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Abstract

The use of transitional probabilities between phonetic segments
as a cue for segmenting words from English speech is in-
vestigated. We develop a series of class-based n-gram and
feature-based neural network models that enable us to quan-
tify the contribution of low-level statistics to word boundary
prediction. Training data for our models is representative of
genuine conversational speech: a phonological transcription of
the London-Lund corpus. These simple models can be purely
bottom-up and hence valid bootstrapping models of infant de-
velopment. We go on to demonstrate how the boostrapping
models mimic the Metrical Segmentation Strategy of Cutler
and Norris (1988), and we discuss the implications of this re-
sult.

Introduction: The Segmentation Problem

The majority of word boundaries in normal speech are not
reliably marked by acoustic breaks. Segmentation is the pro-
cess of dividing up the continuous input speech stream into
linguistically and psychologically significant units that can be
used to access meaning. Segmentation and recognition appear
to stand in a chicken-and-egg relationship: the extraction of
a meaningful unit presupposes recognizing what that unit is;
but recognition only seems to be possible once segmentation
has been carried out.

Broadly speaking, there are two ways in which to break out
of the segmentation < recognition circle for the adult listener.
The first is to use an interactive approach, in which the system
puts forward tentative hypotheses concerning segmentation
and recognition on the basis of lexical information, and rein-
forces hypotheses that fit together (e.g. Marslen-Wilson and
Welsh (1978); McClelland and Elman (1986)). The second
approach is to attempt to find reliable cues for segmentation,
which are independent of the identity of what is being seg-
mented. According to this second approach, segmentation
can be carried out bottom-up, and its output fed on to later
recognition processes.?

In acquisition, an isomorphic segmentation problem exists,
except that the goal of segmentation is not lexical access but
lexical compilation. Here it seems more likely that bottom-up
cues are used at least initially, since in the earliest stages of
acquisition the infant has no lexicon with which to segment
interactively. Although it has been suggested (e.g. Suomi

"This work was supported by the U.K. Economic and Social
Research Council (ESRC). Grant number: R0O00 23 3649

?For a model detailed discussion of the topic see Caimns et al.
(1994).
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(1993)) that words spoken in isolation could be stored and
thereafter used to aid segmentation interactively, there is no
quantitative evidence that this is feasible.

The bottom-up cues that may be used to aid segmenta-
tion can be divided into three main groupings: (i) Acou-
stic/phonetic juncture markers or pauses (ii) Prosodic mar-
king that specifies the initial portion of a word, given a pre-
syllabified input. (iii) Distributional cues: for example diffe-
ring probabilities of certain phonological sequences at various
points in the speech stream (phonotactics). The first type of
cue has been studied in the phonological and speech recogni-
tion literature (Lehiste (1971)). The second approach has been
thoroughly investigated by Cutler and colleagues (Cutler and
Norris (1988); Cutler (1993); Cutler and Butterfield (1992)).
Her Metrical Segmentation Strategy (henceforth MSS) holds
that when a strong vowel is heard, a boundary is hypothesized
at the beginning of the syllable of which the vowel is nucleus.
Although originally a theory of adult behaviour, there has
been recent discussion of how the MSS could be acquired
(see Cutler et al. (1992); Otake et al. (1993)), and also work
that seems to demonstrate a sensitivity to metrical patterns
in infants of 9 months (Jusczyk, Cutler and Redanz (1993)).
The third type of cue we refer to as phonotactics, by which
we mean constraints on the segmental phonological structure
of words and syllables. It is generally the case that sequences
of segments are more constrained within words than across
word boundaries. Thus, the sequence /nd/ is only licenced in
English if there is a morpheme boundary between /1j/ and /d/.
However, phonotactics do not have to be absolute constraints,
probabilistic structure is present too: thus the sequence /z o/ is
very common across word boundaries, but much less common
word-internally. The role of phonotactics has been studied in
the speech recognition literature (see Harrington, Watson and
Cooper (1988)), but has received little attention in the domain
of psycholinguistics.

In this paper, we present two bottom-up statistical models
which can be applied to adult behaviour, and infant develop-
ment, respectively. Our models exclusively use phonotactic
information. This is not because we believe that phonotactics
is the only information source that listeners use in segmenting
speech. Rather, we hope to quantify precisely the possible
contribution of phonotactic information to a more complete
model of segmentation which would integrate information
from various sources.



A Phonological Re-transcription of the
London-Lund Corpus

In order to be admissible as support for the bottom-up ap-
proach, the data from which a model of segmentation is de-
rived must be representative of real speech. Accordingly, we
present a large corpus of phonologically transcribed speech.”
The London-Lund corpus (LLC) is a body of English con-
versation transcribed orthographically and available on-line.
Because of its size (around 460,000 words) an automatic me-
thod was developed for its phonetic transcription. First, the
words are replaced by their phonemic citation forms using
an on-line dictionary. Then, these forms are input to a set
of re-write rules that introduce phonological alternations into
the string (e.g. assimilation, vowel reduction). None of the
rules uses word boundary information to specify its context
of application. The output from the rule-set is a corpus of 1.5
million phonetic segments.

It is, of course, impossible to recreate the original speech
data, but this method has two advantages: First, we need
a large corpus of conversational speech if its statistics are
to be representative — at present there is no comparably
large corpus with a genuine phonological transcription; Se-
cond, this method provides a higher-order approximation to
genuine data, when compared with a corpus derived from
a phonemic dictionary in combination with word frequency
counts. Thus, our data is representative of the distribution
of strings of closed-class words such as if I can. Any
adequate model of segmentation must cope with such input.
Two important characteristics of our corpus are: (1) All ru-
les for co-articulation apply equally inter- and intra-lexically.
(2) The data is very noisy with frequent repetition, hesitation,
errors, etc. Because of these facts, we consider the data to
represent a “worst case” for testing models of segmentation,
in that if segmentation is possible with this data, then the in-
clusion of pauses, prosody, and some phonetic/acoustic cues
can only serve to improve performance.

In the experiments reported here, we will use two versions
of the corpus. Corpus A has word boundary markers, while
Corpus B has no explicit word boundary marking.

N-gram Models of Adult Segmentation

Using corpus A (corpus with word boundary markers), the
prior for all bigrams: {(p',p?) | p',p® € P} was calcula-
ted, where the pair were either word internal, or straddled
a word boundary (P is the set of all phonemes). We use
the ratio of the prior that a pair (p', p?) occurs across a bo-
undary to the prior that it occurs within a word, denoted
Pacross ((P' P%))/Puwithin((p', p?)) to decide when to pro-
pose a boundary. When this ratio rises above a certain cutoff
point we insert a boundary. When the cutoff is set high,
the performance of this model tends toward the behaviour of
the deterministic n-gram model of Harrington, Watson and
Cooper (1988). Note that because we are specifying word
boundary location in the n-grams, the model is supervised,

3 A more detailed description of the corpus can be found in Shill-
cock, Caims, Levy, Chater, and Lindsey (1993)

The full-scale approach concomitant with use of a corpus can
also bring benefits in other psycholinguistic domains: see Chater,
Shillcock, Caimns, and Levy (1993).
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and therefore is not applicable as a model of development.
However, once it is trained, the model is strictly bottom-up in
operation.

The results of running this segmentation algorithm on a
10,000 phoneme (approx. 2,800 word) test stretch of the
same corpus can be seen in Figure 1 where we plot the pro-
bability of a hit versus a false-alarm as the cutoff is varied.*
Selecting different cutoff points can provide performance such
as detection of 45% of the boundaries in the test stretch with
a hits:false-alarms ratio of 45:1, or 66% of all boundaries
with a hits:false-alarms ratio of 9:1. Where exactly to place
the cutoff point is a question that depends on our theory of
how much of a problem false-alarms and misses pose for the
human processor, which will reflect assumptions about pro-
cessor modularity, parallelism in processing, and so forth.
However, one can measure, in a pre-theoretical manner, how
well the segmentation algorithm performs by taking an infor-
mation theoretic measure such as mutual information at each
cutoff point, and choosing the cutoff at which this measure is
maximized. In effect, the mutual information measure tests
whether the general shape of the distributions of boundary
points is the same for the segmentation algorithm and the true
stretch of segmented corpus, as well as the extent to which
the individual decisions match. At the mutual information
maximum the detection rate is 75% with a hits:false-alarms
ratio of 4.7:1.
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Figure 1: ROC (Receiver Operating Characteristic) graph for:
n-gram segmentation performance (corpus with boundaries
marked). The different curves show the results for bigrams,
trigrams, and a trigram model where the transcription was in
terms of the 6 broad phonetic classes.

Further improvement can be made on this performance by
using trigrams rather than bigrams. We collected the priors
of all triples: {(p', p% p®) | p',p* p® € P} that were cither
word-internal, or had a boundary between p! and p?, or had
a boundary between p? and p3. However, now we have two
ratios Pacross/Pwithin Where Pacross can correspond to the

4 A false-alarm occurs when the mode! posits a boundary when
no boundary is actually present. A hit is when the model successfully
detects a real boundary.



sequence (p*, #.p*. p®) or (p*, p?, #,P°). Asa first step, we
simply took the mean of the two ratios, and moved the cutoff
point relative to this figure. There are further complications
that arise through the use of trigrams: the tendency to over-
segment when there are one and two-letter words in the input.
A remedy for this problem is to have a list of permissible one-
phoneme words (for present purposes just/a/ and /ou/), and not
to license segmentations that create one-phoneme words not
on this list. Having done this, the results for the segmentation
of the same test stretch of corpus as before are shown in
Figure 1. The trigrams show a considerable improvement on
the bigram figures, with performance ranging from detection
of 57% of the boundaries with a false-alarm rate of 65:1, to
the mutual information peak at 93% detection with 9:1.

The algorithm does indeed show some over-segmentation
of inflectional forms as Harrington et al. realized would hap-
pen. However, as can be seen from the results these cases are
really quite rare in normal conversational speech. Another
common error is to over-segment words which begin with
a weak vowel, thus /tok#a#tbaut/ for talk about, though
once again such cases are rare. In fact, this latter type of
error — where a word boundary is spuriously inserted before
a strong vowel — is very common in human slips of the ear
(see Cutler and Butterfield (1992)), so one could interpret this
as being a feature of the phonotactic model.

These figures would seem to indicate that the problem of
segmentation is not really such a problem after all. However,
our result must be qualified by noting its possible reliance
on a detailed and unambiguous phonemic input string, some-
thing which in all probability is not obtainable either in an
Automatic Speech Recognition (henceforth ASR) system, or
in human listening. In real speech, phonemes are realised
with numerous variations in both time and quality. Of course,
the solution that many phonologists and psycholinguists take
is to assume that such issues can be resolved at a lower level,
and will not impinge on higher level processes, however there
seems to be little evidence that this is the case.

We tested the reliance of these results on a clear transcrip-
tion using a full phonemic inventory, by following Zue and
colleagues (e.g. Huttenlocher and Zue (1983)) who have used
transcriptions of speech where each segment is placed in one
of six broad phonetic classes which are more reliably identi-
fied by an ASR system. We re-transcribed our corpus in terms
of the six classes (Stop, Nasal, Weak Fricative, Strong Frica-
tive, Glide/Liquid, and Vowel) and once again constructed a
trigram model using exactly the same procedure as before.
Not surprisingly, the performance was degraded when com-
pared to the fully transcribed trigram model (see Figure 1).
However, absolute performance is still good, with a mutual in-
formation peak at 74% detection with 1.5:1 hits:false-alarms.

To summarise, the supervised trigram technique provides
a powerful model of adult behaviour, but its effectiveness is
proportional to the detail of the input phonological transcrip-
tion.

Connectionist Modelling of Segmentation
Acquisition
In addition to the supervised n-gram models of adult segmen-

tation, we have also constructed un-supervised n-gram models
in which no word boundary marking is employed in construc-
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tion (i.e. # is nor a member of the symbol set) using corpus
B. These models, unlike the supervised n-gram models just
described, are admissible as models of infant development be-
cause no top-down information is employed during training.
However, such models inherently employ phonemic catego-
ries, and hence cannot be used to address the pre-categorial
phase of infant development. Therefore we developed a neu-
ral nctwork model that is feature-, rather than category-based.
We consider a feature-based representation to be one step
closer to the genuine speech signal.

Network Training

The network has a recurrent, self-supervised, architecture (see
figure 2). The task is to echo the current slice of input, re-
member the previous, and, most importantly for this paper,
to predict the next. As input to the model, we translated cor-
pus B described above into a nine-bit binary feature vector
representation where the features are taken from the Gover-
nment Phonology scheme of cognitive elements (see Harris
and Lindsey ((in press)); Kaye, Lowenstramm and Vergnaud
(1985); Shillcock et al. (1992)).° Noise is added to the input
by flipping features from O to | (or vice versa) with a certain
probability, in order to encourage the network to rely on se-
quential information (i.e. if the current segment is obscured,
then the net will have an incentive to use the local phone-
tic context to recover its identity). The net is trained using
Back-propagation Through Time (BPTT — see Rumelhart,
Hinton and Williams (1986)), a steepest descent procedure,
and a cross-entropy error measure (see Hinton (1989) — cross
entropy is a good measure to use when one wishes to interpret
continuous valued outputs as probabilities of binary decisi-
ons). Training comprises two passes through a training stretch
of the corpus one million phonemes in length (with different
noise on each pass), thus two million phonemes in total. The
learning rate is decayed as training progresses.

current
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Figure 2: The Network — The solid arrows between layers in-
dicate complete connectivity with modifiable uni-directional
links. The dotted arrows show how the input corpus arrives
over time to specify the input and output target.

Network Segmentation

The rationale used in postulating boundary points follows
from what we know about phonotactics. From the network's
point of view, lack of constraint in phonotactic structure (high

®Work by Williams and Brockhaus (1992) has shown how the
govemment phonology elements can be automatically extracted from
the speech stream, so we have reason to believe that coding in this
way represents a step further towards ecological validity.



entropy in information theoretic terms) will make the next
segment difficult to predict. If prediction is hard, then error
will be high. Thus, boundaries are proposed at peaks in the
error score on the prediction output units (marked next in
Figure 2).

The model was tested by providing as input a noise-free
10,000 phoneme (about 2,700 words) stretch of corpus, and
measuring the Cross Entropy error on the prediction sub-
group of the output units. This yields a variable error signal in
which we define a “peak” by placing a cutoff point at varying
numbers of standard deviations above the mean. The effects
of choosing increasingly more stringent cutoff points can be
seen in Figure 3 where we plot how the hit and false-alarm
rates vary with the cutoff point. At the cutoff that maximizes
the mutual information, 21% of the boundaries are correctly
identified with a hits:false-alarms ratio of 1.5:1.
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Figure 3: ROC graph of network segmentation performance
(corpus with no word boundary marking).

In the following sections we evaluate the significance of
these results by comparison with a random segmentation al-
gorithm which was averaged over five different runs. This al-
gorithm was designed to yield a distribution of “word” length
similar to that of the network. We consider this to be a more
stringent test of the network’s performance than comparison
witharandom segmentation algorithm that uses a uniform dis-
tribution. The difference in performance is highly significant:
-\?1) = 216.8,p < 0.001.

Although network performance peaks with correct identi-
fication of about one in five boundaries in the test corpus,
there is a sizable proportion of false alarms at this cutoff
(i.e. cases in which the network predicts a boundary when
in fact there is none). It may well be that although the false-
alarms do not actually correspond to existing boundaries in
the test stretch, they are actually plausible guesses based on
the low-level data that is the only information source avai-
lable to the model. We tested this hypothesis by examining
the phonotactic acceptability of the boundaries that the model
postulates, defined by the legality of the sequence of segments
over the postulated boundary. Thus the sequence /tp#ra/ is a
phonotactically malformed boundary postulate, while /pt#ra/
is well-formed. We found that false-alarm boundaries of the
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network are much more likely to be phonotactically well-
formed than those of the random case (for the initial bounda-
ries: x{zl) = 221.8,p < 0.001, while for the final boundaries
xf” =119.1,p < 0.001).

In summary, phonotactics provide a fairly weak source of
information for the bootstrapping of segmentation, but the

cumulative effect of such information may well be useful in
the initial phases of compiling a lexicon.

Network performance and the MSS

In this section we provide a qualitative analysis of network
segmentation and present the surprising result that there is a
statistical basis for the emergence of the MSS in our purely
bottom-up model.

We investigated the performance of the model by counting
the instances in which a boundary is correctly postulated be-
fore a strong or weak syllable. The definition of weak and
strong is not trivial however. While the status of schwa (/2/)
as a weak vowel is inherent, other short vowels such as fa/
and /1/ can be either metrically strong or weak depending
on context (this version of the corpus is not transcribed with
metrical markings). As an operational definition of strong
and weak we took the lax vowels /a/,/1/, and /a/ to be weak,
and all other monothongs and dipthongs to be strong. Be-
cause some of the instances of /1/ and /a/ which we classify
as weak will actually be strong, if anything this will tend to
artificially boost the number of weak classifications. Given
this criterion, in the 2,700 word test set 53% of the words are
strong-initial.° The network performance is proportionally
skewed towards successful detection of strong-initial words
to a striking degree (see Figure 4a, X(21> = 77.2,p < 0.001).
A similar result was obtained when we changed the defini-
tion of weak to just /o/ (x{,y = 70.4,p < 0.001). A natural
conclusion to draw is that the model is segmenting more be-
fore open-class words, and examination of the totals of hits
before open- as opposed to closed-class shows that this is the
case. The initial portions of open-class words are much more
likely to be detected than beginnings of closed-class items
((see Figure 4b, X%n = 14.0,p < 0.001). Note also that the
boundaries with which the model has most difficulty are the
closed-closed boundaries, thus strings of closed-class words
such as up to the are less likely to be segmented than
strings of open-class items.

When we consider the contiguous pairings of these indivi-
dual segmentations — the words that emerge from the net-
work — the same pattern is evident. A word count of the
LLC revealed that 65% of all items were closed-class, so one
would expect that this ratio would hold in network output, all
other factors being equal. While the network does not seg-
ment more whole words from the test stretch than it would
by chance (showing that the model does not develop a lexi-
con), of the correctly extracted tokens 41% are closed-class.
This is significantly different from the random segmentation
performance: x7;y = 19.46,p < 0.001.

So, our network produces segmentations which broadly
mimic the pattern predicted by the MSS, yet the net is not
retrodictive in the way that the MSS is: Crucially, the nuclear

SThis is representative of the proportion for real speech, sce
Caimns et al. (1994).
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Figure 4: Network segmentation performance mimics the
MSS.

vowel of the initial syllable is not visible to the network when it
makes a segmentation decision (recall that boundaries are ins-
erted on the basis of the ease of prediction of the first segment
in the word — generally a consonant). Thus, this model does
not need to posit that the Strong/Weak distinction has a priori
perceptual salience for the infant. The reason why our net-
work exhibits this pattern of results is simply that the initial
segments of strong-initial, open-class words tend to be less
predictable than those of closed-class words. However, we
would emphasize that phonotactic information is a relatively
weak predictor, and that itis unlikely that a purely phonotactic
approach could enable the infant to acquire a lexicon. Rather,
we see phonotactic information as being a possible method
for bootstrapping of the MSS, which is a more robust and
reliable tool for lexical acquisition. This bootstrapping could
be mediated by sensitivity to the correlation of the boundaries
that phonotactics predict with metrical structure.

Adding categorial knowledge

The results from the previous section were obtained by seg-
menting with raw scores that were not normalized for pho-
neme type. This can be seen as simulating the phase of infant
development in which phonemic categories, and information
about their frequencies, are not available to the infant. Howe-
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ver, we know that towards the end of the first year of life the
child’s phonological space is becoming structured with phone-
mic categories (e.g. Kuhl (1983); Werker (1993)). Therefore,
we decided to mimic the effect of this phonemic restructuring
in our model, to see if the qualitative pattern of segmentations
would remain constant.

We carried out the same segmentation procedure as before,
but this time normalizing the network error scores for pho-
neme type. We found an entirely different pattern of results
with respect to strong-syllables and word class than before:
in general the network no longer mimicked the MSS. Seg-
mentation before strong as opposed to weak syllables was not
significantly different from chance: _\({21} = 0.387,p > 0.05.

Neither was segmentation before open as opposed to closed-
class items: x?” = 0.035,p > 0.05. Furthermore, using

phoneme-normalized scores, 78% of correctly extracted word
tokens were closed-class, in contrast to the 41% with raw
scores. This figure once again differs significantly from the
expected distribution: x?l) = 8.07,p < 0.005, except that
now it is the closed-class items that are favoured, rather than
the open-class.

The intuitive explanation of why segmentation behaviour
should change in this way when scores are normalized is that
closed-class words, because they are most frequent in the lan-
guage, also contain the most frequent phonemes. Therefore,
the network will predict these phonemes more easily than
ones which do not occur often in closed-class words. Be-
cause predicting these segments is easicr, errors are lower.
Hence normalizing for phoneme type will augment the er-
ror scores for phonemes that most often occur in closed-class
words, and effectively increase the probability of boundaries
being proposed before such segments.

Summary and Discussion

First, as regards adult modelling, we have shown that pro-
babilistic n-gram models can be extremely powerful word-
boundary detectors, but are reliant on the quality of the pho-
nemic transcription. Therefore, phonotactic information may
have a critical role to play in adult segmentation. With refe-
rence to how such phonotactic information could come to be
encoded in the language processor, we would favour a model
in which correlations between successfully activated lexical
items, and sequences of segments in a phonological buffer
would serve to strengthen or weaken particular n-grams.

Second, we have provided a computational underpinning to
the claim that low-level phonotactics could be used by a neo-
nate as a cue for initially breaking up the continuous stream
of input speech. Note that experimental evidence shows that
infants are sensitive to the sequential statistics of natural lan-
guage (see Jusczyk et al. (1993)).

Moreover, we have given an account of how the MSS could
arise without recourse to positing metrical information as part
of a genetic endowment. The network segmentation perfor-
mance was significantly biased in favour of detecting open-
class words that have strong initial syllables.

Furthermore, we have shown that our model’s mirroring
of the MSS disappears when we add knowledge about the
frequencies of individual phoneme categories — detection of
closed-class words becomes favoured.

We see the overall picture of the role of phonotactics that



emerges from these results as follows: Initially, phonotac-
tics could provide initial segmentations from which the MSS
could be induced in the pre-categorial infant. Once the MSS
is in place, and the infant’s phonological space comes 10 be
structured with the phonemic categories of English, then the
MSS would pick out the open-class words, while phonotac-
tics could help in isolating the closed-class items. This raises
the possibility of a critical period for realization of the MSS:
If we assume that categorial knowledge is pervasive after a
certain stage of development, then the utility of the phonot-
actic strategy for bootstrapping the MSS is only visible in the
pre-categorial phase.
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