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Summary

A boundary-value problem giving rise to a one-dimensional acceleration
Bave in a nonlinear viscoelastic material is shown to have a solution, valid
in a region behind the wave front, such that stress, strain and velocity are
expressed as power series in time measured from the arrival of the wave; the
coefficients are functions of position and obtainable by quadrature from first-
order differential equations. The results may be used to determine short-time

viscoelastic behavior by means of wave-propagation experiments.



1. Introduction

Acceleration waves in nonlinear viscoelastic materials have been the
subject of recent studies by Varley [1], Coleman, Gurtin and Herrera [21,
Coleman and Gurtin [3-5), and Dunwoody and Dunwoody [6]. In particular,
Refs. 1 and 3 contain independent derivations of the equations governing the
speed of propagation of a one-dimensional wave and the variation of the
strength of the wave as it propagates (including possible growth into a
shock wave). For the remainder, the aforementioned studies desl with
various types of three-dimensional waves, thermodynamic effects, etc., but
not with the solution of boundary-value problems.

The present study is concerned with the explicit solution of one-
dimensional boundary-value problems giving rise to an acceleration wave, with
the variables (stress, strain, velocity) expressed as power series in time
measured from the arrival of the wave front at a station X, the coefficients
being functions of X. If uniform convergence of the series is assumed, then
the equations of motion a2nd continuity and the constitutive equation may
be satisfied term by term, leading to equations governing the coefficients.
It turns out that the first two terms yield the wave-speed and wave-strength
equations referred to above; the subsequent terms show the variation in the
state variables in a short time following the wave-front arrival.

A similar method has been used previously [7] in studying the propagation
of shock waves in semilinear material, i.e., materials whose instantaneous

response is linear.



2. Definitions and Formulation

We consider a longitudinal deformation x(X,t) of a material half-space

X > 0; we define strain and velocity as

e(X,t) = %;i( -1, v(X,t) = g_): , (1

inferring the equation of continuity

S = 5 @

X TP St )
where 0(X,t) is the stress and p the rest density, assumed uniform. The
constitutive equation is written in the form appropriate to small finite

deformations [8]:

N
g= Z
02y Sn (4
where
t t
Sn = ‘Z\ ...JC Kn (Tl,...Tn) € (t-Tl)...é (t-Tn) dTl....dTn, (5)

with €(t) written for %%(X,t).

The problem described by Egs. (2-5) is complete with a boundary condition

such as

€(0,t) = eo(t). (6)



It is assumed that x=X for t s 0, and that eo(t) is expressible as a power

series in t:

eo(t) = 4_21 At (7)

Q
1}
o
™8
[
0
]
/D
1
[l 4
o]

(8)

m
1
o]
N~ 8
—
j ]
o]
N\
[
i
=

where U is the material wave speed (to be determined), and the bracket <<\ j;7
equals its argument if the latter is positive, and vanishes if the argument
is negative. The an, bn, and cn are functions of X.

1f the expressions (8) are inserted into Eqgs. (2) and (3) and the

series equated term by term, we obtain

n
' - - =
n-1 U bn noay (9
c' -2 ¢ = pnb (10)
n-1 U n n’
for n=1,2...., it being understood that ao=bo=co=0. By ( )' we denote



On eliminating b, from Egs. (9-10) we obtain

1
cn-2 _ 2 Cn—l + SE _ a (11)
n(n-1) nU z TP &
. U
n=1,2..., with c_, = 0.

We must now find a way of converting Eqs. (5-6) into a relation between

the ¢ 's and the a 's.
m m

3. Short-Time Viscoelastic Behavior

To describe short-time viscoelastic behavior, we expand the kernels

Kn(...) as series:

(n) k1 kn
K (1,,...7.) =2 ....Z2 K 1 e T , (12)
n 1 n K, Kp kl""kn 1 n
where the Kin) Kk are constants, symmetric with respect to interchange of
10Ky

any two subscripts; then

(n)
S = e & K € ....€ (13)
n El kn kl...k k1 kn
where
t x .
€ = JF (t-1) e(1) dt (14)
o

Introducing the second of expressions (8) and the definition of the beta

function, we find

k+n
® k! n. X
= I Gomr =n< 'a> - %




Consequently, if we write z for <:if - é 2) , wWe have

(D) (1) 1 (1) 2
) S1 = K o 212 + (K0 a, + 3 K1 al)
(1) 1 (1) 1 (1) 3
+ (Ko 8, + 3 Kl ot 3 K2 1 )
+ 0 (24),
_g2 2 2 (2) (2) 2 3
82 = K a z (2 K 00 192 KO1 1 ) =z
00
+ 0 (24),
(3) 3 3 4
83 KOOO 1 z + 0 (z) ,
4
S4 =0 (z), etc
Hence
(1)
16.1
1 K 0 1’ ( )
(1) 1 (1) (2) 2
c, = K o0 85 %3 K1 Lt KOO 1 (16.2)
while, for n = 3,
(1) 1 (1 (2)
c, = K o n (n K 1 + 2 KOO al) 8 1 (16.n)
+ terms in a a ;
, n-2
in particular,
_ (D) 1 (1) (2)
cg = K o 8¢ (3 Kl + 2 KOO al) a,
(16.3)

2) 2 (3) 3
3 Ky o8y + Kyt ey + Kygo By -



4, Solutions for the a

For each specific value of n, Eq. (11) will be denoted by (1l.n). Thus,
Egs. (11.1) and (16.1) are a set of two homogeneous linear equations in a1

and Cl’ having a non-trivial solution only if

2 _ ¢

FU 0

Qan

Equation (17) agrees with the results of Refs. 1 and 2,

On combining Eqs. (11.2) and (16.2) we find that a, and ¢, drop out,

2 2
and, on eliminating Cl’ we obtain an equation on alz
a'+ Ba -7 a 2 0 (18)
1 1 1
where
&
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Equation (18) describes the veriation of the strength of the acceleration
wave (in this case measured by the strain-rate discontinuity al) as it
propagates on the characteristic X = Ut. The solution, taking into account
the initial condition (7), is

A
B 1

a. = (20)
gy X
Y A1 - (r A1 B) e

The strength of the wave grows or decays if YAl is algebraically greater
or less than B, respectively (B must, on thermodynamic grounds, be non-

negative). In the former case, the acceleration wave will grow into s



é £n ( E?T ), where m = ¥ Al/B, unless it is previously

shock wave at X =
overtaken by another wave.

Equations analogous to (18) have been derived by other methods and
discussed by Varley [1], Coleman and Gurtin [2], and Dunwoody and Dunwoody [6].

I1f we go on to substitute expressions from Egqs. (16) into (11.n) for

n 2 3, we find that the terms in an drop out, leaving an equation of the

form
a;_l + (B-n7Y al) a = fn-l (21)
where fn-l is a function of al,.... an_z. The solution of Eq. (21) is
a = (al/Al)n+1 ean [An + \/:X e-nBy [ a:t§) ]n+1 fn(y) dy ]. (22)

In particular,

f, =k a +k,a" +kya, (23)

where
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Hence, on substituting a1 from (20) and performing the integrations, we obtain

-3
B . BX, 28X .2
a, = [m+ (1-m) 7] e [A2 + (1-m) k1 A1 X
1-m 2 __"BX
+ e (2 m kl A1 + szl ) (1-e 77) (25)
1 2 2 3, ,,__-2BX
+ PF) (m klAl + mk2A1 + k3A1 ) (l-e ) 1,

withm =17 Al/B as before.

L Zn ( L ), as does a_. In parti-

Form > 1, a_ blows up as X goes to B 1 1

2

cular, for m = » (corresponding to B = 0) we have

A
1
1TTT A X (26.1)
1
-3 { k1 3
ay = (1-v A1X) \ A2 t 37 [1-C1-7 Alx) ]
k_ A k, A 2 (26.2)
2 1 2 3 1 )
-(1- —_— A
+ 57 [1-(1-r AIX) 1+ 7 (r lx) }'
For m=1, i.e., YA1=B, we have
81 = Al’ (27.1)
_ 28X 1l 2 3 _.—2pX
a, = e [A2 + 2P (k1 Al + k2 A1 + k3 A1 ) (1-e ) 1. (27.2)




For m < 1, we consider three special cases of interest:

(ii) A1 = 0, and

-BX 2
8, = e [A2 + klAlx + 5 A1
k
3 3 -28X
— A - .
t3g A e T ]

(iii) B = O with Y A1 < 0.

i)y = 0,

Case (i) reads

(28.1)

(28.2)

Case (ii) (which is not actually an acceleration wave) is obtained simply by

setting A1 = 0 in Egs. (28), to wit
a1 =0
-8X%
= A
a2 ° e

Case (iii) is given by Egs. (26), with T A, negative.

that in this case

lim a1 =0

X o

lim a_ = - k /37 = - K(l)/G
1 2

X o

Equations (26) represent the behavior of an elastic material if k

k2 vanish.

Equations (28) represent the behavior of a linear material if k

k3 vanish.

(29.1)

(29.2)

It is to be noted

(2)
K00

d
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(This reduces to a result due to Bland [9] ).



5. Discussion of the Results

The validity of the solution established here is clearly limited to the
domain of convergence of the series. In addition, any interruption in the
analyticity of the boundary conditions as given by Eq. (7) gives rise to a
wave which likewise nullifies the validity of the series solution, as does,
obviously, the blowing up of the coefficients in the case m > 1. Furthermore,
a shock wave may be produced behind the acceleration wave if the envelope of
the characteristics has a cusp. There is a possibility, however, that the
trajectory of such a wave coincides with the limit of convergence of the
series; this question is yet to be investigated.

The results of this paper give the possibility of an experimental
evaluation of the short-time behavior of the one-dimensional response
functions of a general nonlinear viscoelastic material describable by

Egs. (4-5), in the form of the coefficients K(l)

ml. . .m2

of the series expansion

(12) of the kernel function Kn (1 .Tn). Let us consider an acceleration

1

wave produced by longitudinal impact on a long, straight bar having strain
gages affixed at a number of sufficiently closely spaced stations. A

record of the first arrival time of the wave gives the speed U, end hence

(1) > - o .
KO . From strain-time records we may calculate a, = elr:X/U’32'€It=X/U’

etc. We plot these quantities as functions of X. To the data for a1 we
try to fit a curve given by Eq. (20), having at our disposal the parameters

f and Y; from the values of the parameters giving the best fit (e.g., by

(1 and K(z)

1 00 by Eq. (19). Similarly, the values

least squares) we obtain K
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of k, , k_ and k3 giving best fit to the data for a_ by Eg. (25) yield

1 2
(D () 3)
K 2’ K o1 '’ 00

2
and K

I remark further that "short-time behavior' is used in the present
cpntext differently from the quasi-static treatment of Huang and Lee [10].
The significance of short-time approximations in viscoelasticity has been

discussed elsewhere [11].
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Résuméd

On montre qu'un probl®me d'un corps viscoélastique non linéaire ol les
conditions 3 la limite provoquent une onde d'accélération undimensionnelle
possd®de une solution, valable dans une certaine région derrilre 1 'onde,
telle que la contrainte, 1la déformation et la vitesse s'expriment sous forme
de séries en puissances du temps relatif a 1'arrivée de 1'onde; les coefficients
sont des fonctions de la position qui s'obtiennent par intégration d'équations
différentielles de premier ordre. Ces résultats permettent de d€terminer
les constantes qui régissent le comportement viscoéiastique 3 courte durde

au moyen d'essais de propagation des ondes.





