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Diflunisal Attenuates Virulence Factor Gene Regulation and
Phenotypes in Staphylococcus aureus
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Abstract: Virulence factor expression is integral to pathogenicity of Staphylococcus aureus. We pre-
viously demonstrated that aspirin, through its major metabolite, salicylic acid (SAL), modulates
S. aureus virulence phenotypes in vitro and in vivo. We compared salicylate metabolites and a struc-
tural analogue for their ability to modulate S. aureus virulence factor expression and phenotypes:
(i) acetylsalicylic acid (ASA, aspirin); (ii) ASA metabolites, salicylic acid (SAL), gentisic acid (GTA)
and salicyluric acid (SUA); or (iii) diflunisal (DIF), a SAL structural analogue. None of these com-
pounds altered the growth rate of any strain tested. ASA and its metabolites SAL, GTA and SUA
moderately impaired hemolysis and proteolysis phenotypes in multiple S. aureus strain backgrounds
and their respective deletion mutants. Only DIF significantly inhibited these virulence phenotypes
in all strains. The kinetic profiles of ASA, SAL or DIF on expression of hla (alpha hemolysin), sspA
(V8 protease) and their regulators (sigB, sarA, agr (RNAIII)) were assessed in two prototypic strain
backgrounds: SH1000 (methicillin-sensitive S. aureus; MSSA) and LAC-USA300 (methicillin-resistant
S. aureus; MRSA). DIF induced sigB expression which is coincident with the significant inhibition of
RNAIII expression in both strains and precedes significant reductions in hla and sspA expression. The
inhibited expression of these genes within 2 h resulted in the durable suppression of hemolysis and
proteolysis phenotypes. These results indicate that DIF modulates the expression of key virulence
factors in S. aureus via a coordinated impact on their relevant regulons and target effector genes. This
strategy may hold opportunities to develop novel antivirulence strategies to address the ongoing
challenge of antibiotic-resistant S. aureus.

Keywords: salicylates; diflunisal; virulence; antimicrobial; MRSA; Staphylococcus aureus

1. Introduction

Staphylococcus aureus is an important human pathogen responsible for a broad range
of infections causing significant morbidity and mortality worldwide [1–5]. The ability of
S. aureus to cause myriad disease manifestations is mediated by the coordinated expression
of an extensive repertoire of virulence factors, including exotoxins and proteolytic enzymes.
Moreover, the rapid emergence of strains exhibiting multidrug resistance phenotypes
(e.g., methicillin-resistant S. aureus (MRSA); vancomycin-intermediate S. aureus (VISA))
has accelerated the search for novel strategies to prevent or mitigate S. aureus infections.
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Therefore, the identification of molecules that interfere with virulence factor regulation
and/or expression represents a potentially viable therapeutic strategy.

Salicylate compounds have previously been found to modulate S. aureus gene expres-
sion and virulence in vitro and in vivo [6–11]. Specifically, aspirin (acetyl-salicylic acid;
ASA) and its primary metabolite, salicylic acid (SAL) appear to reduce the severity and pro-
gression of S. aureus infections in multiple clinical settings, including infective endocarditis
(IE), hemodialysis-related tunnel catheter bacteremia, pacemaker- and other cardiac device-
related infections and prosthetic joint infections [12–16]. Furthermore, ASA and SAL have
demonstrated efficacy against MRSA in several experimental models of infection, including
IE, bacteremia and osteomyelitis [10–12,17]. Our original studies [18–22], subsequently
supported by other reports, suggested that such salicylates attenuate virulence through
interactions with global regulatory systems [10,23,24].

In the current study, ASA and its major metabolites, SAL, gentisic acid (GTA) and
salicyluric acid (SUA), as well as structural analogue, diflunisal (DIF) (Figure 1) were
each assessed for their ability to inhibit virulence regulation and associated phenotypes in
well-characterized S. aureus strains. Each of these metabolites is physiologically relevant,
as nearly all ASAs are rapidly converted to SAL, GTA and SUA in vivo [25,26]. These
compounds have been shown to exert beneficial anti-infective and anti-inflammatory
properties in humans and experimental models of disease [27,28]. Similar to ASA, DIF is
a non-steroidal anti-inflammatory drug (NSAID) that is frequently prescribed in clinical
settings for the treatment of cardiac amyloidosis and arthritis [29,30]. In addition to
its antivirulence effects on S. aureus in vitro, as well as in cutaneous and endovascular
models of infection [10,11,18–22,24], DIF has been shown to reduce bone destruction during
experimental S. aureus osteomyelitis [16]. Specifically, the impact of the above compounds
on hemolysin and protease phenotypes, as well as on the kinetics of their respective
regulatory (sigB, agr, sarA) and effector genes (hla (α-hemolysin), sspA (V8 protease)) were
compared using a panel of strategic S. aureus strains (Table 1).
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Figure 1. Chemical structure of study compounds. Study compounds included the parent compound
ASA (aspirin; acetylsalicylic acid) (A), SAL (salicylic acid) (B), GTA (gentisic acid) (C) and SUA
(salicyluric acid) (D) and the salicylate analogue DIF (diflunisal) (E).

Table 1. Staphylococcus aureus strains used in this study.

Strain Description Reference

SH1000 Laboratory strain: 8325-4 with repaired rsbU mutation American Type Culture Collection

SH1000 agr- agr-null mutant of SH1000 [31]

COL Original MRSA strain American Type Culture Collection

COL agr- agr-null mutant of COL [32]

FDA486 Prototypic MRSA with intact rsbU [33]

FDA486 rsbU- rsbU-null mutant of FDA486 [34]

FDA486 rsbV- rsbV-null mutant of FDA486 [34]

FDA486 rsbW- rsbW-null mutant of FDA486 [34]

RN6390 8325-4 derivative with 11-bp deletion in rsbU [33]

ISP479C Plasmid-cured derivative of ISP479 (derived from 8325-4) [35]
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Table 1. Cont.

Strain Description Reference

ISP479R snoD mutant of ISP479C [23]

ATCC29213 Laboratory reference strain American Type Culture Collection

MW2 CA-MRSA USA400 [36]

LAC CA-MRSA USA300 isolated from Los Angeles County Jail [37]

2. Results
2.1. Study Compounds Did Not Impede S. aureus Growth

The impact of the study compounds on the growth of SH1000 and LAC S. aureus
strains in vitro was assessed. No observable growth impairment of either strain occurred
over a 24 h time course (Figure 2).
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Figure 2. Study compounds do not affect growth of S. aureus strains. Growth curve analyses were
performed to assess the direct anti-staphylococcal activity of test compounds. Log-phase organisms
were inoculated into fresh BHI broth (OD600 = 0.05; inoculum 5 × 107 CFU/mL) containing a given
study compound (range: 0, 10, 25, 50, 100 µg/mL) and incubated at 37 ◦C with shaking. Bacterial
growth was analyzed by spectrophotometry (OD600) at 1–8 and 24 h timepoints. (# Control; • ASA
25 µg/mL;4 SAL 25 µg/mL; N GTA 25 µg/mL; � SUA 25 µg/mL; � DIF 25 µg/mL).

2.2. Study Compounds Differentially Modulated Hemolysin Activity in S. aureus

The impact of the study compounds on hemolytic phenotypes is summarized in
Figures 3 and 4. Overall, the study compounds exerted differential effects on hemolysis
in the S. aureus study strain set. DIF exposures resulted in marked reductions in the
percentage of hemolysis relative to control for all study strains as compared to ASA or any
of its metabolites. This outcome was true regardless of genetic background (e.g., USA100
(COL), USA300 (LAC), USA400 (MW2)) or classical laboratory (RN6390) or reference strain
(ATCC29213). As SAL is the primary biometabolite of ASA, compounds were compared to
SAL in reducing hemolysis.
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Figure 3. Study compounds affect hemolysis production of S. aureus strains. Log-phase organisms
inoculated onto blood agar plates containing 25 µg/mL of ASA, SAL, GTA, SUA or DIF, or no
compound. Plates were incubated for 24 h for bacterial growth followed by cold shock (4 ◦C, 4 h)
for hemolysin activity. Zones of clearing were measured and normalized to no compound control.
Closed circled colony (top left) is SH1000. Dotted circled colony (third row, second position) is LAC.
Data are presented in Figure 4 as percent of control. Top row (left to right): SH1000 (1), SH1000 ∆agr
(2), RN6390 (3); second row (left to right) FDA486 (wt) (4), FDA486 ∆rsbU (ALC2128) (5), FDA486
∆rsbV (ALC2129) (6), FDA486 ∆rsbW (ALC2130) (7); third row (left to right) MW2 (8), LAC (9),
ISP479R (10), ISP479C (11); fourth row (left to right) ATCC29213 (12), COL (13), COL ∆agr (14).
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Figure 4. Relative hemolysis of S. aureus strains exposed to study compounds. Quantitative analyses
of zones of clearing were measured and normalized to no compound control. Mean (bold) values and
standard deviations (brackets) for each strain and compound combination are presented. Statistics
were performed using two-way ANOVA and presented as: * p < 0.05, ** p < 0.01 and *** p < 0.001 for
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compound vs. ASA. ˆ p < 0.05, ˆˆ p < 0.01 and ˆˆˆ p < 0.001 for DIF vs. SAL. + p < 0.05 and ++ p < 0.01
for mutant vs. parent. Significantly decreased values are presented in blue while increased values are
presented in red. * See statistical outcomes key in the Materials and Methods section for more details.

To explore the role of virulence factor regulation relative to compound efficacy, a
panel of strategic mutants was evaluated. When comparing mutants against WT parents,
only ASA yielded a greater inhibition of hemolysis in the SH1000 agr-deficient mutant
(78.82 vs. 98.79; p = 0.05). However, this mutant had a significantly greater hemolysis
in the presence of SAL or GTA (98.34 vs. 89.35; p = 0.02 and 100.22 vs. 109.81; p = 0.01,
respectively) as compared to ASA (Figure 4). To explore the impact of the sigB regulon on
hemolysis modulation by study compounds, rsbU-, rsbV- and rsbW-deficient mutants were
studied in the FDA486 MSSA background (Figures 3 and 4). Only GTA exposure revealed
a significantly greater hemolysis in the FDA486 rsbU-deficient mutant as compared to its
parent (116.29 vs. 88.94; p = 0.0017; Figure 4). No significant differences in the inhibitory
effects of other study compounds were observed with respect to rsb-deficient mutants as
compared to the parent. Likewise, SAL, GTA SUA and DIF exerted a greater modulation
of hemolysis than SAL in RN6390 and ISP479C, but only DIF did so in the ISP479 snoD
mutant. Overall, DIF exhibited a significantly greater inhibition of hemolysis relative to all
other study compounds in the diverse panel of strains tested.

2.3. Study Compounds Differentially Inhibited Proteolysis Activity in S. aureus

The impacts of ASA, its metabolites or DIF on proteolytic phenotypes are summarized
in Figures 5 and 6. Only DIF exerted significant reductions in the percentage of proteolysis
relative to control for all study strains. Moreover, DIF achieved a significantly greater
inhibition of proteolysis than ASA in all study strains. Relative to SAL, only DIF exhibited
a significantly greater inhibition of proteolysis in most strains studied. No significant
differences were observed in terms of DIF inhibition of proteolysis in any parent vs. mutant
strain pairs.
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Figure 5. Study compounds affect proteolysis production of S. aureus strains. Log-phase organisms
were inoculated onto standard-method caseinate agar plates containing 25 µg/mL of ASA, SAL,
GTA, SUA or DIF, or no compound. Plates were incubated for 24 h for bacterial growth followed by
cold shock (4 ◦C, 4 h) for hemolysin activity. Zones of clearing were measured and normalized to
no compound control. Closed circled colony (top left) is SH1000. Dotted circled colony (third row,
second position) is LAC. Data are presented in Figure 6 as percent of control. Top row (left to right):
SH1000 (1), SH1000 ∆agr (2), RN6390 (3); second row (left to right) FDA486(wt) (4), FDA486 ∆rsbU
(ALC2128) (5), FDA486 ∆rsbV (ALC2129) (6), FDA486 ∆rsbW (ALC2130) (7); third row (left to right)
MW2 (8), LAC (9), ISP479R (10), ISP479C (11); fourth row (left to right) ATCC29213 (12), COL (13),
COL ∆agr (14).
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Figure 6. Relative proteolysis of S. aureus strains exposed to study compounds. Quantitative analyses
of zones of clearing were measured and normalized to no compound control. Mean (bold) values and
standard deviations (brackets) for each strain and compound combination are presented. Statistics
were performed using two-way ANOVA and presented as: * p < 0.05, ** p < 0.01 and *** p < 0.001 for
compound vs. ASA; ˆ p < 0.05, ˆˆ p < 0.01 and ˆˆˆ p < 0.001 for DIF vs. SAL. Significantly decreased
values are presented in blue while increased values are presented in red. * See statistical outcomes
key in the Materials and Methods section for more details.

In comparison to hemolysis, the components of the rsb regulon had significant differ-
ences relative to their impact on DIF efficacy in suppressing proteolysis (Figures 5 and 6).
For example, as compared to the parent, proteolysis in rsbU- and rsbW-deletion mutants
was significantly less inhibited by DIF (19.90 vs. ≤ 5; p = 0.006 and 32.69 vs. ≤ 5; p = 0.001,
respectively). However, relative to the rsbW-deletion mutant, DIF exerted a significantly
greater inhibition of proteolysis in the rsbU- and rsbV-deletion mutants (19.90 vs. 32.69;
p = 0.029 and 9.64 vs. 32.69; p = 0.03, respectively). Together, these data suggest that the rsb
regulon contributes to DIF efficacy in modulating proteolysis inhibition.

2.4. ASA, SAL and DIF Exhibited Differential Kinetics of Virulence Gene Inhibition

To explore the mechanistic basis of study compounds which inhibited virulence
phenotypes, we assessed the transcriptional kinetics of target structural and regulatory
genes involved in hemolysis and proteolysis. Transcriptional profiles for two prototype
strains (SH1000; and LAC-USA300) are summarized in Figure 7.
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Figure 7. DIF inhibited virulence factor mRNA expression. Expression of regulatory genes RNAIII
(agr), sarA, sigB as well as the predominant hemolysin hla (α–hemolysin) and protease sspA (V8
protease) genes were quantified over the course of 6 h, following exposure to ASA, SAL or DIF
(25 µg/mL) as compared to control. DIF inhibited mRNA expression of RNAIII, hla and sspA as
compared to ASA (* = p < 0.05; *** = p < 0.001) or SAL (+ = p < 0.05; +++ = p < 0.001) in SH1000 (MSSA)
or LAC (MRSA USA300).

The compounds ASA, SAL and DIF were the focus of transcriptomic studies as these
agents were phenotypically the most impactful on hemolysis and proteolysis. These com-
pounds had differential effects on the quantity and kinetics of regulatory gene transcription
in these two S. aureus strains (Figure 7; Supplementary Figure S1).

DIF significantly reduced RNAIII transcription within 2 h in both strains. The peak
inhibition of RNAIII transcription occurred at 4 h for SH1000 (15-fold reduction; p = 0.001 vs.
0.5-h) and at 2 h for LAC (40-fold reduction; p < 0.0001 vs. 0.5-h). Consistent with this effect,
the RNAIII counter-regulatory genes sarA or sigB increased in their expression in SH1000
or LAC, respectively. The sarA peak transcription occurred at 4 h post-exposure to ASA in
SH1000 (p = 0.06 vs. 0.5-h). The sigB peak transcription occurred by 2 h post-exposure to
DIF in LAC (p = 0.15 vs. 0.5 h). Study compounds did not significantly differ in their impact
on sarA or sigB expression. Interestingly, sarA transcription did not appreciably increase in
LAC, and sigB transcription did not appreciably increase in SH1000, regardless of time or
compound. Notably, regulatory gene transcription essentially returned to baseline in both
strains by 6 h post-exposure regardless of the study compound.

Study compounds also had differential effects on the quantity and kinetics of virulence
gene transcription in comparative S. aureus strains (Figure 7). Consistent with downregu-
lated RNAIII transcription, in SH1000, DIF caused a significant reduction in hla (~140-fold)
transcription at 4 h as compared to baseline; this effect was significantly greater than ASA or
SAL (Figure 7). The reduction in hla transcription by DIF was observed at every time point
in LAC, but did not reach significance relative to baseline or other compounds. In both
strains, DIF inhibition of sspA expression was significant at 4 h post-exposure as compared
to ASA or SAL (Figure 7). In SH1000, hla expression remained highly suppressed by DIF at
6 h, but did not achieve significance as compared to baseline or other study compounds.
Likewise, DIF inhibition of sspA expression trended to return to baseline by 6 h in SH1000.
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In contrast, DIF inhibition of sspA expression in LAC continued to remain significant over
the 6 h study period as compared to baseline (p = 0.01 vs. 0.5-h), but was only significant at
4 h as compared to ASA (Figure 7).

3. Discussion

Recent serendipitous clinical observations revealed that ASA exerts beneficial anti-
infective efficacy in multiple human infectious diseases. For example, low-dose ASA and
its de-acetylated metabolite SAL significantly decrease the risk of S. aureus bacteremia in
patients with hemodialysis tunneled catheters and with infected prosthetic joints [12,13].
Experimental models also show that these compounds reduce the severity and progression
of infective endocarditis [10,11,17]. These observations have prompted increasing interest
in the potential to repurpose ASA or other nonsteroidal anti-inflammatory drugs (NSAIDs)
as novel adjunctive anti-infective therapies.

In the current study, the impact of ASA, its salicylate metabolites (SAL, GTA, SUA)
and the fluorinated structural analogue, DIF, were studied for their modulation of virulence
phenotypes and transcriptional regulation using a panel of defined S. aureus strains in vitro.
ASA, SAL and DIF exerted inhibitory effects on hemolysis and proteolysis capabilities.
However, only DIF inhibited both virulence phenotypes in all study strains, and did
so significantly greater than ASA and SAL (Figures 4 and 6). Interestingly, in SH1000
lacking agr, a greater inhibition of hemolysis was observed by ASA as compared to the
wild-type parent strain. In contrast, agr did not significantly impact DIF efficacy in either
SH1000 or COL backgrounds (Figure 4). Similarly, the presence or absence of agr did not
affect proteolysis inhibition by DIF or other study compounds in all genetic backgrounds
(Figure 6). These findings suggest agr alone is not a primary mechanism of DIF inhibition
of hemolysis or proteolysis activity in S. aureus. The impact of genes within the sigB locus
(rsbU, rsbV, rsbW) on study compound efficacy was also investigated. The deletion of rsbV
or rsbW had no significant effect on hemolysis or proteolysis as compared to wild-type
FDA486. However, the absence of rsbU (considered to be the “sensor” of this operon) [33]
promoted hemolysis in the presence of GTA as compared to the parent. By comparison,
the deletion of any of the rsb genes consistently reduced the efficacy of DIF proteolysis
inhibition; none of these differences achieved statistical significance as compared to control.
These findings suggest that sigB and its rsb components are involved directly or indirectly
in the inhibitory mechanisms of DIF against proteolysis (Figure 6).

Next, we explored the transcriptional kinetics of target regulatory and effector genes in
response to compounds ASA, SAL or DIF that were shown to inhibit virulence phenotypes.
Gene expression was monitored over a 6 h period in prototypic MRSA and MSSA strains
to enable the temporal assessment of transcriptional profiles in response to compound
exposure. In prototypic MSSA and MRSA strains, distinct kinetic patterns of transcription
were identified in response to specific study compounds. In SH1000 (MSSA), an increased
expression of sarA by 4 h post-DIF exposure coincided with a significant suppression
of RNAIII. By comparison, in LAC (MRSA), an increased expression of sigB by 2 or 4 h
post-DIF exposure paralleled with the significant inhibition of RNAIII. These findings are
consistent with sigB as a strong counter regulator of RNAIII [38,39]. Regardless of sarA or
sigB regulation, suppression of RNAIII was strongly correlated with the inhibition of hla
and sspA. These transcriptional profiles were concordant with the significant inhibition
of hemolysis and proteolysis by DIF. It is notable that rapid transcriptional inhibition
of hla and sspA by 2–4 h resulted in a durable suppression of their respective virulence
phenotypes even at 24 h. Given that gene expression had largely returned to baseline by
6 h, early and/or temporary interference in virulence gene expression can have lasting
effects that may benefit antivirulence efficacy. Neither ASA nor SAL significantly altered
virulence gene expression in these strains over 6 h.

We recognize several potential limitations with our investigation. First, these in vitro
outcomes may not fully represent S. aureus virulence regulation within the host. Preliminary
data not presented here, support the efficacy of DIF in antibiotic therapy of MRSA infection
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in vivo [24]. Second, study compounds appeared to have relatively different degrees of
activity against different S. aureus strains. However, the fact that DIF strongly inhibited
RNAIII, hla and sspA expression, as well as hemolysis and proteolysis phenotypes in
every studied strain is promising as a therapeutic strategy regardless of S. aureus genetic
background. Third, the observation that hemolysis was not abolished in agr-deleted
SH1000 and COL backgrounds suggests agr-independent regulation of hla and sspA. This
unexpected finding has also been reported by Liu et al. [23,40] and suggests that novel
anti-infective targets of virulence inhibition are yet to be explored.

The currents studies further substantiate our original findings regarding the antivir-
ulence properties of ASA, its metabolites and the structural analogue DIF [20–22,24]. A
hypothetical model integrating the putative mechanisms of DIF is illustrated in Figure 8.
Our original observations have also been supported by work from several other laborato-
ries [16,41–43]. In light of the burgeoning threat of MRSA resistance to multiple antibiotic
classes, novel approaches to attenuate virulence without inducing resistance are attractive
strategies. For example, the complementary inhibition of virulence factor expression and
targets of conventional antibiotics may translate to a greater microbicidal impact, reduced
emergence of resistance and enhanced immune-mediated efficacy in MRSA infection. The
current findings provide further proof of concept that DIF and the structural analogues of
SAL attenuate prototypic virulence factor expression in S. aureus. The translation of these
strategies is currently under investigation in our laboratories.
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Figure 8. Hypothetical model of DIF–induced effects on regulatory and virulence gene expression in
S. aureus. We hypothesize that DIF acts on sigB to inhibit agr and/or activate sarA gene expression.
The downstream consequence of this regulatory effect is the repression of sspA and hla as well as other
unknown targets (denoted as gene xyz). These latter genes are the subject of ongoing investigations.

4. Materials and Methods

In this study, the potential for ASA and its relevant metabolites and DIF to modulate
virulence factor expression in S. aureus was investigated. Study compounds included the
parent ASA and metabolites, SAL, SUA and GTA; the salicylate analogue DIF was tested in
parallel (diflunisal) (Figure 1).

4.1. Compounds

Unless otherwise noted, the following compounds were obtained from Sigma-Aldrich,
Inc. (St. Louis, MO, USA) and prepared as stock solutions from powder: ASA; SAL; SUA



Antibiotics 2023, 12, 902 10 of 13

(Acros Organics, NJ, USA); GTA; and DIF (Figure 1). Stock solutions were prepared in
ethanol and stored at 4 ◦C until use.

4.2. Bacterial Strains

Staphylococcus aureus strains (MSSA; and MRSA) used in this study are described in
Table 1. Strains included both prototypic laboratory and well-characterized clinical isolates
with known genotypes and phenotypes. For experiments detailed below, all strains were
cultured to mid-logarithmic or stationary phase in brain–heart infusion broth (BHI; Difco
Laboratories, Detroit, MI, USA), at 37 ◦C with agitation, washed, and resuspended in
phosphate-buffered saline (PBS; Irvine Scientific, Santa Ana, CA, USA; pH 7.2). Experimen-
tal inocula were determined by spectrophotometry and validated by quantitative culture.

4.3. Anti-Staphylococcal Activity of Compounds

Growth curve analyses were performed to assess the direct anti-staphylococcal activity
of all test compounds. To do so, log-phase organisms were inoculated into fresh BHI broth
(OD600 = 0.05; inoculum 5 × 107 CFU/mL) containing a given study compound (range: 0,
10, 25, 50, 100 µg/mL) and incubated at 37 ◦C with shaking. At selected time-points (1–8 h
and 24 h), cultures were analyzed by spectrophotometry (OD600) and quantitative culture
in comparison to respective untreated controls (Figure 1).

4.4. Influence of Compounds on Hemolysin or Protease Expression

Two pivotal phenotypes in S. aureus that govern many of its virulence capacities in-
volve secretion of hemolysins and proteases [44]. The effects of our study compounds on
expression of secreted hemolysins and proteases were compared in the panel of S. aureus
strains summarized in Table 1. In these assays, blood agar-tryptic soy agar plates (TSA;
Beckton Dickinson, CA) contained either 5% sheep or 5% rabbit blood (Hardy Diagnostics,
CA) and 25 µg/mL of ASA, SAL, GTA, SUA or DIF, or no compound. These concentra-
tions encompassed the known human blood levels for ASA and DIF after standard dose
regimens [45]. Likewise, for protease assays, standard-method caseinate agar (SMCA)
plates containing 25 µg/mL of each study compound were compared to control plates
without these compounds. For these assays, strain inocula were prepared as above. To
ensure that maximal hemolysin activity was detected, hemolysin assay plates were cold-
shocked (4 ◦C for 4 h) prior to reading zones of hemolysis (α-hemolysin activity facilitated
by temperature shock [46]). Zones of hemolytic or proteolytic activity were measured
by quantitative imaging (AlphaEaseFC imager and software; Alpha Innotec, Kasendorf,
Bayern, Germany). Statistics were performed using two-way ANOVA. Data are presented
as: * p < 0.05, ** p < 0.01 and *** p < 0.001 for compound vs. ASA. ˆ p < 0.05, ˆˆ p < 0.01 and
ˆˆˆ p < 0.001 for DIF vs. SAL. + p < 0.05 and ++ p < 0.01 for mutant vs. parent.

4.5. Influence of Compounds on Gene Expression

To identify the influence of the study compounds on transcriptional correlates of the
above two virulence phenotypes, expression of selected virulence regulon or effector genes
were compared in prototypic MSSA (SH1000) and MRSA (LAC) strains. Expressions of
regulatory genes RNAIII (agr), sarA and sigB, as well as the predominant hemolysin gene,
hla (producing α-hemolysin) and the protease gene, sspA (producing V8 protease) were
quantified over a 6 h time course, following exposure to ASA, or its analogues (vs. untreated
controls). In brief, 109 CFU of log phase cells were isolated and exposed for 1 h to ASA,
SAL, GTA, SUA or DIF (concentration, 25 µg/mL). Control samples were exposed to buffer
alone in the absence of the compound. In parallel experiments, organisms were cultured
for 2 h, 4 h or 6 h in a fresh medium, and then exposed to these compounds as above. The
expression of target genes-of-interest (Supplemental Table 1) as assessed by quantitative
real-time PCR (qRT–PCR). In brief, mRNA was extracted from cells treated as above using
standard methods, and purified using RNeasy (QIAGEN Inc., Germantown, MD, USA) and
Turbo DNA-free (Ambion, Austin, TX, USA) kits per manufacturer’s instructions. Resulting
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mRNA was converted to cDNA using the RETROscript kit for reverse transcriptase PCR
(RT-PCR; Ambion) per manufacturer’s instructions. Each cDNA template was then used for
qRT-PCR based on target gene primers and optimized for ABI 7000 system implementing a
SYBR green PCR master mix (Applied Biosystems, Foster City, CA, USA). In all cases, the
threshold cycle (Ct) values were normalized to 16S rRNA. Relative fold changes in gene
expression were determined using the 2−∆∆Ct method.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics12050902/s1, Table S1: Quantitative heatmap of
SAL and DIF impact on MRSA and MSSA virulence gene mRNA expression. Expression of regulatory
(REG) genes RNAIII (agr), sarA, sigB as well as the predominant virulence factors (VIR) hemolysin hla
(α-hemolysin) and protease sspA (V8 protease) genes were quantified over the course of 6 h following
exposure to SAL or DIF (25 µg/mL) as compared to control. DIF inhibited the expression of RNAIII,
hla and sspA as compared to SAL in SH1000 (MSSA) and USA300 (MRSA) backgrounds.
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