
Background 

In the popular media and scientific literature, attempts have been made to 
question the scientific foundation of the Paleolithic diet.  Critics of the Paleolithic 
diet have argued that the duplication of AMY1 provides evidence that humans are 
well adapted to consume large quantities of carbohydrates, including grains1.  
Similarly, it has been argued that high prevalence of lactase persistence (LP) in 
many populations illustrates adaptation to dairy consumption, as well as 
illustrating the potential for genetic adaptation to occur in the Neolithic era2.  In 
reviewing the most up to date literature on diet-related genetic change in recent 
human history, this article addresses those critiques, thereby reaffirming the 
scientific basis of the Paleolithic diet. 

Introduction 

Since the agricultural transition, humans have continued to undergo genetic 
change [1,2]. Changes in the salivary amylase (AMY1), alcohol dehydrogenase 
(ADH) and lactase (LCT) genes in very recent human history illustrate the 
potential for diet to drive genetic change in this time period [3-5]. However, 
genome scans searching for signatures of positive selection in recent human 
evolutionary history have found very little evidence of other genetic changes in 
response to diet.   New insights into the selection of AMY1, ADH, and LCT 
variants suggest that unusually strong selection pressures were applied on these 
genes during, and even before, the Neolithic era. These genetic changes are 
therefore exceptional examples, and do not represent a broader level of genetic 
adaptation to the Neolithic diet. 

 

                                                           
1 See for example: 
https://books.google.com/books?id=AB1hDgAAQBAJ&q=amylase#v=snippet&q=amylase&f=false
;https://books.google.com/books?id=4Ggf32BvMMC&q=amylase#v=snippet&q=amylase&f=false  

2 See, for example: https://www.theguardian.com/books/2013/apr/24/paleofantasy-evolution-
sex-diet-review; 
https://books.google.com/books?id=AB1hDgAAQBAJ&q=lactase#v=snippet&q=lactase&f=false 
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Detecting signatures of recent genetic change 

Selection of a beneficial mutation causes a reduction in the diversity of SNPs 
either side of the selected allele.  This pattern of reduced diversity is described as 
a selective sweep [6]. Recent research attempting to find evidence of recent 
genetic change has largely focused on the identification of selective sweeps in the 
genome.  Since mutations that have occurred in recent human history are unlikely 
to have reached fixation in the current population, the genomic signature is likely 
to be a partial selective sweep (in which the beneficial mutation is carried by a 
proportion of the population, rather than by every member of the population) 
[6,7].  Genomic signatures of selective sweeps can also occur as a result of 
genetic caused by population bottlenecks; it is therefore important to rule out 
population bottlenecks when searching for adaptive change within the genome 
[8]. 

Standard statistical tests used to provide evidence of selection include 
Tajima’s D test and Fay and Wu’s H test, which detect deviations the ratio of 
intermediate-frequency mutations relative to low and high frequency mutations 
[8].  A low Tajima’s D can result from positive selection, while a high Tajima’s D 
can result from balancing selection, for example [8].  A negative Tajima’s D 
result has been used as evidence for recent selective sweeps in LCT and AMY1 
[8,21]. These standard tests are useful in candidate-gene studies in which there is 
a prior hypothesis of selection [14]. Recently, advanced statistical tests have been 
designed to detect signals of selection from whole-genome scans, in order to 
identify novel genes that may have been targets of recent selection.  These include 
haplotype-based tests (a haplotype is a chromosomal segment defined by the 
specific array of single nucleotide polymorphisms, (SNPs) that it carries [9]) able 
to detect haplotypes of high homozygosity that extend over large chromosomal 
regions [8,10], and the linkage disequilibrium decay (LDD) test which detects a 
decrease in recombination rates either side of an SNP that has undergone recent 
positive selection [11,12].  Additionally, attempts have been made to search for 
signatures of polygenic adaptation, in which adaptation has occurred through 
subtle changes in allele frequencies at multiple loci [13]. Following the discovery 
of a SNP, further evidence (such as correlation with environmental factors, and 
comparison with the genomes of other species) can be used to determine whether 
a candidate SNP has likely been subject to positive selection [8]. 
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Recent genome-wide scans 

Several recent genome-wide scans have been carried out in order to search for 
genetic changes that have occurred in recent human history.  These tests are 
sensitive so that they are able to detect weak signals of positive selection, 
involving weak partial sweeps within a population.  Wang and colleagues carried 
out an LDD test and found evidence of selection in around the last 40,000 years of 
a small number genes related to diet.  These include genes involved in protein 
metabolism (such as ADAMTS19–20, APEH, and PLAU) and organic compound 
metabolism (this has been suggested to be a result of increasing meat 
consumption) [11]. Voight and colleagues used an integrated haplotype score 
(iHS) test to identify genes that have been subject to recent selection.  Diet-related 
genes that revealed signs of recent selection include genes involved in 
carbohydrate  metabolism (MAN2A1 involved in metabolizing mannose, S1 
involved in sucrose metabolism, and LCT involved in lactose metabolism), genes 
involved in lipid metabolism (including SLC27A4 and PPARD involved in 
uptake of lipids and SLC25A20 involved in oxidation of lipids), and genes 
involved in vitamin transport [14]. A composite likelihood ratio (CLR) test by 
Williamson and colleagues identified sterol carrier protein 2 (SCP2), involved in 
the intracellular movement of cholesterol as a gene that has been potentially 
subjected to recent change [15]. 
 

All of the above examples were detected in highly sensitive scans; the 
genetic changes therefore apply to only a small percentage of individuals within 
the population and do not illustrate population-wide genetic adaptation.  In 
contrast, the examples discussed below, AMY1, LCT, and ADH, represent 
genetic changes that have either reached fixation, or are much closer to reaching 
fixation.  
 

AMY1 

AMY1 encodes salivary amylase, a protein responsible for starch digestion in the 
oral cavity [16,17].  Chimpanzees have only two copies of AMY1, while humans 
have an average copy number of six (greater copy number has been shown to 
correspond to greater expression of salivary amylase and improved efficiency in 
digestion of starch)  [3,18].  Sequence analysis of genomes from other great apes 
suggests that the AMY1 gene was duplicated in the human lineage after 
divergence from the great apes, as opposed to being lost in the great ape lineage 
[3]. It is assumed that at some point in human evolutionary history, positive 
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selection occurred for individuals with a greater copy number of AMY1 [3,19].   
Perry and colleagues argue that positive selection for increased starch digestion 
occurred in the post-Neolithic era when starch consumption massively increased, 
a hypothesis that was supported by the correlation between starch consumption 
and average copy number of AMY1 in populations worldwide [3].  However, 
recent analyses suggest that positive selection occurred much earlier in human 
history.  Genome analysis of an 8000 year old Mesolithic hunter-gatherer revealed 
that this individual already had 13 copies of AMY1, which is towards the high 
end of the number of copies of Europeans, suggesting that duplication occurred 
much earlier in human evolutionary history [20]. A recent analysis by Inchley and 
colleagues conducted various analyses on sequence data from 480 individuals 
worldwide, extinct hominids including Altai Neanderthals and Denisovans, and 
Mesolithic and Neolithic humans [21]. Phylogenetic analysis using BEAST 
(Bayesian Evolutionary Analysis Sampling Trees) estimated the divergence of the 
modern and archaic human haplotypes as 450KYA, following the divergence of 
the modern human lineage from a common ancestor of the Neanderthals and 
Denisovans.  This is supported sequence data showing that Neanderthals and 
Denisovans have only two copies of AMY1 [21,22].  Hence, according to this 
most recent analysis, AMY1 duplications are likely to have occurred around 
450KYA, and to have subsequently been subject to positive selection.  Inchley 
and colleagues suggest that positive selection may have initially occurred around 
the time that food processing techniques increased the availability of starch from 
tubers during the Middle Pleistocene [21]. The presence of regional variation in 
AMY1 copy number, which has been shown by Perry and colleagues to correlate 
with starch consumption, suggests that more recent positive selection may have 
maintained higher copy numbers in populations consuming more starch, while 
allowing copies to be lost through genetic drift in populations consuming less 
starch [3,21].  Therefore, we can conclude that if positive selection for higher 
copy number of AMY1 occurred in the Neolithic era, the initial duplication and 
selection for higher copy number likely occurred before the Neolithic era. 

Lactase persistence 

Lactase (required for the digestion of lactose in milk) shows changes in 
expression in many populations, with lactase expression persisting into adulthood 
(known as lactase persistence, LP).  Lactose tolerance evolved separately in 
Northern European, African, Arabian and South Asian populations [1].  It has 
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been argued that this tolerance evolved in Neolithic herding societies.  For 
example, in Europe the trait has been suggested to have evolved in cultures along 
the Danube and Northern German plain around 5500 BCE [1,23].  LP is 
associated with different mutations in different populations, and has thus evolved 
independently in several regions [6, 24-26]. Genomic analyses reveal signatures 
of positive selection in the genomes of the various populations that correspond 
with the time period in which milk consumption is thought to have originated in 
these populations [6, 24, 26, 27].  The speed at which lactose tolerance spread 
through several dairy farming populations has led to the ‘cultural historical 
hypothesis’.  This hypothesis suggests that cultural pressures in dairy farming 
societies drove the genetic changes in LCT, rather than dairy consumption alone 
[28]. Gene-culture co-evolutionary models consistently show that evolution can 
occur at a much faster rate than in the absence of cultural forces [28,29].  
Theoretical models by Feldman and Cavalli-Sforza support the cultural historical 
hypothesis in explaining the rapid spread of lactose tolerance: these models 
showed that lactose tolerance could spread quickly through a population only if 
the children of dairy consumers also became dairy consumers, indicating a strong 
cultural pressure [28, 30]. There are currently no other known examples of genetic 
adaptation to dietary factors being driven by cultural pressures.  This may be, in 
part, because ‘cultural selection pressures may frequently arise and cease to exist 
faster than the time required for the fixation of the associated beneficial allele(s)’ 
[28].  
 
Alcohol dehydrogenase 

ADH catalyses the oxidation of ethanol to acetoaldehyde.  Recent research 
(including long-range haplotype scans) suggests that positive selection for a 
mutation in ADH, ADH1B*47His, occurred in the last 7,000-10,000 years in 
Asian populations [5, 6, 31, 32]. This mutation dramatically speeds up the activity 
of this enzyme, increasing the efficiency of alcohol metabolism [6, 31].   This 
results in a rapid accumulation of acetaldehyde which causes the distinctive 
flushing reaction [6,31]. The time period at which ADH1B*47His was selected 
coincides with the period of rice domestication in East Asia.  Since 
ADH1B*47His has been shown to protect against alcoholism [33], it been 
proposed that the selection pressure was provided by the consumption of 
fermented food and drinks accompanying rice domestication, which may have 
had a large detrimental effect on those without the mutation [6,31].  If this 
hypothesis is correct, the selection of this mutation in the last 10,000 years is a 
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result of a particularly strong selection pressure, as in the case of selection for 
mutations in LCT. 

Grain consumption and autoimmune conditions 

Some genetic changes may have occurred in response to grain consumption [34]. 
The Human Leukocyte Antigen (HLA) system, which encodes proteins involved 
in the immune response, is likely to have been subject to recent selection [35]. 
HLA haplotypes HLA-DQ2 and HLA-B8, implicated in susceptibility to celiac 
disease (CD), follow a gradient of higher levels in northern Europe to lower levels 
in the Mideast, corresponding to a similar gradient of prevalence of CD [36]. This 
gradient reflects the spread of agriculture over this region: agriculture spread from 
the Mideast towards Europe. It has therefore been suggested that Natural 
Selection occurred for HLA haplotypes that confer less susceptibility to celiac 
disease and other autoimmune disorders during the spread of agriculture through 
Europe [34;36-37].  If this hypothesis is correct, whilst some negative selection 
has occurred as a result of the detrimental effects of CD, there has been 
insufficient time for whole populations to adapt to these detrimental effects. 

Other HLA haplotypes associated with celiac disease, HLA-DQA1 and 
HLA-DQB1, show genetic signatures of balancing selection [38]. Balancing 
selection describes the maintenance of multiple alleles in a population due to 
opposing selection pressures, and commonly affects genes involved in the 
immune response (pathogens adapt to the more frequent genotypes, such that 
natural selection favors the less frequent genotypes) [39]. HLA has “long been 
observed to be under balancing selection in human populations” [40].  HLA-
DQA1 and HLA-DQB1 show particularly strong signatures of balancing selection 
in regions in which CD is common [40]. Considering that balancing selection is 
most often associated with exposure to pathogens, Sams and Hawks hypothesize 
that regions relying heavily on grain agriculture suffered an increased pathogen 
load, which favored the selection of these CD-associated variants [40].  Thus, the 
selection pressure for a strong immune response may have offset negative 
selective pressures resulting from CD, preventing the evolution of genetic 
adaptations to protect against CD. 

Selection pressure for a strong immune response may have also driven the 
selection of other genes associated with CD, supporting the hypothesis that 
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selection for a strong immune response during the Neolithic Era offset potential 
negative selection pressure resulting from CD.  Genomic scans have found 
evidence of positive selection of CD-associated variants IL12A, IL18RAP, and 
SH2B3 [41]. Since IL12A and IL18RAP are involved in the proinflammatory 
activation of cytokine pathways, the variants conferring susceptibility to celiac 
disease has been suggested to provide a more vigorous immune response [41]. 
Similarly, SH2B3 is likely to have a role in the immune response, and carriers of 
the variant of SH2B3 that confers susceptibility to celiac disease have found to 
have increased production of proinflammatory cytokines, representing a more 
vigorous immune response [41]. Given the increased exposure of populations to 
pathogens in the Neolithic era [42], Zhernakova and colleagues suggest that the 
positive selection provided by pathogens may have overridden the selective 
pressures resulting from grain consumption.  Therefore, the increased pathogen 
load during the Neolithic Era may have inhibited genetic adaptation to some of 
the negative health effects associated with grain consumption.   

Given the number of genetic changes that have likely occurred in the 
immune system in recent human history [11,15, 42], it is possible that changes at 
other loci have similarly contributed to negative immune responses to substances 
in food, and prevented populations from adapting to the immune-activating 
properties of Neolithic foods. 

 
Conclusion 

The three examples of mutations that have undergone positive selection in recent 
human history each involve a particularly strong selective pressure that allowed 
these mutations to increase in the population with unusual rapidity.  Additionally, 
in two of the three cases, AMY1 and LCT, the mutations are in the regulatory 
regions of the genes, not the protein-encoding region.  Haygood and colleagues 
suggest that throughout human evolution a particularly large number of diet-
related genes have been affected by mutations in the regulatory regions of genes 
[43]. It can be speculated that mutations that change the function of a protein in an 
advantageous manner likely occur with much lower frequency.  Considering the 
short length of time since the agricultural revolution, there has therefore been 
limited opportunity for such mutations to arise in response to modern foods.  
Conversely, the length of the Paleolithic era (around 2.5 million years) provided 
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far more opportunity for mutations of all kinds to arise and to undergo natural 
selection.  Given the small number of genetic changes that have occurred in the 
last 10,000 years in response to diet, it can be concluded that a Paleolithic dietary 
template is most closely aligned with our genetic make-up. 
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