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Domains of discontinuity of Lorentzian affine group

actions

Michael Kapovich and Bernhard Leeb

January 11, 2023

Abstract

We prove nonemptyness of domains of proper discontinuity of Anosov groups of affine

Lorentzian transformations of Rn.

There is a substantial body of literature, going back to the pioneering work of Margulis

[Ma], on properly discontinuous non-amenable groups of affine transformations, see e.g. [A,

AMS02, AMS11, Dr, DGK, GLM, Me], and numerous other papers. In this paper we address

a somewhat related question of nonemptyness of domains of proper discontinuity of discrete

groups acting on affine spaces:

Question 1. Which discrete subgroups Γ ă AffpRnq have nonempty discontinuity domain in

the affine space R
n?

In this paper we limit ourselves to the following setting: Suppose that Γ ă R
n ¸ Opn ´ 1, 1q ă

AffpRnq is a discrete subgroup such that the linear projection ℓ : Γ Ñ Opn ´ 1, 1q is a

faithful representation with convex-cocompact image, see e.g. [Bo] for the precise definition.

Given a representation ℓ : Γ Ñ Opn ´ 1, 1q, the affine action of Γ is determined by a cocycle

c P Z1pΓ,Rn´1,1
ℓ q. Even in the case n “ 3 and ℓpΓq a Schottky subgroup of Op2, 1q (which is

the setting of Margulis’ original examples), while some actions are properly discontinuous on

the entire R3 (as proven by Margulis, see also [GLM] for a general description of such actions),

nonemptyness of domains of discontinuity for arbitrary c does not appear to be obvious1.

The main result of this note is:

Theorem 2. Every subgroup Γ ă R
n ¸Opn´ 1, 1q with faithful convex-cocompact linear repre-

sentation ℓ : Γ Ñ Opn ´ 1, 1q, acts properly discontinuously on a nonempty open subset of the

Lorentzian space R
n´1,1.

We will prove this theorem by applying results on domains of discontinuity for discrete

group actions on flag manifolds proven in [KLP3]. To this end, we will begin by identifying

1The reaction to the question that we observed included: “clearly true”, “clearly false”, “unclear”.
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the Lorentzian space R
n´1,1 with an open Schubert cell in a partial flag manifold of the group

G “ Opn, 2q.

Consider the group G “ Opn, 2q and its symmetric space X “ G{K, K “ OpnqˆOp2q. The

group G has two partial flag manifolds: the Grassmannian F1 of isotropic lines and another

partial flag manifold F2 of isotropic planes in V “ R
n,2, where the quadratic form on V is

q “ x1y1 ` x2y2 ` z21 ` .... ` z2n.

We will use the notation x¨, ¨y for the associated bilinear form on V .

In the paper we will be using the Tits boundary BT itsX of the symmetric space X and the

incidence geometry interpretation of BT itsX . The Tits boundary BT itsX is a metric bipartite

graph whose vertices are labelled lines and planes, these are the elements of F1 and F2 respec-

tively. Two vertices L P F1 and p P F2 are connected by an edge iff the line L is contained in

the plane p. The edges of this bipartite graph have length π{4. We refer the reader to [Br], [G]

and [T].

The group G acts transitively on the set of edges of BT itsX and we can identify the quotient

BT itsX{G with σmod, the model spherical chamber of BT itsX . Thus σmod is a circular segment

of the length π{4. This segment has two vertices, one of which we denote τmod, this is the

one which is the projection of F1. The flag manifold F1 is the quotient G{PL, where PL is the

stabilizer of an isotropic line L in G; this flag manifold is n-dimensional.

Recall that two vertices of BT itsX are opposite iff they are within Tits distance π from each

other. In terms of the incidence geometry of the vector space pV, qq, two lines L, L̂ P F1 are

opposite iff that they span the plane spanpL, L̂q in V such that the restriction of q to spanpL, L̂q

is nondegenerate, necessarily of the type p1, 1q. Two lines L, L1 P F1 are within Tits distance

π{2 iff they span an isotropic plane in V .

Consider a subgroup PL ă G; it is a maximal parabolic subgroup of G; let U ă PL be

the unipotent radical of PL. Choosing a line L̂ opposite to L, defines a semidirect product

decomposition PL “ U ¸ GL,L̂, where GL,L̂ is the stabilizer in PL of the line L̂; equivalently, it

is the stabilizer of the parallel set2 P pL, L̂q. This subgroup is the intersection

GL,L̂ “ PL X PL̂.

The orthogonal complement VL,L̂ Ă V of the anisotropic plane spanpL, L̂q is invariant under

GL,L̂, hence,

GL,L̂ – R` ˆ OpVL,L̂, q|V
L,L̂

q – R` ˆ Opn ´ 1, 1q.

Here the group R` acts via transvections along geodesics in the symmetric space X connecting

L and L̂. The group GL,L̂ acts on both pV 1, q1q “ pVL,L̂, q|V
L,L̂

q and on U , where the action of

R` on V 1 “ VL,L̂ is trivial. In order to simplify the notation, we set

Opq1q “ OpV 1, q1q.

2The parallel set P pL, L̂q is a certain symmetric subspace in X , which is the union of all geodesics l in X

which are forward-asymptotic to L P BTitsX and backward-asymptotic to L̂ P BTitsX . The parallel set splits

isometrically as the product l ˆ H
n´1, where H

n´1 is the cross-section of P pL, L̂q.
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In terms of linear algebra, R` is the identity component of the orthogonal group

OpspanpL, L̂q, q|
spanpL,L̂qq – Op1, 1q.

We will use the notation

G1
L :“ U ¸ Opq1q ă PL.

This subgroup is the stabilizer in PL of horoballs in X centered at L.

Our next goal is to describe Schubert cells in the Grassmannian F1. We fix L P F1 and

define the subvariety QL Ă F1 consisting of all (isotropic) lines L1 Ă V such that spanpL, L1q is

isotropic (the line L or an isotropic plane). In terms of the Tits’ distance, QL ´ tLu consists of

lines L1 P F1 within distance π
2
from L. The complement

Lopp “ F1 ´ QL

consists of lines opposite to L. The group PL acts transitively on tLu, QL ´ tLu and Lopp

and each of these subsets is an open Schubert cell of F1 with respect to PL and we obtain the

PL-invariant Schubert cell decomposition

F1 “ tLu \ pQL ´ tLuq \ Lopp.

We next describe QL more geometrically. A vector v P V spans an isotropic subspace with

L iff v P LK and satisfies the quadratic equation qpvq “ 0. Since we are only interested in

nonzero vectors v ‰ 0 and their spans spanpvq, we obtain the natural identification

QL – Ppq´1p0q X LKq,

the right hand-side is the projectivization a conic in LK. Thus, QL is a (projective) conic and

L P QL is the unique singular point of the QL.

Lemma 3. Given two opposite isotropic lines L, L̂, the intersection of the conics

E “ EL,L̂ :“ QL X QL̂

is an ellipsoid in QL.

Proof. As before, let V 1 Ă V denote the codimension two subspace orthogonal to both L, L̂.

Then each L1 P E is spanned by a vector v P V 1 satisfying the condition qpvq “ 0. In other

words, E is the projectivization of the conic

tv P V 1 : qpvq “ 0u,

i.e. is an ellipsoid.

Our next goal is to (equivariantly) identify the open cell Lopp with the n-dimensional

Lorentzian affine space R
n´1,1 (where a chosen L̂ P Lopp will serve as the origin), so that
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the group PL is identified with the group of Lorentzian similarities, where the simply-transitive

action U ñ Lopp is identified with the action of the full group of translations of Rn´1,1.

We fix nonzero vectors e P L, f P L̂ such that xe, fy “ 1. Then

V “ spanpeq ‘ spanpfq ‘ V 1.

We obtain an epimorphism η : PL Ñ Opq1q by sending g P PL first to the restriction g|LK and

then to the projection of the latter to the quotient space V 1 – LK{L (the quotient of LK by the

null-subspace of q|LK). Hence, the kernel of this epimorphism is precisely the solvable radical

U ¸ R` of PL.

For each v1 P V 1 we define the linear transformation (a shear) s “ sv1 P GLpV q by its action

on e, f and V 1:

1. speq “ e.

2. spfq “ ´1

2
qpv1qe ` f ` v1.

3. For w P V 1, spwq “ w ´ xv1, wye.

The next two lemmata are proven by straightforward calculations which we omit:

Lemma 4. For each s “ sv1 the following hold:

1. s P PL.

2. s lies in the kernel of the homomorphism η : PL Ñ GLpV 1q and is unipotent. In

particular, s P U for each v1 P V .

Lemma 5. The map φ : v1 ÞÑ sv1 is a continuous monomorphism V 1 Ñ U , where we equip the

vector space V 1 with the additive group structure.

Since U acts simply transitively on Lopp, it is connected and has dimension n. Therefore,

the monomorphism φ is surjective and, hence, a continuous isomorphism. Thus, φ determines

a homeomorphism h : V 1 Ñ Lopp

h : v1 ÞÑ sv1pL̂q “ span

ˆ

´
1

2
qpv1qe ` f ` v1

˙

,

hp0q “ L̂.

The group GL,L̂ – R` ˆOpV 1, q1q acts on both Lopp and on U (via conjugation). The center

of GL,L̂ acts on V 1 trivially while its action on U is via a nontrivial character.

Proposition 6. The map h is equivariant with respect to these two actions of OpV 1, q1q.

Proof. Consider a linear transformation A P OpV 1, q1q; as before, we identify OpV 1, q1q with a

subgroup of OpV, qq fixing e and f . For an arbitrary v1 P V 1 we will verify that

sAv1 “ Asv1A´1.
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It suffices to verify this identity on the vectors e, f and arbitrary w P V 1. We have:

1. For each u P V 1, supeq “ e, while Apeq “ A´1peq “ e. It follows that

e “ sAv1peq “ Asv1A´1peq “ e.

2.

sAv1pfq “ ´
1

2
qpAv1qe ` f ` Av1 “ ´

1

2
qpv1qe ` f ` Av1

while (since Ae “ e, Af “ f)

Asv1A´1pfq “ Asv1pfq “ Ap´
1

2
qpv1qe ` f ` v1q “ ´

1

2
qpv1qe ` f ` Av1.

3. For w P V 1,

sAv1pwq “ w ´ xAv1, wye “ w ´ xv1, A´1wye,

while

Asv1A´1w “ Asv1pA´1wq “ ApA´1w ´ xv1, A´1wyeq “ w ´ xv1, A´1wye.

In view of this proposition we will identify V 1 with the open Schubert cell Lopp, which, in

turn, enables us to use Lorentzian geometry to analyze Lopp and, conversely, to study discrete

subgroups of PL using results of [KLP3] on domains of discontinuity of discrete group actions on

the flag manifold F1. Under the identification V 1 – Lopp, for each L̂ P Lopp, the conic QL̂ XLopp

becomes a translate of the null-cone of the form q1 on V 1 (see Lemma 7 below) and the flag

manifold F1 becomes a compactification of V 1 obtained by adding to it the “quadric at infinity”

QL.

Lemma 7. For all v1 P V 1, q1pv1q “ 0 iff q vanishes on spanpf, hpv1qq, i.e. iff hpv1q P QL̂. In

other words, QL̂ X Lopp is the image under h of the null-cone of q1 in the vector space V 1.

Proof. Since f and sv1pfq (spanning the line hpv1q) are null-vectors of q, the vanishing of q on

spanpf, hpv1qq is equivalent to the vanishing of

xf, sv1pfqy “ ´
1

2
qpv1q.

Lemma 8. For each neighborhood N of L in QL there exists L̂ P Lopp such that EL,L̂ Ă N .

Proof. We pick L8 P F1 opposite to L and, as above, identify L
opp
8 with pV 1, q1q. Then for a

sequence L̂i P L
opp
8 contained in the, say, future light cone of QL XL

opp
8 and converging radially

to L, the intersections of null-cones EL,Li
“ QLi

X QL converge to L. Since Li R QL, they are

all opposite to L.

For each subset C Ă F1, we define the thickening of C:

ThpCq “
ď

LPC

QL.
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This notion of thickening is a special case of the one developed in [KLP3] (see also [KL2]):

If we restrict to a single apartment a in the Tits building of G, then for the vertex L P a,

ThpLq X a “ QL X a consists of three vertices within Tits distance π
2
from L. Thus, in the

terminology of [KLP3], the thickening Th is fat.

Lemma 9. For any two opposite lines L, L̂ P F1 and each compact subset C Ă QL̂ X Lopp, the

intersection ThpCq X Lopp is a proper subset of Lopp.

Proof. Let H Ă Lopp – V 1 be an affine hyperplane in V 1 intersecting QL̂ only at L̂. Then

C 1 :“ tL1 P H : QL1 X C ‰ Hu

is compact in H . Next, observe that for L1, L2 P F1, L1 P QL2
ðñ L2 P QL1

. Thus, every

L1 P H ´ C 1 does not belong to ThpCq.

Lemma 10. For each compact C Ă QL ´ tLu the thickening ThpCq is a proper subset of F1.

Proof. Lemma 8 implies that there exists L8 P Lopp such that EL,L8
is disjoint from C. Thus,

C is contained in L
opp
8 . Now the claim follows from Lemma 9.

We now turn to discrete subgroups Γ ă G1
L ă PL ă G. We refer the reader to [KLP3] for

the notion of τmod-regular discrete subgroups Γ ă G and their τmod-limit sets, which are certain

closed Γ-invariant subsets of F1.

Remark 11. We must also note that the notion equivalent to τmod-regularity and the τmod-lit

set was first introduced by Benoist in his highly influential work [Ben].

An important class of τmod-regular discrete subgroups Γ ă G consists of τmod-Anosov sub-

groups. Anosov representations Γ Ñ G whose images are Anosov subgroups were first intro-

duced in [La] for fundamental groups of closed manifolds of negative curvature, then in [GW]

for arbitrary hyperbolic groups; we refer the reader to our papers [KLP4, KLP5, KL1], for a

simplification of the original definition as well as for alternative definitions and to [KL2, KLP2]

for surveys of the results.

Lemma 12. The τmod-limit set Λτmod
pΓq of every τmod-regular discrete subgroup Γ ă PL is

contained in QL.

Proof. Recall that G1
L and, hence, Γ, preserves each horoball Hbo in X centered at L, where

the latter is regarded as a point of the visual boundary of the symmetric space X . Therefore,

for each x P Hbo, the closure of Γx in X “ X Y B8X is contained in the ideal boundary of Hbo,

which is the closed π
2
-ball B̄pL, π

2
q in B8X centered at L, where the distance is computed in the

Tits metric on B8X . For each vertex τ of the building BT itsX which belongs to B̄pL, π
2
q the star

stpτq Ă B8X is contained in the closed ball in B8X of the radius 3π
4

centered at L. Therefore,

the intersection of stpτq with the Grassmannian F1 is contained in B̄pL, π
2
q. It follows from the

definition of the τmod-limit set that Λτmod
pΓq is contained in F1 X B̄pL, π

2
q “ QL.
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Proposition 13. Suppose that Γ ă G1
L is a τmod-regular discrete subgroup whose τmod-limit set

does not contain L. Then

ThpΛτmod
pΓqq ‰ F1

and the action

Γ ñ F1 ´ ThpΛτmod
pΓqq

is properly discontinuous.

Proof. Since Λτmod
pΓq is a compact subset of QL, the first statement of the proposition is a

special case of Lemma 10. The proper discontinuity statement is a special case of a general

theorem [KLP3, Theorem 6.13] since the thickening Th is fat.

We now describe certain conditions on τmod-regular discrete subgroups Γ ă G1
L which will

ensure that Λτmod
pΓq does not contain the point L. Each subgroup Γ ă G1

L has the linear part

Γ0, i.e. its projection to Opq1q – Opn ´ 1, 1q, which is identified with the semisimple factor of

the stabilizer in PL of some L̂ P Lopp. We now assume that:

• Γ0 is a convex-cocompact subgroup of Opn ´ 1, 1q.

• The projection

ℓ : Γ Ñ Γ0

is an isomorphism.

Since Γ0 ă Opq1q is convex-cocompact and Opq1q ă PL is the Levi subgroup of the parabolic

group PL stabilizing a face of type τmod of BT itsX , it follows that Γ0 ă G is a τmod-Anosov

subgroup of G; the τmod-limit set of Γ0 is contained in the visual boundary of the cross-section

(isometric to H
n´1) of the parallel set P pL, L̂q; in particular, Λτmod

pΓ0q does not contain L.

Given a subgroup Γ0 ă Opq1q, the inverse ρ : Γ0 Ñ Γ to ℓ : Γ Ñ Γ0 is determined by a

cocycle c P Z1pΓ0, V
1q which describes the translational parts of the elements of Γ:

ρpγq : v ÞÑ γv ` cpγq, v P V 1 – R
n´1,1.

Pick some t P R`; then tc is again a cocycle corresponding to the conjugate representation ρt,

where we identity t P R` with a central element of GL,L̂. Sending t Ñ 0 we obtain:

lim
tÑ0

ρt “ id,

the identity embedding Γ0 Ñ Opn ´ 1, 1q ă PL. In view of stability of Anosov representations

(see [GW] and [KLP1]) we conclude that all representations ρt are τmod-Anosov and the τmod-

limit sets of Γt “ ρtpΓ0q vary continuously with t; moreover,

tΛτmod
pΓt1q “ Λτmod

pΓt2q

where t “ t2{t1. In particular,

Λτmod
pΓq Ă QL ´ tLu

is a compact subset. Proposition 13 now implies:

7



Corollary 14. For each Γ as above,

ThpΛτmod
pΓqq ‰ F1

and the action

Γ ñ F1 ´ ThpΛτmod
pΓqq

is properly discontinuous.

Thus, we proved that each discrete subgroup Γ ă PL as above has nonempty domain of

discontinuity in the vector space V 1. Theorem 2 follows.

Acknowledgements. The first author was partly supported by the NSF grant DMS-16-

04241, by a Simons Foundation Fellowship, grant number 391602, by Max Plank Institute for

Mathematics in Bonn, as well as by KIAS (the Korea Institute for Advanced Study) through

the KIAS scholar program. Much of this work was done during our stay at KIAS and we are

thankful to KIAS for its hospitality.

References

[A] H. Abels, Properly discontinuous groups of affine transformations: a survey, Geom.

Dedicata 87 (2001), no. 1-3, pp. 309–333.

[AMS02] H. Abels, G. Margulis, G. Soifer, On the Zariski closure of the linear part of a properly

discontinuous group of affine transformations, J. Differential Geom. 60 (2002), no.

2, pp. 315–344.

[AMS11] H. Abels, G. Margulis, G. Soifer, The linear part of an affine group acting properly

discontinuously and leaving a quadratic form invariant, Geom. Dedicata 153 (2011),

pp. 1–46.

[Ben] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal.
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