 (0) 0 (0) 0 (0) 2 (1) χ2  = 0.9 0.82
Hypercholesterolaemia, n (%) 15 (11) 1 (4) 2 (13) 1 (13) 19 (1) χ2 = 1.1 0.3

MCI, mild cognitive impairment.
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White matter hyperintensity volume, GFAP concentration 
and p-tau217 concentration were positively associated 
with age-residualized NfL in the entire sample. In cognitively 
stable participants, neither WMH volume nor plasma 
Alzheimer’s disease biomarker concentrations were asso-
ciated with age-residualized NfL levels, likely reflecting the 
limited amount of variance in these factors at this disease 
stage. Among those with MCI, increased WMH volume 
was associated with higher age-residualized NfL, while in-
creased GFAP concentration and p-tau217 concentration 
were associated with higher age-residualized NfL in partici-
pants with MCI and Alzheimer’s disease. White matter hy-
perintensity volume was not associated with higher 
age-residualized NfL in participants with Alzheimer’s 
disease.

Mediation analyses
Three results emerged from the statistical mediation 
analyses. First, p-tau217 concentration mediated the rela-
tionship between WMH and age-residualized NfL concen-
tration {ACME [confidence interval (CI)] = 0.44 (0.17, 
0.83}, P < 0.0001]. When we reversed the independent vari-
able and mediator variable and re-ran the analyses, WMH 
did not mediate an association between p-tau217 concentra-
tion and NfL [ACME (CI) = 0.88 (−0.66, 2.50), P = 0.22]. 
Second, GFAP concentration mediated the relationship be-
tween WMH and p-tau217 concentration [ACME (CI) =  
0.0201 (0.01, 0.02), P < 0.001]; the reverse model revealed 
a congruent mediation effect of WMH, albeit to a lesser ex-
tent, on the relationship between GFAP and p-tau217 
[ACME (CI) = 0.0003 (0.0001, 0.0002), P < 0.001]. Third, 
p-tau217 concentration mediated the relationship between 
GFAP concentration and age-residualized NfL concentra-
tion [ACME (CI) = 0.04 (0.01, 0.05), P < 0.0001]. When re-
versed, GFAP did not mediate an association between 
p-tau217 concentration and NfL [ACME (CI) = −0.80 
(−2.96, 2.66), P = 0.67]. A post hoc analysis revealed an 
interaction between WMH and GFAP on p-tau217 concen-
tration, such that WMH was most strongly associated with 
p-tau217 in the presence of elevated GFAP while GFAP 
was most strongly associated with p-tau217 in individuals 
with high WMH volume (see Fig. 2).

Path analysis

Informed by the relationships observed in the mediation ana-
lyses, we conducted a path analysis to examine statistical 
causality within our hypothesized pathophysiological cas-
cade in the entire sample and stratified by diagnosis. In the en-
tire sample (Fig. 3A), the analysis revealed a cascade initiated 
by WMH, which had a direct and an indirect effect through 
GFAP on p-tau217 concentration. P-tau217 concentration, 
in turn, was associated with age-residualized NfL concentra-
tion. In this combined sample, increasing p-tau217 concen-
tration was primarily attributable to increasing WMH 
volume, while increases in NfL were mainly related to increas-
ing p-tau217 concentration. Among cognitively stable parti-
cipants (Fig. 3B), there was a direct and indirect effect T
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Figure 2 Conditional relationship between WMH and GFAP on p-tau217 concentration. Relationship between GFAP and p-tau217 
concentration conditioned by WMH volume (A)and relationship between WMH and p-tau217 concentration conditioned by GFAP (B). The plots 
show the relationship between GFAP or WMH and p-tau217 for different ranges of WMH and GFAP, respectively. The panels are read from 
bottom left to top right along each row with the bottom row representing the lowest range of WMH volume or GFAP concentration and the top 
row representing the highest range of WMH volume or GFAP concentration, respectively. The rows demonstrating the relationship in individuals 
with higher distributions are indicated by rows labelled (ii) while relationships in participants with lower distributions are indicated by rows 
labelled (i). The columns correspond to the levels of WMH or GFAP as shown in the bar graph above the panels. For example, in Fig. 2A, the top 
right plot shows the relationship between GFAP and p-tau217 in individuals with the largest WMH volume (i) while the bottom left panel shows 
the relationship between GFAP and p-tau217 in individuals with the smallest WMH volume (ii). WMH, white matter hyperintensities; GFAP, glial 
fibrillary acidic protein; p-tau217, phosphorylated tau 217.
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through GFAP of WMH on p-tau217 concentration, but 
p-tau217 concentration was not associated with NfL concen-
tration. No Alzheimer’s disease biomarker concentrations 
were associated with age-residualized NfL concentrations 
among cognitively stable participants, likely due to low vari-
ance in neurodegeneration at this disease stage. Among those 
with MCI (Fig. 3C), increased WMH volume had a direct ef-
fect on p-tau217 and NfL concentrations but not GFAP con-
centration. GFAP concentration had an indirect effect on NfL 
concentration through p-tau217. Finally, in those diagnosed 
with dementia (Fig. 3D), there were no direct or indirect ef-
fects of WMH on plasma Alzheimer’s disease biomarker con-
centrations. Still, GFAP continued to have a positive indirect 
effect on NfL through p-tau217 concentration. In a path ana-
lysis that formally included age, age drove increases in WMH, 
which in turn were associated with elevations in plasma 
GFAP, p-tau217 and NfL concentrations (Supplementary 
Fig. 1).

Discussion
Our findings suggest that among adults with Down syn-
drome, cerebrovascular disease promotes Alzheimer’s 
disease-related neurodegeneration indirectly through in-
creasing astrocytosis and tau pathophysiology in the preclin-
ical stages of Alzheimer’s disease and directly and indirectly 
in the clinical stages of Alzheimer’s disease. These results 
support our hypothesis that cerebrovascular disease in the 
form of WMH may initially promote increases in 

inflammation and tau pathophysiology, giving rise to down-
stream neurodegeneration.

Pathogenic models of Alzheimer’s disease emphasize a pre-
cipitating role of Aβ that leads to tau pathology and subse-
quent neurodegeneration6; however, we found that tau 
pathology did not appear to exert a direct effect on neurode-
generation until elevated by both cerebrovascular disease and 
astrocytosis. Post hoc analyses revealed an interaction be-
tween plasma GFAP and WMH in promoting Alzheimer’s 
disease pathophysiology and downstream neurodegenera-
tion, suggesting synergy between vascular and inflammatory 
processes in this proposed pathophysiological cascade.

Our findings are in line with our previous study, which 
showed more consistent associations between peripheral 
proteomic markers of inflammation and MRI markers of 
cerebrovascular disease in presymptomatic phases of 
Alzheimer’s disease among adults with Down syndrome.32

Further, post-mortem data revealed a unique inflammatory 
profile in adults with Down syndrome and inflammatory 
proteins related to astrocytosis were elevated in the early 
stages of Alzheimer’s disease.62 Adults with Down syndrome 
also show evidence of blood–brain barrier (BBB) disruption 
at autopsy,63 which may be the result, in part, of vascular le-
sions observed on MRI.64 Additionally, in mouse models of 
Alzheimer’s disease, white matter abnormalities caused by 
hypoperfusion promote Alzheimer’s disease pathology,12 as-
trocytosis65 and BBB disruption.66 Therefore, it is possible 
that cerebrovascular lesions give rise to astrocytosis and 
BBB disruption, which promote downstream tau accumula-
tion and neurodegeneration.

Figure 3 Path models for biomarker progression across diagnostic groups. Structural equation modelling calculates relative causal 
relationships among different pathophysiological contributors in the whole sample (A) and across diagnostic groups (B–D). Larger numbers 
(regression coefficients) signify stronger direct effects. Aβ, amyloid beta; WMH, white matter hyperintensities; p-tau217, phosphorylated tau 217; 
GFAP: glial fibrillary acidic protein; NfL, neurofilament light chain; MCI, mild cognitive impairment.
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White matter hyperintensities are generally considered 
to reflect ‘end-organ’ ischaemic damage due to chronic ex-
posure to vascular risk factors.67 In the context of 
Alzheimer’s disease, however, the aetiology of WMH has 
been widely debated.67 Some argue that in Alzheimer’s dis-
ease, WMH are attributable primarily to cerebral amyloid 
angiopathy (CAA),68 especially in the absence of systemic 
vascular risk factors, as in Down syndrome. Others claim 
that WMH are the result of Alzheimer’s disease-related neu-
rodegeneration, so-called Wallerian degeneration.69,70 We 
have argued against some of these pathways on the basis of 
temporality, experimental evidence and anatomical distribu-
tion,71 and the results of this study provide further evidence 
against these possibilities. In post hoc analyses, we did not 
observe an association between WMH volume and number 
of cerebral microbleeds [r = −0.043 (−0.226, 0.143), P =  
0.649], a radiological marker of CAA.19,72 This observation 
is consistent with our finding that cerebral microbleeds only 
modestly mediate an association between autosomal domin-
ant mutations for Alzheimer’s disease and increased WMH 
volume.73 While new criteria for CAA include multispot sub-
cortical WMH,74 this pattern of WMH is rarely observed in 
individuals with Down syndrome upon visual inspection. 
Instead, WMH tend to be confluent with the walls of the lat-
eral ventricles and appear as diffuse lesions extending to-
wards the cortex as they progress. Further, the emergence 
of WMH and amyloid occurs at approximately the same 
age in adults with Down syndrome.75 It is unlikely that 
WMH are solely attributable (downstream) to amyloidosis 
in this population. Instead, we hypothesize that WMH in the 
context of Alzheimer’s disease (and in the relative absence of 
vascular risk factors) reflect inflammatory changes at the level 
of the endothelium, which could contribute to the weakening 
of the vessel walls and increased risk for other vascular lesions, 
like microbleeds, as well as the downstream tau abnormalities 
we observed. Nonetheless, WMH may be caused by multiple 
pathologies, and clearly future work should attempt to clarify 
their aetiological and pathological basis in individuals with 
and without Alzheimer’s disease.

Our statistical modelling suggests that WMH precede or 
are upstream from tau pathophysiology and neurodegenera-
tion markers. Animal stroke models show evidence of in-
creased GFAP-positive astrocytes observed around the 
lesion days after vessel occlusion in models of small vessel 
and white matter stroke76,77 and white matter hypoperfu-
sion increases tau hyperphosphorylation in mouse models.12

Taken together, we speculate that there is an endogenous 
cerebrovascular component to Alzheimer’s disease patho-
genesis that likely is not due to amyloid and tau pathology 
but instead interacts with inflammatory processes to pro-
mote tauopathy and subsequent neurodegeneration.

It is unclear what upstream factors among individuals with 
Down syndrome give rise to WMH and other cerebrovascular 
lesions observed on MRI in the absence of vascular risk fac-
tors. Individuals with Down syndrome have a unique inflam-
matory profile and elevated reactive oxygen species (ROS) 
reflecting mitochondrial dysfunction,78 which could 

potentially cause vascular inflammation and reflect BBB dys-
function.79,80 ROS are also increased in mouse models of 
hypoperfusion-induced oxidative stress, which interferes 
with white matter repair.81-83 This profile is likely mediated 
by the antioxidant enzyme Cu/Zn-superoxide dismutase-1 
(SOD1) gene localized on chromosome 21.84,85 The oligo-
dendrocyte lineage transcription factor 2 (OLIG2) gene is 
also located on chromosome 21.86 OLIG2 expresses in oligo-
dendrocyte progenitor cells (OPCs), which regulate white 
matter development,87 myelin maintenance and myelin re-
pair, features that may be central to Alzheimer’s disease.88-90

As the WMH observed on MRI may partially reflect demye-
lination and axonal damage,91 the downstream products of 
OLIG2 overexpression in Down syndrome and its inter-
action with inflammatory processes may be in the pathway 
towards the development of cerebrovascular lesions in the 
white matter.92 Triplication of OLIG2 results in an increased 
number of OPCs, shifting differentiation towards an in-
creased number of astrocytes in Down syndrome92 that 
may serve to impede OPC-mediated remyelination and re-
pair, possibly93 contributing to the strong relationship be-
tween cerebrovascular disease and astrocytosis reported 
here. Future research should examine potential pathways 
that give rise to cerebrovascular disease in Down syndrome 
and determine the extent to which they are independent or 
interact with Alzheimer’s disease pathophysiology.

Notably, we did not find any association between plasma 
Aβ42/40 concentration and WMH volume or NfL concen-
tration. This finding was unexpected, given the well- 
documented overproduction of Aβ in individuals with 
Down syndrome.1 However, plasma Aβ concentrations re-
main steady across the adult lifespan in adults with Down 
syndrome after about age 30 years94 and may have plateaued 
in most participants prior to enrolment. The lack of dynamic 
range in Aβ concentrations could yield null results despite the 
importance of the amyloid pathology. Additionally, plasma 
amyloid measures may not capture brain-related amyloid 
pathology with as high fidelity as the other plasma 
Alzheimer’s disease biomarkers.95,96 On the other hand, 
while p-tau217 reliably reflects tau-positron emission tom-
ography (PET) and CSF levels,97,98 increases in p-tau217 
concentration precede elevations in tau-PET99 and capture 
some degree of Aβ pathology.98,100 However, in adults 
with Down syndrome, p-tau217 is more strongly associated 
with tau-PET standard uptake value ratio (SUVR) than 
Aβ-PET (Centiloid) Aβ+ individuals,44 and in post hoc ana-
lyses among participants in ABC-DS analyses, we found 
that p-tau217 was more strongly associated with Braak 
I–II [R = 0.66 (0.55, 0.74), P < 0.0001] and Braak III–IV 
[R = 0.75 (0.67, 0.82), P < 0.0001] tau-PET SUVR than 
with Aβ Centiloid value [R = 0.64 (0.55, 0.72), P < 0.0001], 
suggesting that p-tau217 concentrations in the current study 
reflect primarily tau pathology.

There are some limitations to this study. Although we used 
statistical analyses that probe directionality, the data used in 
the study were cross-sectional, which limits our ability to con-
firm causal relationships. Longitudinal data will be helpful to 
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confirm the temporal relationships among cerebrovascular dis-
ease, astrocytosis, tau pathophysiology and neurodegeneration 
fully. Further, there were relatively small sample sizes for sub-
groups of participants, including those diagnosed with MCI 
and dementia. However, the relationships we observed within 
these groups were statistically reliable, and we therefore had ad-
equate statistical power for hypothesis testing. Finally, the de-
velopment, implementation and understanding of fluidic 
Alzheimer’s disease-related biomarkers are rapidly evolving, 
and the underlying factors that drive variance in these measures 
are not fully understood. Future work will combine these obser-
vations with other data sources and cohorts, including molecu-
lar PET imaging and pathological outcomes, to further the 
understanding of the role of cerebrovascular disease in 
Alzheimer’s disease among individuals with Down syndrome 
and neurotypical adults. Nonetheless, our study provides evi-
dence suggesting that cerebrovascular disease and inflamma-
tion play a key role early in Alzheimer’s disease-related 
neurodegeneration in adults with Down syndrome.

Supplementary material
Supplementary material is available at Brain 
Communications online.
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