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ABSTRACT 

In a queuing system that does not serve each customer immediately 

upon his arrival, a consumer will attempt to arrive at a time that will 

minimize the expected length of his wait. The consequences of such 

behavior are explored for a queue with scheduled service. The 

characteristics of such a system are then compared to one with bulk 

service, and it is found that scheduled service entails a lower expected 

waiting time than does bulk service except for very high values of the 

traffic density. 



I. Introduction 

SCHEDULES AND QUEUES* 

A. Glazer 

R. Hassin 

This paper considers a class of queuing systems in which customers 

are served in batches, and in which the length of service is best 

approximated as a deterministic rather than as a stochastic variable. 

Such systems are common in transportation markets: an airplane can carry 

several passengers at once, and the length of a flight is usually 

predetermined; a household moving company rarely hauls the belongings of 

only one customer, but instead waits until it finds several shipments to 

the same destination. Railroads, buses, and jitney cabs possess similar 

characteristics. 

Our major purpose is to compare customers' waiting time under two 

different systems. The first one involves bulk service, wherein an idle 

server commences service whenever a certain number of customers are in 

the queue. Such queues with random service times have been extensively 

studied by Bailey (1954), Deb and Serfozo (1973), Downton (1955), Medhi 

(1975), Neuts (1967), and Weiss (1979). Bulk service with deterministic 

service time was studied by Barnett (1973), and by Ingall and Kolesar 

(1972, 1974). Kosten (1973, chapter 8) lucidly describes two such 

queuing systems: a queue in which a server with infinite capacity 

*Financial support for this research was provided by the Institute of 
Transportation Studies at the University of California, Irvine. 
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commences service only when a specified number of customers are waiting, 

and a queue in which an idle server with finite capacity commences 

service whenever one or more customers are waiting. We analyze a more 

general form of these latter models. 

The other queuing system we study involves schedules: the server 

commences service at predetermined instants of time, regardless of the 

length of the queue at that time. Such a system was considered by Erlich 

(1976); our analysis is novel in treating a customer's decision of when 

to join the queue as an endogenous, rather than as an exogenous, variable. 

Section II of the paper discusses bulk queues. Customer behavior in 

that case is simple: because customers do not know the exact times at 

which service will commence~ each is indifferent as to when he joins the 

queue, and customers can be assumed to arrive according to a Poisson 

process. 

This is not the case with scheduled service: a customer who arrives 

some time before service is scheduled will certainly waste some time 

waiting, but in return his early arrival secures him a favorable position 

in the queue. These two factors must be weighed, and the characteristics 

of the customer arrival process should be derived rather than assumed. 

This is done in Section III, where we find the density function of 

customer arrivals to be not uniform, but rather to decline over time 

within each service cycle. At the end of that Section we also compare 

customer's expected waiting times under bul~ and scheduled service. We 

find that for all except high values of the traffic density scheduled 

service imposes a lower waiting cost than does bulk service. 
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II. Bul~ Service 

Consider a system in which the capacity of the single server, that is 

the maximum number of customers he can serve at one time, is N. The 

length of time required for service is one unit. Demands arrive 

individually according to a Poisson process with mean )... An idle 

server commences service whenever n or more persons are in the queue, 

where n < N. Customers remain in the queue until they are served. 

Our primary goal is to determine a customer's expected waiting time. 

Let qj be the probability that exactly j new customers arrive 

during a unit time interval. (A summary of the notation is given in 

Figure 1.) The assumption of a Poisson arrival process means that 

At any instant, the server is either occupied serving customers, or 

else he is idle waiting to commence service again. These two alternating 

periods are termed a 11 service 11 period and an 11 idle 11 period. In steady 

state equilibrium, the probability that the queue length is zero at the 

end of a service period is equal to the probability of the event that no 

more than N persons were in the queue at the end of the previous 

service period (so that all customers in the queue were served once 

service was given) and that no new customers arrived during the service 

period. Let r. 
J 

be the probability that exactly j persons are in 

the queue at the end of a service period. Then 

( 1 ) 



Similarly, 

N 
rO = qO E 

i=O 

N j 

r. 
l 
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(2) 

r. = q. Er.+ E q .. rN+·, for j = 1,2,... (3) 
J J i=O l i=l J-l l 

These expressions will be used to calculate the expected waiting time of 

a customer. 

This average wait equals the total amount of time customers spend 

waiting during each cycle (consisting of an idle period and of a service 

period), divided by the number of new customer arrivals during a cycle. 

Consider first customer's waiting time during a service period. With 

probability rN+j' (for j>O) j persons were left behind when the 

service period started, and each such customer waits a unit length of 

time during the service period. There are an average of A new 

arrivals during this period, each new arrival arriving randomly within 

the interval. Thus, the expected total waiting time during a service 
00 

period is r jrN+. + A/2 • 
j=l J 

The expected number of customer arrivals 

during such a service period of unit length is A• 

Consider next customer waiting time during an idle period. Let there 

be j<n persons in the queue at the beginning of an idle period. Each 

such person waits an average 1/A units of time until the next 

arrival. There will then be j+l persons in the queue, and if j+l<n, 

each must wait an additional 1/A units of time until the next 

arrival. Thus, total expected waiting time during an idle period, given 

j persons in the queue at its start, is 
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n-1 n-1 
t r.[j/A + (j+l)/A + ••. (n-1)/A] 

j=O J 
= t rJ.(n+j-l)(n-j)/2A • 

j=O 

The expected number of arrivals during an idle period is 

Expected waiting time, w, is the sum of these total 

divided by the expected number of arrivals so that 

(X) n-1 n-1 

n-1 
r r.(n-j). 

j=O J 
wait in g t i mes , 

(4) 

w = [A/2 + t jrN+J· + r rJ.(n+j-l)(n-j)/2A]/[A+.r rJ.(n-j)J ••• ( 5) 
j=l j=O J=O 

Equations (1), (2), (3), and (5) define a customer's expected waiting 

time in the queue. Special cases of the general model are well-known, 

and for some values of the parameters an analytic· solution can be 

obtained. If n=l, the model becomes a M/D/1 queue, for which 

w=A/2(1-A). The case in which n=N=k is the EN/D/1 queue. If 

n=l and N=00 , we are faced with the custodian problem, discussed by 

Kosten (1973, pp. 119-123). 

When N is large and A is small, it is almost certain that the 

queue is empty at the beginning of an idle period. Service will commence 

once n new customers have arrived. The nth person to arrive does not 

wait at all, the (n-l)th person to arrive waits an average of 1/A 

units of time, and similarly for other arriving customers. Customers' 

total waiting time is (n-l)A+2/A+ ••• l/A = (n-l)n/2A. Since each 

person is as li~ely to be the first, second, or nth arrival, a 

customer's expected waiting time will be approximately (n-l)n/2An = 

(n-l)/2A. 
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For general values of the parameters, only a numerical rather than an 

analytic solution can be obtained. The general features of the solution 

are illustrated in Figure 2. Depending on the parameters of the system, 

minimizing expected waiting time requires that an idle server begins 

service whenever at least one person is in the queue, or whenever the 

queue length equals the server's capacity, or at the instant the queue 

length has attained some intermediate value. These general results 

parallel those obtained for bulk service with an exponential service time 

(see, for example, Neuts (1967)). 

If A is relatively small, waiting time is minimized by fixing n 

at a small value: intuitively, it ma<es little sense to wait for an 

additional customer if he will not appear for quite some time. For large 

values of A, however, waiting time is minimized by choosing large 

values of n. Our numerical results show, not surprisingly, that the 

greater the value of N, the lower the optimal value of n. 

III. Scheduled Service 

This section describes a different queuing system--one with scheduled 

service. An airline, for example, can schedule flights to depart every 

hour on the hour: a noon flight will leave at noon even if the plane is 

empty, and it will not leave at a quarter to noon even if it is by then 

already full.* In such a system, in contrast to one with bulk service, 

*A different form of scheduled service arises if a plane that is filled 
prior to a scheduled departure time leaves immediately, instead of 
sitting at the terminal until that time. Under such a system, customers 
cannot '<now with certainty the time of the next departure, and this in 
turn will affect the timing of their arrivals. Since consumer behavior 
under perfect information is an extreme but interesting case, we limit 
our attention to scheduled service with know departure times. 
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customers \(now when a flight will depart and they can plan when to arrive 

at the terminal.* 

A rational customer would not appear at the airport immediately after 

the previous flight departed; he could do better by arriving an instant 

before some flight. Nor will all customers arrive the instant before a 

flight is scheduled to depart, for with a First-Come First-Served queue 

discipline any one customer can dramatically improve his position in the 

queue by arriving an instant before a mass of other customers do. In 

general, then, the interarrival time cannot be characterized by an 

exponential distribution; we will, instead, derive the appropriate 

distribution. Although the model is discussed in terms of flights, it 

can be applied more broadly. 

Let service be provided at times -1,0,1,2 .•• For convenience, we 

speak only of one cycle, the one during the interval (0,1). The server's 

capacity is N, and r. 
J 

is the probability that exactly j persons 

are in the queue the instant before a scheduled departure. 

Suppose that the total number of customer arrivals during a period 

demarcated by two scheduled departures has a Poisson distribution; the 

probability of exactly j arrivals is then 

*Glazer and Hassin (1982) solve a related problem: the equilibrium 
distribution of customer arrivals to a service facility that is open for 
a fixed number of hours and that adopts a FCFS queue discipline. 

( l ) 
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Note that we have made no assumptions about the distribution of customer 

arrivals within this unit time interval. Figure 3 depicts the 

relationships among the variables described. 

By reasoning similar to that used in the previous section, we find 

that 

N j 
r . = q. r r. + r q. . rN+ • , 
J Ji=O , i=l J-1 , 

for j=l,2 ••.• 

By definition, in equilibrium all customers expect to spend the same 

length of time in the queue. Thus, any customer's expected waiting time, 

w, is the same as that of the customer arriving an instant before 

departure. Such a customer will find space on the next flight if there 

are fewer than N persons ahead of him in the queue; he will have to 

wait i units of time if upon his arrival the length of the queue is 

between iN and iN+N-1. The expected waiting time is therefore 

w = 
(X) 

E i 
i =l 

iN+N-1 
E 

j=i N 
r. 

J 

Equations (1), (2), (3), and (6) completely define a customer's waiting 

time under scheduled service, and these equations can be solved 

numerically; some results are presented at the end of this Section. 

(2) 

(3) 

( 6) 
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To complete our analysis of scheduled service, we must determine the 

pattern of customer arrivals, and discover how long before a scheduled 

departure customers arrive at the terminal. Suppose the previous 

departure was at time 0, and let t be the length of time that has 

passed since then. Let pj(t) be the probability that at time t 

exactly j persons are in the queue; for succintness, let Pj be 

defined as pj(O). The probability that no one is in the queue the 

instant after departure is the probability that N or fewer persons were 

in the queue just before departure; the probability that j persons are 

left behind is the probability that N+j persons were in the queue. 

Thus, 

N 
Po = E r. 

j=O J 

p. = rN+j' for j=l,2 •.•. 
J 

Let f(t) be the probability density function of customer arrivals 

during the interval (0,1). Define t 0 as that value of t such 

that (1-t 0), the length of time until the next departure, plus the 

expected waiting time commencing at the instant a flight departs, is 

equal to w. Clearly in each cycle no customer will wish to arrive prior 

to time t 0, so that f(t)=O for O ~ t ~ t 0, and 

00 

1-t + Ei 0 i =1 

i N+N-1 
E p. = w. 

j=iN J 

( 7) 

(8) 

(9) 
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Substituting (8) in (9) we find that 

00 i N+N- l 
t 0 = 1-w+ E i E rN . 

• l •• N +J l = J =1 

The values of f(t) for t 0 ~ t ~ l are found by means of 

expressions (ll)-(15) below. Note first that the value of f(t) must be 

positive for all values of t in this interval. Suppose otherwise, that 

there exist values of t 1 and dt, such that f(t 1) > 0, 

f(t 1+dt) > 0, but f(t) = 0 for t 1 ~t ~ ttdt. A customer 

would clearly prefer to arrive at time t 1+dt than at time t 1, 

which would violate the equilibrium condition that a customer's expected 

waiting time is constant for all arrival times at which f(t) > O. 
dw( t) 

In equilibrium, that is, dt = 0 for t 0 ~ t 2- l, where w(t) is 

the expected waiting time of a customer who arrives at time t. Such a 

customer will wait (l-t) units of time until the next scheduled 

departure time, and may then have to wait further if the queue length is 

greater than the server's capacity. His expected waiting time is thus 

w(t) = E i E p.(t) + (l-t) 
[ 

00 iN+N-1 ] 

i=l j=iN J 

and 

( 10) 

( 11) 

dw(t) 
dt 

i N+N-1 
1: 

j=iN 
{12) 
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The probabilities pj(t) found in this expression, or the probability 

that exactly j persons are in the queue at time t is given by 

Po(t+dt) = Po(t)[l-H(t)dt] 

and 

p.(t+dt) = p. 1(t)Af(t)dt + p.(t)[l-Af(t)dt] , 
J J- J 

for t 0 ~t~l and j=l,2 •.• , 

from which we find that 

Substituting (15) in (12), we conclude that in equilibrium 

[ 

oo l -1 For N=l these equations simplify to f(t) = Ai~lpi_1(t) = 

and t 0 = 1-A: the rate of customer arrivals is constant over the 

( 13) 

( 14) 

(15) 

(16) 

appropriate interval. For other values of N these equations can be 

solved numerically but not analytically. Some values of f(t) are shown 

in Figure 5. 
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If A/N is small the number of customers in the queue will rarely 

exceed the server's capacity, so that a waiting customer is very litely 

to be accommodated by the next flight. The benefit of arriving early to 

secure a favorable position in the queue is therefore negligible and 

almost all customers will arrive immediately before a scheduled 

departure. For high values of A/N, however, many customers arrive 

early to gain a good position on the queue. 

This early arrival is in some sense a waste; everyone would be better 

off if all customers arrived only the instant before a departure, and no 

earlier. The introduction of a random queue discipline, instead of a 

FCFS one, could lead to that result. Nor is this wasted waiting time 

insignificant. Figure 6 shows the fraction of total waiting time 
t 

attributable to customers early arrivals, or the value of J0f(t)dt/w. 
0 

For some reasonable values of the parameters, this fraction will be 

greater than one-half. Although customers may view a First-Come 

First-Served discipline as fair and equitable, it causes them to waste a 

significant amount of time waiting in line. 

Our final objective is to find which of the two queuing systems 

discussed, bulk service or scheduled service, imposes a lower waiting 

time on customers. Figure 4 shows expected waiting time under the two 

systems for various values of A and N.* Note that bulk service is 

always superior to scheduled service for N=l. Such is not the case if 

N>2. Instead, there exists a function, A*(N), such that if 

*The expected waiting times under bulk service are calculated under the 
assumption that the optimal value of n is chosen for each A and N. 



A> A*(N) bulk service entails a lower waiting time than does 

scheduled service; if A< A*(N) scheduled service 

13 

is superior to bulk service. Figure 7 depicts these critical values of 

A for various values of N. Note that the ratio A*(N)/N is quite 

high; if N=6, for example, A*(N)~5.6, and bulk service is better than 

scheduled service only if A/N > 0.93. That is to say that scheduled 

service is the preferred queuing system unless the traffic density, and 

the consequent congestion, is quite high. 
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1 I j arrivals witl:f j persons in queue 
f I probability q. J~With probability r. 

____ _.A J I J 
d1·.:.1 ____________ i'-~-------)-:-tr-+_l ___ _ 

I I I 
j ______ idle period ____________ J --service period-J -idle period---

Figure 1 

Notation for Bulk Service Queue 
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N=2, n=l 

N=2, n=2 
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1 

Figure 2 

Waiting time with bulk service for various 
values of\\, w, and/\. 

2 
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Figure 3 

Notation for Scheduled Service Queue 
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Distribution of Customer arrivals under scheduled service-

Figure 5 
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Figure 7 




